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ABSTRACT

There remain many open questions pertaining to the scaling behaviour of Trans-
former architectures. These scaling decisions and findings can be critical, as
training runs often come with an associated computational cost which have both
financial and/or environmental impact. The goal of this paper is to present scaling
insights from pretraining and finetuning Transformers. While Kaplan et al. (2020)
presents a comprehensive study of the scaling behaviour of Transformer language
models, the scope is only on the upstream (pretraining) loss. Therefore, it is still
unclear if these set of findings transfer to downstream task within the context of
the pretrain-finetune paradigm. The key findings of this paper are as follows: (1)
we show that aside from only the model size, model shape matters for downstream
fine-tuning, (2) scaling protocols operate differently at different compute regions,
(3) widely adopted T5-base and T5-large sizes are Pareto-inefficient. To this end,
we present improved scaling protocols whereby our redesigned models achieve
similar downstream fine-tuning quality while having 50% fewer parameters and
training 40% faster compared to the widely adopted T5-base model. We publicly
release over 100 pretrained checkpoints of different T5 configurations to facilitate
future research and analysis.

1 INTRODUCTION

Training Transformers incurs both financial and environmental costs (Schwartz et al., 2019; Patterson
et al., 2021). To this end, researchers and practitioners often have to work around fixed compute
budgets and figure out the best ways to train their models. In lieu of the rising computation demand
for training state-of-the-art Transformer (Vaswani et al., 2017; Devlin et al., 2018; Raffel et al., 2019;
Brown et al., 2020; Fedus et al., 2021) models, the goal of this paper is to present insights and
lessons from scaling Transformers and making them efficient and effective for transfer learning on
downstream tasks.

Despite the insights offered in scaling laws research (Kaplan et al., 2020; Hernandez et al., 2021)
there remain unresolved questions: Should one follow fixed scaling ratios? If not, should one scale by
depth? Or by width? Will scaling experiments on upstream pre-training generalize for downstream
transfer? Do scaling protocols for small models generalize to larger models? Are scaling behaviours
similar in all compute regions? We hope the insights presented in this paper can be useful to both
practitioners and researchers in informing their scaling decisions.

Neural scaling laws (Kaplan et al., 2020) is a common resource that many look to for advice on
scaling Transformer architectures. However, this paper limited its scope to an exhaustive study of
upstream cross entropy on language modeling tasks. It is furthermore unclear if findings from (Kaplan
et al., 2020) will transfer to downstream applications. Specifically, Kaplan et al. (2020) proposed that
the performance of a Transformer language model strongly depends on model size and only weakly
on its shape. They also argue that many model configurations with the same number of parameters
perform similarly regardless of architectural details. Our work empirically confirms this on upstream
training but finds a distinct discrepancy when considering practical downstream performance – a key
insight that we believe is highly important.

∗Equal contribution
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To this end, we conduct extensive experiments involving pre-training and fine-tuning over 200
transformer configurations ranging from 5M to 30B parameters. To the best of our knowledge, this is
the largest empirical study of practical scaling of transformer to date that considers both upstream
and practical downstream transfer. While there have been many proposed scaling protocols for
ConvNets (Tan and Le, 2019; Bello et al., 2021), there is still limited advice on scaling of transformer
architectures, apart from (Kaplan et al., 2020; Li et al., 2020). Hence, the key goal of this paper is to
distill our experiences and insights with scaling Transformer architectures and share them with the
broader community.

Contributions The overall findings and insights of the paper can be summarized as follows:

• We find that scaling laws may differ in upstream and downstream setups. Specifically,
contrary to Kaplan et al. (2020), we find that downstream performance strongly depends
on shape and not only on model size. Hence, pretraining performance may not necessarily
transfer to downstream applications. (Figure 1).

• Our findings show that pre-training perplexity can often be a deceiving indicator of down-
stream quality and therefore model building based on upstream perplexity can be challenging.
Scaling laws can differ substantially when considering metrics on actual downstream fine-
tuning. (Figure 1)

• Given that empirical scaling laws differ when considering quality on the downstream, our
work investigates the pareto-frontier of transformer configurations in this setup. We find
that the canonical model configurations such as T5-Base and T5-Large sizes (Raffel et al.,
2019) are relatively inefficient (Figure 2). Note that these sizes are based off the canonical
BERT (Devlin et al., 2018) base and large sizes.

• We find that scaling strategies differ at different compute regions, i.e., applying same
strategies at different compute regions (small vs large) has a different effect on model quality.
This has practical implications since finding strategies at small scale might not necessarily
transfer or generalize to higher compute regions (section 4.2).

• After extensive empirical exploration of the pareto-frontier of transformer models, we
propose a simple but effective scaling strategy which we call the DeepNarrow strategy.
We show that we are able to obtain model quality on par or better than canonical model
sizes (e.g., base) with 50% less parameters and being 40% faster. While we highlight the
limitations of this strategy, we also show that this DeepNarrow strategy is applicable to all
model sizes. (Table 4).

• To consider how generalized these scaling strategies are, we conduct additional experiments
on Vision Transformers (ViT; Dosovitskiy et al., 2020) to verify them in the vision domain.
Moreover, on top of the 17 GLUE (Wang et al., 2018) / SuperGLUE (Wang et al., 2019) and
SQuAD (Rajpurkar et al., 2016) tasks we employed in our extensive study, we verify our
findings via additional downstream experiments across 12 diverse language tasks (section
.2).

• We release (1) the pre-trained checkpoints for our T5 models with improved scaling proto-
cols and (2) all 100+ model checkpoints, including intermediate training checkpoints to the
research community. We believe that this is a treasure trove of data to study the behaviour
of large LM pretraining and finetuning especially pertaining to scaling laws. The check-
points and code will be released at https://github.com/google-research/
google-research/tree/master/scaling_transformers. The checkpoints
are now publicly available at our Google Cloud Bucket gs://scenic-bucket/
scaling_explorer/scaling_explorer. More recently, these checkpoints are
also now available on Huggingface https://huggingface.co/models?other=
deep-narrow.

2 RELATED WORK

Transformers (Vaswani et al., 2017) have become ubiquitous in the modern deep learning stack and
have seen widespread impact across not only language (Devlin et al., 2018; Raffel et al., 2019; Brown
et al., 2020) but also computer vision (Dosovitskiy et al., 2020; Arnab et al., 2021), reinforcement
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Table 1: Table of model configurations. NL is the number of
layers, dff is the size of the MLP, dmodel is the hidden size
of the model. dkv is the size of each key-value vector. NH is
the number of heads. P is the default model parallelism.

Model NL dff dmodel dkv NH #Params

Tiny 4/4 1024 256 32 4 16M
Mini 4/4 1536 384 32 8 31M
Small 6/6 2048 512 32 8 60M
Base 12/12 3072 768 64 12 220M
Large 24/24 4096 1024 64 16 738M
XL 24/24 16384 1024 128 32 3B

XXL 24/24 65536 1024 128 128 11B
XXXL 28/28 131072 1280 128 256 30B

Table 2: Description of different
knobs used in the paper to define
scaling operations.

Scaling Op Description

NL Num. layers
EL Num enc. layers
DL Num. dec. layers
DM dmodel

KV dKV

NH Num. of heads
FF dff
SH Shared heads

SKV Tied key-values

learning (Parisotto et al., 2020) and computational biology (Senior et al., 2020). To this end,
discovering empirical scaling laws of these models is a research area that has garnered considerable
interest (Kaplan et al., 2020; Henighan et al., 2020; Hernandez et al., 2021; Bahri et al., 2021).

Discovering empirical scaling laws that govern neural language model scaling has been a recent
subject of keen interest (Kaplan et al., 2020; Hernandez et al., 2021; Bahri et al., 2021). Many of
these works present scaling laws across a variety of axis such as model size, compute and/or dataset
size. It is worth to note that many of these works evaluate on autoregressive language modeling and
use cross entropy loss to measure performance (Kaplan et al., 2020; Hernandez et al., 2021). There
are a multitude of interesting findings presented (Kaplan et al., 2020) whereby the authors show that
performance (loss) scales as a power-law with model size and dataset size. However, one notable
claim is that architectural details (e.g., network depth and width) have minimal effects. Subsequently,
Hernandez et al. (2021) builds upon the work of Kaplan et al. (2020), evaluating scaling laws for
‘transfer’. To this end, the authors study the effect of dataset scaling on unsupervised transfer learning
and finetuning. That said, the experiments of Hernandez et al. (2021) are mainly targeted at dataset
transfer between two different distributions (language and code) and make the same assumptions as
Kaplan et al. (2020) about model scaling. In a similar vein, Henighan et al. (2020) studied empirical
scaling laws for different domains for generative modeling in vision, video and multimodal setups.

There have been increasing demand for training and scaling Transformers (Shoeybi et al., 2019; Raffel
et al., 2019; Fedus et al., 2021; Conneau et al., 2019; Lin et al., 2021). Despite the benefits from
improved performance, there are financial considerations and environmental costs (Schwartz et al.,
2019; Patterson et al., 2021) to training these models. Given that every moment spent on hardware
accelerators is a cost incurring activity, we believe that research in distilling practical scaling insights
and recommendations to be highly crucial (Li et al., 2020; Kaplan et al., 2020; Bello et al., 2021).

Notably, the research problem of making transformers efficient have also been tackled from an exten-
sive number of angles such as (but not limited to) distillation (Hinton et al., 2015), compression (Zafrir
et al., 2019), parameter sharing (Lan et al., 2019; Tay et al., 2019; Zhang et al., 2021), efficient atten-
tion (Tay et al., 2020c; Kitaev et al., 2020; Choromanski et al., 2020; Tay et al., 2020b; Ainslie et al.,
2020; Jaegle et al., 2021), architecture search (So et al., 2019), alternative non Transformer-based
architectures (Tolstikhin et al., 2021; Tay et al., 2021a; 2020a; Lee-Thorp et al., 2021). With so much
extensive research into novel techniques to improving the efficiency of transformers, it is surprising
that the standard configurations (e.g., base, large) of transformers in BERT (Devlin et al., 2018) or
T5 (Raffel et al., 2019) have not been rethought.

3 METHODS

This section describes our main experimental setup.

Architecture We study a Transformer encoder-decoder architecture that uses relative attention
based of the T5 architecture (Raffel et al., 2019). The choice of adopting Seq2Seq architec-
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tures (Sutskever et al., 2014) is mainly due to their universality and ability to both subsume encoder
(Bert-like) and decoder (language) models within an identical framework. Moreover, the universality
of Seq2Seq architectures also allow us to fine-tune across a broad range of tasks. Our implementation
and experiments are performed in Mesh Tensorflow1 (Shazeer et al., 2018) using the default T5
library2.

Model Configurations We first define eight Transformer sizes, i.e., tiny, mini, small, base, large,
XL, XXL and XXXL. The small, base, large, XL and XXL corresponds to the canonical T5 sizes that
are released in Raffel et al. (2019). We use three other sizes as starting points, e.g., tiny and mini
since there is a lack of representation of transformers at lower compute regions.

Pretraining We pretrain on the Colossal Cleaned Common Crawl Corpus (C4; Raffel et al., 2019).
We pre-train encoder-decoder models using the span-based masked language modeling (MLM)
objective (Fedus et al., 2018; Devlin et al., 2018). We pretrain all our models for 219 steps using
16 TPU-v3 chips. For larger models, we run our models with 64 TPU-v3 chips. We use 219 steps
since majority of the experiments in (Raffel et al., 2019) were conducted in the same fashion. We
would also like to emphasize that the official released T5 checkpoints were pretrained on 1T tokens (1
million steps with a batch size of 2048). Given that this extended long pretraining setup is infeasible
given the number of experiments we would have to run, we opt to follow the standard ablation setup
in (Raffel et al., 2019) which pretrains on more manageable number of tokens.

Downstream Tasks We consider a myriad of downstream tasks. In total, we consider 17
tasks. We finetune on a mixture of GLUE (Wang et al., 2018), SuperGLUE (Wang et al., 2019),
SQuAD (Rajpurkar et al., 2016) for the key downstream experiment results and report aggregate
GLUE/SuperGLUE scores. We believe that an aggregate of 17 tasks in natural language understand-
ing that conmprises of both high-resource and low-resource tasks gives us a good overview of a
model’s downstream performance. Finetuning is typically performed with 16 TPU-v3 chips.

Notation for Scaling Operators For the remainder of the paper, we use a shortform code for each
scaling operator applied on a standard transformer size. For example, NL32-SM refers to scaling
small (SM) transformers to 32 layers (NL32). We use EL,DL to represent scaling encoder and decoder
layers independently, KV to represent scaling each key-value size, DM to represent scaling dmodel.
NH to represent modifying the number of heads and FF to represent scaling dFF . The initial/standard
model sizes are tiny, mini, small, base, large, XL, XXL and XXXL. This is described in Table 2.

Convention With the exception of Figure 1, all charts are plotted with FLOPS as the main compute
metric. We use number of params for Figure 1 to align with Kaplan et al. (2020). All of the
downstream results are plot with SuperGLUE accuracy (Wang et al., 2019) as the Y-axis. Due to the
lack of space, we report charts/plots of other metrics (params of speed) and other tasks (GLUE or
SQuAD) in the supplementary material. All parameter counts also include the embedding parameters.
We re-emphasize that it is critical to take into account multiple facets of efficiency and therefore
report all three key metrics (FLOPs, throughput/speed and parameter count) in the supplementary
material.

Model and Data Parallelism By default, our models are trained across multiple workers via data
parallelism. As per convention in the T5 paper, our larger models use the default model parallelism.
Specifically, this is set to 2 for large models, 8 for XL models and 32 for XXL models.

4 ANALYSIS AND RESULTS

This section presents our overall findings and key results.

1https://github.com/tensorflow/mesh
2https://github.com/google-research/text-to-text-transfer-transformer
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Figure 1: The predictability and unpredictability of pre-training versus fine-tuning. While the
upstream pre-training performance measured by negative log-perplexity scales with model size quite
independently from the model shape, the downstream performance (SuperGlue (avg) score) does not.
This indicates that the shape of models plays an important role on how it performs on the target task
and the performance is not merely a function of parameter size.

4.1 MODEL SHAPE MATTERS

We extend the results of Kaplan et al. (2020) to fine-tuning and present model shape dependence
not highlighted in Hernandez et al. (2021). Kaplan et al. (2020) studies pre-training (upstream)
and concludes that performance depends only weakly on model shape, but strongly on model size.
Hernandez et al. (2021) extends this work to measure an effective data transfer measure when pre-
training and then fine-tuning on a Python dataset. However, this work does not consider details of
model shape, and instead focused on the relative predictability with model scale alone. Our work
stands in contrasts since we find that model shape matters considerably for downstream fine-tuned
performance.

Figure 1 shows compute-performance scatter plots for pre-training (left) and fine-tuning (right) over a
dozen Transformers. The models considered are sampled diversely within a two-order of magnitude
band of model scales. We adjust the model shape primarily through depth variations, starting with
configurations such as XXXL (33B), XXL (11B), XL (3B) and LG (750M) parameters but have their
depths/lengths modified. From Figure 1 reveals a strong correlation of the upstream performance with
model size, corroborating the neural scaling laws of Kaplan et al. (2020). But the strong pre-training
correlation largely vanishes when fine-tuning these models on SuperGLUE (Wang et al., 2019). While
we confirm the findings of Kaplan et al. (2020) that performance scales strongly dependent on model
size but weakly on model shape, we find that model shape (such as depth-scaling) is highly important
for downstream transfer – a dimension that is not considered in Kaplan et al. (2020).

As a substantiating point and additional context to Figure 1, we also show via a counter-example that
pretraining perplexity is not indicative of transfer performance, i.e., we explicitly show that a case (in
Table 3) where a model can have outstanding pre-training perplexity but substantially undeliver when
it comes to downstream performance. To the best of our knowledge, while this has been mentioned
implicitly in several existing works (Narang et al., 2021), this is the first work explicitly shows this
point.

Zooming in Versus Zooming Out Here, one may argue that a general trend (even on downstream)
may still exist if we zoom out and cover a very wide range of model sizes (e.g., very tiny to very
large). A tiny model is not likely to outperform a very large model no matter how well-configured it
might be. Our purpose here is not to contradict this general trend but to distinguish between both
arguments. We argue that, in practical setups, comparisons between models and scaling decisions
are often made when zooming-in and our pairwise comparisons above are not on largely different
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Table 3: Upstream performance does not guarantee downstream performance. Example points
from Figure 1. A model with improved upstream quality (as measured by validation perplexity) can
do significantly worse on transfer if the shape setting is not right. Hence, pre-training perplexity can
be misleading.

Name NL dff dmodel dkv NH #Params PPL Downstream

NL12-XXL 12 65536 1024 128 128 3.6B -1.46 85.1/76.5/88.1
NL32-XL 32 16384 1024 128 32 3.8B -1.49 86.9/79.9/89.5
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Figure 2: Downstream scaling properties is scale-dependent. The downstream performance on
SuperGLUE has qualitatively different scaling properties across models sizes. From left to right, we
fine-tune model configurations closely matched to T5-Small, T5-Base and T5-Large.

models, rather those that are on the same neighborhood in the size (close in the x-axis). Thus, what
we claim is that when you zoom in, which is what happen in practice, it is not uncommon to see
cases similar to the models in Table 3 where taking the upstream perplexity into account may lead to
a sub-optimal choice. It is also worth to mention that zoom-ing in on upstream returns very different
trends compared to zoom-ing in on downstream results.

4.2 SCALING BEHAVIOUR AT DIFFERENT COMPUTE REGIONS IS DIFFERENT

In this section, we evaluate how each scaling hyperparameter and model shape influences a model’s
position on the compute-performance chart. Figure 2 shows three plots which varying different
scaling knobs. Given three starting points, small, base and large, we scale the starting points across
different knobs. It is clear from Figure 2 that the effect of applying different scaling operators is
very different across different compute regions. We also observe that the Pareto-boundary is also
very different at different compute regions. The implications of this finding is nontrivial, since
this effectively means that finding improvements at a (plausibly) smaller scale in hopes that it will
generalize at large scale might not be an effective strategy. This corroborates recent findings of Bello
et al. (2021) which studied scaling properties of ImageNet models. Their paper demonstrates that the
compound scaling rules (Tan and Le, 2019) derived in a small-scale regime, lead to Pareto-inefficient
models when then extrapolated to larger scales.

4.3 NOT ALL SCALING STRATEGIES AND MODEL SHAPES ARE CREATED EQUAL

From Figure 2, we can also observe that different scaling strategies results in very different outcome.
A common pattern amongst all three model sizes is that the NL operator has strong influence on the
Pareto-frontier. On the other hand, settings such as KV (varying dkv) seem to result in models that are
less Pareto-efficient. We notice mixed signals from varying dmodel. In this case, scaling down results
in a model on the pareto-frontier, but scaling up, i.e., DM2K results in a highly pareto-inefficient
model. When compared to scaling up, NL is a substantially superior option to dmodel. We describe
scaling recommendations in subsequent sections. Overall, it does seem like dkv and NH does not
influence the Pareto frontier as much as other knobs.
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Figure 3: Different scaling with respects to different knobs, in upstream and downstream. On the
plots, DM refers to scaling model dimension, FF refers to scaling FFN hidden size, NH is number of
heads, and NL is number of layers. Size of each circle indicates the model size in terms of number of
trainable parameter parameters.

Effect of scaling different knobs Figure 3 illustrates the effect of scaling different knobs on the
compute-performance boundary. It becomes clear that not all strategies influence the boundary
with the same impact. For example, NL has the biggest impact while NH does not influence the
model’s position on the graph much. Finally, we also note that the effect of scaling on upstream and
downstream is quite different. For example, FF2K is clearly better option than the canonical base
model in downstream but not upstream.

Scaling Depth vs Width In Figure 3, we also note that the NL scaling operator (depth) has
generally impact on the Pareto-boundary as compared to width (FF). For instance, we can see that
FF12K (in Figure 3 is clearly not Pareto-optimal, being outclassed by configurations such as NL16-
SM, EL12-SM. Likewise in the base setup, FF9K and F12K are less Pareto-efficient as compared to
NL16 and NL24.

4.4 SCALING RECOMMENDATIONS

We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased3

before considering any other forms of uniform scaling across other dimensions. This is largely due to
how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a
tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise,
a tall base model might also generally more efficient compared to a large model. We generally find
that, regardless of size, even if absolute performance might increase as we continue to stack layers,
the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36
layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e.,
params, FLOPs or throughput (speed). We report all three key4 efficiency metrics (number of params,

3Our concurrent work Charformer (Tay et al., 2021b) makes use of a DeepNarrow inspired strategy which is
referred to as Tall in the paper.

4It is often assumed that number of parameters, speed and FLOPs tend to correlate. We find that this is not
always the case especially when dealing with modeling choices that influences parallelism (depth vs width).
Therefore, we emphasize the importance of reporting all key efficiency metrics.
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Table 4: Efficient DeepNarrow alternatives to the canonical T5 model sizes using the DeepNarrow
strategy. Models are all Pareto efficient at least to one or more aspect of compute and one or more
downstream task. XXL and XL32L models are trained on 64 TPU-V3 chips and so they are faster.

Model #Params #TFlops Steps/s Ppl (C4) GLUE SGLUE SQuAD AVG

Small 61M 3.7 23 -2.021 77.45 62.88 80.39 73.57
Mini-8L 50M 3.2 24 -2.056 77.11 63.35 80.12 73.52

Base 223M 11 9 -1.752 82.53 69.80 85.14 79.16
Small 16L 134M 7.2 13 -1.825 82.57 69.51 84.12 78.73
Small 20L 164M 8.6 11 -1.798 83.22 69.44 85.23 79.30
Small 22L 179M 9.3 10 -1.798 82.52 70.68 85.39 79.54
Small 24L 193M 10 9 -1.783 83.11 71.11 85.45 79.92
Small 32EL 143M 10 10 -1.897 82.77 70.66 86.01 79.81

Large 738M 34 4 -1.605 85.08 75.97 87.55 82.87
Base 36L 621M 29 3 -1.626 85.26 75.57 87.84 82.89

XL 2.9B 64 1 -1.487 86.49 77.99 88.70 84.38
Large 36L 1.1B 50 2 -1.564 87.22 79.34 89.21 85.27

XXL 11.3B 367 1 -1.430 86.91 79.20 89.50 85.20
XL 32L 3.8B 169 3 -1.500 86.94 79.87 89.46 85.42

FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to
consider.

Efficient Alternatives to T5-Base/Large/XL/XXL Table 4 describes this phenomena in which we
list efficient alternatives to the canonical model sizes using the DeepNarrow strategy. Note that this
list is not exhaustive. Firstly, we find that significantly increasing the depth of the small model does
substantially better in terms of the compute-performance trade-off and may result in pareto-efficient
models. The Small 16L model achieves comparable performance to Base while being 40% faster,
cost 50% less parameters and has only about 63.1% of total FLOPs. Alternatively, the Small 24L
model has 87% of FLOPs of the base model, similar speed (steps/s), and only 16% parameter savings
and yet outperforms Base on all three downstream tasks. Meanwhile the canonical large model can
be outperformed by a base model of 36 layers with 16% parameter saving and lower flops cost. The
Large 36L model is only 37% of the parameter cost of the XL model and yet outperforms the XL
model on all three downstream tasks. Finally, the XL 32L model is only a third the size of the XXL
model, approximately consume 44% the number of FLOPs of the XXL model and is about 3 times
faster on the same hardware.

The Limits of Depth vs Width We note an obvious limitation with our advice. Scaling depth has
an obvious limiter, i.e., they are non-parallelizable across different machines or devices and every
computation has to always wait for the previous layer. This is unlike width, which can be easily
parallelizable over thousands or hundreds of thousands of devices. Within the limitation of scaling
to 64 workers with a model parallelism of 32, we still find that scaling depth can still improve the
Pareto-efficiency of models. From our experiments, from Table 4, we see that the efficient small
DeepNarrow models (e.g., Small 16L etc) are still much faster than the base models. Things get
tricky as we approach larger models where model parallelism makes it difficult to compare the utility
between wide and deep models. To this end, we believe the proposed scaling protocol holds within a
certain hardware limit. Scaling to extreme number of machines via model parallelism (of width) is
out of scope of this paper. Another potential drawback to depth-scaling is that this may influence the
stability of training these models (due to vanishing gradients). However, we did not observe this in
our experiments with T5 models.

Relationship of Model Depth with Pareto-frontier Figure 2 shows the performance of scaling
small, base and large models by depth. It is clear that the small model (green) dominates the Pareto-
frontier initially but slowly tapers off at a certain point. Here, we note that the depth-scaled small
model is more Pareto-efficient compared to the base model. After the Pareto-efficiency of the small
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Figure 4: Compute-Performance trade-off when scaling model depth of different starting points
(Small, Base, and Large).

model tapers off, the base model (red line) becomes Pareto-efficient. Similarly, this tapers off and the
large model becomes Pareto-efficient.

5 CONCLUSION

In this paper, we present several important findings pertaining to training and practical usage of
efficient transformer architectures. Specifically, we discovered that scaling laws differ in upstream
and downstream. Contrary to prior work (Kaplan et al., 2020), we emphasize the importance of model
shape for ensuring strong downstream performance. Next, we also discovered that scaling happens
rather differently at different compute regions and scaling a small model would behave differently
from scaling a large model. We highlight that this has implications since model development in a
certain compute region could potentially not transfer to another compute region. We go on to show
that not all model knobs are created equal, i.e., some knobs (such as depth) has a larger impact on the
Pareto-frontier. Finally, we propose a simple but highly effective improved scaling protocol. With
this strategy, we obtain models with similar downstream finetuning quality while having 50% fewer
parameters and/or training 40% faster.
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APPENDIX

.1 TRANSFERABILITY OF RESULTS TO VISION TRANSFORMERS (VIT)

Following our language experiments, and as per the advice of (Narang et al., 2021), in order to
examine our DeepNarrow scaling strategy in another domain and check if the observations extends
to the cases where Transformers are applied on other modalities, we pre-retrained several different
configurations of Vision Transformer (ViT; Dosovitskiy et al., 2020) and evaluated on downstream
few-shot image recognition task. We focused on investigating the pareto-efficiency of DeepNarrow
small models compared to base models.

We follow the exact same setup as Dosovitskiy et al. (2020) and pre-train ViT on the JFT dataset (Sun
et al., 2017) with 18k classes and 303M images, for 7 epochs. We evaluate our model on ImageNet
10-shot classification. In our experiments, we use the patch size of 32× 32.

Table 5: Results on image recognition task. All models are trained with the same batch size using 64
TPU-V3 chips.

Model #Params GFLops Steps/s ImageNet-10Shot
ViT-S 62M 1.37 8.83 45.3
ViT-B 102M 4.44 6.74 58.9

ViT-SL=24 87M 3.94 6.11 59.7
ViT-SL=28 99M 4.58 5.36 61.6

Results Table 5 report results on ViT experiments. When considering the number of trainable
parameters or FLOPs, we observe that DeepNarrow scaling of the ViT-S model achieves better Pareto
efficiency compared to the ViT-B model. Notably, when L = 24, the model achieves better few-shot
accuracy with 15% less parameters, 11% less FLOPs and achieves +1.4% percentage improvement
in accuracy. With respect to the step per seconds (speed), given ViT-SL=24 or ViT-SL=28 add to the
sequential operations in depth, they become a bit slower than ViT-B. However, we consider 6.11s
and 6.74s to be reasonably within the same ballpark. In short, the ViT-SL=24 is still a compelling
alternative.

.2 HOW TRANSFERABLE ARE THESE RESULTS ACROSS MULTIPLE DIVERSE NLP TASKS?

To verify that our scaling protocols transfer to tasks outside of the 17 tasks explored in
(GLUE/SuperGLUE and SQuaD), we run additional experiments on a myriad of diverse NLP
tasks. Verifying whether the findings generalize outside GLUE and SuperGLUE is important since
we do not want to fall prey to the benchmark lottery problem (Dehghani et al., 2021). As such, the
purpose of this additional experiment is to verify if our results are universal enough for a general
recommendation.

Setup In this experiment, we compare the base T5 transformer with the efficient 24 layer small
model using the DeepNarrow strategy, which has 14% less parameters and 10% less FLOPS compared
to the T5 base model. This finetuning protocol uses a constant learning rate of 10−3 and a batch size
of 128 for all tasks. Note that we used the same pretrained models as earlier sections that produced
finetuned results on SuperGLUE and GLUE.

Diverse NLP tasks We conduct experiments on a total of 12 extra tasks, i.e., 6 tasks of Rain-
bow (Lourie et al., 2021) which contains commonsense reasoning tasks, 3 generation/summarization
tasks (XSum (Narayan et al., 2018), CNN/Dailymail (See et al., 2017) and MultiNews (Fabbri et al.,
2019)), along with 3 text classification tasks (civil comments (Borkan et al., 2019), wiki toxicity (Wul-
czyn et al., 2017) and IMDb reviews (Maas et al., 2011)). For the Rainbow suite, we co-train all tasks
in (Lourie et al., 2021) and report peak validation results.
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Table 6: Rainbow dataset.

Task Base DeepNarrow

ANLI 65.7 65.7
CosmoQA 69.9 70.0
HellaSwag 49.7 48.9
PQA 73.7 74.4
SQA 65.1 66.0
Wino 65.3 65.9

Table 7: Generation tasks (Rouge-L).

Task Base DeepNarrow

XSum 32.3 33.1
CNN/Dailymail 38.9 38.9
MultiNews 20.2 20.5

Table 8: Classification tasks (Acc).

Task Base DeepNarrow

CivilComments 88.2 88.4
WikiComments 95.4 95.4
IMDb 94.4 94.4

Results on other tasks Table 6, Table 7 and Ta-
ble 8 reports results on these 12 tasks. On all 12
additional diverse NLP tasks considered , we show
that the Pareto-efficient alternative outperforms or
ties with the base T5 model on 11 out of 12 tasks
where 4 of them are ties. It is good to bear in mind
that this is a model which is effectively smaller in
parameters and has 10% less FLOPs.
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Figure 5: Performance on upstream and different downstream tasks with respect to number of
parameters, FLOPs, and throughput for models presented in Figure 1b.
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Figure 6: Performance on upstream and different downstream tasks with respect to number of
parameters, FLOPs, and throughput for small models presented in Figure 2a.
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(a) Upstream: Negative Log Perplexity.
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Figure 7: Performance on upstream and different downstream tasks with respect to number of
parameters, FLOPs, and throughput for base models presented in Figure 2b.
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(a) Upstream: Negative Log Perplexity.
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(b) Downstream: SuperGLUE Accuracy
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(c) Downstream: GLUE Accuracy
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(d) Downstream: Squad Accuracy

Figure 8: Performance on upstream and different downstream tasks with respect to number of
parameters, FLOPs, and throughput for large models presented in Figure 2c.
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