

000 001 002 003 004 005 FEDANC: ADAPTIVE SPARSE NOISE SCHEDULING FOR 006 FEDERATED DIFFERENTIAL PRIVACY 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Federated Learning (FL) enables multiple clients to collaboratively train a shared model without sharing raw data. Although this reduces direct exposure of local data, model updates can still leak sensitive information through gradient-based attacks. Differential Privacy (DP) mitigates this risk by adding calibrated noise to updates, providing formal guarantees. However, most existing DP-FL methods adopt fixed noise scales and uniform injection across all gradient dimensions, without adapting to client heterogeneity or training dynamics. This often results in poor privacy-utility trade-offs. To overcome these limitations, we propose **FEDANC**, an adaptive differential privacy framework for FL. It consists of three components: (i) an *Adaptive Noise Controller* (ANC) with an LSTM-based design that generates client-specific noise scales and sparsity ratios from local training feedback; (ii) a *Selective Noise Injection* mechanism that perturbs only the most sensitive gradient entries; and (iii) a *Privacy Budget Regularization* term that aligns per-round updates with a predefined privacy target. For stability, the ANC is pretrained with synthetic feedback that simulates typical training behavior. We provide theoretical guarantees on both convergence and differential privacy. Extensive experiments demonstrate that FEDANC achieves higher accuracy, faster convergence, and stronger privacy protection compared with existing approaches.

1 INTRODUCTION

028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Federated Learning (FL) (McMahan et al., 2017; Nguyen et al., 2021) enables multiple clients to collaboratively train a shared model without exchanging their raw data. This decentralized paradigm is particularly valuable in privacy-sensitive domains such as voice recognition, healthcare, and human activity monitoring (Yu et al., 2020; Khan et al., 2021; Cui et al., 2021). Although FL reduces data exposure by keeping training data local, it does not guarantee protection against information leakage. Recent studies have demonstrated that adversaries can reconstruct sensitive user data by analyzing shared gradients. Techniques such as DLG (Zhu et al., 2019), gradient inversion (Geiping et al., 2020), and batch-level leakage analysis (Yin et al., 2021) exploit high-magnitude gradient components, which often encode fine-grained and data-specific patterns.

028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Differential Privacy (DP) provides a principled way to mitigate such leakage risks by adding calibrated noise to model updates (Dwork & Roth, 2014). In deep learning, DP-SGD (Abadi et al., 2016) adds noise after clipping gradients to a fixed bound, and DP-FedAvg (McMahan et al., 2018) extends this approach to FL, enabling user-level privacy guarantees. However, most DP-FL methods rely on static configurations, where the same clipping bound and noise scale are applied to all clients and rounds. This uniform setting does not reflect the heterogeneous data distributions, convergence patterns, and privacy needs that are common in real federated deployments.

028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Another limitation comes from the way noise is injected. Many existing methods perturb all gradient coordinates equally using isotropic Gaussian noise (Zhu et al., 2019; Zhao et al., 2020). This approach ignores the varying informativeness of different components. As a result, low-magnitude gradients, which usually carry less sensitive information, are distorted as heavily as high-magnitude ones. This unnecessary perturbation not only degrades utility but also worsens the privacy-utility trade-off, especially for complex models and resource-constrained clients.

028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
A further challenge is the lack of mechanisms to dynamically control how privacy loss evolves during training. While some recent studies propose adaptive or non-uniform budget allocation strategies (Li

et al., 2022; Kiani et al., 2025), they often rely on heuristics or centralized scheduling. Such designs limit scalability and fail to adapt to client-specific dynamics in real federated environments.

To address these limitations, we propose **FEDANC** (**F**ederated **A**daptive **N**oise **C**ontrol), a unified framework designed to support efficient and personalized differential privacy in federated learning. As illustrated in Figure 1, FEDANC consists of three tightly coupled components. These components jointly adapt the privacy mechanism to client-specific training dynamics while ensuring compliance with a global privacy budget.

The first component, the *Adaptive Noise Controller* (ANC), is a client-side module based on a lightweight network. It generates two key privacy parameters: the noise scale β_t and the sparsity ratio γ_t . These values are computed using local gradient norms and training loss, enabling temporally adaptive and personalized noise control (Wu et al., 2022). The second component, the *Selective Noise Injection* module, perturbs only a subset of gradient entries identified as most informative. The sparsity ratio γ_t determines the number of perturbed coordinates, allowing the system to focus noise on sensitive components while preserving useful information in the remaining gradients (Dai et al., 2022). To enforce formal privacy guarantees, the third component introduces a *Privacy Budget Regularization* term into the training objective. This term penalizes deviations from a predefined per-round budget and provides differentiable feedback to the ANC, enabling automatic adjustment of privacy parameters without manual tuning. To improve stability during early training, the ANC is pretrained using synthetic input patterns that emulate common gradient behaviors observed.

Building on the above insights, this work makes the following key contributions: (1) We introduce FEDANC, a unified and learnable framework that supports dynamic, client-specific differential privacy; (2) We present ANC, a lightweight controller that enables real-time privacy adaptation based on local training dynamics; (3) We provide a selective gradient perturbation strategy that improves privacy-utility trade-offs by focusing noise on high-sensitivity components; (4) We design a differentiable regularization objective that enforces privacy budget constraints during training.

2 BACKGROUND AND MOTIVATION

Federated learning is a distributed paradigm where a set of clients $\{1, \dots, N\}$ collaboratively train a global model without sharing their local data. Formally, the global training objective is:

$$\min_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \mathcal{D}) = \sum_{i=1}^N \frac{|\mathcal{D}_i|}{|\mathcal{D}|} \mathcal{L}_i(\mathbf{w}, \mathcal{D}_i), \quad (1)$$

where \mathbf{w} denotes the global model parameters and $\mathcal{D} = \bigcup_{i=1}^N \mathcal{D}_i$ is the union of all local datasets. A widely used algorithm to solve this objective is FedAvg (McMahan et al., 2017), which proceeds in communication rounds by sampling clients, performing local training, and aggregating updates from selected clients on the server. Although FL avoids direct data sharing, model updates can still leak sensitive information. Differential privacy (Dwork & Roth, 2014) is often employed to mitigate this risk. A randomized mechanism \mathcal{M} satisfies (ε, δ) -DP if, for any neighboring datasets D and D' , and any measurable set S , it holds that:

$$\Pr[\mathcal{M}(D) \in S] \leq e^\varepsilon \Pr[\mathcal{M}(D') \in S] + \delta, \quad (2)$$

where ε quantifies the privacy guarantee and δ denotes the failure probability. A standard tool is the Gaussian mechanism, which releases $f(D) + \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$ with noise scale σ determined by the ℓ_2 -sensitivity $\Delta_2 f$:

$$\sigma \geq \frac{\Delta_2 f}{\varepsilon} \sqrt{2 \ln \left(\frac{1.25}{\delta} \right)}. \quad (3)$$

In FL, local differential privacy (LDP) is typically enforced by perturbing client updates before transmission. Early approaches such as DP-SGD (Abadi et al., 2016) and DP-FedAvg (McMahan

108 et al., 2018) achieve this by clipping gradients and adding fixed Gaussian noise. While theoretically
 109 sound, these methods often degrade model accuracy because they rely on static privacy parameters
 110 that cannot adapt to client heterogeneity or evolving training dynamics.

To improve adaptability, recent works propose dynamic strategies. For instance, DPSFL (Zhang et al., 2024) adjusts clipping thresholds, (Kiani et al., 2025) adopt time-adaptive budget allocation, and (Ranaweera et al., 2025) design a wavelet-based perturbation guided by gradient structure. These studies demonstrate that adaptive mechanisms can better balance privacy and utility. At the same time, gradient leakage remains a serious challenge. Gradient inversion attacks (Zhu et al., 2019; Geiping et al., 2020) reveal that high-magnitude gradient entries can expose sensitive data features. To address this, prior work (Fu et al., 2021; Zhang et al., 2022) explores clipping and targeted perturbation, showing that focusing noise on informative components improves robustness.

In addition to DP, secure aggregation protocols (Bonawitz et al., 2017) prevent the server from accessing individual updates during communication. Meanwhile, DP-FL has been applied in domains such as clinical prediction (Shukla et al., 2025), speech recognition (Pelikan et al., 2023), and FL simulation (Granqvist et al., 2024). Recent surveys (Kairouz et al., 2021; Shan et al., 2024) emphasize the importance of accurate privacy accounting, calibrated clipping, and adaptive noise strategies, and highlight the problem of designing personalized mechanisms that reflect each client’s conditions.

125
126 Despite these advances, most existing methods still employ fixed or heuristic schedules that remain
127 unchanged across clients. They also inject noise uniformly across all gradient coordinates, which
128 limits flexibility and leads to suboptimal trade-offs. Motivated by these gaps, we propose FEDANC.

3 DESIGN OF PROPOSED FEDANC

To address these limitations identified above, we propose the FEDANC framework, which combines three main components: (i) an LSTM-based adaptive noise controller that adjusts privacy parameters from local feedback, (ii) a sparse gradient perturbation module that injects noise into the most sensitive coordinates, and (iii) a privacy-loss regularization term that enforces system-level privacy constraints. The following sections detail each component and their interaction in enabling efficient and privacy-preserving federated learning.

3.1 DESIGN OF ADAPTIVE NOISE CONTROLLER

As shown in Figure 2, the controller is a core component that enables adaptive privacy control. Its primary function is to generate the noise scale β_t and the sparsity ratio γ_t for each local training round based on training feedback.

Controller structure. ANC takes as input a vector of local training signals:

$$x_t = [\|g_t\|_2, \ell_t, \beta_{t-1}, \gamma_{t-1}]^\top, \quad (4)$$

150 where $\|g_t\|_2$ represents the norm of gradient, ℓ_t denotes the current training loss, and $(\beta_{t-1}, \gamma_{t-1})$ are
 151 the privacy parameters from the previous round. These inputs reflect both current training dynamics
 152 and historical information. The vector x_t is processed by an LSTM (Kim et al., 2016) to capture
 153 temporal dependencies across rounds. Its hidden state h_t is passed through a dropout layer and then
 154 a fully connected layer to produce intermediate outputs (u_β, u_γ) . The final privacy parameters are
 155 computed as:

$$\beta_t = \ln(1 + \exp(u_\beta)), \quad \gamma_t = \gamma_{\min} + (\gamma_{\max} - \gamma_{\min}) \cdot \sigma(u_\gamma), \quad (5)$$

where $\sigma(\cdot)$ is the sigmoid function, and $\gamma_{\min} = 0.1$, $\gamma_{\max} = 0.9$ define the sparsity range (Dai et al., 2022; Li et al., 2024).

159 Pretraining strategy. During federated learning, raw outputs from ANC may produce excessively
160 large or small values for the noise scale or sparsity ratio, which can hinder convergence and degrade
161 model performance. This problem is most critical in the early training rounds, which strongly
influence final model quality (Achille et al., 2019; Yan et al., 2022; 2023).

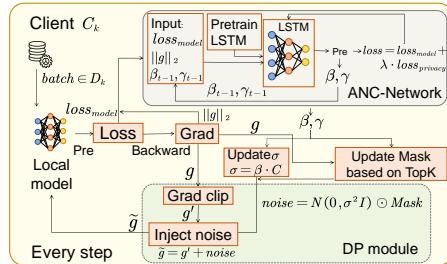


Figure 2: The proposed design of ANC.

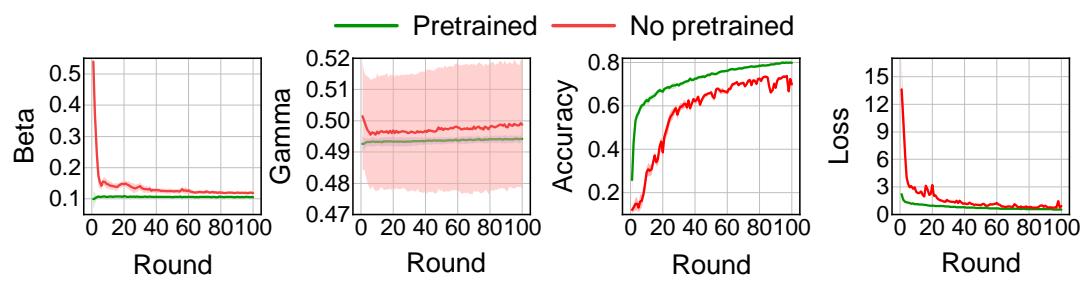


Figure 3: Comparison of ANC output stability with and without pretraining across training rounds.

To mitigate this, we pretrain ANC on synthetic data so that it generates stable and reliable privacy parameters from the beginning of training. To achieve this, we construct synthetic inputs based on typical gradient norms and loss values. Specifically, the training signals are drawn from:

$$\|g\|_2 \sim \mathcal{U}[10^{-5}, 0.1], \quad \ell \sim \mathcal{U}[0.1, 10], \quad (6)$$

These ranges reflect values commonly observed during training process, as discussed in (Abadi et al., 2016). The target privacy parameters are sampled from:

$$\beta^* \sim \mathcal{U}[0.3, 0.7], \quad \gamma^* \sim \mathcal{U}[\gamma_{\min}, \gamma_{\max}], \quad (7)$$

where β^* defines the desired noise scale and γ^* specifies the sparsity ratio. The range for β^* is chosen based on empirical evidence from prior work (Talaei & Izadi, 2024; Wang et al., 2024; Kiani et al., 2025), which identifies this interval as providing effective privacy-utility trade-offs in practical federated learning scenarios.

The pretraining objective uses mean squared error loss:

$$\mathcal{L}_{\text{pre}} = \frac{1}{N} \sum_{i=1}^N [(\beta_i - \beta_i^*)^2 + (\gamma_i - \gamma_i^*)^2], \quad (8)$$

where (β_i, γ_i) are the predictions generated by ANC, and (β_i^*, γ_i^*) are the corresponding ground truth targets. This supervised regression process guides the controller toward stable parameter regions, which enhances convergence and robustness in downstream federated training.

Although pretraining privacy controllers remains underexplored, related work in neural architecture search (Zoph & Le, 2017) and controller-based meta-learning (Jiang et al., 2019) suggests that using synthetic supervision or proxy tasks can improve the controller’s effectiveness and stability. Furthermore, adaptive differential privacy mechanisms such as AdaDPS (Li et al., 2022) also utilize auxiliary signals to adjust privacy parameters, which aligns with our design approach. These findings provide strong motivation for pretraining ANC and support its role in enabling effective and stable privacy adaptation during federated learning.

Personalized privacy control. After pretraining, each client runs its own instance of ANC. This allows client-specific privacy adaptation that reflects local training dynamics and data characteristics. Such personalization is particularly important in federated learning, where data distributions and model behavior vary significantly across clients.

As shown in Figure 3, our experiments on FashionMNIST, as described in *Experimental Setup* section, demonstrate that pretraining the ANC significantly enhances the stability of privacy parameter outputs, particularly in the early training rounds indicated by the shaded regions in Figures 3(a) and (b). This increased stability contributes to faster convergence and improved model performance compared to configurations using untrained controllers. By dynamically adjusting privacy parameters based on local training signals, ANC enables FEDANC to support adaptive and personalized differential privacy throughout the learning process.

3.2 DESIGN OF SPARSE GRADIENT PERTURBATION

To utilize the adaptive parameters produced by ANC, we adopt a *sparse noise injection strategy* that improves the trade-off between privacy protection and model utility. This strategy selectively adds noise to the most privacy-sensitive gradient components, rather than applying it uniformly.

The motivation for this design comes from recent studies (Zhu et al., 2019; Zhao et al., 2020; Dai et al., 2022), which show that gradient entries with large magnitudes often reveal more information about the input data and are more vulnerable to reconstruction-based attacks. These components contribute significantly to privacy leakage and are natural candidates for selective perturbation.

In conventional methods, Gaussian noise is applied uniformly to all gradient entries. Although this ensures differential privacy, it also perturbs low-magnitude components that contain little information and have minimal impact on privacy risk. As a result, the overall signal-to-noise ratio decreases, which can slow convergence and reduce model accuracy, especially when the privacy budget is tight.

To address this issue, we propose a gradient perturbation method that concentrates noise on the top- k most informative components. The process begins by applying ℓ_2 norm clipping to limit the sensitivity of the gradient vector. Then, we identify the top- k entries with the largest magnitudes, where $k = \lceil \gamma_t d \rceil$ is computed using the sparsity ratio γ_t and the total gradient dimension d . Gaussian noise ξ is sampled with variance $(\beta_t C)^2$, where C is the clipping bound, and is injected only into the selected entries. This is implemented using a binary mask $M \in \{0, 1\}^d$, resulting in the perturbed gradient $\tilde{g} = g' + M \circ \xi$. This selective perturbation process is closely aligned with the dynamic outputs of ANC and enables more efficient privacy protection.

By adapting the sparsity and noise scale to each client’s training state, the method supports fine-grained, personalized privacy control. As shown in Figure 4, even a small subset of gradient entries (e.g., the top 50%) can be sufficient for reconstructing private data, as demonstrated in prior attack studies such as DLG (Zhu et al., 2019). These findings highlight the need for targeted protection mechanisms and validate the effectiveness of our sparse noise injection strategy.

3.3 DESIGN OF PRIVACY BUDGET ALIGNMENT

To complement the sparse perturbation mechanism and enforce system-wide privacy guarantees, we introduce a *privacy-loss regularization term* that guides the ANC to generate parameters consistent with a target privacy budget ϵ_{target} . This component integrates naturally with the adaptive noise scale β_t and sparsity ratio γ_t defined previously.

The ℓ_2 sensitivity of the top- k Gaussian mechanism is given by $\Delta_2 = C\sqrt{\gamma_t d}$, where C is the clipping bound and d is the gradient dimension. Following the standard Gaussian mechanism (Dwork & Roth, 2014), the per-round privacy guarantee (ϵ_t, δ) satisfies:

$$\epsilon_t = \frac{\Delta_2}{\sigma} \sqrt{2 \ln(1.25/\delta)}, \quad (9)$$

where $\sigma = \beta_t C$ is the standard deviation of the injected noise. Substituting the expressions for Δ_2 and σ gives a closed-form estimate of the privacy cost:

$$\hat{\epsilon}_t = \frac{\sqrt{2\gamma_t d \ln(1.25/\delta)}}{\beta_t}. \quad (10)$$

To ensure the learned parameters (β_t, γ_t) satisfy the privacy constraint $\hat{\epsilon}_t \leq \epsilon_{\text{target}}$, we define a quadratic penalty:

$$L_{\text{privacy}}^{(t)} = (\hat{\epsilon}_t - \epsilon_{\text{target}})^2. \quad (11)$$

This term penalizes deviations from the target in a smooth and differentiable manner and is seamlessly incorporated into the total training loss:

$$\mathcal{L}_{\text{total}} = \frac{1}{|B|} \sum_{i \in B} \ell(f(\theta; x_i), y_i) + \lambda L_{\text{privacy}}^{(t)}, \quad (12)$$

270 where $\ell(f(\theta; x_i), y_i)$ is the prediction loss over mini-batch B , and λ controls the regularization
 271 strength. In each round, the ANC receives gradient statistics and loss values, and outputs the noise
 272 scale β_t and sparsity ratio γ_t to control the intensity and focus of perturbation. It is trained via
 273 backpropagation using gradients from both loss terms, enabling a principled trade-off between
 274 utility and privacy. The module is lightweight(18,050 parameters, 92K FLOPs per forward pass,
 275 5.3ms per full training step on an NVIDIA RTX 4090), model-agnostic, and integrates into standard
 276 gradient-based training.

277

278 3.4 PUTTING ALL COMPONENTS TOGETHER

279

280 The complete workflow of the proposed FEDANC framework is provided in Algorithm 1 in Ap-
 281 pendix A.1. FEDANC builds upon the standard FedAvg protocol and incorporates three core
 282 components that collectively support efficient, personalized, and privacy-preserving training. At
 283 the beginning of each communication round r , the server selects a subset of clients S_r according
 284 to a ratio p and and broadcasts the current global model W_r to the selected clients. Each selected
 285 client sets its local model as $W_k \leftarrow W_r$ and activates its ANC module, which is initialized with
 286 the pretrained ANC if unavailable. Each client then performs E local training epochs. For each
 287 mini-batch, the client computes the training loss and gradient. The current training context, including
 288 the gradient norm $n_t = \|g\|_2$, local loss ℓ_t , and the previous privacy parameters $(\beta_{t-1}, \gamma_{t-1})$, is
 289 passed to ANC_k (Line 9). The ANC outputs updated privacy parameters (β_t, γ_t) for the current step.
 290 The gradient is clipped using the bound C_{clip} to ensure sensitivity is bounded. Gaussian noise with
 291 variance $(\beta_t C_{\text{clip}})^2$ is then injected into the top- $\lceil \gamma_t d \rceil$ entries of the clipped gradient, where d is the
 292 model dimensionality. The perturbed gradient is used to update the local model.

293

294 After local training, each client constructs a binary mask M_k to mark the gradient coordinates affected
 295 by sparse noise injection. To reduce communication overhead, each client transmits only the masked
 296 model $W_k \odot M_k$ to the server, effectively implementing a form of communication sparsification.
 297 This means that only the top- k most informative gradient components are shared, aligning the
 298 communication strategy with the selective perturbation mechanism. The server aggregates the
 299 received updates using a sparsity-aware strategy:

300

$$W_{r+1} \leftarrow \frac{\sum_{k \in S_r} w_k \cdot (W_k \odot M_k)}{\sum_{k \in S_r} w_k \cdot M_k}, \text{ where } w_k \leftarrow \frac{n_k}{\sum_{j \in S_r} n_j}. \quad (13)$$

301

302 4 THEORETICAL ANALYSIS

303

304 This section presents theoretical guarantees for the proposed FEDANC framework. We begin by
 305 stating the key assumptions, which follow standard practices in literature (Lian et al., 2018; Collins
 306 et al., 2021; Nguyen et al., 2022; Fu et al., 2022; Xiong et al., 2024; Wang et al., 2024).

307

Assumption 1 (Smoothness). Let $\mathcal{L}_k : \mathbb{R}^d \rightarrow \mathbb{R}$ be L -smooth. That is, for all $\theta, \theta' \in \mathbb{R}^d$, we have:

308

$$\|\nabla \mathcal{L}_k(\theta) - \nabla \mathcal{L}_k(\theta')\| \leq L \|\theta - \theta'\|.$$

310

Assumption 2 (Bounded Noise Variance). Let g_t denote the clipped local gradient and \tilde{g}_t the
 311 corresponding noisy gradient after sparse noise injection. The added noise satisfies:

312

$$\mathbb{E}\|\tilde{g}_t - g_t\|^2 \leq (\beta_{\max} C)^2 \gamma_{\max} d,$$

314

where C is the clipping bound, and $\beta_{\max}, \gamma_{\max}$ are the maximum values.

315

Assumption 3 (Bounded Privacy Parameters). The privacy parameters generated by the ANC module
 316 are bounded as follows:

317

$$0 < \beta_{\min} \leq \beta_t \leq \beta_{\max}, \quad 0 < \gamma_t \leq \gamma_{\max}, \quad \forall t.$$

319

Theorem 1 (Convergence Guarantee). Suppose that Assumptions 1–3 hold, and let the learning rate
 320 satisfy $\eta = O(1/L)$. Then the following results hold:

321

- **Convex case:**

323

$$\mathbb{E}[\mathcal{L}(\theta^R)] - \mathcal{L}^* = O\left(\frac{1}{R} + \frac{(\beta_{\max} C)^2 \gamma_{\max} d}{R}\right).$$

324 • *Non-convex case:*

326
$$\frac{1}{R} \sum_{t=0}^{R-1} \mathbb{E} \|\nabla \mathcal{L}(\theta^t)\|^2 = O \left(\frac{1}{\sqrt{RB}} + \frac{(\beta_{\max} C)^2 \gamma_{\max} d}{R} \right),$$

328 where R denote the total number of communication rounds between the server and clients.

330 Theorem 1 shows that FEDANC achieves standard sublinear convergence rates under both convex
331 and non-convex objectives. We now turn to the analysis of the corresponding privacy guarantees.

333 **Theorem 2** (Privacy Guarantee). *At each communication round t , Gaussian noise with variance
334 $(\beta_t C)^2$ is added to the top- k coordinates of the clipped gradient, where $k = \gamma_t d$. This guarantees
335 (ϵ_t, δ) -differential privacy with:*

336
$$\epsilon_t = \frac{\sqrt{2\gamma_t d \ln(1.25/\delta)}}{\beta_t}.$$

338 Using the Moments Accountant (Abadi et al., 2016), the cumulative privacy loss after R rounds is
339 bounded by:

340
$$\epsilon_R = O \left(\frac{1}{\beta_{\min}} \sqrt{R \gamma_{\max} d \ln(1.25/\delta)} \right).$$

342 Theorem 2 confirms that FEDANC ensures formal differential privacy. We next extend the convergence
343 analysis to account for the effect of the privacy-loss regularization term in Equation equation 12.

345 **Corollary 1** (Convergence with Privacy Regularization). *Let G_p be an upper bound on the gradient
346 norm of the privacy-loss regularization term $L_{\text{privacy}}^{(t)}$. Under the same conditions as in Theorem 1,
347 the following bounds hold:*

348 • *Convex case:*

350
$$\mathbb{E}[\mathcal{L}(\theta^R)] - \mathcal{L}^* = O \left(\frac{1}{R} + \frac{(\beta_{\max} C)^2 \gamma_{\max} d}{R} + \lambda^2 G_p^2 \right).$$

353 • *Non-convex case:*

354
$$\frac{1}{R} \sum_{t=0}^{R-1} \mathbb{E} \|\nabla \mathcal{L}(\theta^t)\|^2 = O \left(\frac{1}{\sqrt{RB}} + \frac{(\beta_{\max} C)^2 \gamma_{\max} d}{R} + \lambda^2 G_p^2 \right).$$

358 Moreover, if the regularization weight satisfies $\lambda = O(1/\sqrt{R})$, the impact of the privacy term decays
359 over time, allowing the controller to remain effective without hindering convergence.

361 5 EXPERIMENTS

363 5.1 EXPERIMENTAL SETUP

365 **Datasets and models.** We evaluate the effectiveness of our defense mechanisms against gradient
366 inversion attacks using three publicly available datasets: CIFAR-10 (Krizhevsky et al., 2009), FashionMNIST
367 (Xiao et al., 2017), and HARBox (Ouyang et al., 2021). To assess reconstruction quality
368 comprehensively, we also use three datasets. CIFAR-10 is paired with a randomly initialized ResNet-
369 18 (He et al., 2016), while FashionMNIST is trained with LeNet (LeCun et al., 1998). To evaluate
370 training dynamics under privacy protection, we include additional experiments on FashionMNIST and
371 HARBox. For HARBox, which consists of time-series sensor data, we adopt a hybrid CNN-LSTM
372 architecture (Kim et al., 2016). All datasets are partitioned across $N = 20$ clients using a Dirichlet
373 distribution with the concentration parameter α , which controls the degree of statistical heterogeneity.
374 Smaller α values yield more skewed, non-IID data distributions. Following prior work (Wang et al.,
375 2020; Dai et al., 2022; Cao & Gong, 2022; Oh et al., 2022; Chen & Chao, 2022), we set $\alpha = 0.5$
376 unless otherwise specified.

377 **Settings and baselines.** Each training round involves 10 randomly selected clients out of 20. For
378 FashionMNIST, local training is performed for one epoch per round using a batch size of 32 and the

378
379
380 Table 1: Defense performance comparison across different attacks and datasets.
381
382
383
384
385
386
387
388
389

Dataset	Defense Method	DLG			IG			GI		
		MSE ↓	PSNR ↑	SSIM ↑	MSE ↓	PSNR ↑	SSIM ↑	MSE ↓	PSNR ↑	SSIM ↑
CIFAR-10	None	2e-6	50.29	0.9998	0.0568	12.58	0.1405	0.0085	48.02	0.8732
	Soteria	0.0519	13.14	0.1651	0.0582	12.51	0.1399	0.0368	16.36	0.4933
	CENSOR	0.0673	11.96	0.0577	0.0705	11.65	0.0418	0.0661	11.97	0.0510
	FEDANC	0.0769	11.37	0.0467	0.0773	11.36	0.0318	0.0678	11.96	0.0594
FMNIST	None	0.0027	22.77	0.7457	0.1814	7.47	0.0607	0.0139	18.95	0.6941
	Soteria	1.0538	8.36	0.0791	0.1921	7.23	0.0568	0.1238	9.21	0.3082
	CENSOR	1.2680	8.22	0.0413	0.1840	7.38	0.0304	0.1632	7.93	0.0521
	FEDANC	1.2737	7.52	0.0365	0.1986	7.07	0.0564	0.1386	8.87	0.1441
HARBox	None	0.0291	16.86	0.5343	0.1253	9.41	0.0598	0.0650	11.99	0.0580
	Soteria	1.3023	6.07	0.0402	0.1937	7.22	0.0566	0.1267	9.08	0.0572
	CENSOR	1.3472	5.41	0.0074	0.2254	7.15	0.0540	0.2194	7.20	0.0507
	FEDANC	1.3790	5.23	0.0062	0.2338	7.11	0.0509	0.2691	6.93	0.0425

390 SGD optimizer with a learning rate of $\eta = 0.01$. For HARBox, we use five local epochs, a batch
391 size of 32, and the Adam optimizer with $\eta = 0.001$. To ensure reproducibility, all experiments are
392 performed with a fixed random seed (1234) and executed on NVIDIA RTX 4090 GPUs in practice.
393

394 We evaluate our method under a strong adversarial setting where the batch size is set to one. This
395 configuration maximizes inversion risk and serves as a worst-case scenario. We consider three
396 representative gradient inversion attacks: *DLG (Deep Leakage from Gradients)* (Zhu et al., 2019)
397 reconstructs inputs by minimizing the Euclidean distance between dummy and real gradients, using
398 the L-BFGS optimizer with 300 steps. *IG (Inverting Gradients)* (Geiping et al., 2020) replaces the
399 distance metric with cosine similarity and optimizes dummy inputs using Adam with a learning rate of
400 0.1. *GI (GradInversion)* (Yin et al., 2021) initializes dummy data from Gaussian noise and iteratively
401 updates it with Adam for 300 steps to align gradients. To provide a comprehensive comparison,
402 we include two state-of-the-art defense methods as baselines. *Soteria* (Sun et al., 2021) reduces
403 privacy leakage by pruning gradients in fully connected layers using a sensitivity mask that filters
404 out high-risk components. *CENSOR* (Zhang et al., 2025) protects private information by projecting
405 gradients into a subspace orthogonal to the inferred attack space through Bayesian sampling.

406 **Evaluation metrics.** We adopt three standard metrics to quantify reconstruction quality and
407 privacy leakage. *Mean Squared Error (MSE)* measures pixel-wise differences between original and
408 reconstructed images; higher values indicate stronger privacy. *Peak Signal-to-Noise Ratio (PSNR)*
409 quantifies signal clarity relative to noise; lower values suggest greater distortion and better protection.
410 *Structural Similarity Index Measure (SSIM)* evaluates perceptual similarity based on luminance,
411 contrast, and structure; lower scores reflect reduced visual resemblance and improved privacy.

412 5.2 EXPERIMENTAL RESULTS

414 **Main results.** Table 1 presents the performance of three representative gradient inversion attacks
415 (DLG, IG, GI) under different defense strategies on three datasets. We follow established practice by
416 evaluating privacy leakage during the first communication round, which prior studies (Zhu et al.,
417 2019; Geiping et al., 2020; Yin et al., 2021) have consistently identified as the most privacy-critical
418 phase. This setting serves as a strong proxy for worst-case leakage and is widely adopted to assess the
419 effectiveness of privacy defenses. As expected, all defense methods reduce the effectiveness of attacks
420 compared to the unprotected baseline. Among the baselines, FEDANC consistently achieves strong
421 protection, outperforming Soteria and matching or exceeding CENSOR in most cases. For example,
422 under the DLG attack on CIFAR-10, FEDANC reduces SSIM from 0.9998 to 0.0467, effectively
423 eliminating structural similarity between reconstructed and original inputs. On FashionMNIST and
424 HARBox, where reconstructions are inherently more ambiguous, FEDANC maintains competitive
425 performance, achieving lower MSE and SSIM than CENSOR across several attacks.

426 These results confirm the effectiveness of FEDANC in defending against gradient inversion across
427 different datasets and model architectures. The adaptive noise controller enables clients to adjust
428 privacy parameters based on real-time training feedback, while the sparse noise injection mechanism
429 selectively perturbs the most informative gradient entries. This combination enhances privacy
430 protection without significantly compromising model performance.

431 **Convergence evaluation.** As shown in Figure 6, FEDANC converges faster and more stably than
432 static DP baselines, demonstrating its ability to maintain learning efficiency under privacy constraints.

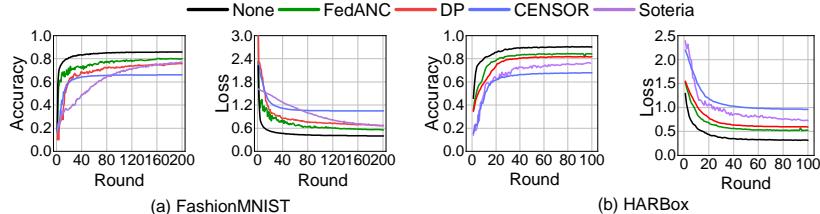


Figure 6: Training loss and test accuracy across communication rounds.

Figure 7: Visual comparison of reconstructed images under the DLG attack.

On FashionMNIST, Soteria removes critical parameters in LeNet through aggressive pruning, while CENSOR disrupts optimization by distorting gradient directions, both leading to slower convergence and reduced accuracy. On HARBox, Soteria weakens output representations, and CENSOR damages LSTM temporal dependencies, causing significant performance degradation. In contrast, FEDANC adaptively adjusts privacy parameters and applies targeted noise, effectively preserving gradient signals and enabling efficient training across different model architectures.

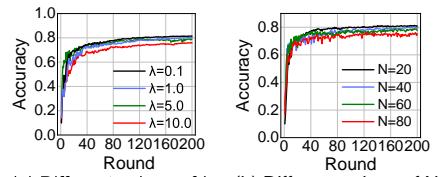
Qualitative evaluation. As shown in Figure 7, we qualitatively evaluate the visual reconstruction quality under different defense strategies using the DLG attack on the CIFAR-10 dataset. Without any defense, the original image can be almost perfectly recovered. Soteria and CENSOR introduce moderate distortion, yet the reconstructed images remain partially recognizable. In contrast, our proposed DPSA-FL strategy leads to highly distorted reconstructions with severe noise, making the semantic content unrecognizable.

Sensitivity to λ . We investigate the impact of the privacy-loss regularization strength by varying the coefficient λ in Equation 12. As shown in Figure 5(a), model accuracy decreases as λ increases. This trend reflects the intended effect of the regularization: a larger λ forces the ANC to more strictly align the learned privacy parameters with the target budget ϵ_{target} . To reduce the deviation penalty, the controller tends to generate more conservative parameters, which increases the degree of gradient perturbation and leads to lower utility. In contrast, a smaller λ allows the model to prioritize task performance, potentially at the expense of privacy.

Impact of N . We investigate the impact of the total number of clients N on global model performance. As shown in Figure 5(b), the model reaches its highest accuracy when $N = 20$, but accuracy gradually degrades as N increases. This decline results from two factors: each client contributes fewer data samples per round, and statistical heterogeneity across clients becomes more pronounced. Together, these effects lead to sparser and more diverse training signals, which slow down convergence under local privacy constraints. Based on these observations, we set $N = 20$ in the main experiments, as this choice offers a balanced level of heterogeneity while ensuring fair comparison across methods.

6 CONCLUSIONS AND LIMITATIONS

In conclusion, we presented FEDANC, an adaptive federated learning framework that enables personalized differential privacy through dynamic noise control, sparse gradient perturbation, and global budget alignment. The framework employs the proposed adaptive noise controller to adjust privacy parameters based on local training feedback, achieving an improved privacy-utility trade-off. Some limitations remain, such as the reliance on synthetic ranges for controller pretraining, the added computational cost of top- k perturbation, and the limited coverage of large scale federated environments. Future work will focus on improving online adaptability, reducing overhead, and extending the framework to more diverse and realistic scenarios.

Figure 5: Accuracy under different values of λ and N

486 REPRODUCIBILITY STATEMENT
487

488 We have made extensive efforts to ensure the reproducibility of our work. The main paper provides
489 detailed descriptions of the proposed algorithm, model architectures, training setup, hyperparameter
490 configurations, data preprocessing steps, and theoretical results. If the paper is accepted, we will
491 release the code on GitHub. During the rebuttal phase, if reviewers request to check the relevant code,
492 we will upload it to an anonymous GitHub repository to facilitate the review process.

494 REFERENCES
495

496 Martín Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and
497 Li Zhang. Deep learning with differential privacy. In *Proceedings of the ACM SIGSAC Conference
498 on Computer and Communications Security(CCS)*, pp. 308–318, 2016.

499 Alessandro Achille, Matteo Rovere, and Stefano Soatto. Critical learning periods in deep networks.
500 In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2019.

502 Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan, Sarvar
503 Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-
504 preserving machine learning. In *Proceedings of the ACM SIGSAC Conference on Computer and
505 Communications Security (CCS)*, pp. 1175–1191, 2017.

506 Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
507 learning. *SIAM Review*, pp. 223–311, 2018.

509 Xiaoyu Cao and Neil Zhenqiang Gong. Mpaf: Model poisoning attacks to federated learning based
510 on fake clients. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
511 recognition(CVPR)*, pp. 3396–3404, 2022.

512 Hong-You Chen and Wei-Lun Chao. On bridging generic and personalized federated learning for
513 image classification. In *Proceedings of the International Conference on Learning Representa-
514 tions(ICLR)*, 2022.

515 Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared represen-
516 tations for personalized federated learning. In *Proceedings of the International Conference on
517 Machine Learning (ICML)*, pp. 2089–2099, 2021.

519 Xiaodong Cui, Songtao Lu, and Brian Kingsbury. Federated acoustic modeling for automatic speech
520 recognition. In *Proceedings of the IEEE International Conference on Acoustics, Speech, and
521 Signal Processing (ICASSP)*, pp. 6748–6752, 2021.

522 Rong Dai, Li Shen, Fengxiang He, Xinmei Tian, and Dacheng Tao. Dispfl: Towards communication-
523 efficient personalized federated learning via decentralized sparse training. In *Proceedings of the
524 39th International Conference on Machine Learning(ICML)*, pp. 4587–4604, 2022.

525 Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. *Foundations
526 and Trends® in Theoretical Computer Science*, pp. 211–407, 2014.

528 Jie Fu, Zhili Chen, and Xiao Han. Adap dp-fl: Differentially private federated learning with adaptive
529 noise. In *Proceedings of the IEEE International Conference on Trust, Security and Privacy in
530 Computing and Communications (TrustCom)*, pp. 656–663, 2022.

531 Yao Fu, Yipeng Zhou, Di Wu, Shui Yu, Yonggang Wen, and Chao Li. On the practicality of differential
532 privacy in federated learning by tuning iteration times. *arXiv preprint arXiv:2101.04163*, 2021.

533 Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients-
534 how easy is it to break privacy in federated learning? In *Proceedings of the 34th International
535 Conference on Neural Information Processing Systems(NeurIPS)*, pp. 16937–16947, 2020.

537 Filip Granqvist, Congzheng Song, Áine Cahill, Rogier van Dalen, Martin Pelikan, Yi Sheng Chan,
538 Xiaojun Feng, Natarajan Krishnaswami, Vojta Jina, and Mona Chitnis. pfl-research: Simulation
539 framework for accelerating research in private federated learning. In *Proceedings of the Conference
on Neural Information Processing Systems (NeurIPS)*, 2024.

540 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recogni-
 541 tion. In *Proceedings of the IEEE conference on computer vision and pattern recognition(CVPR)*,
 542 pp. 770–778, 2016.

543

544 Xiang Jiang, Mohammad Havaei, Farshid Varno, Gabriel Chartrand, Nicolas Chapados, and Stan
 545 Matwin. Learning to learn with conditional class dependencies. In *Proceedings of the International
 546 Conference on Learning Representations (ICLR)*, 2019.

547

548 Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
 549 Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, and et al.
 550 Advances and open problems in federated learning. *Foundations and Trends in Machine Learning*,
 551 pp. 1–210, 2021.

552

553 Latif U. Khan, Walid Saad, Zhu Han, Ekram Hossain, and Choong Seon Hong. Federated learning
 554 for internet of things: Recent advances, taxonomy, and open challenges. In *IEEE Communications
 555 Surveys & Tutorials*, pp. 1759–1799, 2021.

556

557 Shahrzad Kiani, Nupur Kulkarni, Adam Dziedzic, Stark Draper, and Franziska Boenisch. Differ-
 558 entially private federated learning with time-adaptive privacy spending. In *Proceedings of the
 559 Thirteenth International Conference on Learning Representations(ICLR)*, 2025.

560

561 Yoon Kim, Yacine Jernite, David Sontag, and Alexander Rush. Character-aware neural language
 562 models. In *Proceedings of the AAAI conference on artificial intelligence(AAAI)*, 2016.

563

564 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

565

566 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 567 document recognition. *Proceedings of the IEEE*, pp. 2278–2324, 1998.

568

569 Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. Federated optimization in hetero-
 570 geneous networks. In *Proceedings of Machine Learning and Systems (MLSys)*, pp. 429–450,
 571 2020.

572

573 Tian Li, Manzil Zaheer, Sashank J. Reddi, and Virginia Smith. Private adaptive optimization with
 574 side information. In *Proceedings of the International Conference on Machine Learning (ICML)*,
 575 pp. 13086–13105, 2022.

576

577 Zhangheng Li, Shiwei Liu, Tianlong Chen, Ajay Kumar Jaiswal, Zhenyu Zhang, Dilin Wang,
 578 Raghuraman Krishnamoorthi, Shiyu Chang, and Zhangyang Wang. Sparse cocktail: Every sparse
 579 pattern every sparse ratio all at once. In *Proceedings of the International Conference on Machine
 580 Learning (ICML)*, 2024.

581

582 Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized parallel stochastic
 583 gradient descent. In *Proceedings of the 35th International Conference on Machine Learning
 584 (ICML)*, pp. 3043–3052, 2018.

585

586 H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
 587 Communication-efficient learning of deep networks from decentralized data. In *Proceedings of the
 588 International Conference on Artificial Intelligence and Statistics (AISTATS)*, pp. 1273–1282, 2017.

589

590 H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially
 591 private recurrent language models. In *Proceedings of the International Conference on Learning
 592 Representations (ICLR)*, 2018.

593

594 Dinh C Nguyen, Ming Ding, Pubudu N Pathirana, Aruna Seneviratne, Jun Li, and H Vincent Poor.
 595 Federated learning for internet of things: A comprehensive survey. *IEEE communications surveys
 596 & tutorials*, pp. 1622–1658, 2021.

597

598 John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Michael Rabbat, Mani Malek
 599 Esmaeili, and Dzmitry Huba. Federated learning with buffered asynchronous aggregation. In
 600 *Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS)*, pp.
 601 3581–3607, 2022.

594 Jaehoon Oh, Sangmook Kim, and Se-Young Yun. Fedbabu: Towards enhanced representation
 595 for federated image classification. In *Proceedings of International Conference on Learning*
 596 *Representations (ICLR)*, 2022.

597 Xiaomin Ouyang, Zhiyuan Xie, Jiayu Zhou, Jianwei Huang, and Guoliang Xing. Clusterfl: a
 598 similarity-aware federated learning system for human activity recognition. In *Proceedings of the*
 599 *19th annual international conference on mobile systems, applications, and services(MOBISYS)*, pp.
 600 54–66, 2021.

601 Martin Pelikan, Sheikh Shams Azam, Vitaly Feldman, Jan Silovský, Kunal Talwar, and Tatiana
 602 Likhomanenko. Federated learning with differential privacy for end-to-end speech recognition.
 603 Technical report, 2023.

604 Chathura Ranaweera, John Doe, and Jane Smith. Federated learning with differential privacy: An
 605 utility-enhanced approach. *arXiv preprint arXiv:2503.21154*, 2025.

606 Fangfang Shan, Shiqi Mao, Yanlong Lu, and Shuaifeng Li. Differential privacy federated learning: A
 607 comprehensive review. *International Journal of Advanced Computer Science and Applications*, pp.
 608 220–228, 2024.

609 Shubhi Shukla, Suraksha Rajkumar, Aditi Sinha, Esha Mohamed, Konguvel Elango, and Vidhya
 610 Sampath. Federated learning with differential privacy for breast cancer diagnosis enabling secure
 611 data sharing and model integrity. *Scientific Reports*, 2025.

612 Jingwei Sun, Ang Li, Binghui Wang, Huanrui Yang, Hai Li, and Yiran Chen. Soteria: Provable defense
 613 against privacy leakage in federated learning from representation perspective. In *Proceedings of the*
 614 *2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 9307–9315,
 615 2021.

616 Mahtab Talaei and Iman Izadi. Adaptive differential privacy in federated learning: A priority-based
 617 approach. *arXiv preprint arXiv:2401.02453*, 2024.

618 Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
 619 Federated Learning with Matched Averaging. In *Proceedings of the International Conference on*
 620 *Learning Representations (ICLR)*, 2020.

621 Zhiqiang Wang, Xinyue Yu, Qianli Huang, and Yongguang Gong. An adaptive differential privacy
 622 method based on federated learning. *arXiv preprint arXiv:2408.08909*, 2024.

623 Xinwei Wu, Li Gong, and Deyi Xiong. Adaptive differential privacy for language model training.
 624 In *Proceedings of the First Workshop on Federated Learning for Natural Language Processing*
 625 (*FL4NLP 2022*), pp. 21–26, 2022.

626 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
 627 machine learning algorithms. *arXiv preprint arXiv:1708.07747*, 2017.

628 Guojun Xiong, Gang Yan, Shiqiang Wang, and Jian Li. Deprl: Achieving linear convergence speedup
 629 in personalized decentralized learning with shared representations. In *Proceedings of the AAAI*
 630 *Conference on Artificial Intelligence (AAAI)*, pp. 16103–16111, 2024.

631 Gang Yan, Hao Wang, and Jian Li. Seizing critical learning periods in federated learning. In
 632 *Proceedings of Annual AAAI Conference on Artificial Intelligence (AAAI)*, pp. 8788–8796, 2022.

633 Gang Yan, Hao Wang, Xu Yuan, and Jian Li. Criticalfl: A critical learning periods augmented
 634 client selection framework for efficient federated learning. In *Proceedings of the ACM SIGKDD*
 635 *Conference on Knowledge Discovery and Data Mining (KDD)*, pp. 2898–2907, 2023.

636 Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M. Alvarez, Jan Kautz, and Pavlo Molchanov. See
 637 through gradients: Image batch recovery via gradinversion. In *Proceedings of the IEEE/CVF*
 638 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 16337–16346, 2021.

639 Tianlong Yu, Tian Li, Yuqiong Sun, Susanta Nanda, Virginia Smith, Vyas Sekar, and Srinivasan
 640 Seshan. Learning context-aware policies from multiple smart homes via federated multi-task
 641 learning. In *Proceedings of the ACM/IEEE International Conference on Internet of Things Design*
 642 *and Implementation (ACM/IEEE IoTDI)*, pp. 104–115, 2020.

648 Kaiyuan Zhang, Siyuan Cheng, Guangyu Shen, Bruno Ribeiro, Shengwei An, Pin-Yu Chen, Xiangyu
 649 Zhang, and Ninghui Li. Censor: Defense against gradient inversion via orthogonal subspace
 650 bayesian sampling. In *Network and Distributed System Security Symposium(NDSS)*, 2025.

651
 652 Meifan Zhang, Zhanhong Xie, and Lihua Yin. Private and communication-efficient federated learning
 653 based on differentially private sketches. *arXiv preprint arXiv:2410.05733*, 2024.

654
 655 Xinwei Zhang, Xiangyi Chen, Mingyi Hong, Zhiwei Steven Wu, and Jinfeng Yi. Understanding
 656 clipping for federated learning: Convergence and client-level differential privacy. In *Proceedings
 657 of the International Conference on Machine Learning (ICML)*, pp. 11360–11370, 2022.

658 Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage from gradients.
 659 *arXiv preprint arXiv:2001.02610*, 2020.

660
 661 Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In *Proceedings of the 33rd
 662 International Conference on Neural Information Processing Systems(NeurIPS)*, pp. 14774–14784,
 663 2019.

664
 665 Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In *Proceedings
 666 of the International Conference on Learning Representations (ICLR)*, 2017.

667 A APPENDIX

668 A.1 THE USE OF LARGE LANGUAGE MODELS (LLMs)

669
 670 Large language models were used only as writing assistants to refine grammar and improve clarity of
 671 exposition. All technical ideas, methods, experiments, and theoretical results were fully developed
 672 and validated by the authors, who take complete responsibility for the content of this paper.

673 A.2 SYSTEM WORKFLOW

674
 675 Algorithm 1 in this appendix presents the complete training workflow of the proposed FEDANC
 676 framework. The algorithm extends the standard FedAvg procedure by incorporating adaptive privacy
 677 scheduling via the ANC module, sparse noise injection for efficient gradient perturbation, and a
 678 privacy-loss regularization term to ensure alignment with global privacy budgets.

679
 680 At the beginning of each communication round r , the server randomly selects a subset of clients
 681 S_r according to a sampling ratio p and sends them the current global model W_r (Lines 3–4). Each
 682 selected client initializes its local model as $W_k \leftarrow W_r$, and instantiates the local ANC module
 683 ANC_k if it has not been initialized previously (Line 6). Each client performs E local training
 684 epochs. For every mini-batch, the client computes the forward loss and corresponding gradient via
 685 backpropagation (Line 9). The current training context, including the gradient norm $n_t = \|g\|_2$, local
 686 loss ℓ_t , and the previous privacy parameters $(\beta_{t-1}, \gamma_{t-1})$, is passed to ANC_k (Line 10). ANC then
 687 returns updated privacy parameters (β_t, γ_t) for the current step (Line 11). The gradient is clipped
 688 using the bound C_{clip} to ensure bounded sensitivity (Line 12). Sparse noise is then injected into the
 689 top- $\gamma_t d$ entries of the clipped gradient (Line 13). The resulting perturbed gradient is used to update
 690 the local model (Line 14).

691
 692 Once local training is complete, each client constructs a binary mask M_k to indicate which gradient
 693 coordinates were updated. The masked model $W_k \odot M_k$ is sent back to the server (Line 17). The
 694 server then performs sparsity-aware aggregation (Line 19), computing a weighted average over
 695 non-zero coordinates based on client-specific update masks and dataset sizes. This ensures consistent
 696 and communication-efficient model integration.

697 A.3 DETAILS FOR THEORETICAL ANALYSIS

698 A.3.1 PROOF OF THEOREM 1

699
 700 *Proof.* We follow the standard analysis of FedAvg with added noise Li et al. (2020); Bottou et al.
 701 (2018), and account for sparse noise injection. By L -smoothness (Assumption 1), for any round t and

702 **Algorithm 1** FEDANC Framework

703

704 **Require:** Client set $K = \{1, \dots, N\}$, sampling ratio p , communication rounds R , local epochs E ,
705 batch size B , clipping bound C_{clip} , pretrained ANC module

706 **Ensure:** Final global model W_R

707 1: Initialize global model W_0

708 2: **for** $r = 0$ to $R - 1$ **do**

709 3: $K_r \leftarrow \max(p \cdot N, 1)$; randomly sample clients S_r of size K_r

710 4: Server broadcasts global model W_r to each $k \in S_r$

711 5: **for all** clients $k \in S_r$ **in parallel do**

712 6: Set local model $W_k \leftarrow W_r$; initialize ANC_k if not already available

713 7: **for** $e = 1$ to E **do**

714 8: **for each** batch $b \in D_k$ **do**

715 9: Compute forward loss $\ell_t = \ell(f(W_k; x), y)$ and gradient $g = \nabla \ell_t$

716 10: Input $(n_t = \|g\|_2, \ell_t, \beta_{t-1}, \gamma_{t-1})$ into ANC_k

717 11: Obtain updated privacy parameters (β_t, γ_t)

718 12: Clip gradient: $g' = g \cdot \min(1, C_{\text{clip}}/\|g\|_2)$

719 13: Apply sparse noise injection to obtain g_{noisy}

720 14: Update local model: $W_k \leftarrow W_k - \eta \cdot g_{\text{noisy}}$

721 15: **end for**

722 16: **end for**

723 17: Generate binary mask M_k ; send $W_k \odot M_k$ to server

724 18: **end for**

725 19: Server aggregates updates:

$$W_{r+1} \leftarrow \frac{\sum_{k \in S_r} w_k \cdot (W_k \odot M_k)}{\sum_{k \in S_r} w_k \cdot M_k}, \quad w_k = \frac{n_k}{\sum_{j \in S_r} n_j} \quad (14)$$

726 20: **end for**

727
728
729
730 update g'_t ,

$$\mathcal{L}(\theta^{t+1}) \leq \mathcal{L}(\theta^t) - \eta \langle \nabla \mathcal{L}(\theta^t), g'_t \rangle + \frac{L\eta^2}{2} \|g'_t\|^2.$$

731 Taking expectation,

$$\mathbb{E}[\mathcal{L}(\theta^{t+1})] \leq \mathbb{E}[\mathcal{L}(\theta^t)] - \eta \mathbb{E}\|\nabla \mathcal{L}(\theta^t)\|^2 + \frac{L\eta^2}{2} \mathbb{E}\|g'_t - \nabla \mathcal{L}(\theta^t)\|^2.$$

732 We then split $\mathbb{E}\|g'_t - \nabla \mathcal{L}(\theta^t)\|^2$ into

$$\mathbb{E}\|g_t - \nabla \mathcal{L}(\theta^t)\|^2 + \mathbb{E}\|\tilde{g}_t - g_t\|^2.$$

733 The first term is $O(1/B)$ under standard bounded-variance assumptions. The second term is bounded
734 by Assumption 2:

$$\mathbb{E}\|\tilde{g}_t - g_t\|^2 \leq (\beta_{\max} C)^2 \gamma_{\max} d.$$

735 Summing for $t = 0, \dots, R - 1$, rearranging, and choosing $\eta = O(1/L)$ gives

$$\frac{1}{R} \sum_{t=0}^{R-1} \mathbb{E}\|\nabla \mathcal{L}(\theta^t)\|^2 = O\left(\frac{1}{\sqrt{RB}} + \frac{(\beta_{\max} C)^2 \gamma_{\max} d}{R}\right).$$

736 This yields the non-convex rate. In the convex case,

$$\mathbb{E}[\mathcal{L}(\theta^R)] - \mathcal{L}^* = O\left(\frac{1}{R} + \frac{(\beta_{\max} C)^2 \gamma_{\max} d}{R}\right).$$

737

□

756 A.3.2 PROOF OF THEOREM 2
757758 *Proof.* At round t , we clip the gradient to norm C and select $k = \gamma_t d$ coordinates. We add noise
759 $\xi \sim \mathcal{N}(0, (\beta_t C)^2 I_k)$ to those coordinates. The L_2 sensitivity is

760
$$\Delta_2 = C\sqrt{k} = C\sqrt{\gamma_t d}.$$

761

762 By the Gaussian mechanism Dwork & Roth (2014), it guarantees (ϵ_t, δ) -DP with
763

764
$$\epsilon_t = \frac{\Delta_2}{\sigma} \sqrt{2 \ln \frac{1.25}{\delta}} = \frac{\sqrt{2\gamma_t d \ln(1.25/\delta)}}{\beta_t}.$$

765

766 Then using the Moments Accountant Abadi et al. (2016), the cumulative privacy loss after R rounds
767 is
768

769
$$\epsilon_R \leq O\left(\sqrt{\sum_{t=1}^R \epsilon_t^2}\right) = O\left(\frac{1}{\beta_{\min}} \sqrt{R \gamma_{\max} d \ln \frac{1.25}{\delta}}\right),$$

770

771 where $\beta_t \geq \beta_{\min}$ and $\gamma_t \leq \gamma_{\max}$ for all t . □
772773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809