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ABSTRACT

Linear temporal logic (LTL) has recently been adopted as a powerful formalism
for specifying complex, temporally extended tasks in multi-task reinforcement
learning (RL). However, learning policies that efficiently satisfy arbitrary speci-
fications not observed during training remains a challenging problem. Existing
approaches suffer from several shortcomings: they are often only applicable to
finite-horizon fragments of LTL, are restricted to suboptimal solutions, and do not
adequately handle safety constraints. In this work, we propose a novel learning
approach to address these concerns. Our method leverages the structure of Büchi
automata, which explicitly represent the semantics of LTL specifications, to learn
policies conditioned on sequences of truth assignments that lead to satisfying the
desired formulae. Experiments in a variety of discrete and continuous domains
demonstrate that our approach is able to zero-shot satisfy a wide range of finite- and
infinite-horizon specifications, and outperforms existing methods in terms of both
satisfaction probability and efficiency. Code is available on the project website:
https://github.com/anonymous-elephant/deep-ltl.

1 INTRODUCTION

One of the fundamental challenges in artificial intelligence (AI) is to create agents capable of
following arbitrary instructions. While significant research efforts have been devoted to designing
reinforcement learning (RL) agents that can complete tasks expressed in natural language (Oh et al.,
2017; Goyal et al., 2019; Luketina et al., 2019), recent years have witnessed increased interest in
formal languages to specify tasks in RL (Andreas et al., 2017; Camacho et al., 2019; Jothimurugan
et al., 2021). Formal specification languages offer several desirable properties over natural language,
such as well-defined semantics and compositionality, allowing for the specification of unambiguous,
structured tasks (Vaezipoor et al., 2021; León et al., 2022). Recent works have furthermore shown
that it is possible to automatically translate many natural language instructions to formal languages,
providing interpretable yet precise representations of tasks (Pan et al., 2023; Liu et al., 2023).

Linear temporal logic (LTL) (Pnueli, 1977) in particular has been adopted as a powerful formalism
for instructing RL agents (Hasanbeig et al., 2018; Araki et al., 2021; Voloshin et al., 2023). LTL
is an appealing specification language that allows for the definition of tasks in terms of high-level
features of the environment. These tasks can utilise complex compositional structure, are inherently
temporally extended (i.e. non-Markovian), and naturally incorporate safety constraints.

While several approaches have been proposed to learning policies capable of zero-shot executing
arbitrary LTL specifications in a multi-task RL setting (Kuo et al., 2020; Vaezipoor et al., 2021; Qiu
et al., 2023; Liu et al., 2024), they suffer from several limitations. First, most existing methods are
limited to subsets of LTL and cannot handle infinite-horizon (i.e. ω-regular) specifications, which
form an important class of objectives including persistence (eventually, a desired state needs to
be reached forever), recurrence (a set of states needs to be reached infinitely often), and response
(whenever a particular event happens, a task needs to be completed) (Manna & Pnueli, 1990). Second,
many current techniques are myopic, that is, they solve tasks by independently completing individual
subtasks, which can lead to inefficient, globally suboptimal solutions (Vaezipoor et al., 2021). Finally,
existing approaches often do not adequately handle safety constraints of specifications, especially
when tasks can be completed in multiple ways with different safety implications. For an illustration
of these limitations, see Figure 1.
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(a) ω-regular tasks (b) Optimality (c) Safety

Figure 1: Limitations of existing methods, illustrated via trajectories in the ZoneEnv environment.
The initial agent position is denoted as an orange diamond. (a) Most existing approaches cannot
handle infinite-horizon tasks, such as GFblue ∧ GFgreen. (b) Given the formula F (blue ∧ F green),
a myopic approach produces a suboptimal solution (orange line). We prefer the more efficient green
trajectory. (c) Given the task (F green∨F yellow)∧G¬blue, the agent should aim to reach the yellow
region instead of the green region, since this is the safer option. Many existing approaches are unable
to perform this sort of planning.

In this paper, we develop a novel approach to learning policies for zero-shot execution of LTL
specifications that addresses these shortcomings. Our method exploits the structure of Büchi automata
to non-myopically reason about ways of completing a (possibly infinite-horizon) specification, and to
ensure that safety constraints are satisfied. Our main contributions are as follows:

• we develop (to the best of our knowledge) the first non-myopic approach to learning policies
for zero-shot execution of LTL specifications that is applicable to infinite-horizon tasks;

• we propose a novel representation of LTL formulae based on reach-avoid sequences of truth
assignments, which allows us to learn policies that intrinsically consider safety constraints;

• we propose a novel neural network architecture that combines DeepSets and RNNs to
condition the policy on the desired specification;

• lastly, we empirically validate the effectiveness of our method on a range of environments
and tasks, demonstrating that it outperforms existing approaches in terms of satisfaction
probability and efficiency.

2 BACKGROUND

Reinforcement learning. We model RL environments using the framework of Markov decision
processes (MDPs). An MDP is a tupleM = (S,A,P, µ, r, γ), where S is the state space, A is the
set of actions, P : S × A → ∆(S) is the unknown transition kernel, µ ∈ ∆(S) is the initial state
distribution, r : S ×A× S → R is the reward function, and γ ∈ [0, 1) is the discount factor.

We denote the probability of transitioning from state s to state s′ after taking action a as P(s′ | s, a).
A (memoryless) policy π : S → ∆(A) is a map from states to probability distributions over actions.
Executing a policy π in an MDP gives rise to a trajectory τ = (s0, a0, r0, s1, a1, r1, . . . ), where
s0 ∼ µ, at ∼ π( · | st), st+1 ∼ P( · | st, at), and rt = r(st, at, st+1). The goal of RL is to find a
policy π∗ that maximises the expected discounted return J(π) = Eτ∼π [

∑∞
t=0 γ

trt] , where we write
τ ∼ π to indicate that the distribution over trajectories depends on the policy π. The value function
of a policy V π(s) = Eτ∼π [

∑∞
t=0 γ

trt | s0 = s] is defined as the expected discounted return starting
from state s and following policy π thereafter.

Linear temporal logic. Linear temporal logic (LTL) (Pnueli, 1977) provides a formalism to
precisely specify properties of infinite trajectories. LTL formulae are defined over a set of atomic
propositions AP , which describe high-level features of the environment. The syntax of LTL formulae
is recursively defined as

true | a | φ ∧ ψ | ¬φ | Xφ | φ U ψ

where a ∈ AP and φ and ψ are themselves LTL formulae. ∧ and ¬ are the Boolean operators
conjunction and negation, which allow for the definition of all standard logical connectives. The
temporal operators X and U intuitively mean “next” and “until”. We define the two temporal
modalities F (“eventually”) and G (“always”) as Fφ = true U φ and Gφ = ¬F¬φ.
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The semantics of LTL align with the intuitive meanings of its operators. For example, in the ZoneEnv
environment depicted in Figure 1, the atomic propositions AP correspond to coloured regions. We
can naturally express many desirable tasks as LTL specifications, such as reaching a blue region
(F blue), avoiding blue until a yellow region is reached (¬blue U yellow), reaching and remaining
in a green region (FGgreen), or oscillating between blue and green regions while avoiding yellow
(GFgreen ∧ GFblue ∧ G¬yellow). The latter two examples represent infinite-horizon specifications,
which describe behaviour over an infinite time horizon.

Formally, the satisfaction semantics of LTL are defined via a recursive satisfaction relation w |= φ
on infinite sequences w of truth assignments1 over AP (i.e. ω-words over 2AP ) (see Appendix A
for details). To ground LTL specifications in an MDP, we assume access to a labelling function
L : S → 2AP , which returns the atomic propositions that are true in a given state. A trajectory τ is
mapped to a sequence of assignments via its trace Tr(τ) = L(s0)L(s1) . . . , and we write τ |= φ as
shorthand for Tr(τ) |= φ. The satisfaction probability of an LTL formula φ under policy π is then
defined as Pr(π |= φ) = Eτ∼π

[
1[τ |= φ]

]
.

Büchi automata. A more practical way of reasoning about the semantics of LTL formulae is
via Büchi automata (Büchi, 1966), which are specialised automata that can be constructed to keep
track of the progress towards satisfying a specification. In particular, in this work we focus on
limit-deterministic Büchi automata (LDBAs) (Sickert et al., 2016), which are particularly amenable
to be employed with MDPs. An LDBA is a tuple B = (Q, q0,Σ, δ,F , E), where Q is a finite set of
states, q0 ∈ Q is the initial state, Σ = 2AP is a finite alphabet, δ : Q× (Σ∪ E)→ Q is the transition
function, and F is the set of accepting states. Additionally, Q is composed of two disjoint subsets
Q = QN ⊎ QD such that F ⊆ QD and δ(q, α) ∈ QD for all q ∈ QD and α ∈ Σ. The set E is
an indexed set of ε-transitions (a.k.a jump transitions), which transition from QN to QD without
consuming any input, and there are no other transitions from QN to QD.

A run r of B on the ω-word w is an infinite sequence of states
in Q respecting the transition function. An infinite word w
is accepted by B if there exists a run r of B on w that visits
an accepting state infinitely often. For every LTL formula φ,
we can construct an LDBA Bφ that accepts exactly the words
satisfying φ (Sickert et al., 2016).

q0start

q1

q2 ⊥

¬b
b

εq2

⊤

a

¬a

⊤

Figure 2: LDBA for the formula
(FG a) ∨ F b.

Example 1. Figure 2 depicts an LDBA for the formula
(FG a)∨F b. The automaton starts in state q0 and transitions to
the accepting state q1 upon observing the proposition b. Once
it has reached q1, it stays there indefinitely. Alternatively, it can
transition to the accepting state q2 without consuming any input via the ε-transition. Once in q2, the
automaton accepts exactly the words where a is true at every step.

3 PROBLEM SETTING

Our high-level goal is to find a specification-conditioned policy π|φ that maximises the probability
of satisfying arbitrary LTL formulae φ. Formally, we introduce an arbitrary distribution ξ over LTL
specifications φ, and aim to compute the optimal policy

π∗ = argmax
π

E
φ∼ξ,
τ∼π|φ

[
1[τ |= φ]

]
. (1)

We now introduce the necessary formalism to find solutions to Equation 1 via reinforcement learning.
Definition 1 (Product MDP). The product MDPMφ of an MDPM and an LDBA Bφ synchronises
the execution ofM andBφ. Formally,Mφ has the state space Sφ = S×Q, action spaceAφ = A×E ,
initial state distribution µφ(s, q) = µ(s) · 1[q = q0], and transition function

Pφ ((s′, q′) | (s, q), a) =





P(s′ | s, a) if a ∈ A ∧ q′ = δ(q, L(s)),

1 if a = εq′ ∧ q′ = δ(q, a) ∧ s′ = s,

0 otherwise.
1An assignment a is a subset of AP . Propositions p ∈ a are assigned true, whereas p ̸∈ a are assigned false.
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The product MDPMφ extends the state space ofM in order to keep track of the current state of
the LDBA. This allows us to consider only memoryless policies that map tuples (s, q) of MDP
and LDBA states to actions, since the LDBA takes care of adding the memory necessary to satisfy
φ (Baier & Katoen, 2008). Quite importantly, note that in practice we never build the product
MDP explicitly, but instead simply update the current LDBA state q with the propositions L(s)
observed at each time step. Also note that the action space inMφ is extended with E to allow the
policy to follow ε-transitions in Bφ without acting in the MDP. Trajectories inMφ are sequences
τ = ((s0, q0), a0, (s1, q1), a1, . . .), and we denote as τq the projection of τ onto the LDBA states
q0, q1, . . . . We can restate the satisfaction probability of formula φ inMφ as

Pr(π |= φ) = E
τ∼π

[
1 [inf(τq) ∩ F ̸= ∅]

]
,

where inf(τq) denotes the set of states that occur infinitely often in τq .

We now introduce the following reinforcement learning problem to find solutions to Equation 1,
employing the technique of eventual discounting (Voloshin et al., 2023):
Problem 1. Given an unknown MDPM, a distribution over LTL formulae ξ, and LDBAs Bφ for
each φ ∈ supp(ξ), find the optimal policy

π∗
Γ = argmax

π
E

φ∼ξ,
τ∼π|φ

[ ∞∑

t=0

Γt1[qt ∈ FBφ
]

]
, Γt = γct , ct =

t∑

k=0

1[qk ∈ FBφ
],

where ct counts how often accepting states have been visited up to time step t.

Intuitively, we seek the policy that maximises the expected number of visits to accepting states in Bφ.
We employ eventual discounting, that is, we only discount visits to accepting states in the automaton
and not the steps between those visits, to ensure that π∗

Γ is approximately probabilistically optimal
(for a further discussion, see Appendix B.1). In particular, we obtain the following bound on the
performance of π∗

Γ, which is a corollary of (Voloshin et al., 2023, Theorem 4.2):
Theorem 1. For any γ ∈ (0, 1) we have

sup
π

E
φ∼ξ

[Pr(π |= φ)]− E
φ∼ξ

[Pr(π∗
Γ |= φ)] ≤ 2 log(

1

γ
) sup

π
Oπ,

where Oπ = Eφ∼ξ,τ∼π|φ
[
|{q ∈ τq : q ∈ FBφ}|

∣∣ τ ̸|= φ
]

is the expected number of visits to
accepting states for trajectories that do not satisfy a specification.

Proof. The proof follows from (Voloshin et al., 2023, Theorem 4.2) by repeated application of the
linearity of expectation and triangle inequality. A detailed proof is given in Appendix B.2.

However, while the formulation in Problem 1 provides desirable theoretical guarantees, it does not
take into account any notion of efficiency of formula satisfaction, which is an important practical
concern. Consider for example the simple formula F a. Eventual discounting assigns the same return
to all policies that eventually visit s with a ∈ L(s), regardless of the number of steps required to
materialise a. In practice, we often prefer policies that are more efficient (require fewer steps to make
progress towards satisfaction), even if their overall satisfaction probability might be slightly reduced.
A natural way to formalise this tradeoff is as follows:
Problem 2 (Efficient LTL satisfaction). Given an unknown MDP M, a distribution over LTL
formulae ξ, and LDBAs Bφ for each φ ∈ supp(ξ), find the optimal policy

π∗
γ = argmax

π
E

φ∼ξ,
τ∼π|φ

[ ∞∑

t=0

γt1[qt ∈ FBφ ]

]
. (2)

Here, we discount all time steps, such that more efficient policies receive higher returns. While solu-
tions to Problem 2 are not guaranteed to be probability-optimal (as per Problem 1), they will generally
still achieve a high probability of formula satisfaction, while also taking efficiency into account. We
consider Problem 2 for the rest of this paper, since we believe efficiency to be an important practical
concern, but note that our approach is equally applicable to the eventual discounting setting (see
Appendix B.3).

4
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Figure 3: High-level overview of our approach. (Left) During training, we train a general sequence-
conditioned policy with arbitrary reach-avoid sequences σ. (Right) At test time, we first construct an
LDBA from the given target specification φ. We then select the optimal reach-avoid sequence σ∗ for
the current LDBA state q according to the value function V π(s, σ), and produce an action a from the
policy conditioned on σ∗.

4 METHOD

Solving Problem 2 requires us to train a policy conditioned on the current MDP state s and the current
state q of an LDBA constructed from a given target specification φ. Our key insight is that we can
extract a useful representation of q directly from the structure of the LDBA, by reasoning about the
possible ways of satisfying the given formula from the current LDBA state q. This representation is
then used to condition the policy, and guide the agent towards satisfying a given specification.

4.1 REPRESENTING LTL SPECIFICATIONS AS SEQUENCES

Computing accepting cycles. An optimal policy for Problem 2 must continuously visit accepting
states in Bφ. Since Bφ is finite, this means that the agent has to reach an accepting cycle in the LDBA.
Intuitively, the possible ways of reaching accepting cycles are an informative representation of the
current LDBA state q, as they capture how to satisfy the given task. We compute all possible ways of
reaching an accepting cycle using an algorithm based on depth-first search (DFS) that explores all
possible paths from q to an accepting state qf ∈ F , and then back to a state already contained in the
path (see Appendix D for details). Let Pq denote the resulting set of paths from q to accepting cycles.
Remark. In the case that φ corresponds to a task that can be completed in finite time (e.g. F a), the
accepting cycle in Bφ is trivial and consists of only a single looping state (see e.g. q1 in Figure 2).

From paths to sequences. A path p ∈ Pq is an infinite sequence of states (q1, q2, . . .) in the LDBA.
Let A+

i = {a : δ(qi, a) = qi+1} denote the set of assignments a ∈ 2AP that progress the LDBA
from state qi to qi+1.2 We furthermore define the set of negative assignments A−

i = {a : a ̸∈
A+

i ∧ δ(qi, a) ̸= qi} that lead from qi to a different state in the LDBA. In order to satisfy the LTL
specification via p, the policy has to sequentially visit MDP states st such that L(sti) ∈ A+

i for some
ti, while avoiding assignments in A−

i . We refer to the sequence

σp =
(
(A+

1 , A
−
1 ), (A

+
2 , A

−
2 ), . . .

)

as the reach-avoid sequence corresponding to p, and denote as ζq = {σp : p ∈ Pq} the set of all
reach-avoid sequences for q.

Example 2. The first two steps of σ =
(
({{a}}, {{b, d}}), ({{c}, {e}}, ∅), . . .

)
require the agent to

achieve proposition a while avoiding states with both propositions b and d, and subsequently achieve
the propositions c or e.

4.2 OVERVIEW OF THE APPROACH

See Figure 3 for an overview of our method. Representing the current LDBA state q as a set of
reach-avoid sequences allows us to condition the policy on possible ways of achieving the given
specification. On a high level, our approach works as follows: in the training stage, we learn a general
sequence-conditioned policy π : S × ζ → ∆(A) together with its value function V π : S × ζ → R

2For now, we assume that there are no ε-transitions in p. We revisit ε-transitions in Section 4.5.
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σ =
(
(A+

1 , A
−
1 ), (A

+
2 , A

−
2 ), . . .

) (
eA+

1
∥eA−

1
, eA+

2
∥eA−

2
, . . .

)
eσ

DeepSets RNN

Figure 4: Illustration of the sequence module. The positive and negative assignments in the truncated
reach-avoid sequence σ are encoded using the DeepSets architecture, which produces embeddings eA.
These are then concatenated and passed through an RNN, which yields the final sequence representa-
tion eσ .

to satisfy arbitrary reach-avoid sequences σ ∈ ζ over AP , following the standard framework of
goal-conditioned RL (Liu et al., 2022). Note that we do not assume access to a distribution ξ over
formulae, since we are interested in satisfying arbitrary specifications. At test time, we are now given
a target specification φ and construct its corresponding LDBA. We keep track of the current LDBA
state q, and select the optimal reach-avoid sequence to follow in order to satisfy φ according to the
value function of π, i.e.

σ∗ = argmax
σ∈ζq

V π(s, σ). (3)

We then execute actions a ∼ π(·, σ∗) until the next LDBA state is reached.

The test-time execution of our approach can be equivalently thought of as executing a policy π̃ in
the product MDPMφ, where π̃(s, q) = π (s, σ∗). That is, π̃ exploits π to reach an accepting cycle
in the LDBA of the target specification, and thus approximates Problem 2. Next, we describe the
model architecture of the sequence-conditioned policy, and give a detailed description of the training
procedure and test-time execution.

4.3 MODEL ARCHITECTURE

We parameterise the sequence-conditioned policy π using a modular neural network architecture. This
consists of an observation module, which processes observations from the environment, a sequence
module, which encodes the reach-avoid sequence, and an actor module, which takes as input the
features produced by the previous two modules and outputs a distribution over actions.

The observation module is implemented as either a fully-connected (for generic state features) or
convolutional neural network (for image-like observations). The actor module is another fully
connected neural network that outputs the mean and standard deviation of a Gaussian distribution
(for continuous action spaces) or the parameters of a categorical distribution (in the discrete setting).
Finally, the sequence module consists of a permutation-invariant neural network that encodes sets
of assignments, and a recurrent neural network (RNN) that maps the resulting sequence to a final
representation. We discuss these components in further detail below and provide an illustration of the
sequence module in Figure 4.

Representing sets of assignments. The first step of the sequence module consists in encoding the
sets of assignments in a reach-avoid sequence. We employ the DeepSets architecture (Zaheer et al.,
2017) to obtain an encoding eA of a set of assignments A. That is, we have

eA = ρ

(∑

a∈A

ϕ(a)

)
, (4)

where ϕ(a) is a learned embedding function, and ρ is a learned non-linear transformation. Note that
the resulting encoding eA is permutation-invariant, i.e. it does not depend on the order in which the
elements in A are processed, and Equation 4 is thus a well-defined function on sets.

Representing reach-avoid sequences. Once we have obtained encodings of the sets A+
i and A−

i
for each element in the reach-avoid sequence σ, we concatenate these embeddings and pass them
through an RNN to yield the final representation of the sequence. Since σ is an infinite sequence,
we approximate it with a finite prefix by repeating its looping part k times, such that the truncated
sequence visits an accepting state exactly k times. We apply the RNN backwards, that is, from the
end of the truncated sequence to the beginning, since earlier elements in σ are more important for the
immediate actions of the policy. The particular model of RNN we employ is a gated recurrent unit
(GRU) (Cho et al., 2014).

6
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4.4 TRAINING PROCEDURE

We train the policy π and the value function V π using the general framework of goal-conditioned
RL (Liu et al., 2022). That is, we generate a random reach-avoid sequence at the beginning of each
training episode and reward the agent for successfully completing it. In particular, given a training
sequence σ =

(
(A+

1 , A
−
1 ), . . . , (A

+
n , A

−
n )
)
, we keep track of the task satisfaction progress via an

index i ∈ [n] (where initially i = 1). We say the agent satisfies a set of assignments A at time
step t if L(st) ∈ A. Whenever the agent satisfies A+

i , we increment i by one. If i = n + 1, we
give the agent a reward of 1 and terminate the episode. If the agent at any point satisfies A−

i , we
also terminate the episode and give it a negative reward of −1. Otherwise, the agent receives zero
reward. By maximising the expected discounted return, the policy learns to efficiently satisfy arbitrary
reach-avoid sequences. In our experiments, we use proximal policy optimisation (PPO) (Schulman
et al., 2017) to optimise the policy, but our approach can be combined with any RL algorithm.

Curriculum learning. To improve the training of π in practice, we employ a simple form of
curriculum learning (Narvekar et al., 2020) in order to gradually expose the policy to more challenging
tasks. A curriculum consists of multiple stages that correspond to training sequences of increasing
length and complexity. For example, the first stage generally consists only of simple reach-tasks of
the form σ =

(
({{p}}, ∅)

)
for p ∈ AP , while later stages involve longer sequences with avoidance

conditions. Once the policy achieves satisfactory performance on the current tasks, we move on to
the next stage. For details on the exact curricula we use in our experiments, see Appendix E.4.

4.5 TEST TIME POLICY EXECUTION

At test time, we execute the trained sequence-conditioned policy π to complete an arbitrary task φ.
As described in Section 4.2, we keep track of the current LDBA state q in Bφ, and use the learned
value function V π to select the optimal reach-avoid sequence σ∗ to follow from q in order to satisfy
φ (Equation 3). Note that it follows from the reward of our training procedure that

V π(s, σ) ≤ E
τ∼π|σ

[ ∞∑

t=0

γt1[i = n+ 1]

∣∣∣∣ s0 = s

]
,

i.e. the value function is a lower bound of the discounted probability of reaching an accepting state k
times via σ (where k is the number of loops in the truncated sequence). As k →∞, the sequence σ∗

that maximises V π thus maximises a lower bound on Problem 2 for the trained policy π. Once σ∗

has been selected, we execute actions a ∼ π(·, σ∗) until the next LDBA state is reached.

Strict negative assignments. Recall that a negative assignment in a reach-avoid sequence σp is any
assignment that leads to an LDBA state other than the desired next state in p. In practice, we find that
trying to avoid all other states in the LDBA can be too restrictive for the policy. We therefore only
regard as negative those assignments that lead to a significant reduction in expected performance. In
particular, given a threshold λ, we define the set of strict negative assignments for state qi ∈ p as the
assignments that lead to a state q′ where

V π(s, σp[i . . .])− max
σ′∈ζq′

V π(s, σ′) ≥ λ.

We then set A−
i to be the set of strict negative assignments for qi. Reducing λ leads to a policy that

more closely follows the selected path p, whereas increasing λ gives the policy more flexibility to
deviate from the chosen path.

Handling ε-transitions. We now discuss how to handle ε-transitions in the LDBA. As described in
Section 2, whenever the LDBA is in a state q with an ε-transition to q′, the policy can choose to either
stay in q or transition to q′ without acting in the MDP. If the sequence σ∗ chosen at q starts with an
ε-transition (i.e. A+

1 = {ε}), we extend the action space of π to include the action ε. If A is discrete,
we simply add an additional dimension to the action space. In the continuous case, we learn the
probability p of taking the ε-action and model π(·|s, σ∗) as a mixed continuous/discrete probability
distribution (see e.g. (Shynk, 2012, Ch. 3.6)). Whenever the policy executes the ε-action, we update
the current LDBA state to the next state in the selected path. In practice, we additionally only allow
ε-actions if L(s) ̸∈ A−

2 , since in that case taking the ε-transition would immediately lead to failure.
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(c) FlatWorld

Figure 5: Evaluation curves on reach/avoid specifications. Each datapoint is collected by averaging
the discounted return of the policy across 50 episodes with randomly sampled tasks, and shaded areas
indicate 90% confidence intervals over 5 different random seeds.

4.6 DISCUSSION

We argue that our approach has several advantages over existing methods. Since we operate on
accepting cycles of Büchi automata, our method is applicable to infinite-horizon (i.e. ω-regular) tasks,
contrary to most existing approaches. Our method is the first approach that is also non-myopic, as
it is able to reason about the entire structure of a specification via temporally extended reach-avoid
sequences. This reasoning naturally considers safety constraints, which are represented through
negative assignments and inform the policy about which propositions to avoid. Crucially, these safety
constraints are considered during planning, i.e. when selecting the optimal sequence to execute, rather
than only during execution. For a detailed comparison of our approach to related work, see Section 6.

5 EXPERIMENTS

We evaluate our approach, called DeepLTL, in a variety of environments and on a range of LTL
specifications of varying difficulty. We aim to answer the following questions: (1) Is DeepLTL able
to learn policies that can zero-shot satisfy complex LTL specifications? (2) How does our method
compare to relevant baselines in terms of both satisfaction probability and efficiency? (3) Can our
approach successfully handle infinite-horizon specifications?

5.1 EXPERIMENTAL SETUP

Environments. Our experiments involve different domains with varying state and action spaces.
This includes the LetterWorld environment (Vaezipoor et al., 2021), a 7× 7 discrete grid world in
which letters corresponding to atomic propositions occupy randomly sampled positions in the grid.
We also consider the high-dimensional ZoneEnv environment from Vaezipoor et al. (2021), in which
a robotic agent with a continuous action space has to navigate between different randomly placed
coloured regions, which correspond to the atomic propositions. Finally, we evaluate our approach on
the continuous FlatWorld environment (Voloshin et al., 2023), in which multiple propositions can
hold true at the same time. We provide further details and visualisations in Appendix E.1.

LTL specifications. We consider a range of tasks of varying complexity. Reach/avoid specifications
are randomly sampled from a task space that encompasses both sequential reachability objectives
of the form F (p1 ∧ (F p2 ∧ (F p3)) and reach-avoid tasks ¬p1 U (p2 ∧ (¬p3 U p4)), where the pi
are randomly sampled atomic propositions. Complex specifications are given by more complicated,
environment-specific LTL formulae, such as the specification ((a ∨ b ∨ c ∨ d) ⇒ F (e ∧ (F (f ∧
F g)))) U (h ∧ F i) in LetterWorld. We also separately investigate infinite-horizon tasks such as
GF a ∧ GFb and FG a. The specifications we consider cover a wide range of LTL objectives,
including reachability, safety, recurrence, persistence, and combinations thereof. Details on the exact
specifications we use in each environment are given in Appendix E.2.

Baselines. We compare DeepLTL to two state-of-the-art approaches for learning general LTL-
satisfying policies. LTL2Action (Vaezipoor et al., 2021) encodes the syntax tree of a target formula
via a graph neural network (GNN) and uses a procedure known as LTL progression to progress

8
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Table 1: Evaluation results of trained policies on complex finite-horizon specifications. We report the
success rate (SR) and average number of steps to satisfy the task (µ). Results are averaged over 5
seeds and 500 episodes per seed. “±” indicates the standard deviation over seeds.

LTL2Action GCRL-LTL DeepLTL

SR (↑) µ (↓) SR (↑) µ (↓) SR (↑) µ (↓)
L

et
te

rW
or

ld φ1 0.75±0.18 29.48±3.20 0.94±0.05 15.29±0.70 1.00±0.00 9.66±0.35

φ2 0.79±0.10 19.04±6.79 0.94±0.03 9.77±1.16 0.98±0.00 7.26±0.35

φ3 0.41±0.14 40.31±2.88 1.00±0.00 20.72±1.34 1.00±0.00 12.23±0.58

φ4 0.72±0.17 28.83±4.47 0.82±0.07 14.60±1.63 0.97±0.01 12.13±0.58

φ5 0.44±0.26 31.84±9.06 1.00±0.00 25.63±0.55 1.00±0.00 9.48±0.78

Z
on

eE
nv

φ6 0.60±0.20 424.07±14.95 0.85±0.03 452.19±15.59 0.92±0.06 303.38±19.43

φ7 0.14±0.18 416.78±66.38 0.85±0.05 451.18±04.91 0.91±0.03 299.95±09.47

φ8 0.67±0.26 414.48±68.52 0.89±0.04 449.70±16.82 0.96±0.04 259.75±08.07

φ9 0.69±0.22 331.55±41.40 0.87±0.02 303.13±05.83 0.90±0.03 203.36±14.97

φ10 0.66±0.19 293.22±63.94 0.85±0.02 290.73±17.39 0.91±0.02 187.13±10.61

φ11 0.93±0.07 123.89±07.30 0.89±0.01 137.42±08.30 0.98±0.01 106.21±07.88

Fl
at

W
or

ld φ12 1.00±0.00 83.32±01.57 0.82±0.41 78.21±08.98 1.00±0.00 79.69±02.50

φ13 0.63±0.50 94.43±39.30 0.00±0.00 0.00±00.00 1.00±0.00 52.82±03.09

φ14 0.71±0.40 96.16±28.93 0.73±0.41 74.60±01.86 0.98±0.01 71.76±02.87

φ15 0.07±0.02 32.37±01.63 0.73±0.03 41.30±01.24 0.86±0.01 43.87±01.45

φ16 0.56±0.35 48.85±32.85 0.64±0.08 17.76±01.63 1.00±0.01 37.04±05.28

through the specification based on the observed propositions. The second baseline, GCRL-LTL (Qiu
et al., 2023), instead learns proposition-conditioned policies and combines them compositionally
using a weighted graph search on the Büchi automaton of a target specification.

Evaluation protocol. In line with previous work, the methods are trained for 15M interaction
steps on each environment with PPO (Schulman et al., 2017). Details about hyperparameters and
neural network architectures can be found in Appendix E.3. We report the performance in terms of
discounted return over the number of environment interactions (following Equation 2) on randomly
sampled reach/avoid tasks, and provide tabular results detailing the success rate (SR) and average
number of steps until completion (µ) of trained policies on complex tasks. All results are averaged
across 5 different random seeds. Furthermore, we provide visualisations of trajectories of trained
policies for various specifications in the ZoneEnv and FlatWorld environments in Appendix F.5.

5.2 RESULTS

Finite-horizon tasks. Figure 5 shows the discounted return achieved on reach/avoid tasks across
environment interactions. DeepLTL clearly outperforms the baselines, both in terms of sample
efficiency and final performance. The results in Table 1 further demonstrate that our method can
efficiently zero-shot satisfy complex specifications (see Appendix E.2 for details on the tasks),
achieving higher success rates (SR) than existing approaches, while requiring significantly fewer
steps (µ). These results highlight the performance benefits of our representation based on reach-avoid
sequences over existing encoding schemes, and show that our approach learns much more efficient
policies than the myopic baseline GCRL-LTL. The higher success rates of our method furthermore
indicate that it handles safety constraints better than the baselines.

Infinite-horizon tasks. Figure 6 shows example trajectories of DeepLTL on infinite-horizon tasks in
the ZoneEnv environment. In Figure 6c we furthermore compare the performance of our approach on
recurrence, i.e. GF , tasks (see Appendix E.2 for details) to GCRL-LTL, the only previous approach
that can handle infinite-horizon specifications. We report the average number of visits to accepting
states per episode, which corresponds to the number of completed cycles of target propositions (e.g.
the number of times both blue and green have been visited for the specification GFblue∧GFgreen).
Additional results on FG tasks can be found in Appendix F.1. Our evaluation confirms that DeepLTL
can successfully handle ω-regular tasks, and significantly outperforms the only relevant baseline.

Further experimental results. We provide further experimental results in Appendix F, investigating
safety requirements, generalisation to longer sequences, and the impact of curriculum learning.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) GFblue∧GFgreen (b) FGblue

GCRL-LTL DeepLTL

LetterWorld ψ1 6.74±1.96 17.84±0.67

ψ2 1.49±0.31 3.05±0.47

ZoneEnv ψ3 3.14±0.18 4.16±0.61

ψ4 1.31±0.05 1.71±0.23

FlatWorld ψ5 7.20±4.08 12.12±0.80

ψ6 4.64±0.25 6.98±1.00

(c)

Figure 6: Results on infinite-horizon tasks. (a), (b) Example trajectories for infinite-horizon speci-
fications. (c) Performance on various recurrence tasks. We report the average number of visits to
accepting states over 500 episodes (i.e. completed cycles), with standard deviations over 5 seeds.

6 RELATED WORK

RL with tasks expressed in LTL has received significant attention in the last few years (Sadigh et al.,
2014; De Giacomo et al., 2018; Camacho et al., 2019; Kazemi et al., 2022; Li et al., 2024). Our
approach builds on previous works that use LDBAs to augment the state space of the MDP (Hasanbeig
et al., 2018; Hahn et al., 2019; 2020; Bozkurt et al., 2020; Voloshin et al., 2022; Hasanbeig et al.,
2023; Bagatella et al., 2024; Shah et al., 2024). However, these methods are limited to finding policies
for a single, fixed specification. In contrast, our approach is realised in a multi-task setting and learns
a policy that can zero-shot generalise to arbitrary specifications at test time.

Among the works that consider multiple, previously unseen specifications, many approaches decom-
pose a given task into subtasks, which are then individually completed (Araki et al., 2021; León et al.,
2021; 2022; Liu et al., 2024). However, as noted by Vaezipoor et al. (2021) this results in myopic
behaviour and hence potentially suboptimal solutions. In contrast, our approach takes the entire
specification into account by reasoning over temporally extended reach-avoid sequences. Kuo et al.
(2020) instead propose to compose RNNs in a way that mirrors formula structure, which however
requires learning a non-stationary policy. This is addressed by LTL2Action (Vaezipoor et al., 2021),
which encodes the syntax tree of a target specification using a GNN and uses LTL progression (Bac-
chus & Kabanza, 2000) to make the problem Markovian. We instead extract reach-avoid sequences
from Büchi automata, which directly encode the possible ways of satisfying the given specification.
Furthermore, due to its reliance on LTL progression, LTL2Action is restricted to the finite-horizon
fragment of LTL, whereas our approach is able to handle infinite-horizon tasks.

The only previous method we are aware of that can deal with infinite-horizon specifications is GCRL-
LTL (Qiu et al., 2023). However, similar to other approaches, GCRL-LTL relies on composing
policies for sub-tasks and therefore produces suboptimal behaviour. Furthermore, the approach only
considers safety constraints during task execution and not during high-level planning. Recently, Xu &
Fekri (2024) proposed future dependent options for satisfying arbitrary LTL tasks, which are option
policies that depend on future goals. Their method is only applicable to a fragment of LTL that does
not support conjunction nor infinite-horizon specifications, and does not consider safety constraints
during planning. See Appendix C for an extended discussion of related work.

7 CONCLUSION

We have introduced DeepLTL, a novel approach to the problem of learning policies that can zero-shot
execute arbitrary LTL specifications. Our method represents a given specification as a set of reach-
avoid sequences of truth assignments, and exploits a general sequence-conditioned policy to execute
arbitrary LTL instructions at test time. In contrast to existing techniques, our method can handle
infinite-horizon specifications, is non-myopic, and naturally considers safety constraints. Through
extensive experiments, we have demonstrated the effectiveness of our approach in practice.

In future work, we plan on improving sample efficiency by incorporating ideas such as counterfactual
experience (Toro Icarte et al., 2022; Voloshin et al., 2023) and automated reward shaping (Bagatella
et al., 2024; Shah et al., 2024). We also plan on investigating more involved neural network architec-
tures, e.g. based on attention, along the lines of León et al. (2022).
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and Lijun Zhang (eds.), Tools and Algorithms for the Construction and Analysis of Systems,
pp. 395–412, Cham, 2019. Springer International Publishing. ISBN 978-3-030-17462-0. doi:
10.1007/978-3-030-17462-0 27. 6, C

Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi, and Dominik
Wojtczak. Faithful and Effective Reward Schemes for Model-Free Reinforcement Learning of
Omega-Regular Objectives. In Dang Van Hung and Oleg Sokolsky (eds.), Automated Technology
for Verification and Analysis, pp. 108–124, Cham, 2020. Springer International Publishing. ISBN
978-3-030-59152-6. doi: 10.1007/978-3-030-59152-6 6. 6, C

Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi, and Dominik
Wojtczak. Mungojerrie: Linear-Time Objectives in Model-Free Reinforcement Learning. In Tools
and Algorithms for the Construction and Analysis of Systems, Lecture Notes in Computer Science,
pp. 527–545, 2023. ISBN 978-3-031-30823-9. doi: 10.1007/978-3-031-30823-9 27. C

Hosein Hasanbeig, Daniel Kroening, and Alessandro Abate. Certified reinforcement learning with
logic guidance. Artificial Intelligence, 322:103949, 2023. ISSN 0004-3702. doi: 10.1016/j.artint.
2023.103949. 6

Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. Logically-Constrained
Reinforcement Learning. arXiv, 2018. doi: 10.48550/arXiv.1801.08099. 1, 6, C

Jiaming Ji, Jiayi Zhou, Borong Zhang, Juntao Dai, Xuehai Pan, Ruiyang Sun, Weidong Huang,
Yiran Geng, Mickel Liu, and Yaodong Yang. OmniSafe: An Infrastructure for Accelerating Safe
Reinforcement Learning Research, May 2023. E.1

Kishor Jothimurugan, Rajeev Alur, and Osbert Bastani. A Composable Specification Language for
Reinforcement Learning Tasks. In Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. C

Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, and Rajeev Alur. Compositional Rein-
forcement Learning from Logical Specifications. In Advances in Neural Information Processing
Systems, volume 34, pp. 10026–10039, 2021. 1, C

Milad Kazemi and Sadegh Soudjani. Formal Policy Synthesis for Continuous-State Systems via
Reinforcement Learning. In Integrated Formal Methods: 16th International Conference, pp. 3–21,
November 2020. ISBN 978-3-030-63460-5. doi: 10.1007/978-3-030-63461-2 1. C

Milad Kazemi, Mateo Perez, Fabio Somenzi, Sadegh Soudjani, Ashutosh Trivedi, and Alvaro
Velasquez. Translating Omega-Regular Specifications to Average Objectives for Model-Free
Reinforcement Learning. In Proceedings of the 21st International Conference on Autonomous
Agents and Multiagent Systems, AAMAS ’22, pp. 732–741, Richland, SC, May 2022. International
Foundation for Autonomous Agents and Multiagent Systems. ISBN 978-1-4503-9213-6. 6, C

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun (eds.), 3rd International Conference on Learning Representations, 2015. doi:
10.48550/arXiv.1412.6980. E.3

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yen-Ling Kuo, Boris Katz, and Andrei Barbu. Encoding formulas as deep networks: Reinforcement
learning for zero-shot execution of LTL formulas. In 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 5604–5610, October 2020. doi: 10.1109/IROS45743.
2020.9341325. 1, 6, C

Xuan-Bach Le, Dominik Wagner, Leon Witzman, Alexander Rabinovich, and Luke Ong. Reinforce-
ment Learning with LTL and $\omega$-Regular Objectives via Optimality-Preserving Translation
to Average Rewards. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, November 2024. C

Borja G. León, Murray Shanahan, and Francesco Belardinelli. Systematic Generalisation through
Task Temporal Logic and Deep Reinforcement Learning. In arXiv. arXiv, 2021. doi: 10.48550/
arXiv.2006.08767. 6, C

Borja G. León, Murray Shanahan, and Francesco Belardinelli. In a Nutshell, the Human Asked
for This: Latent Goals for Following Temporal Specifications. In International Conference on
Learning Representations, 2022. 1, 6, 7

Andrew C. Li, Zizhao Chen, Toryn Q. Klassen, Pashootan Vaezipoor, Rodrigo Toro Icarte, and
Sheila A. McIlraith. Reward Machines for Deep RL in Noisy and Uncertain Environments. In
arXiv. arXiv, 2024. doi: 10.48550/arXiv.2406.00120. 6

Jason Xinyu Liu, Ziyi Yang, Ifrah Idrees, Sam Liang, Benjamin Schornstein, Stefanie Tellex, and
Ankit Shah. Grounding Complex Natural Language Commands for Temporal Tasks in Unseen
Environments. In Proceedings of The 7th Conference on Robot Learning, pp. 1084–1110. PMLR,
2023. 1

Jason Xinyu Liu, Ankit Shah, Eric Rosen, Mingxi Jia, George Konidaris, and Stefanie Tellex. Skill
Transfer for Temporal Task Specification. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pp. 2535–2541, 2024. doi: 10.1109/ICRA57147.2024.10611432. 1, 6, C

Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-Conditioned Reinforcement Learning:
Problems and Solutions. In Proceedings of the Thirty-First International Joint Conference on
Artificial Intelligence, pp. 5502–5511, July 2022. ISBN 978-1-956792-00-3. doi: 10.24963/ijcai.
2022/770. 4.2, 4.4

Jelena Luketina, Nantas Nardelli, Gregory Farquhar, Jakob N. Foerster, Jacob Andreas, Edward
Grefenstette, Shimon Whiteson, and Tim Rocktäschel. A survey of reinforcement learning
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A LTL SATISFACTION SEMANTICS

The satisfaction semantics of LTL are defined in terms of infinite sequences of truth assignments
a ∈ 2AP (a.k.a. ω-words over 2AP ). The satisfaction relation w |= φ specifies that ω-word w satisfies
the specification φ. It is recursively defined as follows (Baier & Katoen, 2008):

w |= true

w |= a iff a ∈ w0

w |= φ ∧ ψ iff w |= φ and w |= ψ

w |= ¬φ iff w ̸|= φ

w |= Xφ iff w[1 . . .] |= φ

w |= φ U ψ iff ∃j ≥ 0 s.t. w[j . . .] |= ψ and ∀0 ≤ i < j. w[i . . .] |= φ.

As noted in the main paper, we can equivalently define the satisfaction semantics via (limit-
deterministic) Büchi automata. Formally, for any LTL specification φ we can construct a Büchi
automaton that accepts exactly the set Words(φ) = {w ∈ (2AP )ω | w |= φ}.

B LEARNING PROBABILITY-OPTIMAL POLICIES

B.1 EVENTUAL DISCOUNTING

The technique of eventual discounting (Voloshin et al., 2023) ensures that the solution π∗
Γ to Problem 1

is approximately probabilistically optimal. To see why eventual discounting is necessary, we first
examine the problem of finding an optimal policy for a single LTL specification φ. Consider the
product MDPMφ depicted in Figure 7, adapted from Voloshin et al. (2023). The policy starts in state
s0 and can choose either action a or action b. Action a always leads to an infinite cycle containing an
accepting state, and is thus optimal. Action b on the other hand also leads to an infinite cycle with
probability 0.99, but may lead to a sink state with probability 0.01.

Let πa be the policy that chooses a and πb be the policy that chooses b. Without eventual discounting,
we have:

J(πa) =
1

1− γ2 and J(πb) =
0.99

1− γ ,

and thus J(πb) > J(πa) for all γ ∈ (0.01, 1). Hence, maximising (standard) expected discounted
return produces a suboptimal policy in terms of satisfaction probability.

Eventual discounting addresses this problem by only discounting visits to accepting states, and
not the steps in between. In the previous example, this means that J(πa) > J(πb), in line with
the satisfaction probability. See Voloshin et al. (2023) for a formal derivation of a bound on the
performance of the return-optimal policy under eventual discounting. We next extend this result to
the setting of a distribution ξ over LTL specifications φ.

s0

start

s1 s3 ⊥

s2

a

⊤ ⊤

b

0.99 0.01

⊤ ⊤

Figure 7: Example product MDP.
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B.2 PROOF OF THEOREM 1

Our proof of Theorem 1 closely follows the structure of the proof of (Voloshin et al., 2023, Theorem
4.2). We begin with the following Lemma:
Lemma 1. For any π, γ ∈ (0, 1), and φ ∈ supp(ξ), we have

|(1− γ)V π − Pr(π |= φ)| ≤ log(
1

γ
)Oπ,

where Oπ = Eφ∼ξ,τ∼π|φ
[
|{q ∈ τq : q ∈ FBφ}|

∣∣ τ ̸|= φ
]

is the expected number of visits to
accepting states for trajectories that do not satisfy a specification.

Proof. The proof follows exactly along the lines of the proof of (Voloshin et al., 2023, Lemma 4.1)
with our modified definition of Oπ , which includes the expectation over φ.

We are now ready to prove the main result:
Theorem 1. For any γ ∈ (0, 1) we have

sup
π

E
φ∼ξ

[Pr(π |= φ)]− E
φ∼ξ

[Pr(π∗
Γ |= φ)] ≤ 2 log(

1

γ
) sup

π
Oπ,

where Oπ = Eφ∼ξ,τ∼π|φ
[
|{q ∈ τq : q ∈ FBφ}|

∣∣ τ ̸|= φ
]

is the expected number of visits to
accepting states for trajectories that do not satisfy a specification.

Proof. Let (πi)i∈N be a sequence of policies such that

E
φ∼ξ

[Pr(πi |= φ)]
i→∞−−−→ sup

π
E

φ∼ξ
[Pr(π |= φ)] .

By the linearity of expectation, we have
E

φ∼ξ
[Pr(πi |= φ)]− E

φ∼ξ
[Pr(π∗

Γ |= φ)]

= E
φ∼ξ

[Pr(πi |= φ)− Pr(π∗
Γ |= φ)] .

We add and subtract the terms (1− γ)V πi and (1− γ)V π∗
Γ and apply the triangle inequality to obtain

≤
∣∣∣∣Eφ [Pr(πi |= φ)− (1− γ)V πi ]

∣∣∣∣+
∣∣∣∣Eφ
[
Pr(π∗

Γ |= φ)− (1− γ)V π∗
Γ

] ∣∣∣∣

+ E
φ

[
(1− γ)V πi − (1− γ)V π∗

Γ

]
.

(5)

The last term is negative since

E
φ

[
(1− γ)V πi − (1− γ)V π∗

Γ

]
= (1− γ)E

φ

[
V πi − V π∗

Γ

]

= (1− γ)(V πi − V π∗
Γ)

≤ 0,

by the definition of π∗
Γ. Note that for any random variable X , again by the triangle inequality,

|E[X]| =
∣∣∣∣
∑

x

xPr(X = x)

∣∣∣∣ ≤
∑

x

|x|Pr(X = x) = E[|X|],

and we can hence continue from Equation 5 by applying Lemma 1 as follows (where we utilise the
fact the expectations respect inequalities):

(5) ≤ E
φ

[
log(

1

γ
)(Oπi

+Oπ∗
Γ
)

]

≤ E
φ

[
2 log(

1

γ
) sup

π
Oπ

]

= 2 log(
1

γ
) sup

π
Oπ,

which, together with taking the limit as i→∞, concludes the proof.
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B.3 DEEPLTL WITH EVENTUAL DISCOUNTING

DeepLTL can be readily extended with eventual discounting for settings in which satisfaction
probability is the primary concern, and efficiency is less important. In this case, we want to use our
approach to approximate a solution to Problem 1.

To do so, we only need to assume access to the distribution ξ over LTL formulae. During training,
we sample specifications φ ∼ ξ and train the sequence-conditioned policy using all reach-avoid
sequences extracted from Bφ. Crucially, we extend each step of a reach-avoid sequence to include
an additional boolean flag that specifies whether the corresponding LDBA transition leads to an
accepting state. These flags are given as input to the policy network, and are used to compute
the eventual discounting objective. The rest of our approach remains unchanged. We leave an
experimental investigation of this scheme for future work.

C EXTENDED RELATED WORK

The field of RL with LTL specifications has attracted significant attention in the last few years.
Here we provide a more detailed overview of work in this domain and discuss how it relates to our
approach.

RL with a single LTL specification. Early works on RL with LTL specifications relied on esti-
mating a model of the underlying MDP, and then solving this model for a probability-maximising
policy (Fu & Topcu, 2014; Brázdil et al., 2014; Sadigh et al., 2014). A model-free approach based on
Q-learning (Watkins, 1989; Watkins & Dayan, 1992) was introduced by Hasanbeig et al. (2018), who
proposed to use LDBAs to keep track of formula satisfaction. Subsequent works extend this approach,
providing stronger convergence guarantees (Hahn et al., 2019; Bozkurt et al., 2020; Hahn et al., 2023;
Voloshin et al., 2023), improved sample efficiency (Hahn et al., 2020; Kazemi & Soudjani, 2020;
Cai et al., 2021; Shao & Kwiatkowska, 2023; Shah et al., 2024; Bagatella et al., 2024), or guarantees
in adversarial environments (Bozkurt et al., 2024). Alternative methods reduce the problem to an
RL objective with limit-average rewards instead of the standard discounted setting (Kazemi et al.,
2022; Le et al., 2024). A variety of works also consider LTLf (De Giacomo & Vardi, 2013) or
similar specification languages over finite traces, such as reward machines (Toro Icarte et al., 2018b;
De Giacomo et al., 2018; 2019; Jothimurugan et al., 2019; 2021; Toro Icarte et al., 2022).

These approaches all consider only a single, fixed LTL specification, i.e. they learn a policy that
maximises the probability of satisfying a given formula φ. In contrast, our approach is realised in
a multi-task RL setting: we focus on learning a task-conditional policy that can zero-shot execute
arbitrary LTL specifications at test time.

Generalising to multiple tasks. Toro Icarte et al. (2018a) were among the first to consider the
problem of training a policy to complete multiple different tasks expressed in LTL. They propose a
hierarchical algorithm based on Q-learning, which composes policies trained on subtasks. However,
their approach is not able to generalise to novel formulae at test time, since these might consist of
subtasks that the agent has not seen during training. Kuo et al. (2020) instead propose to leverage
goal-conditioned RL with a compositional RNN architecture that consists of one RNN for every
element in the syntax tree of a given LTL formula. While this method is shown to be able to generalise
to tasks outside of the training distribution, it requires learning a non-stationary policy, which is
known to be challenging (Vaezipoor et al., 2021).

León et al. (2021) introduce a different method for tasks expressed in a sub-fragment of LTLf . They
first employ a reasoning module to extract propositions that make progress towards solving the given
task. These propositions are then achieved by a trained goal-conditioned policy. Similarly, Liu
et al. (2024) propose a transfer algorithm that first trains a number of options on a set of training
instructions, and then composes them at test time to achieve novel tasks. However, as noted by
Vaezipoor et al. (2021) these approaches are inherently myopic: they do not take future propositions
into account when executing the next subtask, and hence can produce suboptimal solutions. Instead,
Vaezipoor et al. (2021) propose to directly encode the syntax tree of a given LTL formula using a
GNN and predict actions based on the learned representations. To deal with the non-Markovian
nature of LTL, they employ LTL progression (Bacchus & Kabanza, 2000). A more direct modification
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to the work of León et al. (2021) is proposed by Xu & Fekri (2024), who train future-dependent
options for every proposition. These option policies are conditioned not only on the proposition to
be achieved next, but also on the remaining propositions that need to be satisfied in the future. Qiu
et al. (2023) introduce the first approach that can handle ω-regular specifications. Their technique is
based on training goal-conditioned policies π(·|s, p) to achieve arbitrary propositions p ∈ AP in the
environment. At test time, they employ a planning procedure to select a sequence of propositions to
satisfy and finally execute the according low-level policies.

Our approach differs in a variety of ways from these previous methods: we leverage the structure
of Büchi automata to find possible ways of satisfying a given specification. By operating on Büchi
automata, our method can naturally handle ω-regular specifications, which only GCRL-LTL is also
capable of. However, in comparison to GCRL-LTL our method is non-myopic, since it incorporates
the temporally extended structure of tasks via sequences of reach-avoid assignments. Additionally,
compared to other methods that employ a high-level planning procedure (Qiu et al., 2023; Xu & Fekri,
2024) our approach considers safety requirements when selecting the optimal reach-avoid sequence,
yielding plans that are more likely to be able to be executed without safety violations by the policy.

D COMPUTING ACCEPTING CYCLES

The algorithm to compute paths to accepting cycles is listed in Algorithm 1.

Algorithm 1 Computing paths to accepting cycles

Require:
An LDBA B = (Q, q0,Σ, δ,F , E) and current state q.

1: procedure DFS(q, p, accepting)
2: P ← ∅
3: for all a ∈ 2AP ∪ {ε} do
4: p′ ← [p, q]
5: q′ ← δ(q, a)
6: if q′ ∈ p then
7: if accepting ≤ index of q′ in p then
8: P = P ∪ {p′}
9: end if

10: else
11: P = P ∪ DFS(q′, p′, accepting ∨ q ∈ F)
12: end if
13: end for
14: return P
15: end procedure
16: return DFS(q, [], q ∈ F)

E EXPERIMENTAL DETAILS

E.1 ENVIRONMENTS

LetterWorld. The LetterWorld environment has been introduced by Vaezipoor et al. (2021). It is a
7× 7 grid world that contains 12 randomly placed letters corresponding to atomic propositions. Each
letter appears twice, i.e. 24 out of the 49 squares are occupied, and there are thus multiple ways of
solving any given task. The agent observes the full grid from an egocentric view. At each step, the
agent can move up, right, down, or left. If it moves out of bounds, the agent is immediately placed on
the opposite end of the grid. See Figure 8a for an illustration of the LetterWorld environment.

ZoneEnv. We adapt the ZoneEnv environment introduced by Vaezipoor et al. (2021). The environ-
ment is a walled plane with 8 circular regions (“zones”) that have four different colours and form the
atomic propositions. Our implementation is based on the Safety Gymnasium suite (Ji et al., 2023)
and uses the Point robot, which has a continuous action space for acceleration and steering. The
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(a) LetterWorld (b) ZoneEnv (c) FlatWorld

Figure 8: Visualisations of environments.

environment features a high-dimensional state space based on lidar information about the zones, and
data from other sensors. Both the zone and robot positions are randomly sampled at the beginning
of each episode. If the agent at any point touches a wall, it receives a penalty and the episode is
immediately terminated. A visualisation of the ZoneEnv environment is provided in Figure 8b.

FlatWorld. The FlatWorld environment (Voloshin et al., 2023; Shah et al., 2024) consists of a
two-dimensional continuous world (S = [−2, 2]2) with a discrete action space. Atomic propositions
are given by various coloured regions. Importantly, these regions overlap in various places, which
means that multiple propositions can hold true at the same time. The initial agent position is sampled
randomly from the space in which no propositions are true. At each time step, the agent can move
in one of the 8 compass directions. If it leaves the boundary of the world, the agent receives a
penalty and the episode is terminated prematurely. Figure 8c shows a visualisation of the FlatWorld
environment.

E.2 TESTING SPECIFICATIONS

Tables 2 and 3 list the finite and infinite-horizon specifications used in our evaluation, respectively.

E.3 HYPERPARAMETERS

Neural network architectures. Our choice of neural network architectures is similar to previous
work (Vaezipoor et al., 2021). For DeepLTL and LTL2Action, we employ a fully connected actor
network with [64, 64, 64] units and ReLU as the activation function. The critic has network structure
[64, 64] and uses Tanh activations in LetterWorld and ZoneEnv, and ReLU activations in FlatWorld.
The actor is composed with a softmax layer in discrete action spaces, and outputs the mean and
standard deviation of a Gaussian distribution in continuous action spaces. GCRL-LTL uses somewhat
larger actor and critic networks with structure [512, 1024, 256] and ReLU activations in the ZoneEnv
environment.

The observation module is environment-specific. For the ZoneEnv and FlatWorld environments, it
consists of a simple fully connected network with [128, 64] units and Tanh activations, or [16, 16]
units and ReLU activations, respectively. GCRL-LTL instead uses a simple projection of the input
to dimensionality 100 in ZoneEnv. For LetterWorld, the observation module is a CNN with 16, 32,
and 64 channels in three hidden layers, a kernel size of 2 × 2, stride of 1, no padding, and ReLU
activations.

Finally, the sequence module consists of learned embeddings ϕ of dimensionality 32 in LetterWorld,
and 16 in ZoneEnv and FlatWorld. The non-linear transformation ρ is a fully connected network with
[32, 32] units in LetterWorld, and [32, 16] units in ZoneEnv and FlatWorld. We use ReLU activations
throughout for the sequence module. For the baselines, we use the hyperparameters reported in the
respective papers (Vaezipoor et al., 2021; Qiu et al., 2023).

PPO hyperparameters. The hyperparameters for PPO (Schulman et al., 2017) are listed in Table 4.
We use the Adam optimiser (Kingma & Ba, 2015) for all methods and environments.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 2: Complex finite-horizon specifications used in our evaluation.
L

et
te

rW
or

ld

φ1 F (a ∧ (¬b U c)) ∧ F d

φ2 F d ∧ (¬f U (d ∧ F b))

φ3 F ((a ∨ c ∨ j) ∧ F b) ∧ F (c ∧ F d) ∧ F k

φ4 ¬a U (b ∧ (¬c U (d ∧ (¬e U f))))

φ5 ((a ∨ b ∨ c ∨ d)⇒ F (e ∧ (F (f ∧ F g)))) U (h ∧ F i)

Z
on

eE
nv

φ6 F (green ∧ (¬blue U yellow)) ∧ Fmagenta

φ7 F blue ∧ (¬blue U (green ∧ F yellow))

φ8 F (blue ∨ green) ∧ F yellow ∧ Fmagenta

φ9 ¬(magenta ∨ yellow) U (blue ∧ F green)

φ10 ¬green U ((blue ∨magenta) ∧ (¬green U yellow))

φ11 ((green ∨ blue)⇒ (¬yellow U magenta)) U yellow

Fl
at

W
or

ld

φ12 F ((red ∧magenta) ∧ F ((blue ∧ green) ∧ F yellow))

φ13 F (orange ∧ (¬red U magenta))

φ14 (¬red U (green ∧ blue ∧ aqua)) ∧ F (orange ∧ (F (red ∧magenta)))

φ15 ((¬yellow ∧ ¬orange) U (green ∧ blue)) ∧ (¬green U magenta)

φ16 (blue⇒ Fmagenta) U (yellow ∨ ((green ∧ blue) ∧ F orange))

Table 3: Infinite-horizon specifications used in our evaluation.

LetterWorld
ψ1 GF (e ∧ (¬a U f))

ψ2 GF a ∧ GFb ∧ GF c ∧ GFd ∧ G (¬e ∧ ¬f)

ZoneEnv
ψ3 GFblue ∧ GFgreen

ψ4 GFblue ∧ GFgreen ∧ GF yellow ∧ G¬magenta

FlatWorld
ψ5 GF (blue ∧ green) ∧ GF (red ∧magenta)

ψ6 GF (aqua ∧ blue) ∧ GF red ∧ GF yellow ∧ G¬green
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Table 4: Hyperparameters for PPO. Dashes (—) indicate that the hyperparameter value is the same
across all three methods.

LTL2Action GCRL-LTL DeepLTL

L
et

te
rW

or
ld

Number of processes — 16 —
Steps per process per update — 128 —
Epochs — 8 —
Batch size — 256 —
Discount factor — 0.94 —
GAE-λ — 0.95 —
Entropy coefficient — 0.01 —
Value loss coefficient — 0.5 —
Max gradient norm — 0.5 —
Clipping (ϵ) — 0.2 —
Adam learning rate — 0.0003 —
Adam epsilon — 1e-08 —

Z
on

es
E

nv

Number of processes — 16 —
Steps per process per update 4096 3125 4096
Epochs — 10 —
Batch size 2048 1000 2048
Discount factor — 0.998 —
GAE-λ — 0.95 —
Entropy coefficient — 0.003 —
Value loss coefficient — 0.5 —
Max gradient norm — 0.5 —
Clipping (ϵ) — 0.2 —
Adam learning rate — 0.0003 —
Adam epsilon — 1e-08 —

Fl
at

W
or

ld

Number of processes — 16 —
Steps per process per update — 4096 —
Epochs — 10 —
Batch size — 2048 —
Discount factor — 0.98 —
GAE-λ — 0.95 —
Entropy coefficient — 0.003 —
Value loss coefficient — 0.5 —
Max gradient norm — 0.5 —
Clipping (ϵ) — 0.2 —
Adam learning rate — 0.0003 —
Adam epsilon — 1e-08 —

Additional hyperparameters. LTL2Action requires an LTL task sampler to sample a random
training specification at the beginning of each episode. We follow Vaezipoor et al. (2021) and
sample specifications from the space of reach/avoid tasks. We also experimented with sampling
more complex specifications, but found this detrimental to performance. For GCRL-LTL, we set the
value threshold σ to 0.9 in the ZoneEnv environment, and 0.92 in LetterWorld and FlatWorld. The
threshold λ for strict negative assignments in DeepLTL is set to 0.4 across experiments.

E.4 TRAINING CURRICULA

We design training curricula in order to gradually expose the policy to more challenging tasks. The
general structure of the curricula is the same across environments: we start with simple and short
reach-avoid sequences, and move to more complicated sequences once the policy achieves satisfactory
performance.
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Table 5: Evaluation results of trained policies on persistence tasks. We report the average number of
time steps for which the policy successfully remains in the target region after executing the ε-action.
Results are averaged over 5 seeds and 500 episodes per seed. “±” indicates the standard deviation
over seeds.

GCRL-LTL DeepLTL

FGblue 265.53±94.54 562.81±136.28

FGblue ∧ F (yellow ∧ F green) 178.12±62.88 336.81±069.43

FGmagenta ∧ G¬yellow 406.52±75.22 587.98±123.63

G ((green ∨ yellow)⇒ F blue) ∧ FG (green ∨magenta) 380.49±84.74 570.37±138.98

LetterWorld. In the LetterWorld environment, the first curriculum stage consists of reach-avoid
tasks of depth 1 with single propositions, e.g. ({{a}}, {{b}}}). Once the policy achieves an average
satisfaction rate of 95% on these sequences, we move to the next curriculum stage, in which the depth
is still 1, and |A+

1 | ≤ 2, |A−
1 | ≤ 2. The next stage consists of the same tasks with a length of 2. The

final curriculum stage consists of length-3 sequences with |A+
i | ≤ 2, |A−

i | ≤ 3.

ZoneEnv. For ZoneEnv, the first stages consist of first only reach-sequences of length up to 2 (i.e.
A−

i = ∅) and then reach-avoid sequences of length up to 2. We then increase the cardinality of the
positive and negative assignments, while introducing sequences aligned with reach-stay tasks, e.g.
(({{green}}, 2AP \ {green}), . . .).

FlatWorld. In FlatWorld, we first sample a mixture of reach- and reach-avoid sequences of depth
up to 2. Once the policy achieves a success rate of 80%, we increase the cardinality of the positive
and negative assignments up to 2.

F FURTHER EXPERIMENTAL RESULTS

F.1 RESULTS ON PERSISTENCE TASKS

Persistence (a.k.a. reach-stay) tasks of the form FG a specify that a proposition needs to be true forever
from some point on. We evaluate our approach on these tasks in the ZoneEnv environment, which
features a continuous action space and is thus particularly challenging for reach-stay specifications.
Table 5 compares the performance of our approach to the relevant baseline GCRL-LTL, where we
report the average number of steps for which the agent successfully remains in the target region
after executing the ε-action as the performance metric.3 The results confirm that our method can
successfully handle complex persistence tasks, and performs better than the baseline.

F.2 ADVERSARIAL TASKS WITH SAFETY CONSTRAINTS

We next demonstrate the advantages of our approach in terms of handling safety constraints on an
adversarial task. This task is specifically designed to require considering safety requirements during
high-level planning. We consider the configuration of the ZoneEnv environment depicted in Figure 9
and the specification φ = ¬blue U (green ∨ yellow) ∧ Fmagenta.

Figure 9 shows a number of sample trajectories generated by DeepLTL (top row) and GCRL-LTL
(bottom row). Evidently, GCRL-LTL fails at satisfying the task, since it decides on reaching the
green region during high-level planning without considering the safety constraint ¬blue. In contrast,
DeepLTL considers this safety requirement when selecting the optimal reach-avoid sequence, and
hence chooses to reach the yellow region instead.

Quantitatively, GCRL-LTL only succeeds in satisfying the task in 9.2% of cases, whereas DeepLTL
achieves a success rate of 79.6% (averaged over 5 seeds and 100 episodes per seed). While

3When the policy executes the ε-action, this indicates that the target proposition should from then on be true
forever (see e.g. q2 in Figure 2). Since GCRL-LTL does not explicitly model the ε-actions required for FG
specifications, we employ an approximation and execute the ε-action upon entering the target region for the first
time, i.e. when the agent first enters the blue region for the task FGblue.
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Figure 9: Trajectories of DeepLTL (top row) and GCRL-LTL (bottom row) on the adversarial config-
uration of the ZoneEnv environment. The specification to be completed is φ = ¬blue U (green ∨
yellow) ∧ Fmagenta. GCRL-LTL ignores safety constraints during high-level planning, and hence
performs poorly. In contrast, DeepLTL yields trajectories that satisfy the specification.

LTL2Action does not have a high-level planning component, it considers the entire task includ-
ing safety constraints via its GNN encoding, and averages a success rate of 50.2%.

F.3 GENERALISATION TO LONGER SEQUENCES

In this section, we investigate the ability of our approach to generalise to longer sequences. Our
evaluation so far has already demonstrated that our method can successfully learn general behaviour
for satisfying LTL specifications by only training on simple reach-avoid sequences. We now extend
our analysis by specifically investigating tasks that require a large number of steps to solve.

In particular, we consider the following two task spaces in the LetterWorld environment: sequential
reachability objectives of depth 12 (i.e. F (p1 ∧ (F p2 ∧ . . .∧F p12)) and reach-avoid specifications of
depth 6 (i.e. ¬p1 U (p2 ∧ . . .∧ (¬p11 U p12))). Note that the longest reach-avoid sequences sampled
during training are of length 3. In Table 6, we report the results of our method and the baselines
on randomly sampled tasks from the task spaces described above. We observe that our approach
generalises well to longer sequences and outperforms the baselines in terms of satisfaction probability
and efficiency.

F.4 ABLATION STUDY

We conduct an ablation study in the LetterWorld environment to investigate the impact of curriculum
learning. We train our method without any training curriculum by directly sampling random reach-
avoid sequences of length 3, with potentially multiple propositions to reach and avoid at each stage.
Evaluation curves on reach/avoid specifications over training are shown in Figure 10. The results
demonstrate that curriculum training improves sample efficiency and reduces variance across seeds.

F.5 TRAJECTORY VISUALISATIONS

We qualitatively confirm that DeepLTL produces the desired behaviour by visualising trajectories in
the ZoneEnv and FlatWorld environments for a variety of tasks (Figures 11 and 12).
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Table 6: Evaluation results of trained policies on long reachability (R-12) and reach-avoid (RA-6)
tasks. We report the success rate (SR) and average number of steps to satisfy the task (µ). Results are
averaged over 5 seeds and 500 episodes per seed. “±” indicates the standard deviation over seeds.

LTL2Action GCRL-LTL DeepLTL

SR µ SR µ SR µ

R-12 0.89±0.14 47.80±7.74 0.93±0.05 60.15±2.59 0.98±0.01 43.33±0.45

RA-6 0.13±0.03 56.37±0.89 0.62±0.09 30.64±1.59 0.95±0.01 24.94±0.36

0.2 0.6 1.0 1.4
Number of steps 1e7

0.1
0.2
0.3
0.4
0.5
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Figure 10: Evaluation curves of training with and without a curriculum on the LetterWorld environ-
ment. Each datapoint is collected by averaging the discounted return of the policy across 50 episodes
with randomly sampled reach/avoid specifications, and shaded areas indicate 90% confidence inter-
vals over 5 different random seeds.
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Figure 11: Example trajectories of DeepLTL in the ZoneEnv environment. (Top row) Trajectories for
the task F (yellow∧ (¬green U blue)). (Middle row) Trajectories for the task GF yellow∧GFblue∧
G¬green. (Bottom row) Trajectories for the task FGblue ∧ G¬magenta.

Figure 12: Example trajectories of DeepLTL in the FlatWorld environment. (Top row) Trajectories for
the task F (red∧magenta)∧F (blue∧green). (Bottom row) Trajectories for the task (¬red U (green∧
blue ∧ aqua)) ∧ F (orange ∧ (F (red ∧magenta))).
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