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Abstract

The linear sequence of amino acids determines
protein structure and function. Protein design,
known as the inverse of protein structure predic-
tion, aims to obtain a novel protein sequence
that will fold into the defined structure. Re-
cent works on computational protein design
have studied designing sequences for the de-
sired backbone structure with local positional
information and achieved competitive perfor-
mance. However, similar local environments in
different backbone structures may result in dif-
ferent amino acids, which indicates the global
context of protein structure matters. Thus, we
propose the Global-Context Aware generative
protein design method (GCA), consisting of lo-
cal and global modules. While local modules
focus on relationships between neighbor amino
acids, global modules explicitly capture non-
local contexts. Experimental results demon-
strate that GCA achieves state-of-the-art perfor-
mance on structure-based protein design. Our
code and pretrained model will be released.

1 Introduction

Computational protein design, which aims to in-
vent protein molecules with desired structures and
functions automatically, has a wide range of appli-
cations in therapeutics and pharmacology (Brunette
etal.,2015; Huang et al., 2016; Langan et al., 2019).
Recent years have witnessed remarkable advance-
ments (Gao et al., 2020; Kryshtafovych et al., 2019;
Yang et al., 2019). While classical protein design
approaches depend on composite energy functions
of protein physics and sampling algorithms for ex-
ploring sequence and structure spaces, data-driven
approaches apply neural networks to generate pro-
tein sequences with less prior knowledge.
Designing a protein sequence for a given struc-
ture remains challenging, as mapping the structure
space to the sequence space is difficult. Current
data-driven methods (Ingraham et al., 2019; Jing
etal., 2021; Cao et al., 2021) agree on the assump-

tion based on biology and physics prior knowl-
edge that, for each amino acid, its neighborhoods
have the most immediate and vital effects on itself.
The majority of such methods represent protein
structures as graphs with hand-crafted features and
aggregate local messages. The computational pro-
tein design is formulated to learn features from 3D
structures with the local message passing mech-
anism. However, the similar local environment
in different proteins may correspond to different
amino acids. Local neighbors do matter (Ribeiro
et al., 2020), but it is not enough to obtain high-
quality protein sequences.
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Figure 1: The comparison between the local module and
global module. Information flows from adjacent nodes,
and distant nodes are denoted as green arrows and red
arrows, respectively. The red dashed arrows indicate the
implicit information flow from distant nodes.

To fully explore the non-local information, we
propose the Global-Context Aware generative pro-
tein design method (GCA) with local and global
modules. While local modules are built upon graph
attention networks that aggregate local messages
gained from neighbors, global modules extend lo-
cal graph attention to global self-attention in the
form of Transformer (Vaswani et al., 2017) archi-
tectures. As shown in Fig. 1, the local module
focuses on adjacent structure information though
distant nodes can deliver information implicitly;
the global module explicitly gathers information
from distant nodes. By composing multiple blocks
of local and global modules, GCA can capture high-
order dependencies between protein sequences and
structures in both neighbor-level and overall-level.



2 Proposed method

2.1 Preliminaries

Protein primary structure is the linear sequence
of amino acids, typically notated as a string of
letters. A protein sequence S = {(a)¥|a €
{A,R, N, ..V}} has N amino acids while each of
them is represented by a letter of twenty possible
letters suchas A,R,N,D,C,Q,E,G,H,I,L, K, M,
EP S, T, W, Y, and V. A protein sequence will fold
into a protein tertiary structure X~ = {x¥ e R3:
1<i< N,we {Ca,C,N,0}}, where N is the
number of amino acids and w indicates the chain in
protein. As shown in Fig. 2, protein design predicts
the protein sequence of a given protein structure,
while structure prediction is the opposite.
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Figure 2: Two important tasks in protein modeling:
structure prediction and protein design. The visualiza-
tion is created by Mol* Viewer (Sehnal et al., 2021).
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2.2 Represent protein as a graph

The structure of a protein is represented as a graph
G = (V,&) where node feature v, € V cor-
responds to an amino acid while edge feature
& = {ejj }jen; suggests the rotation-invariant and
translation-invariant relationships between each
pair of nodes v; and v;. In particular, N; denotes
the K -nearest neighbors of node ¢ calculated by
Euclidean distances of the backbone.

For node features, we construct three dihedral
angles {¢;, ¥;,w;} of the protein backbone from
Ci—1,N;, Cay, C;, and N;yq. Then these dihe-
dral angels are embedded on the 3-torus as v; =
{sin, cos} x {¢;, s, w;}.

For edge features, we focus on describing rela-
tive spatial relationships between amino acids that
satisfy rotation-invariant and translation-invariant
properties. To simplify the computation, we only
consider the position xgo‘ of the alpha carbon Ca
as it’s the central carbon atom in each amino acid.
The distance HX]Ca — x%%|y,Vi # j is encoded
by Gaussian radial basis functions r(-). Then,
as shown in Fig. 3, the direction is encoded by
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Figure 3: A general view of how the local coordinate
system is built. The final coordinate satisfies b; L
Ili,bi X n; 1 ni,bi X 1n; 1 bl
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fines a local coordinate system for each amino acid
by:
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The orientation is encoded by the common-
used quaternion representation of rotation matrix
q(OT0;). Thus, the edge feature e;; is the con-
catenation of the distance, direction and orientation
encodings as:
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2.3 Network architecture

2.3.1 Local module

The local module is a graph neural network (GNN)
that aggregates both node embeddings and local
edge embeddings and updates the node embedding
for further sequence generations. Considering a
L-layer GNN, the key operations aggregating and
updating can be formulated as follows:

hﬁ\lf)i = aggregating(l)({(hz(-l_l),h;l_l),heij) 1j €NGY),
3

h£l> = updatzng(h£l71)7 h}\%)? (4)

El) € RP denotes the embedding of node

¢ on the [-th layer, h% € REXP denotes the local
edge embedding of node ¢’s neighbors on the [/-th
layer, K is the number of local neighbors, and D
is the dimensions of the embedding. In particular,
hgo) € RP is the embedding of v;, and he,; € RP
is the embedding of the edge feature e;;. The local
edge information flows into node embeddings at
each layer, while distant edge information flows
through high-level layers.

where h



In order to capture the relationships in lo-
cal neighborhoods, we generalize graph attention
scheme that take advantage of attention coefficients
a € RV*XK ag strong relational inductive bias.
Specifically, the attention coefficients are calcu-
lated as follows:

Vj €N, &)

where c¢;; is expressed as:

cij = o (" [Wh{'™ || Wh{' ™ || Whe,,]),Vj € G,
(6)
and W € RP*P g € R3P are learnable parame-
ters, o is the activation function, || is the concate-
nation operation.
Thus, the aggregating operation is adopted as:

l 1—1 -1
hi = > oW bV || bV | he, ], (D)
JEN;

where W, € RP*3D encodes the relation be-
tween ¢ and j. The updating operation is simply
renovating hidden layers by their local neighbors:
h — LW

7 N;*

2.3.2 Global module

The global module is the fully self-attention net-
work that generalizes Transformer (Vaswani et al.,
2017) to protein graph. Specifically, the attention
coefficients are calculated as follows:

exp(cij)
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where c¢;; is expressed as:

e = %(thﬁ“”)T(wk b R [ he, ),
€)
where W, € RP*P W € RP*3D are parameter
matrices for the query and key, and d is a scale fac-
tor. Then, the aggregating operation is formulated

as:
h{) =3 ai;W,h{™Y, (10)
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the updating operation is defined by employ-
ing layer normalization (LayerNorm), dropout
(DropOut) and fully connected networks (FFN):

h{" = LayerNorm(h{} + DropOut(FFN(h{?))). (1)

The overall architecture with stacked local mod-
ules and global modules is shown in Fig. 4.

3 Experiments

3.1 Experimental settings

3.1.1 Dataset

We use the CATH 4.2 dataset collected by (Ingra-
ham et al., 2019) for evaluation. This dataset ob-
tains full chains up to length 500, and structures
have been partitioned with 40% non-redundancy
by their CATH (Class, Architecture, Topology,
Homologous). With no CAT overlap between sets,
there are 18024 chains in the training set, 608
chains in the validation set, and 1120 chains in
the test set, respectively. Two subsets of the en-
tire test set are evaluated simultaneously: a *Short’
subset containing chains up to length 100 and a
’Single chain’ subset for comparing with baselines
that only use the single chain. We also consider a
smaller dataset TS50, which is the standard bench-
mark introduced by (Li et al., 2014). Though the
model is still trained on the CATH 4.2 dataset, we
filter the training and validation sets to ensure there
is no overlap with TS50.

3.1.2 Measurement

Perplexity Following (Ingraham et al., 2019;
Madani et al., 2020), we define the perplexity that
evaluates the predicted protein sequences from nat-
ural language perspective:

N
1
PERP(S™, ") = exp (= 5 3" loup(S” | A7),

12)
where (SV, XN) is the sequence-structure pair of
a protein with NV amino acids. SiN , XiN denote the
1-th amino acid in sequence and structure respec-
tively. p(S¥V|x2) is the output probability from

the model.

Recovery To evaluate the predicting accuracy of
the protein sequence at per-residue level, we con-
sider the recovery:

1 1
D 2 -

(XN, SNyYeD i

N
REC(D) =
-1 (13)
]l[SZN:argmaxp(SfV|XZ-N)]7

where D denotes the whole dataset.

3.1.3 Model architecture and optimization

In all experiments, GCA model is built by three
blocks of local and global modules for the encoder
and decoder with the hidden dimension of 128.
The Adam optimizer with learning rate of 1= is
employed. Models are trained for 100 epochs while
each batch contains up to 2,500 characters.
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Figure 4: The architecture of our proposed method.

3.2 Experimental results

We present the median of PERP in Table 1. While
the structure-free language model LSTMs produce
confusing protein sequences, structure-based mod-
els obtain less-perplex protein sequences, indicat-
ing the importance of structural features. GCA
outperforms other models as global contexts of pro-
tein structures are taken into account.

Methods Short  Single chain All

Language models

LSTM (h = 128) 16.06 16.38 17.13
LSTM (h = 256) 16.08 1637 17.12
LSTM (h = 512) 15.98 16.38 17.13
SPIN2 12.11 12.61 -
Structure-based models

StructTrans 8.56 8.97 7.14
StructGNN 8.40 8.84 6.69
GCA 7.09 7.49 6.06

Table 1: Performance of different methods on CATH
4.2 dataset assessed by PERP (lower is better).

Though PERP matters from the perspective of
natural language, REC that evaluates the ability of
models in inferring sequences given determined
structures is also crucial. We compare GCA with
other structure-based models in Table 2.

Methods Short Single chain All
StructTrans 31.59 30.35 33.90
StructGNN 30.90 30.85 35.25
GCA 32.25 33.04 36.11

Table 2: Performance of different methods on CATH
4.2 dataset assessed by REC (higher is better).

GCA obtains the highest REC on all three sets
among these structure-based methods. Moreover,
the recovery of StructGNN and StructTrans drops
significantly in ’Short’ and ’Single chain’ sets,
which suggests they are overfitting on long se-
quences and multiple chains, while GCA performs
consistently well on them. As few structural fea-
tures can be explored in short sequnce and single
chain, the prediction is relatively difficult. How-
ever, the global information in GCA makes up for

the deficiency of structural features of short chains,
making performance significantly improved.

To compare with other methods, we conduct ex-
periments on the standard TS50 dataset and show
the results in Table 3. The methods for comparison
include the CNN-based ProDCoNN (Zhang et al.,
2020), the distance-map-based SPROF (Chen et al.,
2019), the graph-based GVP (Jing et al., 2021) the
sequential representation method SPIN (Li et al.,
2014) and SPIN2 (O’Connell et al., 2018), the con-
straint satisfaction method ProteinSolver (Strokach
et al., 2020), and the popular method Rosetta. GCA
achieves remarkable performance and outperforms
other methods by a large margin.

Methods REC
Rosetta 30.0
SPIN 30.3
ProteinSolver 30.8
SPIN2 33.6
StructTrans 36.1
StructGNN 38.0
SPROF 39.2
ProDCoNN 40.7
GVP 44.1
GCA 47.0

Table 3: Performance of different methods on TS50
dataset assessed by REC (higher is better).

4 Conclusion

We introduce the consideration of global informa-
tion and propose the global-context aware gener-
ative protein design method, consisting of local
modules and global modules. The local module
propagates neighborhood messages across layers,
and the global module emphasizes long-term de-
pendencies. Experimental results show that our
proposed GCA method outperforms state-of-the-
art methods on benchmark datasets. In ’Short” and
’Single chain’ sets, the global-context aware mech-
anism significantly improves the performance, in-
dicating the potentials to promote structure-based
protein design.



5 Limitations

Though our proposed GCA method has taken the
global context into consideration, there is still room
for further improvement in efficiency. A possible
solution is learning a global context vector for each
protein, which we leave as future work.
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