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Abstract

The linear sequence of amino acids determines001
protein structure and function. Protein design,002
known as the inverse of protein structure predic-003
tion, aims to obtain a novel protein sequence004
that will fold into the defined structure. Re-005
cent works on computational protein design006
have studied designing sequences for the de-007
sired backbone structure with local positional008
information and achieved competitive perfor-009
mance. However, similar local environments in010
different backbone structures may result in dif-011
ferent amino acids, which indicates the global012
context of protein structure matters. Thus, we013
propose the Global-Context Aware generative014
protein design method (GCA), consisting of lo-015
cal and global modules. While local modules016
focus on relationships between neighbor amino017
acids, global modules explicitly capture non-018
local contexts. Experimental results demon-019
strate that GCA achieves state-of-the-art perfor-020
mance on structure-based protein design. Our021
code and pretrained model will be released.022

1 Introduction023

Computational protein design, which aims to in-024

vent protein molecules with desired structures and025

functions automatically, has a wide range of appli-026

cations in therapeutics and pharmacology (Brunette027

et al., 2015; Huang et al., 2016; Langan et al., 2019).028

Recent years have witnessed remarkable advance-029

ments (Gao et al., 2020; Kryshtafovych et al., 2019;030

Yang et al., 2019). While classical protein design031

approaches depend on composite energy functions032

of protein physics and sampling algorithms for ex-033

ploring sequence and structure spaces, data-driven034

approaches apply neural networks to generate pro-035

tein sequences with less prior knowledge.036

Designing a protein sequence for a given struc-037

ture remains challenging, as mapping the structure038

space to the sequence space is difficult. Current039

data-driven methods (Ingraham et al., 2019; Jing040

et al., 2021; Cao et al., 2021) agree on the assump-041

tion based on biology and physics prior knowl- 042

edge that, for each amino acid, its neighborhoods 043

have the most immediate and vital effects on itself. 044

The majority of such methods represent protein 045

structures as graphs with hand-crafted features and 046

aggregate local messages. The computational pro- 047

tein design is formulated to learn features from 3D 048

structures with the local message passing mech- 049

anism. However, the similar local environment 050

in different proteins may correspond to different 051

amino acids. Local neighbors do matter (Ribeiro 052

et al., 2020), but it is not enough to obtain high- 053

quality protein sequences. 054

(a) Local module (b) Global module

Figure 1: The comparison between the local module and
global module. Information flows from adjacent nodes,
and distant nodes are denoted as green arrows and red
arrows, respectively. The red dashed arrows indicate the
implicit information flow from distant nodes.

To fully explore the non-local information, we 055

propose the Global-Context Aware generative pro- 056

tein design method (GCA) with local and global 057

modules. While local modules are built upon graph 058

attention networks that aggregate local messages 059

gained from neighbors, global modules extend lo- 060

cal graph attention to global self-attention in the 061

form of Transformer (Vaswani et al., 2017) archi- 062

tectures. As shown in Fig. 1, the local module 063

focuses on adjacent structure information though 064

distant nodes can deliver information implicitly; 065

the global module explicitly gathers information 066

from distant nodes. By composing multiple blocks 067

of local and global modules, GCA can capture high- 068

order dependencies between protein sequences and 069

structures in both neighbor-level and overall-level. 070
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2 Proposed method071

2.1 Preliminaries072

Protein primary structure is the linear sequence073

of amino acids, typically notated as a string of074

letters. A protein sequence SN = {(a)N |a ∈075

{A,R,N, ..V }} has N amino acids while each of076

them is represented by a letter of twenty possible077

letters such as A, R, N, D, C, Q, E, G, H, I, L, K, M,078

F, P, S, T, W, Y, and V. A protein sequence will fold079

into a protein tertiary structure XN = {xωi ∈ R3 :080

1 ≤ i ≤ N,ω ∈ {Cα,C,N,O}}, where N is the081

number of amino acids and ω indicates the chain in082

protein. As shown in Fig. 2, protein design predicts083

the protein sequence of a given protein structure,084

while structure prediction is the opposite.085

V L S P A V … L T S K Y R

Protein structure

Protein sequence

Structure Prediction

Protein Design

Figure 2: Two important tasks in protein modeling:
structure prediction and protein design. The visualiza-
tion is created by Mol* Viewer (Sehnal et al., 2021).

2.2 Represent protein as a graph086

The structure of a protein is represented as a graph087

G = (V, E) where node feature vi ∈ V cor-088

responds to an amino acid while edge feature089

E = {eij}j∈Ni suggests the rotation-invariant and090

translation-invariant relationships between each091

pair of nodes vi and vj . In particular, Ni denotes092

the K-nearest neighbors of node i calculated by093

Euclidean distances of the backbone.094

For node features, we construct three dihedral095

angles {φi, ψi, ωi} of the protein backbone from096

Ci−1,Ni,Cαi,Ci, and Ni+1. Then these dihe-097

dral angels are embedded on the 3-torus as vi =098

{sin, cos} × {φi, ψi, ωi}.099

For edge features, we focus on describing rela-100

tive spatial relationships between amino acids that101

satisfy rotation-invariant and translation-invariant102

properties. To simplify the computation, we only103

consider the position xCα
i of the alpha carbon Cα104

as it’s the central carbon atom in each amino acid.105

The distance ‖xCαj − xCαi ‖2, ∀i 6= j is encoded106

by Gaussian radial basis functions r(·). Then,107

as shown in Fig. 3, the direction is encoded by108
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Figure 3: A general view of how the local coordinate
system is built. The final coordinate satisfies bi ⊥
ni,bi × ni ⊥ ni,bi × ni ⊥ bi.

OT
i

xCαj −xCαi
‖xCαj −xCαi ‖

while Oi = [bi ni bi×ni] de- 109

fines a local coordinate system for each amino acid 110

by: 111

ui =
xCαi − xCαi−1

‖xCαi − xCαi−1‖
,bi =

ui − ui+1

‖ui − ui+1‖
,ni =

ui × ui+1

‖ui × ui+1‖
.

(1) 112

The orientation is encoded by the common- 113

used quaternion representation of rotation matrix 114

q(OT
i Oj). Thus, the edge feature eij is the con- 115

catenation of the distance, direction and orientation 116

encodings as: 117

eij =
(
r(‖xCαj −xCαi ‖2),OT

i

xCαj − xCαi
‖xCαj − xCαi ‖

,q(OT
i Oj)

)
.

(2) 118

2.3 Network architecture 119

2.3.1 Local module 120

The local module is a graph neural network (GNN) 121

that aggregates both node embeddings and local 122

edge embeddings and updates the node embedding 123

for further sequence generations. Considering a 124

L-layer GNN, the key operations aggregating and 125

updating can be formulated as follows: 126

h
(l)
Ni

= aggregating(l)({
(
h
(l−1)
i ,h

(l−1)
j ,heij

)
: j ∈ Ni}),

(3) 127

128
h
(l)
i = updating(h

(l−1)
i ,h

(l)
Ni

), (4) 129

where h
(l)
i ∈ RD denotes the embedding of node 130

i on the l-th layer, h(l)
Ni ∈ RK×D denotes the local 131

edge embedding of node i’s neighbors on the l-th 132

layer, K is the number of local neighbors, and D 133

is the dimensions of the embedding. In particular, 134

h
(0)
i ∈ RD is the embedding of vi, and heij ∈ RD 135

is the embedding of the edge feature eij . The local 136

edge information flows into node embeddings at 137

each layer, while distant edge information flows 138

through high-level layers. 139
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In order to capture the relationships in lo-140

cal neighborhoods, we generalize graph attention141

scheme that take advantage of attention coefficients142

α ∈ RN×K as strong relational inductive bias.143

Specifically, the attention coefficients are calcu-144

lated as follows:145

αij =
exp(cij)∑

k∈N (i) exp(cik)
, ∀j ∈ Ni, (5)146

where cij is expressed as:147

cij = σ
(
aT
[
Wh

(l−1)
i ||Wh

(l−1)
j ||Wheij

])
, ∀j ∈ Ni,

(6)148

and W ∈ RD×D, a ∈ R3D are learnable parame-149

ters, σ is the activation function, || is the concate-150

nation operation.151

Thus, the aggregating operation is adopted as:152

h
(l)
Ni

=
∑
j∈Ni

αijWr

[
h
(l−1)
i || h(l−1)

j || heij

]
, (7)153

where Wr ∈ RD×3D encodes the relation be-154

tween i and j. The updating operation is simply155

renovating hidden layers by their local neighbors:156

h
(l)
i = h

(l)
Ni .157

2.3.2 Global module158

The global module is the fully self-attention net-159

work that generalizes Transformer (Vaswani et al.,160

2017) to protein graph. Specifically, the attention161

coefficients are calculated as follows:162

αij =
exp(cij)∑
k∈V exp(cik)

, (8)163

where cij is expressed as:164

cij =
1√
d

(
Wqh

(l−1)
i

)T(
Wk

[
h
(l−1)
i || h(l−1)

j || heij

])
,

(9)165

where Wq ∈ RD×D,Wk ∈ RD×3D are parameter166

matrices for the query and key, and d is a scale fac-167

tor. Then, the aggregating operation is formulated168

as:169
h
(l)
Ni

=
∑
j∈V

αijWrh
(l−1)
j , (10)170

the updating operation is defined by employ-171

ing layer normalization (LayerNorm), dropout172

(DropOut) and fully connected networks (FFN):173

174

h
(l)
i = LayerNorm(h

(l)
Ni

+DropOut(FFN(h
(l)
Ni

))). (11)175

The overall architecture with stacked local mod-176

ules and global modules is shown in Fig. 4.177

3 Experiments 178

3.1 Experimental settings 179

3.1.1 Dataset 180

We use the CATH 4.2 dataset collected by (Ingra- 181

ham et al., 2019) for evaluation. This dataset ob- 182

tains full chains up to length 500, and structures 183

have been partitioned with 40% non-redundancy 184

by their CATH (Class, Architecture, Topology, 185

Homologous). With no CAT overlap between sets, 186

there are 18024 chains in the training set, 608 187

chains in the validation set, and 1120 chains in 188

the test set, respectively. Two subsets of the en- 189

tire test set are evaluated simultaneously: a ’Short’ 190

subset containing chains up to length 100 and a 191

’Single chain’ subset for comparing with baselines 192

that only use the single chain. We also consider a 193

smaller dataset TS50, which is the standard bench- 194

mark introduced by (Li et al., 2014). Though the 195

model is still trained on the CATH 4.2 dataset, we 196

filter the training and validation sets to ensure there 197

is no overlap with TS50. 198

3.1.2 Measurement 199

Perplexity Following (Ingraham et al., 2019; 200

Madani et al., 2020), we define the perplexity that 201

evaluates the predicted protein sequences from nat- 202

ural language perspective: 203

PERP(SN ,XN ) = exp
(
− 1

N

N∑
i=1

SNi log p
(
SNi | XNi

))
,

(12) 204

where (SN ,XN ) is the sequence-structure pair of 205

a protein with N amino acids. SNi ,XNi denote the 206

i-th amino acid in sequence and structure respec- 207

tively. p(SNi |XNi ) is the output probability from 208

the model. 209
Recovery To evaluate the predicting accuracy of 210
the protein sequence at per-residue level, we con- 211
sider the recovery: 212

REC(D) = 1

|D|
∑

(XN ,SN )∈D

1

N

N∑
i=1

1[SNi = argmax p(SNi | XNi )],

(13) 213

where D denotes the whole dataset. 214

3.1.3 Model architecture and optimization 215

In all experiments, GCA model is built by three 216

blocks of local and global modules for the encoder 217

and decoder with the hidden dimension of 128. 218

The Adam optimizer with learning rate of 1e−3 is 219

employed. Models are trained for 100 epochs while 220

each batch contains up to 2,500 characters. 221
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Figure 4: The architecture of our proposed method.

3.2 Experimental results222

We present the median of PERP in Table 1. While223

the structure-free language model LSTMs produce224

confusing protein sequences, structure-based mod-225

els obtain less-perplex protein sequences, indicat-226

ing the importance of structural features. GCA227

outperforms other models as global contexts of pro-228

tein structures are taken into account.229

Methods Short Single chain All
Language models
LSTM (h = 128) 16.06 16.38 17.13
LSTM (h = 256) 16.08 16.37 17.12
LSTM (h = 512) 15.98 16.38 17.13
SPIN2 12.11 12.61 -
Structure-based models
StructTrans 8.56 8.97 7.14
StructGNN 8.40 8.84 6.69
GCA 7.09 7.49 6.06

Table 1: Performance of different methods on CATH
4.2 dataset assessed by PERP (lower is better).

Though PERP matters from the perspective of230

natural language, REC that evaluates the ability of231

models in inferring sequences given determined232

structures is also crucial. We compare GCA with233

other structure-based models in Table 2.

Methods Short Single chain All
StructTrans 31.59 30.35 33.90
StructGNN 30.90 30.85 35.25
GCA 32.25 33.04 36.11

Table 2: Performance of different methods on CATH
4.2 dataset assessed by REC (higher is better).

234

GCA obtains the highest REC on all three sets235

among these structure-based methods. Moreover,236

the recovery of StructGNN and StructTrans drops237

significantly in ’Short’ and ’Single chain’ sets,238

which suggests they are overfitting on long se-239

quences and multiple chains, while GCA performs240

consistently well on them. As few structural fea-241

tures can be explored in short sequnce and single242

chain, the prediction is relatively difficult. How-243

ever, the global information in GCA makes up for244

the deficiency of structural features of short chains, 245

making performance significantly improved. 246

To compare with other methods, we conduct ex- 247

periments on the standard TS50 dataset and show 248

the results in Table 3. The methods for comparison 249

include the CNN-based ProDCoNN (Zhang et al., 250

2020), the distance-map-based SPROF (Chen et al., 251

2019), the graph-based GVP (Jing et al., 2021) the 252

sequential representation method SPIN (Li et al., 253

2014) and SPIN2 (O’Connell et al., 2018), the con- 254

straint satisfaction method ProteinSolver (Strokach 255

et al., 2020), and the popular method Rosetta. GCA 256

achieves remarkable performance and outperforms 257

other methods by a large margin. 258

Methods REC
Rosetta 30.0
SPIN 30.3
ProteinSolver 30.8
SPIN2 33.6
StructTrans 36.1
StructGNN 38.0
SPROF 39.2
ProDCoNN 40.7
GVP 44.1
GCA 47.0

Table 3: Performance of different methods on TS50
dataset assessed by REC (higher is better).

4 Conclusion 259

We introduce the consideration of global informa- 260

tion and propose the global-context aware gener- 261

ative protein design method, consisting of local 262

modules and global modules. The local module 263

propagates neighborhood messages across layers, 264

and the global module emphasizes long-term de- 265

pendencies. Experimental results show that our 266

proposed GCA method outperforms state-of-the- 267

art methods on benchmark datasets. In ’Short’ and 268

’Single chain’ sets, the global-context aware mech- 269

anism significantly improves the performance, in- 270

dicating the potentials to promote structure-based 271

protein design. 272
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5 Limitations273

Though our proposed GCA method has taken the274

global context into consideration, there is still room275

for further improvement in efficiency. A possible276

solution is learning a global context vector for each277

protein, which we leave as future work.278
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