
Cost-aware Discovery of Contextual Failures using
Bayesian Active Learning

Anjali Parashar Joseph Zhang Yingke Li Chuchu Fan
Laboratory for Information & Decision Systems (LIDS)

Massachusetts Institute of Technology, United States
{anjalip, jzha, yingkeli, chuchu}@mit.edu

Abstract: Ensuring the robustness of robotic systems is crucial for their de-
ployment in safety-critical domains. Failure discovery, or falsification, is a
widely used approach for evaluating robustness, with recent advancements fo-
cusing on improving sample efficiency and generalization through probabilistic
sampling techniques and learning-theoretic approaches. However, existing meth-
ods rely on explicitly defined analytical cost functions to characterize failures,
often overlooking the underlying causes and diversity of discovered failure sce-
narios. In this work, we propose a novel failure discovery framework that inte-
grates contextual reasoning in the falsification process, specifically tailored for
high evaluation-cost applications. Our method incorporates expert-in-the-loop
feedback to construct a probabilistic surrogate model of failures using Bayesian
inference. This model is iteratively refined and leveraged to guide an active learn-
ing strategy that prioritizes the discovery of diverse failure cases. We empirically
validate our approach across a range of tasks for high-cost contextual falsifica-
tion in robotic manipulation and autonomous driving. The project website is at
https://mit-realm.github.io/contextualfailures-website/.

Keywords: Failure discovery, Testing, Contextual failures

1 Introduction

Failure discovery, or falsification, of complex systems is the process of demonstrating that the sys-
tem fails to behave as expected [1, 2, 3, 4, 5]. It is a critical task to ensure the safety and reliability
of autonomous systems [6], but often labor-intensive and time-consuming due to system complexity
and the high cost associated with evaluations [7, 8]. Existing failure discovery methods based on
probabilistic and optimization fundamentals require at least one of the following: an accurate model
of the system (model-based methods) [9, 10, 11, 12, 5], a well-defined cost function to guide opti-
mization (optimization-based methods) [13, 14, 15, 16], or the ability to run the system extensively
(sampling-based methods) [9, 10, 11]. However, these requirements can be challenging to meet in
many applications, making it difficult to uncover failures in real-world autonomous systems.

Another key drawback of traditional falsification techniques is the lack of direct expert engagement
in failure discovery, limiting their capability to replicate and generate similar types of failures. This
is especially relevant for user reported edge cases that need further investigation and post-failure
analysis [17, 18]. Recently, some works have proposed generative models to learn failures from
historical data [19, 20, 18], however, these methods are data-intensive by default and face the risk of
under-representing infrequent failure cases [21].

In this work, we propose a cost-aware failure discovery methodology that treats both the system
and its evaluation process as black boxes, avoiding assumptions about their internal structure or
cost functions. Our key contribution is the notion of contextual failures—failures that depend on
user goals, task constraints, and system intricacies. Unlike traditional failures, these are difficult to

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

https://mit-realm.github.io/contextualfailures-website/

define analytically due to multiple plausible causes and limited knowledge of where such failures
might arise. Instead, they can be recognized through expert-identified incidents of interest.

Practitioners often cannot formally specify these failures but find them informative and seek to
uncover diverse scenarios with similar context—e.g., object detection failures in self-driving under
a variety of scene influencing factors such as weather, lighting, or speed of vehicle. Evidently,
contextual failures lack clear cost functions, making them difficult to evaluate quantitatively. To
address this, we propose a sequential scenario exploration framework that leverages expert feedback
to guide the discovery of diverse, context-relevant failures. To reduce reliance on costly human
input (leading to high cost of expert), our method also provides the capability to incorporate LLMs
as proxy experts for evaluating failures.

Experiments
Expert

Evaluation

Surrogate Model

Active Learning

Update via Bayesian Inference

Contextual
Reasoning

Generate new test case

Increasing C
ost of Expert (C

E)In
cr

ea
si

ng
 C

os
t o

f S
ys

te
m

(C
S) Bayesian

Active
Learning

Figure 1: Overview of our framework: We propose a cost-
aware methodology for failure discovery of contextual fail-
ures using expert evaluation (Section 4.2), Bayesian infer-
ence to fit a surrogate model (Section 4.3), and active learn-
ing for generating diverse failure scenarios (Section 4.1).

Fig. 1 shows an overview of our pro-
posed approach, which consists of
three main parts, (a) an active learn-
ing strategy that prioritizes the gener-
ation of diverse failure scenarios for
expert evaluation, (b) expert evalua-
tion to attribute each observed fail-
ure to multiple failure modes, and (c)
surrogate models trained in parallel
to map scenario parameters to fail-
ure levels associated with each fail-
ure mode. Together, the framework
progressively uncovers diverse and
meaningful failure scenarios.

We demonstrate the key strengths of
our methodology through two stages
of experimental validation. First, we
apply it to a single-mode failure dis-
covery task with a known cost function (Section 5.1.1), to motivate the role of coverage in failure
discovery, introduced in Section 4.1. We then validate it on three contextual failure tasks in ma-
nipulation and self-driving domains, incorporating realistic system constraints and both human and
LLM-based evaluations (Sections 5.1.2–5.2.2). Our method emphasizes coverage in parameter and
metric spaces, discovering up to 6× more failures than random sampling. It also supports specifica-
tion of failure severity levels, uncovering failures across the entire severity range—unlike random
sampling, which fails to capture rare severe failures (0% in some settings). Finally, in Section 5.2.2,
we show the scalability of our active learning strategy on high-dimensional scenarios. We also pro-
vide extensive hyperparameter analysis for all our experiments, and ablation studies in the appendix.

In summary, the key contributions of our work include:

1. Cost-aware evaluation of contextual failures: We provide a data-efficient strategy for
discovering contextual failures that describe nuanced failures of well-engineered systems
that we commonly encounter, that cannot be analytically expressed using cost functions.

2. Expert-driven failure mode attribution: We leverage expert feedback to attribute each
scenario to pre-defined plausible failure modes associated to each type of contextual failure
observed. Our framework also supports online addition of failure modes.

3. Generating diverse failure cases: We provide a framework for generating diverse failure
scenarios, by defining coverage metrics in parameter and metric space.

2 Related works

We provide a brief discussion of a few leading techniques for failure discovery and analysis here
and refer the readers to Appendix A for a detailed literature review.

2

Traditional methods. These approaches frame failure discovery as a cost-guided search over
a known dynamic system, either using sampling-based methods (e.g., MCMC, Metropolis-
Hastings [22, 12, 10, 23, 24, 22, 25]) or optimization-based methods [13, 14, 15]. These methods
cannot be applied in black-box, high-cost settings, or context-relevant falsification. Our method
overcomes these limitations using data-efficient, black-box evaluations and expert feedback.

Learning-based methods. These methods use historical data to learn failure or dynamics mod-
els [19, 20], often through generative architectures [16, 19]. However, they require large datasets
and overlook the imbalance in failure mode frequency. Our approach is data-efficient, models epis-
temic uncertainty via Bayesian inference [9, 26], and learns separate surrogates per failure mode.

Learning from expert feedback: Prior work incorporates qualitative feedback to fine-tune reward
models (e.g., RLHF), typically assuming data-rich settings [27, 28]. We adapt the expert-in-the-loop
idea (Fig. 1) for data-efficient failure discovery, where RL techniques cannot be used due to high
cost of evaluation. Our work is complementary to [17, 18, 29, 30] that have proposed LLMs for
failure diagnosis for runtime monitoring. We assume access to an expert—human or LLM—with
the key focus on reproducing and exploring similar failure scenarios that are of interest to the user.

3 Problem Setup

We consider a dynamic system ẋ = f(x, π(o, z)) with state x ∈ S , with system observation o ∈ O
and scenario parameters z ∈ Z , which takes action a ∈ A based on a certainy policy π : O ×
Z → A. We leverage domain knowledge to design Z to represent scenario parameters that can
be modified to generate unique testing conditions. Consider the falsification of an object detection
module in a self-driving simulator, with a non-ego vehicle and pedestrian. Here, each scenario z
represents braking distances for ego and lead car, and brightness of the scene (Section 5.2.1). These
parameters are chosen from prior knowledge as they affect the accuracy of object detection.

Contextual failures with multiple modes. Contextual failures are evaluated by an expert based on a
sequence of observations oz = (o)Tt=1 ∈ Õ of the system within time horizon T , for a given scenario
parameterized by z. The expert can be either a human or LLM. We represent expert assessment as
a mapping g : Õ → R. Contextual failures are often attributed to multiple sources, where each
source corresponds to a specific failure mode that can be independently evaluated by the expert.
The cumulative expert evaluation for M failure modes is g(oz) = [g1(oz), . . . , gM (oz)], where
gm(oz) ∈ R is the expert evaluation for the mth failure mode.

Severity of failures. We define the severity of a specific failure mode as a measure of the degree of
damage caused by it. Qualitative feedback provided by the expert g is often sparse (e.g., binary attri-
bution by an LLM to classify if an object detection failure in a self-driving scene can be attributed to
low brightness), but a user may wish to refine this assessment with their own definition of severity.
Thus, we include a post-processing step h : R → [0, 1], that converts expert evaluation gm(oz) into
a severity score γm := h ◦ gm, such that for a given z, γm is monotonic in severity of failure. We
discuss this in detail in Section 4.2. Note that we distinguish between h and g purely for the sake of
clarity. Our method directly models and uses γm.

Discovering failures with varying levels of severity: We use a severity parameter δm to define
the minimum level of severity of failure we wish to observe. It defines a target set of scenario
parameters, and the goal of failure discovery is to sample from this target set. Specifically, fal-
sification of the mth failure mode is equivalent to sampling scenario parameters z from the set
Ωm = {z|γm(z) > δm, z ∈ Z}, for m = 1, . . . ,M , assuming M failure modes. Therefore, the
overall target set Ω can be defined as:

Ω = {z|γ(z) ≻ δ}, (1)
where γ(z) ≻ δ := γm(z) > δm,m = 1, . . . ,M .

In this work, we pay special attention to the cost of sampling scenario parameters
from (1).Specifically, we consider applications where either the dynamic system f is costly to evalu-
ate, due to resource, time constraints, or safety hazards, and/or, there is a substantial cost associated

3

with expert evaluation g, i.e, at least one of the functions f or g are costly to evaluate. The cost of
evaluation imposes an upper limit on the overall experimental trial budget N .

Furthermore, we aim to sample diverse failure candidates from (1). Diversity of a set of sampled can-
didates Z = {zj}Nj=1 in this context is defined using a coverage metric C : ZN × [0, 1]M×N → R,
such that higher value of C denotes better diversity of sampled scenario parameters. In Section 4.1
we provide a more specific definition of the coverage metric C, and an active learning strategy to
maximize coverage.

4 Methodology

The requirement of sample efficiency motivates the use of a sequential scenario design strategy [31].
Our approach is an iterative process, summarized in Algorithm 1.

Algorithm 1 Bayesian Active learning for contextual failure discovery

1: Input: Scenario space Z , prior (p(wm))Mm=1, initial dataset D0 (optional)
2: Initialize surrogate models q = (q∗m)Mm=1
3: for k = 0 to N − 1 do
4: Select scenario zk+1 = argmaxz∈Z α(z|Dk) for α in Eq (3) (Section 4.1),
5: Simulate scenario zk+1 and obtain severity adjusted expert evaluation γ(zk+1) (Section 4.2),
6: Update dataset: Dk+1 = Dk ∪ {(zk+1,γ(zk+1))}
7: Update surrogate models q = (q∗m)Mm=1, where q∗m : Z → [0, 1] models γm, for each failure

mode, using Dk+1 = (zj ,γ(zj))
k+1
j=1 (Section 4.3)

8: end for

We adopt a Bayesian framework and define M independent surrogate models (q∗m)Mm=1 required by
our active learning strategy, each parameterized by latent variables wm with prior p(wm) reflecting
expert beliefs. Given data D = (z,γ(z)), each surrogate is defined as q∗m = p(wm|D). We propose
an active learning strategy to guide data collection and adjust expert evaluations based on severity.

Modeling of prior: We can either use expert belief, or, a dataset of historical failures (D0) to model
a prior p(wm) for each failure mode. In our experiments, we use Gaussian Processes (GP) [32] as
surrogate models, and learn a prior model for the GP using 5 uniformly sampled scenarios. We also
explore the effect of size of dataset D0 in the training of prior in Experiment 4B, Appendix C.5.

4.1 Active learning for sampling from target set

The active learning step samples the point z∗ that optimizes the expected coverage improvement of
desired failure severity over scenarios observed thus far. Specifically, our acquisition strategy must
prioritize points that satisfy set membership with Ω described in (1), while covering a broad range
of severity levels. Using (q∗m)Mm=1, we can estimate the probability of a point z satisfying the set
membership for Ω by defining an indicator variable I(z) = 1(z ∈ Ω). Using q∗m, we can write
1(z ∈ Ω) =

∏M
m=1 1(q

∗
m(z) > δm), so that p(I(z) = 1|D) is given by:

p(I(z) = 1|D) =

M∏
m=1

E[1(q∗m(z) > δm)] (2)

To ensure diverse and sample-efficient failure discovery, it is essential to discourage revisiting
previously explored areas. We address this using the concept of coverage neighborhood adopted
from [33]. We define two related coverage metrics: parameter space coverage (Cp) and metric space
coverage (Cm). Cp encourages sampling diverse scenarios in Z , measured by Euclidean distance,
∥z − z′∥2. Similarly, Cm promotes diversity in failure severity, quantified by Euclidean distance
between observed failure responses in metric space, ∥γ(z)− γ(z′)∥2.

Coverage neighborhood: For an appropriate distance function dp : Z×Z → R+, and pre-specified
rp ∈ R+, coverage neighborhood of a scenario parameter z ∈ Z in parameter space is defined as

4

Np(z) = {z′ : z′ ∈ Z, dp(z, z
′) < rp}. Similarly, we use a separate distance function in the metric

space, dm : Rm+×Rm+ → Rl, and radius of coverage rm ∈ R+ to define a coverage neighborhood
in metric space as Nm(z) = {z′ : z′ ∈ Z, dm(γ(z),γ(z′)) < rm}. In this work, we use Euclidean
distances, for which, the expression Np(z) and Nm(z) is equivalent to a ball of radius rp and rm
in parameter and metric space respectively. This can be extended to define coverage neighborhoods
for a set of points z observed so far as: Np(z) = ∪z∈zNp(z) and Nm(z) = ∪z∈zNm(z). The
coverage metrics in parameter and metric space can be formally stated as Cp(D) = Vol(Np(z)∩Ω)
and Cm(D) = Vol(Nm(z) ∩ Ω). The relative importance of these two coverage metrics is task-
specific. Therefore, we propose a general utility function C, that incorporates both Cm and Cp as
C(D) = λCp(D)+(1−λ)Cm(D). Here, λ ∈ [0, 1] is used as a hyperparameter to specify trade-off
between diversity in parameter and metric space respectively. For the kth iteration of active learning,
the objective of data acquisition can be written as: zk+1 = argmaxz∈Z α(z|Dk), where

α(z|Dk) = Eγ(z)[C
(
Dk ∪ (z,γ(z))

)
− C(Dk)], (3)

and is referred to as Expected Coverage Improvement (ECI) [33]. In practice, estimation of cov-
erage in metric and parameter space is not analytically tractable, and is done using Monte Carlo
integration. See Appendix B.1 for implementation details of α(z|Dk).

4.2 Expert evaluation strategy

The selected scenario zk+1 = α(z|Dk) is used to collect observations ozk+1
and expert evaluations

γ(zk+1). Here we show an example of an evaluation strategy to construct a function γm. In the
absence of formal definitions, severity can be estimated by either its impact on system safety or the
duration spent in the failure mode. For non-terminal, state-based failures, an expert can provide
binary labels bt = [b1t , . . . , b

M
t] ∈ {0, 1}M at each timestep t, where bmt = 1 indicates a failure

for mode m. The cost is then computed as γm(zk) =
1
T

∑
t = 1T bmt . However, some contextual

failures cause early termination, making duration-based metrics insufficient. We generalize this
evaluation to such conditions as:

γm(z) =

{
1 if early stopping due to observed failure,
1
T

∑T
t=1 b

m
t otherwise.

(4)

Early stopping is defined as actual rollout TA < TF , where TF is the max horizon. We apply this
evaluation in Sections 5.1.2 and 5.2.1 using human and LLM feedback, respectively. Appendix C.5
discusses alternate definition of severity used in the AEB case study (Section 5.2.2).

4.3 Bayesian Inference for learning surrogate model

At the kth round, collected data Dk+1
m is used to define a likelihood model over latent parameters wm

as p(Dk+1
m |wm). The posterior is then given by Bayes’ rule: p(wm|Dk+1

m) ∝ p(Dk+1
m |wm)p(wm),

We approximate the posterior (p(wm|Dk+1
m) using a parametric family of models, specifically GPs

in our experiments. Assuming exchangability of data, the likelihood factorizes as p(Dk+1
m |wm) =∏k+1

i=1 p(Di
m|wm). Each round constructs M independent likelihood models p(Dk+1

m |wm). With
limited evaluations, training M models is computationally efficient and parallelizable.

5 Simulations & Experiments

Our experimental analysis considers the following performance criteria: (C1) Failure discovery
across varying severity ranges , (C2) Performance of our method across various hyperparameter set-
tings and (C3) Discovering failure modes with varying frequencies of occurrence. We first demon-
strate our methodology on a low-fidelity simulation of a manipulation task (Push-T) involving a
single failure mode and a known cost function (Section 5.1.1). We then validate it across three case
studies: (1) Push-T on a UR3E robot with human evaluation (Section 5.1.2), (2) perception failures
in a self-driving task in CARLA (Section 5.2.1), and (3) a Simulink-based Autonomous Emergency
Braking system (Section 5.2.2), both with LLM evaluation. We conduct ablation studies on: (1)

5

hyperparameter sensitivity ((rp, rm, δm)), (2) surrogate model prediction accuracy (Expt. 1B/1C,
Appendix C.2), (3) adaptive inclusion of new failure modes (Expt. 2B, Appendix C.3), (4) cus-
tomizable evaluation strategies (Expt. 3B, Appendix C.4), (5) role of prior knowledge (Expt. 4B,
Appendix C.5), and (6) performance vs. evaluation budget (Appendix C.6).

Baselines and metrics: We compare our active learning strategy against a Random walk baseline
across all experiments since it is popularly used in autonomous system testing [8], and additionally
against Upper Confidence Bound (UCB) [34, 35] for the Push-T (Sim) task, where a single failure
mode allows for standard UCB formulation: αUCB(z) = E(q∗m(z))+βm

√
Var(q∗m(z)). We evaluate

UCB for β1 = 0.1, 0.5, 1.0 (denoted UCB-1/2/3). All scenario parameters are normalized to [0, 1]
for consistency. We assess performance using three metrics: Positive Samples (P.S.), measures con-
straint satisfaction [33]; Coverage-I (Cov-I) and Coverage-II (Cov-II), for diversity in parameter
and metric space, estimated using Cp(D) and Cm(D). See Appendix C.1 for details.

5.1 Failure discovery for Diffusion policy on a Manipulation task (Push-T)

Problem Setup: We consider a T-block pushing task using a circular end-effector controlled
by a Diffusion policy, trained via a pymunk simulator [36, 37]. The system state is xt =
[xt

E , y
t
E , x

t
T , y

t
T , θ

t
T], where (xE , yE) and (xT , yT , θT) denote the end-effector and T-block pose.

Scenarios are parameterized by the T-block’s initial position z = (x0
T , y

0
T), with θ0T = 45◦.

5.1.1 Failure discovery in simulation (Push-T simulation)

We perform failure discovery in simulation for a known (but non differentiable) cost function
γ1(z) = 1−maxt=[1,...,K] rt(st), where rt ∈ [0, 1] refers to policy reward, for T = 700.

Experiment 1A (Failure coverage analysis): We perform failure coverage analysis for our method
with λ = 0, 0.5, 1, rp, rm = 0.01, 0.05, 0.1 (ECI-1/2/3) and δ1 = 0.9, 0.3 and compare against UCB
and Random walk for N = 50 evaluations. Key results are reported in Table 1 as mean values for 10
seeds, (see Table 4 for more details). Fig. 2 shows scenarios sampled by different methods against
the true cost contour.

Table 1: Performance metrics by method under different values of δ1 for M = 1 (Push-T simula-
tion). λ reported in brackets for ECI

Method δ1 = 0.9 (high severity failure discovery) δ1 = 0.3 (low severity failure discovery)

Positive Samples Cov-I Cov-II Positive Samples Cov-I Cov-II
ECI-3 (1) 0.38 0.15 0.80 0.64 0.21 0.83
ECI-3 (0) 0.55 0.14 0.70 0.54 0.17 0.76
UCB-1 0.86 0.08 0.41 0.91 0.08 0.41
Random 0.28 0.09 0.77 0.44 0.15 0.77

Figure 2: 2D scatter plots of z parameters from N = 50 evaluations using UCB-1, ECI-3 (1), ECI-3
(0), and Random sampling (Left to Right) for Push-T failures (Section 5.1.1). UCB yields poor
coverage in parameter space. ECI variants prioritize coverage, providing efficient scenario diversity
by trading off constraint satisfaction. Colorbar shows cost value, higher being more severe failure.

6

5.1.2 Failure discovery in experimental setup (Push-T hardware)
Table 2: Performance metrics for Push-T hardware experiments.

Method P.S M1 M2 C-I C-II Avg 1 Avg 2
ECI (1) 0.30 0.45 0.6 0.075 0.073 0.43 0.55
ECI (0.5) 0.15 0.28 0.25 0.050 0.059 0.28 0.52
ECI (0) 0.10 0.25 0.65 0.060 0.057 0.25 0.52
Random 0.025 0.18 0.3 0.015 0.015 0.18 0.20

We deploy the simulation-
trained Diffusion Pol-
icy [37] on a UR3E
collaborative robot end-
effector. Due to the
sim-to-real gap, the policy
encounters previously
unseen failures in hardware. We consider two failure modes (M = 2): Mode 1 arises from joint
limits or self-collisions, preventing the robot from reaching goal states. Mode 2 results from sparse
training data and sensor noise, leading to inefficient trajectories and task failure. Fig. 3 shows
trajectories corresponding to failure modes from scenarios generated by our method.

Figure 3: Left to Right: Trajectories corresponding to failure scenarios due to Mode 1, Mode 2 and
Mode 1 and 2 in Push-T hardware task. Colorbar shows time horizon. More details in Appendix C.3

Experiment 2A (Hardware experiment with human expert): We conduct N = 20 evaluations across
two seeds for Random Walk and ECI (λ = 0, 0.5, 1.0). Table 2 reports mode-wise failure discovery
rates (M1, M2) and average costs (Avg 1, Avg 2) amongst other metrics, using δ1 = 0.2, δ2 = 0.3,
radii rp = rm = 0.05. An additional failure mode—T-block motion off the table due to workspace
limits was observed (Mode 3). Experiment 2B (Appendix C.3) shows how our strategy adaptively
incorporates such newly observed modes online.

5.2 Failure discovery in Self-driving

We consider contextual failure discovery for perception failures and AEB system with LLM-based
evaluation for each. Details of scenario design and LLM-based evaluation are provided in Ap-
pendix C.4 and Appendix C.7 respectively.

5.2.1 Contextual failures of perception module in Self-driving (YOLO+CARLA)

This case study targets contextual failures in YOLO-based object detection [38] in the CARLA
simulator [39]. We consider two failure modes (M = 2): Mode 1—mispredictions due to distant
non-ego agents, and Mode 2- errors under poor lighting. Fig. 4 shows examples of failures from
scenarios generated using our method. We use rp, rm = 0.05 for N = 30 with 4 seeds.

Experiment 3A (Coverage across severity levels): Table 3 summarizes the performance across
all metrics for ECI and Random walk sampling. We also conduct experiment Experiment 3B
(Appendix C.4) with LLM evaluation augmented with user-defined conditions for Mode 2 failures.

5.2.2 Contextual failures in Autonomous Emergency Braking systems (Simulink AEB)

This case study evaluates braking time of an AEB system with sensor fusion on a nonlinear vehicle
model in Simulink [40]. The system prioritizes braking for non-ego agents but occasionally exhibits
early stops due to sudden detections. We evaluate two failure modes (M = 2): Mode 1—early
braking due to partial occlusion of the cyclist by a parked vehicle; Mode 2—early activation from
delayed detection of a crossing pedestrian, measured by large ego-pedestrian distance at braking.

7

Car: 0.94 Car: 0.94 Car: 0.99
Motorcycle:0.75

Figure 4: Left to Right: misdetection due to Mode 1 (distance), Mode 2 (poor light) and Mode 1
and 2 (distance and poor light), respectively. Bounding boxes for detected objects (misdetections)
shown in yellow (red) with detection confidence numbers. Each scene has two cars and a pedestrian.

Table 3: Performance metrics by method under different values of δ (YOLO-CARLA).

Method δ1, δ2 = 0.1 δ1, δ2 = 0.5 δ1, δ2 = 0.8

P.S. C-I C-II P.S. C-I C-II P.S. C-I C-II
ECI (1) 0.59 0.09 0.36 0.35 0.061 0.37 0.43 0.064 0.28
ECI (0.5) 0.625 0.089 0.375 0.3 0.091 0.21 0.32 0.085 0.29
ECI (0) 0.58 0.085 0.36 0.3 0.046 0.22 0.32 0.058 0.32
Random 0.53 0.1 0.24 0.0 0.0 0.0 0.0 0.0 0.0

Experiment 4A (Demonstration on high dimensional scenario): We demonstrate our method for
N = 40 evaluations, for δ1 = 0.5, δ2 = 0.1 and rp, rm = 0.2 for 2 seeds. All results for this experi-
ment are provided in Appendix C.5, with additional implementation details. Table 6 (Appendix C.5)
reports the results of our experimental analysis.

5.3 Results

C1: Across severity levels, all ECI variants outperform or match Random sampling (Tables 1,3).
Random’s performance drops at higher severities, failing to find critical failures. UCB excels in
constraint satisfaction (Table 1) but suffers from poor coverage, as it stops exploring early (Fig. 2).

C2: All ECI variants outperform the baseline, but λ = 0 performs consistently well across met-
rics—especially Coverage-II—even without directly optimizing it. This suggests interplay between
coverage metrics depends on the underlying cost. See Appendix C.8 for details.

C3: Tables 2, 6 show that our method discovers both failure for both applications modes reliably,
while Random walk is sensitive to frequency of occurrence of the modes, leading to low Positive
Samples. Our approach uses coverage centric exploration to be agnostic to frequency of occurrence.

6 Conclusion

In this paper, we proposed a framework for discovering contextual failures, under the constraints that
the cost of evaluation is high, and the failures are not well modeled using analytical functions. In
Section 4, we proposed a Bayesian active learning strategy for sequential discovery of failure scenar-
ios, that incorporates expert evaluation to learn multiple surrogate models for failures. In Section 5,
we showed that our method can discover diverse failure modes across a range of contextual failure
tasks. Our method can be used towards performance improvement of autonomous systems, and
interpreting user preferences in autonomous decision making (Appendix D). Our current method-
ology does not explicitly accommodate stochasticity from experimentation (aleatoric uncertainties),
and the active learning strategy focuses mainly on uncertainty from lack of evaluations (epistemic
uncertainties). In our future work, we are interested in expanding the contextual failure discovery to
a stochastic setting.

8

7 Limitations

7.1 Explicitly accounting for stochasticity in evaluation

As mentioned, our current setup does not explicitly account for randomness in evaluation, or noise
in system observables, based on which the expert evaluation is provided. This can be achieved by
modifying the likelihood function in our Bayesian inference update procedure. Additionally, our
active learning strategy makes an assumption that a scenario that has been evaluated must not be
revisited. In the presence of uncertainty in evaluation, this constraint must be lifted, and repeat
evaluations must be permitted to also account for confidence of evaluation. Hence, this would lead
to a different active learning strategy, one that is beyond the scope of the present work. Across all
the experiments, any modules with known stochasticity were seeded for reproducible behavior to
demonstrate the proposed technique, however, in a more generalized setting, stochasticity associ-
ated with different modules must be explicitly incorporated, as this is relevant to failure analysis of
autonomous systems.

7.2 Accuracy of expert evaluation

Our method assumes an expert, and does not distinguish between a human and LLM to the extent
of accuracy of evaluation provided by each. There is no way to provide ground truth assessment of
evaluations provided by each, and both have challenges with accurate evaluations. For humans, the
decision may vary with time, and may lead to self-inconsistent evaluations for highly subjective fail-
ures. In such a case, multiple iterations of evaluations must be performed. With LLMs, inaccuracy in
logical analysis and hallucination can occur, which cannot be mitigated directly with our approach.
In future work, we aim to explore ways of grounding the LLM evaluation in a user preference in a
structured way, leveraging recent works in constrained auto-regressive generation [41].

7.3 Requirement of increasing sample size with dimension and scenario complexity

To efficiently discover relevant failure modes, the number of samples required for evaluation may
increase with the increase in the dimensionality of the search space. If a system permits low cost
evaluation for failure, traditional techniques discussed in Section 2 are more suitable. Our approach
works best when it is not possible to perform low cost evaluations. For systems with such constraints
that ideally require more samples for extensive evaluation, but the requirement cannot be practically
met, the prior and choice of surrogate model plays a critical role in capturing user’s belief of failure
regions in scenario parameter space. This imposes a dependency on careful prior design for complex
system evaluation with sampling constraints. This issue can be avoided to a great extent with careful
design of scenario to incorporate key variables of interest, and design efficient scenario parameters.

Presently, user feedback in scenario construction itself (i.e, the size and choice of scenario settings)
is not explicitly accounted for, and assumed to be known a-priori for the methodology. For example,
in discovering failures in object detection due to bad light and distance, wind speed is not heavily
influential, and was therefore excluded from the set of weather parameters considered in the scenario
definition. In future, automating the scenario construction can be a possible interesting direction of
work. Regardless, it is possible that the scenario becomes complex and grows large in size. To this
end, our recommendation is to use surrogate models that are compatible with high sample sizes, and
dimensionality, such as Bayesian Neural Networks [42].

9

Acknowledgments

This work was partly supported by the Office of Naval Research (ONR) grant N000142512080, Air
Force Office of Scientific Research (AFOSR) grant FA9550-23-1-0099, and the Defense Science
and Technology Agency in Singapore. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and do not necessarily reflect the views of the
sponsors.

References
[1] T. Dreossi, T. Dang, A. Donzé, J. Kapinski, X. Jin, and J. V. Deshmukh. Efficient guiding

strategies for testing of temporal properties of hybrid systems. In NASA Formal Methods: 7th
International Symposium, NFM 2015, Pasadena, CA, USA, April 27-29, 2015, Proceedings 7,
pages 127–142. Springer, 2015.

[2] J. M. Esposito, J. Kim, and V. Kumar. Adaptive RRTs for validating hybrid robotic control
systems. In Algorithmic foundations of robotics vi, pages 107–121. Springer, 2005.

[3] A. Corso, R. Lee, and M. J. Kochenderfer. Scalable autonomous vehicle safety validation
through dynamic programming and scene decomposition. In 2020 IEEE 23rd International
Conference on Intelligent Transportation Systems (ITSC), pages 1–6. IEEE, 2020.

[4] A. Corso, P. Du, K. Driggs-Campbell, and M. J. Kochenderfer. Adaptive stress testing with re-
ward augmentation for autonomous vehicle validatio. In 2019 IEEE Intelligent Transportation
Systems Conference (ITSC), pages 163–168. IEEE, 2019.

[5] A. Sinha, M. O’Kelly, R. Tedrake, and J. C. Duchi. Neural bridge sampling for evaluating
safety-critical autonomous systems. Advances in Neural Information Processing Systems, 33:
6402–6416, 2020.

[6] A. Corso, R. Moss, M. Koren, R. Lee, and M. Kochenderfer. A survey of algorithms for black-
box safety validation of cyber-physical systems. Journal of Artificial Intelligence Research,
72:377–428, 2021.

[7] P. Koopman and M. Wagner. Autonomous vehicle safety: An interdisciplinary challenge. IEEE
Intelligent Transportation Systems Magazine, 9(1):90–96, 2017.

[8] M. Li, B. Meng, H. Yu, K. Siu, M. Durling, D. Russell, C. McMillan, M. Smith, M. Stephens,
and S. Thomson. Requirements-based automated test generation for safety critical software. In
2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), pages 1–10. IEEE, 2019.

[9] C. Dawson and C. Fan. A Bayesian approach to breaking things: efficiently predicting and
repairing failure modes via sampling. In 7th Annual Conference on Robot Learning, 2023.
URL https://openreview.net/forum?id=fNLBmtyBiC.

[10] A. Parashar, J. Yin, C. Dawson, P. Tsiotras, and C. Fan. Learning-based bayesian inference for
testing of autonomous systems. IEEE Robotics and Automation Letters, 2024.

[11] H. Delecki, A. Corso, and M. Kochenderfer. Model-based validation as probabilistic inference.
In Learning for Dynamics and Control Conference, pages 825–837. PMLR, 2023.

[12] M. O’ Kelly, A. Sinha, H. Namkoong, R. Tedrake, and J. C. Duchi. Scalable End-to-End
Autonomous Vehicle Testing via Rare-event Simulation. In Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc., 2018.

[13] U. Ghai, D. Snyder, A. Majumdar, and E. Hazan. Generating Adversarial Disturbances for
Controller Verification. In Proceedings of the 3rd Conference on Learning for Dynamics and
Control, pages 1192–1204. PMLR, May 2021.

10

https://openreview.net/forum?id=fNLBmtyBiC

[14] N. Hanselmann, K. Renz, K. Chitta, A. Bhattacharyya, and A. Geiger. KING: Generating
Safety-Critical Driving Scenarios for Robust Imitation via Kinematics Gradients. In Computer
Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Pro-
ceedings, Part XXXVIII, pages 335–352, Berlin, Heidelberg, Oct. 2022. Springer-Verlag. ISBN
978-3-031-19838-0. doi:10.1007/978-3-031-19839-7 20.

[15] E. Wong and Z. Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In International conference on machine learning, pages 5286–5295.
PMLR, 2018.

[16] A. Parashar, K. Garg, J. Zhang, and C. Fan. Failure prediction from few expert demonstrations.
In NeurIPS 2024 Workshop on Bayesian Decision-making and Uncertainty.

[17] A. Elhafsi, R. Sinha, C. Agia, E. Schmerling, I. A. Nesnas, and M. Pavone. Semantic anomaly
detection with large language models. Autonomous Robots, 47(8):1035–1055, 2023.

[18] R. Sinha, A. Elhafsi, C. Agia, M. Foutter, E. Schmerling, and M. Pavone. Real-time anomaly
detection and reactive planning with large language models. arXiv preprint arXiv:2407.08735,
2024.

[19] C. Xu, D. Zhao, A. Sangiovanni-Vincentelli, and B. Li. Diffscene: Diffusion-based safety-
critical scenario generation for autonomous vehicles. In The Second Workshop on New Fron-
tiers in Adversarial Machine Learning, ICML, 2023.

[20] P. Huang, X. Zhang, Z. Cao, S. Liu, M. Xu, W. Ding, J. Francis, B. Chen, and D. Zhao. What
went wrong? closing the sim-to-real gap via differentiable causal discovery. In Conference on
Robot Learning, pages 734–760. PMLR, 2023.

[21] C. Dawson, V. Tran, M. Z. Li, and C. Fan. Rare event modeling with self-regularized nor-
malizing flows: what can we learn from a single failure? arXiv preprint arXiv:2502.21110,
2025.

[22] H. Delecki, M. Itkina, B. Lange, R. Senanayake, and M. J. Kochenderfer. How do we fail?
stress testing perception in autonomous vehicles. In 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 5139–5146. IEEE, 2022.

[23] C. Dawson, A. Parashar, and C. Fan. Beyond adversarial examples: sampling and repairing
diverse failures with radium.

[24] L. A. Kruse, A. Tzikas, H. Delecki, M. Arief, and M. J. Kochenderfer. Enhanced importance
sampling through latent space exploration in normalizing flows. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39, pages 17983–17989, 2025.

[25] R. Lipkis and A. Agogino. Discovery and analysis of rare high-impact failure modes using
adversarial rl-informed sampling. In International Conference on Autonomous Agents and
Multiagent Systems, pages 123–140. Springer, 2023.

[26] Y. Zhou, S. Booth, N. Figueroa, and J. Shah. Rocus: Robot controller understanding via
sampling. In Conference on Robot Learning, pages 850–860. PMLR, 2022.

[27] Y. Cao, B. Ivanovic, C. Xiao, and M. Pavone. Reinforcement learning with human feedback
for realistic traffic simulation. In 2024 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 14428–14434. IEEE, 2024.

[28] J. Hejna, R. Rafailov, H. Sikchi, C. Finn, S. Niekum, W. B. Knox, and D. Sadigh. Contrastive
preference learning: Learning from human feedback without reinforcement learning. In The
Twelfth International Conference on Learning Representations, 2024.

11

http://dx.doi.org/10.1007/978-3-031-19839-7_20

[29] C. Agia, R. Sinha, J. Yang, Z.-a. Cao, R. Antonova, M. Pavone, and J. Bohg. Unpacking failure
modes of generative policies: Runtime monitoring of consistency and progress. arXiv preprint
arXiv:2410.04640, 2024.

[30] K. Chakraborty, Z. Feng, S. Veer, A. Sharma, B. Ivanovic, M. Pavone, and S. Bansal. System-
level safety monitoring and recovery for perception failures in autonomous vehicles. arXiv
preprint arXiv:2409.17630, 2024.

[31] T. Tran, T.-T. Do, I. Reid, and G. Carneiro. Bayesian generative active deep learning. In
International conference on machine learning, pages 6295–6304. PMLR, 2019.

[32] C. K. Williams and C. E. Rasmussen. Gaussian processes for machine learning, volume 2.
MIT press Cambridge, MA, 2006.

[33] G. Malkomes, B. Cheng, E. H. Lee, and M. Mccourt. Beyond the pareto efficient frontier:
Constraint active search for multiobjective experimental design. In International Conference
on Machine Learning, pages 7423–7434. PMLR, 2021.

[34] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger. Gaussian process optimization in the
bandit setting: No regret and experimental design. arXiv preprint arXiv:0912.3995, 2009.

[35] P. Auer. Using upper confidence bounds for online learning. In Proceedings 41st annual
symposium on foundations of computer science, pages 270–279. IEEE, 2000.

[36] P. Florence, C. Lynch, A. Zeng, O. A. Ramirez, A. Wahid, L. Downs, A. Wong, J. Lee, I. Mor-
datch, and J. Tompson. Implicit behavioral cloning. In Conference on Robot Learning, pages
158–168. PMLR, 2022.

[37] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:
Visuomotor policy learning via action diffusion. In Proceedings of Robotics: Science and
Systems (RSS), 2023.

[38] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma. A review of yolo algorithm developments.
Procedia computer science, 199:1066–1073, 2022.

[39] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. Carla: An open urban driving
simulator. In Conference on robot learning, pages 1–16. PMLR, 2017.

[40] W. Hulshof, I. Knight, A. Edwards, M. Avery, and C. Grover. Autonomous emergency braking
test results. In Proceedings of the 23rd International Technical Conference on the Enhanced
Safety of Vehicles (ESV), pages 1–13. National Highway Traffic Safety Administration Wash-
ington, DC, USA, 2013.

[41] A. K. Lew, T. Zhi-Xuan, G. Grand, and V. K. Mansinghka. Sequential monte carlo steering of
large language models using probabilistic programs. arXiv preprint arXiv:2306.03081, 2023.

[42] L. V. Jospin, H. Laga, F. Boussaid, W. Buntine, and M. Bennamoun. Hands-on bayesian neural
networks—a tutorial for deep learning users. IEEE Computational Intelligence Magazine, 17
(2):29–48, 2022.

[43] C. P. Robert and G. Casella. The Metropolis—Hastings Algorithm, pages 267–320. Springer
New York, New York, NY, 2004. ISBN 978-1-4757-4145-2.

[44] D. Tran, R. Ranganath, and D. M. Blei. The variational gaussian process. arXiv preprint
arXiv:1511.06499, 2015.

[45] S. Chitta, I. Sucan, and S. Cousins. Moveit![ros topics]. IEEE Robotics & Automation Maga-
zine, 19(1):18–19, 2012.

12

[46] D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-Vincentelli, and S. A. Seshia.
Scenic: a language for scenario specification and scene generation. In Proceedings of the
40th ACM SIGPLAN conference on programming language design and implementation, pages
63–78, 2019.

[47] J. Wang, Z. Yang, X. Hu, L. Li, K. Lin, Z. Gan, Z. Liu, C. Liu, and L. Wang. Git: A gener-
ative image-to-text transformer for vision and language. Transactions on Machine Learning
Research, 2022.

13

Contents

1 Introduction 1

2 Related works 2

3 Problem Setup 3

4 Methodology 4

4.1 Active learning for sampling from target set . 4

4.2 Expert evaluation strategy . 5

4.3 Bayesian Inference for learning surrogate model 5

5 Simulations & Experiments 5

5.1 Failure discovery for Diffusion policy on a Manipulation task (Push-T) 6

5.1.1 Failure discovery in simulation (Push-T simulation) 6

5.1.2 Failure discovery in experimental setup (Push-T hardware) 7

5.2 Failure discovery in Self-driving . 7

5.2.1 Contextual failures of perception module in Self-driving (YOLO+CARLA) 7

5.2.2 Contextual failures in Autonomous Emergency Braking systems (Simulink
AEB) . 7

5.3 Results . 8

6 Conclusion 8

7 Limitations 9

7.1 Explicitly accounting for stochasticity in evaluation 9

7.2 Accuracy of expert evaluation . 9

7.3 Requirement of increasing sample size with dimension and scenario complexity . . 9

A Literature Review 15

A.1 Quantifying diversity of failures . 16

A.2 Model choice . 16

B Coverage-based active learning strategy 16

B.1 Implementation of ECI . 17

C Experimental details 17

C.1 Baselines and metrics . 17

C.2 Push-T Simulation . 18

C.3 Push-T Hardware . 19

C.4 CARLA . 21

14

C.5 AEB . 23

C.6 Experimental budget vs performance metrics . 25

C.7 LLM-based evaluation . 25

C.7.1 LLM-based evaluation for CARLA . 25

C.7.2 LLM based evaluation for AEB . 26

C.8 Discussion on ECI variants . 27

D Using failure modes 28

A Literature Review

Model based methods: These construct failure discovery as a cost-guided search for a known
dynamic system, and can be further sub-divided into two categories, based on the method used for
executing the search, namely, search using sampling-based methods [22, 12, 5, 9] and optimization
techniques [15, 14]. The sampling-based techniques construct the problem of failure discovery and
repair as a probabilistic search, which can then be solved using sampling techniques like MCMC,
Metropolis Hastings [43], etc. The optimization methods on the other hand, model the problem
of failure discovery as an optimization problem to be solved using gradient based tools [14]. As
discussed previously, these methods make strict assumptions regarding analytical cost models of
failures, knowledge of underlying dynamic system, and samples available for evaluation, and cannot
be used towards contextual failure discovery in high cost settings. Our method relaxes each of these
assumptions and works well for black-box systems, incorporating expert feedback from observed
rollouts, in a data-efficient manner.

Learning based methods: These methods relaxes some of the requirements pertaining to access
to a model, by taking a data-driven approach and leveraging learning based models for failure dis-
covery [19, 20, 18], using the data to either learn a model for dynamic system, or failure directly.
Our method falls within the scope of learning based methods by using observed data to construct a
surrogate model for failure and is generative by design. A key challenge with existing techniques
is the data intensive requirements for training generative architectures such as Diffusion models,
which may not always be available for failures [7]. Additionally, different failure modes have differ-
ent frequency of occurrence, leading to imbalance in dataset, which is not inherently accounted for.
These methods also require a well-defined cost function to distinguish failures from nominal events.
Our method is well-suited for data efficient applications due to the sequential design strategy. Addi-
tionally, using Bayesian inference for learning surrogate models allows to explicitly accommodate
epistemic uncertainty associated with lack of sufficient evaluations. Learning separate surrogate
models for each failure mode helps to mitigate the imbalance concern, and we prioritize even ex-
ploration of all failure modes, agnostic to their frequency of occurence, using our coverage centric
active learning strategy.

Learning from expert feedback: Several works in literature have considered incorporating qualita-
tive feedback in the process of system evaluation and design. Some of these works leverage human
feedback for fine-tuning reward models in RLHF, and largely assume a data-extensive setting for
system experimentation [27, 28]. Our work adopts some of these ideas of incorporating expert-in-
the-loop for evaluation, and focuses on a data efficient setting, where sample extensive techniques
such as RLHF may not be suitable. Other works leverage LLMs for qualitative failure diagnosis,
and are optimized for runtime monitoring [17, 18, 29, 30]. Our work closely aligns with some of
these methods in adopting expert evaluation, however, the key focus is on reproducing and exploring
similar failure scenarios that are of interest to the user, by actively incorporating user feedback in
the exploration of search space. Additionally, our method provides granularity of information by
seeking multi-output feedback from the expert.

15

A.1 Quantifying diversity of failures

Some works have considered the concept of quality of failure discovery from the lens of diversity
of samples collected. Collecting diverse set of failure samples is helpful from two perspectives–
in providing the experts dissimilar scenarios for failures with similar root cause, and providing
diverse training dataset for training surrogate models. In [23, 11], the methodology design was
attributed to providing diverse failure scenarios by encouraging exploration via MCMC sampling,
however, a formal method for quantifying the diversity of failures was not used. In [10], a coverage
metric for estimation of failure diversity was utilized for evaluation, but the methodology did not
explicitly utilize the proposed metric. Coverage of failures in sample heavy settings has previously
been explored in [2], however, the sample extensive nature of the search is utilized in meeting the
proposed coverage criteria.

In this work, we introduce a two fold coverage criteria, with coverage in parameter and metric space,
that applies well for sample efficient settings. In most experimental evaluations, it is observed that
optimizing parameter space coverage works better in practice than focusing only on metric space
coverage. We analyze this with possible explanations in detail in Section C.8.

A.2 Model choice

Conventional surrogate model choices such as Neural networks allow for great modeling flexibility,
but are prone to overfitting in the lack of sufficient training data. Instead, architectures that leverage
Bayesian principles for model fitting inherently account for such epistemic uncertainties, and miti-
gate the issue of overfitting. In all our experiments, we used Gaussian Process models GP [34, 32]
initialized with zero mean and RBF kernel as surrogate models, and initially trained using 5 ran-
domly sampled data-points, and the likelihood is governed by Gaussian Process regression (GPR),
which has been popularly used in limited evaluations contexts in literature. Below we discuss alter-
natives and recommendations that can be used with the Bayesian inference principles used in this
work with the proposed active learning strategy.

1. For high dimensional exploration, if the system permits large number of evaluations, larger
experimental budget should be used. In this case, the GPs experience a computational bottleneck
of O(N3) , with N being the experimental budget. Here, VGP [44] can be used as a workaround
for learning surrogate models from higher number of evaluations, due to the presence of inducing
points relaxing the computational burden.

2. An alternative to GPs is Bayesian Neural Networks (BNNs) [42], which allow the flexibility of
Neural network architectures in modeling, and meet probabilistic requirements of expectation and
covariance computation required to implement the active learning strategy discussed in Section B.
However, BNNs are not necessarily as data efficient as GPs and also work well with larger datasets.

3. Kernel modification- An alternate workaround to using GPs with RBF kernels, which can lead
to limited expressivity in certain settings, is the use of deep Kernels, which involve using complex
kernels to work with high dimensional inputs such as images.

4. For high dimensional scenarios that have redundancy in their definition such as rotational symme-
try, etc., Variational Auto Encoders (VAEs) and Principal Component Analysis (PCA) can be used
for dimensionality reduction.

B Coverage-based active learning strategy

The implementation for the active learning strategy for parameter coverage was adopted from [33]
and metric coverage was added separately in our implementation, details of which are provided
below.

16

B.1 Implementation of ECI

As noted in Eq. 3, the active learning strategy performs optimization of function α given by:

α(z|Dk) = Eγ(z)[C(Dk ∪ (z,γ(z)))− C(Dk)] (5)

With zk = (zj)
k
j=1 and z′ = [z, zk], this can be expanded as:

α(z|Dk) = λEz[Vol
(
{Np(z

′)∩Ω} \Np(zk)
)
] + (1− λ)Ez[Vol

(
{Nm(z′)∩Ω} \Nm(zk)

)
]. (6)

The optimization of α is carried out using a Botorch acquisition function class. For the exact imple-
mentation, we need probability of acceptance in parameter and metric space for a proposed candidate
parameter, that depends on Cp, and Cm. Our active learning strategy initializes by choosing Nsample
proposal candidates zs. Assuming k − 1 evaluations have been performed, zk−1 denote the set of
candidates that have already been selected.

The selected candidates z ∈ zs for which condition of expected constraint satisfaction is not met,
i.e., E[q∗m(z)] ≤ δm for at least one m ∈ [1, . . . ,M], are rejected using a smooth sigmoid masking
to assign a very low probability of acceptance psatisfy(z) to these samples. The remaining samples
are assigned a uniform, high probability of acceptance.

Coverage in parameter space: The covariance k, of the learnt surrogate model for two points z, z′

given by k(z, z′) is used as a measure of the Euclidean distance between the two points. To estimate
expected value of neighbhourhood Np in parameter space for a collection of points zproposed =
[zk−1, zs] for zs ∈ zs, we assign probability p1 to samples for which k(zk−1, zs) > rp, and a low
probability to the remaining samples, again using smooth sigmoid masking. This is used to define
a probability of acceptance in parameter space over all proposed candidates using the cumulative
p1psatisfy.

Coverage in metric space: Similarly, the expected value of q∗m is used to estimate the dis-
tance in metric space. Specifically, for each pair of points (z, z′) in zproposed, we estimate
∥E[q(z)] − E[q(z′)]∥22, and this is used to assign a probability p2 to candidates for which
∥E[q(z)] − E[q(z′)]∥22 > rm, and estimate probability of acceptance in metric space over all pro-
posed candidates as p2 · psatisfy. Overall probability of acceptance is then estimated as pacceptance =
λp1 · psatisfy + (1− λ)p2 · psatisfy. This is used to estimate the pdf pacceptance(zs), finally used towards
the optimization of α.

C Experimental details

C.1 Baselines and metrics

We compare the proposed active learning strategy against Random walk baseline for all experiments.
We also compare against Upper Confidence Bound (UCB) [35] for Push-T (sim) task, as UCB is
used extensively in a single objective optimization setting to formalize the exploration-exploitation
trade-off in a parameter space using the following equation:

αUCB(z) = E(q∗m(z)) + βm

√
Var(q∗m(z)). (7)

Here, Var refers to variance. Since (7) is only valid for a single objective, we compare (7) in Push-T
(Sim) failure discovery with only one failure mode (M = 1), and our proposed strategy for three
values of β1 = 0.1, 0.5, 1.0 (reported as UCB-1, UCB-2 and UCB-3 respectively in the experimental
analysis). For the sake of consistency, all scenarios are designed such that the scenario parameter is
normalized between 0 and 1 before inputting to the surrogate model.

We evaluate our active learning strategy with various hyperparameter settings on three metrics–
Positive samples (short P.S.), Coverage-I (short Cov-I), and Coverage-II (short Cov-II). Positive
samples has been adopted from [33] and corresponds to the number of samples proposed by each
strategy within the set Ω, and measure the degree of constraint satisfaction across all failure modes.
Coverage-I and Coverage-II measure the actual coverage of parameter space and metric space

17

Figure 5: Push-T-Simulation task: The T-region in green corresponds to the target area, and grey
denotes location of T-block at a given time, and circle shows the location of end-effector. The white
region at the bottom denotes extra space that is present in simulation platform but not accounted for
in hardware setup, which leads to Mode 3 failures discussed later in Section C.3

by the generated samples, and correspond to the actual coverage metrics in parameter and metric
space respectively, estimated using Cp(D) and Cm(D). We show experiments across a range of
severity values δm (C1) and also report mode-wise satisfaction rate (C3). To explore the role of each
coverage metric of failure diversity, we report results for three values of λ for (3), λ = 0, 0.5, 1.0,
where λ = 0, 1 correspond to the extreme cases of C = Cp and C = Cm respectively (C2).

C.2 Push-T Simulation

Problem setup: The pymunk simulator simulates the contact dynamics between T-block and end-
effector, which is also used to collect human demonstrations to train the Diffusion policy for de-
ployment. The cost function γ1(z) measures the extent of overlap of the T-block with the target
area, which is 0% if γ1(z) = 1.0 and 100% if γ1(z) = 0.0 for a given z. Fig 5 shows the setup of
pymunk simulator considered. The actual cost landscape of γ1 is highly discontinuous, as visible in
Fig. 2.

Experiment 1A Table 4 provides detailed evaluation results with additional results unreported in
Table 1 due to space restrictions. Table 1 reports the results for best from each method.

Table 4: Performance metrics by method under different values of δ (Push-T simulation)

Method δ = 0.9(high severity failure discovery) δ = 0.3(low severity failure discovery)

Positive Samples Cov-I Cov-II Positive Samples Cov-I Cov-II
ECI-1 (1) 0.48 0.06 0.72 0.58 0.07 0.72
ECI-2 (1) 0.44 0.17 0.75 0.63 0.25 0.76
ECI-3 (1) 0.38 0.15 0.80 0.64 0.21 0.83
ECI-1 (0) 0.49 0.04 0.71 0.62 0.07 0.75
ECI-2 (0) 0.44 0.07 0.56 0.61 0.16 0.77
ECI-3 (0) 0.55 0.14 0.70 0.54 0.17 0.76
UCB-1 0.86 0.08 0.41 0.91 0.08 0.41
UCB-2 0.84 0.11 0.49 0.90 0.12 0.49
UCB-3 0.84 0.14 0.45 0.87 0.15 0.45
Random 0.28 0.09 0.77 0.44 0.15 0.77

Experiment 1B (Hyperparameter analysis): From Table 4, it is evident that there are two main
hyper-parameters affecting the performance of our proposed algorithm, radius of coverage, and
level of severity. For high-dimensional problems, with multiple contextual failure modes and a hy-
brid setting, with λ ∈ (0, 1), the influence of these hyperparameters can be challenging to interpret.
We exploit the simplicity of this problem to analyze the interplay of rp, rm and δ. Fig. 6 and Fig. 7

18

show heatmaps of the three metrics for a fine-grained values of δ and r, for λ = 1, 0 respectively,
for a single seed evaluation. Evidently, rp influences coverage in parameter space directly, (Fig. 6,
middle), across all values of δ. This is consistent with the findings in Table 4, with low performance
metrics for smaller values of rp due to insufficient exploration. The relationship of rp and coverage
in metric space is not as direct, and sensitive to δ. This is also consistent with findings across ex-
periments, where the method that recorded highest Cm value varied from experiment to experiment.
Fig. 7 (middle) shows that the relationship between rm and coverage in metric and parameter space
is more direct, but also highly dependent on δ. Fig. 7 suggests that Cm is more strongly dependent
on δ, and less dependent on rm itself, and therefore, for optimizing diversity, in the absence of a
preferred severity level, the recommendation is to choose low severity threshold δ, to experience
better overall performance across both coverage metrics, for both λ = 1.0, 0.0.

0.90.70.50.30.1
Delta

0.10

0.08

0.06

0.04

0.02

R
ad

iu
s

0.2

0.4

0.6
V

io
la

tio
n

R
at

e

0.90.70.50.30.1
Delta

0.10

0.08

0.06

0.04

0.02

R
ad
iu
s

0.1

0.2

C
ov
er
ag
e-
I

0.90.70.50.30.1
Delta

0.10

0.08

0.06

0.04

0.02

R
ad
iu
s

0.2

0.4

0.6

0.8

C
ov
er
ag
e-
II

Figure 6: Left to right: Constraint violation rate, Coverage-I and Coverage-II reported for various
values of parameter radius rp and delta δ for (3) with λ = 1.

0.90.70.50.30.1
Delta

0.10

0.08

0.06

0.04

0.02

R
ad

iu
s

0.25

0.50

0.75

V
io

la
tio

n
R

at
e

0.90.70.50.30.1
Delta

0.10

0.08

0.06

0.04

0.02

R
ad
iu
s

0.1

0.2

C
ov
er
ag
e-
I

0.90.70.50.30.1
Delta

0.10

0.08

0.06

0.04

0.02

R
ad
iu
s

0.2

0.4

0.6

0.8

C
ov
er
ag
e-
II

Figure 7: Left to right : Constraint violation rate, Coverage-I and Coverage-II reported for various
values of metric radius rm and delta δ for (3) with λ = 0.

Experiment 1C Prediction accuracy: We use the ground truth data from constructed cost function
to evaluate the prediction accuracy of the learnt surrogate models. We construct a test dataset of
25 points, Dtest = (zi, γ(zi))

25
i=1 and use absolute error m(zi) = |γ(zi) − q∗1(zi)| as a metric of

performance. For each seed and method reported in Table 4, we tally the number of scenarios for
which m(zi) < 0.1, which corresponds to high prediction accuracy. The mean and standard error
of prediction estimated across all seeds is reported in Fig. 8 for δ1 = 0.9, 0.3. Clearly, ECI with a
very low radius r performs poorly in prediction, due to extremely constricted sampling region. In
terms of global performance, ECI methods do well, but the performance depends on the value of
radius r. It must also be noted that UCB tends to perform consistently across all β values and is
more immune to hyperparameter sensitivity than our method. These experimental results show that
very low values of r are not suitable for sufficient exploration for learning a good quality surrogate
model, but the discussion on what value of r gives best performance is open-ended. In future works,
we aim to address optimization of the value of radius to achieve optimal prediction accuracy.

C.3 Push-T Hardware

Problem Setup: We implement the policy learnt and fine-tuned in simulation using human demon-
strations, to perform the task of pushing the T-block using UR3E collaborative robot arm, by en-
gaging a low-level MoveIt planner [45] to reach a set of goal locations supplied by the Diffusion

19

Ra
nd

om
UC

B-
1

UC
B-

2
UC

B-
3

EC
I-1

 (0
)

EC
I-2

 (0
)

EC
I-3

 (0
)

EC
I-1

 (1
)

EC
I-2

 (1
)

EC
I-3

 (1
)0.00

0.04

0.08

0.12

0.16

0.20

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Ra
nd

om
UC

B-
1

UC
B-

2
UC

B-
3

EC
I-1

 (0
)

EC
I-2

 (0
)

EC
I-3

 (0
)

EC
I-1

 (1
)

EC
I-2

 (1
)

EC
I-3

 (1
)0.00

0.04

0.08

0.12

0.16

0.20

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Figure 8: Prediction accuracy for Push-T sim task, histograms and error bars showing mean and
standard error values for a test dataset of 25 uniformly generated points for δ = 0.9 (left) and
δ = 0.3 (right) respectively.

Figure 9: Left to Right: Trajectories from experiments corresponding to failure scenarios due to
Mode 1 (top left), Mode 2 (top right), Mode 1 and 2 (bottom left), and Mode 3 (bottom right) in
Push-T hardware task. Colorbar shows time horizon. More details in Appendix C.3

Policy [37]. Due to the evident sim-to-real gap in the dynamic systems on which the policy is
trained and deployed on, we observe failures that were previously unseen in simulation.

Failure modes: We considered two modes of failures here (M = 2), Mode 1 failure correspond to
failure due to joint angle limits and self-collision, which was observed due to parts of the trajectory
being very close to the manipulator arm. This led to some trajectories failing at accomplishing the
task as the actions required arm to be pushed beyond its limit. There was also a separate category of
failures, which we refer to as Mode 2 failures, which occur due to lack of sufficient training data in a
specific region, leading to inefficient movements that eventually led to task failure. Mode 1 failures
were considered terminal, and led to early-stopping, while Mode 2 failures can be corrected by
supplying more training data for the policy, and were not observed to be a safety hazard in general.
Fig. 3 shows examples of trajectories with Mode 1 and Mode 2 failures. A human expert was used
to provide evaluations γ1, γ2 as in (4).

20

Table 5: Performance metrics for Push-T hardware experiments (3 modes)
Method Avg 1 Avg 2 Avg 3 M1 M2 M3 C-I C-II
ECI (1) 0.15 0.30 0.52 0.15 0.3 0.65 0.35 0.11
ECI (0.5) 0.0 0.20 0.55 0.0 0.2 0.8 0.22 0.09
ECI (0) 0.0 0.35 0.2 0.0 0.35 0.35 0.22 0.09
Random 0.07 0.27 0.3 0.1 0.3 0.45 0.42 0.15

We performed N = 20 evaluations for two seeds, for Random Walk and ECI with λ = 0, 0.5, 1.0.
Table 2 shows results of experimental evaluations. We also present average costs for Mode 1 and
Mode 2 failures reported as Avg 1 and Avg 2 respectively, in addition to mode specific failure
discovery rate (second and third column in Table 2). For all ECI baselines, severity levels were
chosen as δ1 = 0.2, δ = 0.3, and radii were chosen as rp, rm = 0.05.

Experiment 2B (Adaptive addition of failure mode): In one of the runs for Experiment 2A, a new
type of failure was observed, which was not accounted for a-priori, which we refer to as Mode 3,
and pertains to failure due to manipulator reaching workspace limits which was not accounted for
in the simulation design. Fig. 9 (bottom right) shows trajectory corresponding to Mode 3 failure.
The sequential nature of our strategy makes it easy to adaptively include additional failure modes
observed by experts during the evaluation procedure. We use last 5 evaluations for λ = 1, for one
of the seeds, as initial dataset for training a preliminary surrogate model, and revise active learning
strategy to include γ3 ≥ δ3, with δ3 = 0.3, in addition to γ1 ≥ δ1, γ2 ≥ δ2 from Experiment 2A.
Runs where no failure corresponding to Mode 3 was observed were also used for training, by simply
recording γ3 = 0 for those iterations. Mode 3 was always observed to lead to early stopping, due to
which we assign cost γ3(z) = 1 for all runs with Mode 3 failures.

Table 5 shows the results pertaining to N = 20 evaluations for different ECI variants, with one seed
for all three modes. Since both Mode 1 and Mode 3 lead to early stopping, it was observed that they
do not occur together, leading to no scenario z where all three failures occur together. Hence,we
report mode-wise statistics for this study. The coverage metrics are calculated with an ‘or’ criteria
instead of ‘and’ criteria, and include any point for which at least one of γi ≥ δi is observed, for
i = 1, 2, 3. Note that the active learning strategy still works because none of the cost constraints
are hard constraints– they are soft constraints used to encourage exploration in specific regions.
Despite the drastic difference in failure rates and values across failure modes, our active learning
strategy fairs well in discovering high average value failures with comparable coverage to Random
sampling, which performs well on coverage, given the modified coverage criteria is more relaxed
and accomodates larger number of samples.

C.4 CARLA

To perform the maneuvering of the vehicle in the environment, we use the ‘autopilot’ feature. The
environment of the car is completely described using static settings and environmental parameters
supplied by the user-defined scenario. The static settings and scenario are composed to render scenes
in an environment using the probabilistic programming language Scenic [46]. We choose a static
setting corresponding to a pedestrian crossing a street with two non-ego cars, and the ego car and
one of the non-ego cars (‘lead car’) are required to abruptly brake before the pedestrian. A scenario
in this case is defined using z = (be, bl, s). Here be, bl refer to the braking threshold for the ego and
the lead car respectively, and s denotes the sun altitude angle, which controls the brightness of the
scene. The simulations were seeded to generate reproducible results. Each evaluation corresponds
to T = 60 steps of simulations. Images recorded from the camera view are used for object detection
and classification at every 10 steps using YOLO-v3 [38], and the classified image are used as inputs
to GiT [47] to predict a likely failure type based on fine-tuning data. Results obtained from YOLO
along-with the reports from GiT are used as inputs to GPT3 model for failure evaluation, which
is queried 6 times per evaluation, and assigns binary scores pertaining to each failure mode for

21

0 10 20
Evaluations

5

10

15

20

z 1

Median 1
±1 SD (1)

Median 2
±1 SD (2)

0 10 20
Evaluations

5

10

15

20

z 2

Median 1
±1 SD (1)

Median 2
±1 SD (2)

0 10 20
Evaluations

0

50z 3

Median 1
±1 SD (1)

Median 2
±1 SD (2)

0 10 20
Evaluations

5

10

15

20

z 1

Median 1
±1 SD (1)

Median 2
±1 SD (2)

0 10 20
Evaluations

5

10

15

20

z 2

Median 1
±1 SD (1)

Median 2
±1 SD (2)

0 10 20
Evaluations

0

50z 3

Median 1
±1 SD (1)

Median 2
±1 SD (2)

0 10 20
Evaluations

5

10

15

20

z 1

Median 1
±1 SD (1)

Median 2
±1 SD (2)

0 10 20
Evaluations

5

10

15

20

z 2
Median 1
±1 SD (1)

Median 2
±1 SD (2)

0 10 20
Evaluations

0

50z 3

Median 1
±1 SD (1)

Median 2
±1 SD (2)

Figure 10: Sampled z values for ECI with λ = 1.0, 0.5, 0.0 (top to bottom), with be, bl, s(z1, z2, z3)
(left to right) for nominal LLM evaluation (red) and hybrid LLM evaluation. Graphs show mean
(solid lines) and standard deviation (shaded). The hybrid evaluation results in higher mean values of
be, bl compared to nominal evaluation criteria. Table 7 shows the difference in shrinkage in explored
space more prominently with decreased positive samples

each scene (camera image). The average value reported across 6 scenes is used to construct γ1, γ2
as in Eq (4). We discuss customization of information retrieval with severity specifications and
evaluation criteria in Experiment 3B. All results are reported as mean values across 4 seeds. Fig. 4
shows scenes with object detection failures corresponding to Mode 1 and Mode 2 from scenarios
generated using our methodology.

Experiment 3B (Customizing evaluation strategy): One of the advantages of the binary evaluation
strategy used in Eq 4 is that for each timestep t, we can include additional expert knowledge to
influence the evaluation. This is especially relevant to add robustness to the evaluation conducted
using LLMs, where a human expert may have prior belief regarding conditions pertaining to certain
failure modes. The final binary evaluation for each scene can then be represented as a composition
of the evaluation given by the LLM and a pre-specified user condition.

We demonstrate this capability by augmenting our evaluation strategy with a condition (bl > 10 ∧
be > 10)∨ (bl > 15)∨ (be > 15). Fig. 10 shows the trends of parameters z1, z2, z3 for each variant
of ECI for with and without (nominal) augmented evaluation for 4 seeds, for δ1 = 0.8, δ2 = 0.8
and rp, rm = 0.05. Table 7 shows the difference between metrics for nominal evaluation strategy
with LLM for this case with augmented conditional evaluation. As we can see, number of Positive
samples are reduced, which is due to the additional criteria causing feasible parameter space to
shrink.

We also test for an additional conditional evaluation with bl > 10 ∧ be > 10, with N = 50
evaluations using ECI with λ = 0.5. This further restricts the feasible region for parameters, as seen
in Fig. 11, the values of bl, be converge to the region corresponding conditional evaluation criteria,
whereas nominal method converges to a lower value of bl. This shows how user imposed conditions
can be used to control the specifics of discovered failure scenarios.

22

0 20 40
Evaluations

5
10
15
20

z 1

Median 1
±1 SE (1)

Median 2
±1 SE (2)

0 20 40
Evaluations

5
10
15
20

z 2

Median 1
±1 SE (1)

Median 2
±1 SE (2)

Figure 11: Mean and std deviation for ego and lead braking distance (be − z1, bl − z2), using
ECI with λ = 0.5 shown for nominal (red) and hybrid evaluation strategies (green) with condition-2
(be > 10, bl > 10) for N = 50 evaluations. Dashed lines showing the minimum value of be, bl based
on the condition. As expected, with the conditional evaluation strategy we observe convergence to
higher average values, especially for bl.

C.5 AEB

Scenario description: This problem consists of testing late and early braking by AEB in a self-
driving context, with a pedestrian and cycle crossing the road, with a parked car on the side. The
scenario is parameterized by z = [r, α, t1p, t2p, t1c, t2c, tparked, vp, vc]. Here, r, α refer to the ampli-
tude and time period of a sinusoidal curve that is used to design the trajectory of the ego vehicle, and
the road, so the trajectory of ego vehicle is given by x = 40αt, y = r sin(αt), for t ∈ [0, 2π]. Both
r, α cumulatively control the curvature of the road. The road width is fixed w = 7, t1p, t2p are used
to specify the initial and final locations for the movement of pedestrian crossing from left to right,
and similarly t1c, t2c for the cycle moving from right to left, given by:

x = 40αtik

y = r sin(αtik)± 0.5w,
(8)

for i = 1, 2 to denote initial and final location, and k = p, c to denote pedestrian and cycle. Simi-
larly, tparked is used to control the location of parked car, and vp, vc denote the constant speeds for
pedestrian and cycle respectively.

Definition of severity: We choose h ◦ gm = 1
T

∑
(AEBt)b

m
t , where AEBt = {0, 1, 2, 3} denotes

amount of braking, here we combine time and amount of braking to denote severity.

Failure modes: We observe two failure modes, Mode 1 is delayed braking due to occlusion of
cycle by the car, leading to late stopping, and Mode 2 is early stopping due to pedestrian becoming
visible later in the simulation, due to its initial position relative to the scene, and approaching the ego
vehicle. For testing scenarios pertaining to Mode 1, we deploy a naı́ve condition of the cycle being
parked behind the car, i.e, t1c > tparked, and for Mode 2, we use LLM to provide a binary label for
whether a scenario qualifies as failure due to Mode 2, based on direction of approach of pedestrian to
ego vehicle t1p > t2p, final distance between the ego vehicle and pedestrian exceeding a threshold
(for early braking), relative speed of pedestrian and cycle (vp < vc) to confirm that pedestrian
is discovered last in scene. Note that these failures are not related to system safety in the strictest
sense, and rather asses performance asepcts of the AEB. This example demonstrates the capability of
our pipeline to observe a set of scenarios with desirable properties with our method. Fig. 12 shows
examples of initial conditions for scenarios for different failures considered. The supplementary
material also includes a video showing the demonstration of AEB on these scenarios.

Choosing δ1, δ2: From the design of scenario, it can be observed that Mode 1 occurs in a specific
range of scenario parameters, hence we choose δ1 = 0.5 to reduce the search volume. We set
δ2 = 0.1 as we observe a range of values for Mode 2 failures. With the high dimension of the
space, to encourage better exploration, radius was set to rp, rm = 0.2. Table 6 shows the results of
all ECI variants against Random sampling. As we can see, λ = 1.0 has overall good performance,
with all ECI methods performing better than Random sampling in all metrics. We also provide a

23

Pedestrian Parked car Cycle Ego Distance
traveled
by Ego

Figure 12: Left to Right: Scenario arrangements corresponding to Mode 1 and Mode 2, and both
Mode 1 and 2. Arrows indicate the initial direction of velocity vector for each dynamic non-ego
agent.

Table 6: Performance metrics for AEB simulations.
Method P.S. C-I ×10−5 C-II Mode 1 Mode 2
ECI (1) 0.22 4.59 0.43 0.27 0.30
ECI (0.5) 0.19 1.37 0.34 0.22 0.28
ECI (0) 0.19 2.85 0.30 0.22 0.28
Random 0.11 0.85 0.35 0.14 0.31

failure discovery rate for Mode 1 and Mode 2, where Random sampling’s performance highlights
the differing frequency of occurrence for each. Also note that Coverage-I has a very low value,
which is expected due to the scenario being high dimensional. This motivates the discussion on the
number of samples needed to fully explore a scenario, which we discuss in Section C.6.

Experiment 4B (Evaluating the role of prior belief): To analyze the role of prior, we conducted
an ablation study for the AEB failure discovery task with δ1 = 0.5, δ2 = 0.1, for a single seed, by
fixing the number of evaluations with active learning to N = 60, and changing the number of initial
data-points for random sampling to 20 (model-1) and 40 (model-2), that is used to generate an initial
surrogate model. This corresponds to a prior belief in this context, as having more initial evaluations
will lead to stronger prior belief. Fig. 13 shows the trends of the three performance metrics for
λ = 0, 0.5, 1.0 for this single seed evaluation as a function of number of active learning evaluations.
Clearly, not only do we achieve higher overall performance metrics with model-2, the performance
metrics also converge within lesser evaluations.

Table 7: Performance metrics for nominal vs condition-1 augmented evaluation for 4 seeds, CARLA
simulations (δ1 = 0.8, δ2 = 0.8).

Method Nominal Condition-1
P.S. C-I C-II P.S. C-I C-II

ECI (1) 0.43 0.064 0.28 0.34 0.07 0.31
ECI (0.5) 0.32 0.085 0.29 0.11 0.024 0.27
ECI (0) 0.32 0.058 0.32 0.25 0.05 0.22
Random 0.0 0.0 0.0 0.008 0.001 0.10

24

0 10 20 30 40 50 60
Iteration

0.00000

0.00025

C
-I

 (λ
=0

.0
)

Prior-20 Prior-40

0 10 20 30 40 50 60
Iteration

0.0000

0.0002

C
-I

 (λ
=0

.5
)

Prior-20 Prior-40

0 10 20 30 40 50 60
Iteration

0.00000

0.00025

C
-I

 (λ
=1

.0
)

Prior-20 Prior-40

0 10 20 30 40 50 60
Iteration

0.35

0.40

C
-II

 (λ
=0

.0
)

Prior-20 Prior-40

0 10 20 30 40 50 60
Iteration

0.35

0.40

0.45

C
-II

 (λ
=0

.5
)

Prior-20 Prior-40

0 10 20 30 40 50 60
Iteration

0.35

0.40

C
-II

 (λ
=1

.0
)

Prior-20 Prior-40

0 10 20 30 40 50 60
Iteration

25

50

Po
s.

Sa
m

pl
es

 (λ
=0

.0
) Prior-20 Prior-40

0 10 20 30 40 50 60
Iteration

25

50
Po

s.
Sa

m
pl

es
 (λ

=0
.5

) Prior-20 Prior-40

0 10 20 30 40 50 60
Iteration

25

50

Po
s.

Sa
m

pl
es

 (λ
=1

.0
) Prior-20 Prior-40

Figure 13: Performance metrics (C-I,C-II, Positive Samples- top to bottom) for ECI with λ =
0, 0.5, 1.0 (left to right), for an initial model trained with 20 ad 40 initial evaluations, proceeded by
60 evaluations using our method.

0 50 100
Iteration

0

1

2

C
-I

1e−4
Mean
±1 Std Dev

0 50 100
Iteration

0.0

0.2

0.4

C
-I

I

Mean
±1 Std Dev

0 50 100
Iteration

0

25

50
Po

si
tiv

e
Sa

m
pl

es
Mean
±1 Std Dev

Figure 14: Metrics with experimental budget performance (AEB), N = 100, 1 seed. C-I reported
as C-I×10−4.

C.6 Experimental budget vs performance metrics

To analyze the influence of experimental budget on performance metrics, we ran AEB task with two
failure modes for three seeds with λ = 0.5 for a longer experiment with N = 100 evaluations, with
δ1 = 0.5, δ2 = 0.1. Fig. 14 shows the coverage metrics and positive samples detected with number
of evaluations. Note that coverage in parameter space grows more slowly compared to coverage
in metric space, which is due to two reasons– high dimension of parameter, leading to marginal
improvement per additional evaluation, and the low dimension of metric space; since we only have
two failure modes, the possible ways of covering the metric space saturates after a while. This also
depends on the frequency of occurrence of failure modes and the desired range of severity for each.

C.7 LLM-based evaluation

We use GPT-3.5 model for implementing LLM based evaluation in CARLA and AEB experiments.
Shown below are the prompts for each of the settings.

C.7.1 LLM-based evaluation for CARLA

We use a pretrained Generative Image to Text model (GiT) [47], fine-tuned on a dataset consisting
of scenes with previously seen failures of the two modes, and nominal scenes. The GiT model takes

25

a scene (image) as an input, and provides a caption, that is used as an input to the LLM as a part of
the prompt.

The generated caption alongwith objects detected by YOLO are used by the LLM to first conclude
if a detection failure has happened, which corresponds to one of the objects being undetected, and
subsequently provide a discrete evaluation on whether the reason for failure corresponds to one or
both of the modes. This process is conducted for several scenes observed during a simulation and
processed by YOLO within each roll-out. The output generated by LLM is transformed and used to
generate γ1(z), γ2(z) for a given z as in (4). This case has no early stopping. Shown below is the
prompt used for LLM based evaluation. Text in red and blue shows the input received from GiT and
CARLA respectively.

Prompt Used for CARLA evaluation

You will be provides the analysis of YOLO Object detection on an image that was taken from
the camera feed of CARLA simulator. The simulator is simulating a pedestrian crossing the
road before a car infront of the ego car. There are two cars and one pedestrian in each image.
The information provided:

1. Objects detected: List of objects detected by YOLO in the image. This list should
have at least one object from the Objects to detect list

2. Objects to detect list:
• One object with one of the following labels: ‘car’,‘truck’,
• One object with one of the following labels: ‘car’,

‘truck’,‘bus’,‘motorcycle’,‘bicycle’
• One object with one of the following labels: ‘person’

3. Reason: The reason is a brief explanation of the failure to detect all objects, if that
happens, and is generated by a pre-trained GiT model in the form of captions for
the image.

We are looking to discover images where YOLO fails to detect an object due to bad light
and/or large distance. If the list of objects detected has an object missing from the objects
to detect list, look at the reason. Follow the response instructions while responding.
Response Instructions: Respond should be an integer 0, 1, 2, 3 or 4:

• 0 indicating that at least one object was missing from the ’objects to detect’ list, but
the reason provided does not correspond to bad light or large distance.

• 1 indicating that an object was not detected and the reason provided corresponds to
bad light only.

• 2 indicating that an object was not detected, and the reason corresponds to large
distance only.

• 3 indicating that an object was not detected, and the reason corresponds to both
large distance and bad light.

• 4 indicating all objects are detected. Do not provide explanation.
Response format: Response: [integer], where integer = 0,1,2,3,4.
The list of objects detected and reason for incomplete detection for the image are as follows:

• Objects detected: {objects}
• Reason: {reason}

C.7.2 LLM based evaluation for AEB

Shown below is the LLM prompt used for Mode 2 failure evaluation. Mode 1 failure evaluation is
done using the condition t1c > tp ∧ (

∑T
t=1 AEBt >)0, for T ≤ 10, Here AEBt denotes the value

of AEB status at each timestep, and can take values 0,1,2 or 3, corresponding to inactive, partial
brakings and full brake respectively. If AEB leads to full brake, early stopping may happen. Text in
blue shows observables from simulations and scenario parameters z.

26

Prompt Used for AEB evaluation

You will be provides the analysis of an Autonomous Emergency Braking (AEB) system,
with a scene decription. Each scene consists of a cycle and a pedestrian crossing a road, a
vehicle parked on the road, and an ego agent navigating in this scenario.
You will receive the following information:

1. Cycle to Ego: Relative distance of cycle and ego agent final distance value
2. Pedestrian to Ego: Pedestrian and ego agent final distance value
3. Sim list: Simulation time between 0 and 10.
4. AEB Status: reflects AEB status for each simulation timestep. AEB status at any

timestep is either 0 or 1, where 0 corresponds to unactivated AEB (or nominal
manuevring) and 1 corresponds to AEB activated.

5. Map1: relative initial arragement of cycle and parked vehicle. Map1=1 implies
parked vehicle occludes cycle

6. Map2: relative direction of pedestrian movement. Map2=1 implies that the pedes-
trian is approaching the direction of ego vehicle.

7. Road curvature: a scalar value between 0 and 1 reflecting the curvature of road.
8. Pedestrian Speed: Constant speed of pedestrian crossing the road
9. Cycle Speed: Constant speed of cycle crossing the road

Your job is to assess if the given scenario and the response of AEB system corresponds to
a contextual failure: Failure definition: Late discovery of pedestrian- this type of failure
occurs if all the below conditions are met:

• AEB Status is 1 at at least one of the time-steps
• Pedestrian is approaching vehicle’s direction, which corresponds to ‘Map2’=1.
• If ‘Map2’=0 condiiton for Failure 2 is violated.
• ‘Pedestrian to Ego’ distance is lower than ‘Cycle to Ego’, and ‘Pedestrian to Ego’

greater than 40
• ‘Pedestrian Speed’ is less than ‘Cycle speed’

Evaluate the information provided for this scenario and simulation, and evaluate if conditions
corresponding to Failure are met. Follow the response instructions while responding.
Response Instructions: Respond should be an integer 0, 1:

• 0 indicating that Failure has NOT happened.
• 1 indicating that Failure has happened

Response format: Response: [integer], where integer = 0,1. Do not provide explanation.
The list of objects detected and reason for incomplete detection for the image are as follows:

• ‘Cycle to Ego’: {ego cycle}
• ‘Pedestrian to Ego’: {ego ped}
• ‘Sim list’: {AEB time}
• ‘AEB Status’: {AEB data}
• ‘Map1’: {Map 1}
• ‘Map2’: {Map 2}
• ‘Road curvature’: {Road curvature}

C.8 Discussion on ECI variants

Across experiments, it has been observed that ECI with λ = 1, 0.5 performs better than λ = 0.0.
This indicates that for coverage, parameter space coverage plays a more important role than just
metric space coverage. This can also be understood from Fig. 14, where Cm quickly converges

27

after a few iterations due to its low dimensionality and also sparse nature, however, Cp continues
to increase with evaluations. Another potential issue that inhibits the performance of metric space
coverage is that cost domain γ, is often very sparse. For instance, for CARLA task, it was observed
that most cost outputs γ1, γ2 clustered around a few output values. We observe better performance
of metric space coverage with examples where cost range is more continuous, such as Push-T Sim-
ulation, and AEB. This suggests that the most efficient strategy would be to optimize the value of λ
based on the expected sparsity of the various failure modes. Since this is unknown a-priori, and also
depends heavily on the design of cost functions and application, we defer this discussion for future
research.

D Using failure modes

The collected failures can be used towards policy repair and additional failure diagnosis. The learnt
surrogate models for various failures can be used to sample scenarios with high predicted cost γm,
and these scenarios can be used for the next steps in failure diagnosis and system monitoring. Not
all failures can be repaired, for example, failures that originate as a consequence of system limits.
Nonetheless, knowledge of such irreparable failures is essential. With the contextual failures studied
in this work, there is no proposed way to distinguish between failures that can or cannot be repaired.

As an example of how we can use the surrogate models for repair, we demonstrate repair of the
Diffusion policy used in Push-T task on the UR3E robot. Push-T failures were generally observed
to be reparable, since better human demonstrations can be supplied such that the resultant trajectories
do not lead to singularities experienced in practice. As an example, we repaired some of the Mode
3 failures by sampling high cost scenarios z and requesting additional human demonstrations for
these scenarios such that the generated trajectory would avoid the failure modes observed.

Fig. 15 shows an example of a scenario with predicted trajectory using the simulation. For the
chosen scenario, the trajectory fails due to Mode 3 failure, as shown in left figure. After repair by
retraining with additional demonstrations, we observe that the trajectory succesfully mitigates this
issue. This example illustrates the benefit of learning safety critical failure scenarios from limited
number of evaluations such that system damage is minimized, that can be used for further repair. For
a system that permits slightly larger number of evaluations N ∼ 100−500, the failure discovery and
repair can be done in a sequential manner, as suggested in [9]. We also provide video demonstration
of an example of policy repair on the UR3E manipulation arm for a failure mode observed using our
method in the supplementary attachment.

Supplementary material also consists of a video showing the experimental demonstration of sampled
failure scenarios for Push-T on UR3E platform, and AEB in Simulink, alongwith policy repair demo
for Push-T task.

28

���������	��
��

���

���

���

	��

� �

���

��

���

������������
��

���

���

���

���

� �

���������	��
��

���

���

���

	��

� �

���

��

���

���������	��
��

���

���

���

	��

� �

����

��
�

���

���������	��
��

���

���

���

	��

� �

����

���

��
�

���

Figure 15: Push-T Hardware: Mode 3 before repair (left) and after repair (right) respectively. Tra-
jectories of the end effector generated using pygame environment shown. As seen from figure on
left, trajectory of end effector extends beyond the workspace, leading to failure in real-time ex-
perimentation attributed to Mode 3. Our method helps to discover more such failures that can be
subsequently used to fine-tune the diffusion policy by providing scenarios for providing better qual-
ity human demonstrations on. Figure on right shows rollout of policy trained with additinal data
collected from scenarios supplied by our method. Colorbar shows range of expected value of surro-
gate model, E[q∗3] to show states corresponding to high-cost failure (this happens because scenario
and state have shared parameterization). As we can see, the updated policy successfully avoids the
failure.

29

	Introduction
	Related works
	Problem Setup
	Methodology
	Active learning for sampling from target set
	Expert evaluation strategy
	Bayesian Inference for learning surrogate model

	Simulations & Experiments
	Failure discovery for Diffusion policy on a Manipulation task (Push-T)
	Failure discovery in simulation (Push-T simulation)
	Failure discovery in experimental setup (Push-T hardware)

	Failure discovery in Self-driving
	Contextual failures of perception module in Self-driving (YOLO+CARLA)
	Contextual failures in Autonomous Emergency Braking systems (Simulink AEB)

	Results

	Conclusion
	Limitations
	Explicitly accounting for stochasticity in evaluation
	Accuracy of expert evaluation
	Requirement of increasing sample size with dimension and scenario complexity

	Literature Review
	Quantifying diversity of failures
	Model choice

	Coverage-based active learning strategy
	Implementation of ECI

	Experimental details
	Baselines and metrics
	Push-T Simulation
	Push-T Hardware
	CARLA
	AEB
	Experimental budget vs performance metrics
	LLM-based evaluation
	LLM-based evaluation for CARLA
	LLM based evaluation for AEB

	Discussion on ECI variants

	Using failure modes

