
Reinforcement Learning Conference (August 2024)

CoDreamer: Communication-Based Decentralised
World Models

Edan Toledo
e.toledo@instadeep.com
InstaDeep

Amanda Prorok
asp45@cam.ac.uk
University of Cambridge

Abstract

Sample efficiency is a critical challenge in Reinforcement Learning. Model-based
RL has emerged as a solution, but its application has largely been confined to
single-agent scenarios. In this work, we introduce CoDreamer, an extension of
the Dreamer algorithm for multi-agent environments. CoDreamer leverages Graph
Neural Networks for a two-level communication system to tackle challenges such
as partial observability and inter-agent cooperation. Communication is separately
utilised within the learned world models and within the learned policies of each
agent to enhance modelling and task-solving. We show that CoDreamer offers
greater expressive power than a naive application of Dreamer, and we demonstrate
its superiority over baseline methods across various multi-agent environments.

1 Introduction

Reinforcement Learning (RL) has become a leading paradigm for creating autonomous control sys-
tems. Despite recent successes (Degrave et al., 2022; Luo et al., 2022; Roy et al., 2021; Mirhoseini
et al., 2021; Schrittwieser et al., 2020), these achievements often require vast data and computational
resources. While computational power is likely to increase, data availability remains a constraint. As
we tackle more complex problems requiring expensive simulations, improving the sample efficiency
of RL methods is critical.

Model-based RL (Sutton & Barto, 2018) offers a promising solution to this issue. Recent algorithms
like EfficientZero (Ye et al., 2021) and Dreamer (Hafner et al., 2020; 2021; 2023) show that high
performance can be achieved utilising far less data. These methods develop a world model, a learned
simulation of the agent’s environment, to generate synthetic data and/or plan actions based on future
predictions. However, their effectiveness in multi-agent settings is limited by the accuracy of these
models and their single-agent design.

Transitioning to multi-agent systems introduces new challenges such as partial observability and
non-stationarity, complicating the use of many single-agent RL algorithms (Nguyen et al., 2020).
Sample efficiency issues become more pronounced when multiple agents need to learn a shared set
of policies. This work aims to adapt the success of single-agent model-based RL to multi-agent
environments.

We propose Communicative Dreamer (CoDreamer), an enhancement to the Dreamer algorithm,
addressing challenges like partial observability and non-stationarity in multi-agent environments.
CoDreamer employs a two-level communication system: agents communicate within their world
models to better model their environment, and within their policies to enhance cooperation and
performance. This dual-tiered strategy aims to overcome the limitations of existing methods and
advance model-based RL in multi-agent scenarios.

As agents use their world models during execution, decentralised communication is essential. Recent
research (Li et al., 2020; Tolstaya et al., 2020; Prorok, 2018; Kortvelesy & Prorok, 2022) shows that

1

Reinforcement Learning Conference (August 2024)

Graph Neural Networks (GNNs) can enhance communication and performance in multi-agent sys-
tems within the CTDE framework. CoDreamer utilises GNNs for a learned communication strategy,
allowing agents to collaboratively generate synthetic trajectories, thereby improving performance
given a limited sample budget.

This work makes several key contributions: the implementation and evaluation of the DreamerV3
(Hafner et al., 2023) algorithm in a multi-agent independent learning setting, termed IDreamer;
the development of CoDreamer, an enhanced version of IDreamer that uses GNNs for decentralised
communication among agents’ world models and policies, addressing issues like non-stationarity and
partial observability; and a comprehensive evaluation of CoDreamer across various environments,
demonstrating superior performance and more accurate world models in environments with inter-
agent dependencies.

2 Methodology

2.1 Independent Dreamer

To thoroughly examine the effects of communication within world models, we first assess the per-
formance of fully decentralised non-communicative world models. This leads to the creation of
distinct Dreamer agents, each using its own separate world model. We introduce IDreamer, which
implements DreamerV3 (Hafner et al., 2023) for the multi-agent setting.

Like most independent multi-agent RL (MARL) algorithms, each IDreamer agent treats other agents
as part of the environment, with no explicit communication or opponent modelling. Each agent trains
solely on its own experiences and does not observe other agents during training or execution.

During actor-critic network training, agents use only their own observations to start trajectory
imagination. Due to the substantial size of the world model networks (16M+ parameters), we use
parameter sharing (Gupta et al., 2017) to expedite learning. Although parameter sharing allows
the world model to train on all agents’ experiences, it is still conditioned on individual agents’
observations, without additional information for trajectory imagination or observation encoding.

Given the homogeneous nature of the agents and parameter sharing, the world model may struggle to
distinguish which agent it is being used by. To address this, we concatenate agent indices as a one-hot
encoding to all observations in non-visual environments, enabling the world model to differentiate
between agents. We hypothesise that in visual environments, there is sufficient information for the
model to distinguish agents.

Apart from these multi-agent specific changes, the implementation details of IDreamer remain un-
changed from DreamerV3.

2.2 CoDreamer: Communicative World Models

Using world models independently can exacerbate the challenges of multi-agent systems. In direct-
style model-based methods like IDreamer, each policy is trained solely with data from its agent’s
world model, making policy performance entirely dependent on the model’s accuracy. Issues like
non-stationarity, partial observability, and cooperation are worsened if the model fails to capture
other agents’ actions. Independent world models struggle as the environment dynamics seem to con-
stantly change, and single-agent observations and actions are insufficient to infer future information,
potentially hindering accurate model development.

Moreover, if the environment’s reward and transition functions are highly inter-agent dependent,
learning through imagination becomes impossible because the imagined trajectories will be inaccu-
rate. To address these issues while staying within the CTDE framework, we propose CoDreamer.

CoDreamer enhances IDreamer by incorporating two levels of communication. The first level, used
and learned by the world models, improves trajectory imagination among agents, helping with non-

2

Reinforcement Learning Conference (August 2024)

stationarity and partial observability. This communication is independent of actor-critic learning
and focuses solely on better state representations and environment modelling. The world models
learn communication grounded in the specific environment rather than any agent’s policy.

The second level of communication is dedicated to the actor and critic networks trained during
imagination, enabling agents to share action and value prediction information. This level is consistent
with communication in other MARL methods, focusing on action-relevant information.

For both communication levels, we use GNNs due to their applicability in both centralised and
decentralised contexts. GNNs, in our case the GAT V2 architecture (Brody et al., 2022), enable
k-hop aggregation of nodes, allowing all agents to share information as long as each can communicate
with at least one other agent.

2.2.1 Communication

As is consistent with the literature (Kortvelesy & Prorok, 2022; Li et al., 2020; Blumenkamp &
Prorok, 2021), to learn communication between agents using GNNs, we model the inter-agent com-
munication with a graph G = ⟨V, E⟩, where each node i ∈ V represents an individual agent i ∈ n, and
each edge eij ∈ E represents a communication link between agents i and j. The adjacency matrix A
establishes the edge set for each agent, which is contingent on the agent’s communication range C
set by the environment. In this work, adjacency matrices are constructed using Euclidean distance.
Specifically, given two agents i and j with positions pi and pj , an edge is created if ||pi − pj || ≤ C.
This communication range is dependent on the environment and other limiting factors. As the cur-
rent state s ∈ S changes over time, A adapts dynamically based on the changing positions of the
agents. The set of neighbouring agents N that are capable of communicating with agent i is defined
as N i = {vj |eij ∈ E}. Additionally, the Euclidean distance of each edge eij is stored in a matrix
E ∈ R|V|×|V| that can be utilised by the GNNs.

2.2.2 World Models

Figure 1: Training process of CoDreamer world model: CoDreamer trains in a similar manner
to IDreamer (see Figure 21). However, CoDreamer operates over graphs of observations Go

t and
produces graphs of stochastic posterior Gz

t and prior Ĝz
t states. Additionally, recurrent states are

also represented as graphs Gh
t . This allows communication to happen at any level within the world

model architecture.

In CoDreamer, a unified world model can be used independently by clusters of agents during execu-
tion. All elements from IDreamer remain unchanged except for the addition of k GNN layers within

3

Reinforcement Learning Conference (August 2024)

the Recurrent State-Space Model (RSSM) and prediction heads to facilitate communication. Specif-
ically, only the reward and terminal state prediction heads use communication, while the decoder
head remains independent. Each GNN layer performs node updates and neighborhood aggregation,
concatenating the original node features to the output to help the world model distinguish agents
and prevent over-smoothing (Li et al., 2018).

Although we focus on environments formalised as Dec-POMDPs, CoDreamer is adaptable to various
multi-agent environments and formalisms, such as Markov Games (Shapley, 1953), due to each
agent’s ability to independently use their prediction heads for local environment estimates.

Unlike IDreamer, CoDreamer’s training involves graphs representing all agents’ experiences rather
than individual experiences. Depending on the adjacency matrix A, agents can be processed in-
dependently, effectively transforming CoDreamer into IDreamer for those agents. All graphs have
edge features representing the relative distances between agents, which are used with observations
in the GAT V2 to calculate attention coefficients for neighborhood aggregation. Beyond these and
architectural modifications, CoDreamer remains consistent with IDreamer.

Figure 1 shows CoDreamer unrolling its world model on a sequence of graphs where each node
represents an agent’s observation.

2.2.3 Behaviour Learning

Figure 2: Training process of CoDreamer Actor-Critic: To train the actor-critic networks in
CoDreamer, trajectories of compact world model state graphs G

z||h
t:H are produced. As CoDreamer

does not predict new adjacency matrices over the imagined trajectories, the adjacency matrix of
the starting graph is used for all subsequent graphs. We posit that, as the most relevant agents for
short-term future predictions are those nearby at the start, this is sufficient to create more consistent
trajectories.

CoDreamer modifies the behavior learning process similarly to its training procedure. The world
model generates trajectories of graphs, with each agent’s compact world model state as node features.
These imagined trajectories use the adjacency matrix and edge features of the original graph that
started the trajectory imagination. We believe the starting graph’s adjacency matrix suffices for
necessary communication over the imagination horizon, as relevant agent information for future
prediction likely depends on agents within the initial communication range. However, original edge
features may become outdated over time. Updating these features every step with the GNN could be
a future improvement. Each agent uses the predicted graphs to train their actor and critic networks.
Figure 2 illustrates CoDreamer’s modifications to IDreamer’s behavior learning procedure.

4

Reinforcement Learning Conference (August 2024)

For CoDreamer’s synthetic data generation at training time, following the CTDE framework, we
could use fully connected adjacency matrices during the imagination rollout. However, since the
second level of communication is trained on the imagined graphs, realistic communication topolo-
gies must be maintained. Otherwise, at execution time, the actor-critic networks won’t effectively
communicate relevant information with a non-fully connected adjacency matrix.

Figure 3: Illustration of CoDreamer Actor-
Critic: The CoDreamer actor-critic networks op-
erate over the imagined graphs of world model
states. This second level of communication is
trained to maximise the reward and thus exchange
relevant information that is not specific to environ-
ment modelling.

In addition to the state information communi-
cated by the world model, agents also commu-
nicate relevant information to learn their policy
and value functions. Both actor and critic net-
works, operating on compact world model state
graphs, have distinct GNN layers acting as a
torso for the respective networks. Figure 3 il-
lustrates how the compact world model graphs
are used by the policy and value functions dur-
ing training and execution. Beyond the archi-
tectural changes, the actor-critic networks are
trained in the same way as IDreamer.

Through the utilisation of an intra-model com-
munication layer, CoDreamer is afforded a
higher level of expressivity in modelling vari-
ous environments, compared to IDreamer. Un-
like IDreamer, which relies on an independent
modelling approach, CoDreamer overcomes the
significant limitation of not being able to cap-
ture inter-agent dependent transition dynamics
and reward functions. CoDreamer is strictly
more expressive in that it can model the true
underlying reward and transition functions of
Dec-MDPs (Bernstein et al., 2002), a claim that
IDreamer cannot guarantee.

3 Results

To evaluate the efficacy of our proposed approach, we select two distinct environment suites that
present diverse challenges. Firstly, we utilise VMAS (Bettini et al., 2022) to examine the perfor-
mance of our methods with lower dimensional vector-based observations. Secondly, we use Melting
Pot (Agapiou et al., 2022) to investigate the efficacy of our methods in higher-dimensional visual
observation settings. We evaluate a variety of separate tasks within each environment suite and
utilise the evaluation methodology outlined in by Agarwal et al. (2021), and further explained in
section D.1, to produce aggregated results.

3.1 Vectorised Multi-Agent Simulator

Vectorised Multi-Agent Simulator (VMAS)1(Bettini et al., 2022) is an open-source, 2D physics
simulation platform designed to assess various MARL algorithms across multi-agent coordination
problems. VMAS offers diverse, challenging scenarios requiring varying degrees of individual skill
and collaboration. The observation spaces are vector-based, simulating real-world robotic sensing
systems like LIDAR, and the action spaces can be continuous or discrete. In this work, we evaluate
our method on three VMAS scenarios: Flocking, Discovery, and Buzz Wire, all with discrete action
spaces.

1Found at https://github.com/proroklab/VectorizedMultiAgentSimulator

5

Reinforcement Learning Conference (August 2024)

0.90 0.92 0.94

IDREAMER

IPPO

CODREAMER

Median

0.78 0.80 0.82 0.84

IQM

0.650 0.675 0.700 0.725

Mean

Normalised return

Figure 4: Aggregate metrics on VMAS Tasks with 95% CIs. Reported from left to right are:
Median, IQM, Mean.

In VMAS, CoDreamer shows superior performance in all point estimate metrics. Figure 4 illustrates
that while CoDreamer’s point estimates surpass both IPPO and IDreamer, there is some overlap
in their IQM and mean Confidence Interval, indicating minor statistical uncertainty. However,
the overlap is minor, suggesting with confidence that CoDreamer leads to improved results. To
understand performance nuances beyond point estimates, we examine additional metrics.

0.0 0.2 0.4 0.6 0.8 1.0
Normalised return ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

0 1 2 3 4 5
Number of timesteps (1e5)

0.5

0.6

0.7

0.8

No
rm

al
ise

d
re

tu
rn

IDREAMER IPPO CODREAMER

Figure 5: VMAS Evaluation. Left: Performance profiles indicating the percentage of runs that
scored above a certain normalised return. Right: IQM min-max normalised scores as a function
of environment timesteps. This measures the sample efficiency of all agents. For both plots, the
shaded regions show 95% CIs.

The performance profile in Figure 5 shows that CoDreamer consistently matches or exceeds IDreamer
and IPPO across all training runs, suggesting that CoDreamer’s communication improves perfor-
mance. However, the sample efficiency plot reveals a marginal trade-off, with CoDreamer’s final
performance accompanied by reduced initial sample efficiency. IPPO and IDreamer reach their fi-
nal performance with less data. This trade-off is expected, as learning communication protocols
adds complexity. Both IDreamer and CoDreamer need to learn an accurate environment model
before achieving performance gains. While IPPO is initially more sample efficient, IDreamer quickly
surpasses it after 100,000 environment steps.

In conclusion, both CoDreamer and IDreamer statistically significantly outperform IPPO, with
CoDreamer showing the best results among all algorithms. However, the performance improvements
are relatively marginal.

6

Reinforcement Learning Conference (August 2024)

3.2 Melting Pot

Melting Pot2(Agapiou et al., 2022) benchmarks MARL by evaluating agents’ ability to generalise
and adapt to unfamiliar environmental and social contexts. It includes tasks that assess various
social interactions such as cooperation, competition, and trust. Agents are trained in specific games
and assessed in unique test scenarios to evaluate their generalisation.

In this work, we focus on cooperative performance rather than social generalisation. We train and
evaluate agents only on the original games, excluding Melting Pot’s unique test scenarios. Melting
Pot’s observation space is pixel-based and partially observable, with each agent having a distinct
field of view. This setup demonstrates our method’s capability to model complex, high-dimensional
observations and highlights the benefits of communication in prediction and policy learning. We
select four scenarios: Daycare, Cooperative Mining, and two variants of Collaborative Cooking.
Each scenario is transformed into a Dec-POMDP by using a single global reward, which is the sum
of individual rewards.

0.15 0.30 0.45

IDREAMER

IPPO

CODREAMER

Median

0.15 0.30 0.45

IQM

0.15 0.30 0.45

Mean

Normalised return

Figure 6: Aggregate metrics on Melting Pot Tasks with 95% CIs. Reported from left to right
are: Median, IQM, Mean.

In Melting Pot tasks, both IDreamer and CoDreamer significantly outperform IPPO, as shown in
Figure 6. IPPO consistently fails to achieve high scores, which aligns with expectations given the
sample inefficiency of pixel-based environments. As a model-free on-policy algorithm, IPPO struggles
with the limited data (500,000 steps) to learn adequate visual features and high-level strategies. In
contrast, CoDreamer outperforms IDreamer in all aggregate metrics with higher normalised scores
and less variance, and the results show no CI overlap, indicating high certainty.

The performance profile in Figure 7 shows that IDreamer and CoDreamer significantly outperform
IPPO, with IPPO failing to score above 0.1 in any task or run. CoDreamer consistently outperforms
IDreamer with low CI overlap, indicating stochastic dominance. Additionally, CoDreamer achieves
near-normalised scores of 1.0 in 25% of runs, showing its capability to consistently achieve maxi-
mum rewards. Despite the added complexity of communication, CoDreamer demonstrates higher
performance with less data, proving the benefit of increased expressivity in learning.

4 Related Work

4.1 MARL With Learned Communication

End-to-end learning of communication protocols has been used to create efficient communication
mechanisms without needing significant domain expertise (Sukhbaatar et al., 2016; Foerster et al.,
2016; Peng et al., 2017; Kong et al., 2017; Jiang & Lu, 2018).

GNNs have become popular for facilitating communication between agents in various MARL tasks,
including cooperative navigation, traffic control, and robotic swarms (Li et al., 2020; Nishi et al.,
2018; Tolstaya et al., 2020). These methods efficiently propagate relevant information without
breaking the decentralised nature of the system and handle dynamic and heterogeneous environments

2Found at https://github.com/google-deepmind/meltingpot

7

Reinforcement Learning Conference (August 2024)

0.0 0.2 0.4 0.6 0.8 1.0
Normalised return ()

0.00

0.25

0.50

0.75

1.00
Fr

ac
tio

n
of

 ru
ns

 w
ith

 sc
or

e
>

0 1 2 3 4 5
Number of timesteps (1e5)

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ise

d
re

tu
rn

IDREAMER IPPO CODREAMER

Figure 7: Melting Pot Evaluation. Left: Performance profiles indicating the percentage of runs
that scored above a certain normalised return. Right: IQM min-max normalised scores as a function
of environment timesteps. This measures the sample efficiency of all agents. For both plots, the
shaded regions show 95% CIs.

(Bettini et al., 2023; Li et al., 2020). However, traditional GNNs have not been used within world
models for model-based MARL, setting the stage for CoDreamer.

4.2 Multi-Agent Model-Based RL Methods

Dyna-style methods, like Multi-Agent Model-Based Policy Optimisation (MAMBPO) (Willemsen
et al., 2021) and Adaptive Opponent-wise Rollout Policy Optimisation (AORPO) (Zhang et al.,
2021), use data from both the real environment and learned models to train agent policies. While
some approaches benefit from centralisation, CoDreamer offers a fully decentralised framework.
Unlike AORPO, CoDreamer does not need to explicitly model all other agents, as each agent’s
world model implicitly captures information about others.

Direct-style methods, such as Multi-Agent Model-Based Approach (MAMBA) (Egorov & Shpil-
man, 2022), learn models from environment data and update agent policies accordingly. CoDreamer
incorporates a two-level communication system, utilising GNNs for graph-like structures, and inte-
grates communication into the world models’ computation. MAMBA extends DreamerV2 (Hafner
et al., 2021) with alterations such as using MAPPO to train policies.

Communication-based methods, like Intention Sharing (IS) (Kim et al., 2021) and Multi-Agent
Communication through Imagination (MACI) (Pretorius et al.), use environment models to convey
agents’ long-term future predictions. While CoDreamer does not specifically use a world model for
this purpose, it effectively facilitates communication to create the agents’ current state representation
for each timestep.

5 Conclusion

In this work, we tackle the issue of performance given a limited sample budget in MARL by exploring
model-based RL as a solution. We adapt the single-agent DreamerV3 algorithm (Hafner et al., 2023)
into an independent multi-agent variant, IDreamer. Recognizing limitations like partial observability,
non-stationarity, and inter-agent dynamics, we introduce CoDreamer, which enhances IDreamer
with a two-level GNN-based communication system to improve global observability, handle non-
stationarity, and model inter-agent dependencies.

Our evaluations show statistically significant improvements of CoDreamer over IDreamer and the
well-known MARL algorithm IPPO, especially in environments with high-dimensional visual obser-

8

Reinforcement Learning Conference (August 2024)

vations. These results demonstrate the potential of CoDreamer and similar model-based MARL
methods for sample-efficient learning. The issues it addresses are relevant to real-world applications
like multi-robot systems and on-robot learning. We see CoDreamer as a promising step toward
scalable, communicative model-based MARL, with potential for significant real-world impact.

References
John P Agapiou, Alexander Sasha Vezhnevets, Edgar A Duéñez-Guzmán, Jayd Matyas, Yiran Mao,

Peter Sunehag, Raphael Köster, Udari Madhushani, Kavya Kopparapu, Ramona Comanescu,
et al. Melting pot 2.0. arXiv preprint arXiv:2211.13746, 2022.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural Informa-
tion Processing Systems, 34, 2021.

Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of
decentralized control of markov decision processes. Mathematics of operations research, 27(4):
819–840, 2002.

Matteo Bettini, Ryan Kortvelesy, Jan Blumenkamp, and Amanda Prorok. Vmas: A vectorized multi-
agent simulator for collective robot learning. The 16th International Symposium on Distributed
Autonomous Robotic Systems, 2022.

Matteo Bettini, Ajay Shankar, and Amanda Prorok. Heterogeneous multi-robot reinforcement learn-
ing. arXiv preprint arXiv:2301.07137, 2023.

Jan Blumenkamp and Amanda Prorok. The emergence of adversarial communication in multi-agent
reinforcement learning. In Conference on Robot Learning, pp. 1394–1414. PMLR, 2021.

Xavier Bouthillier, Pierre Delaunay, Mirko Bronzi, Assya Trofimov, Brennan Nichyporuk, Justin
Szeto, Nazanin Mohammadi Sepahvand, Edward Raff, Kanika Madan, Vikram Voleti, et al. Ac-
counting for variance in machine learning benchmarks. Proceedings of Machine Learning and
Systems, 3:747–769, 2021.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In Inter-
national Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=F72ximsx7C1.

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco
Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de las Casas, Craig Don-
ner, Leslie Fritz, Cristian Galperti, Andrea Huber, James Keeling, Maria Tsimpoukelli, Jackie
Kay, Antoine Merle, Jean-Marc Moret, Seb Noury, Federico Pesamosca, David Pfau, Olivier
Sauter, Cristian Sommariva, Stefano Coda, Basil Duval, Ambrogio Fasoli, Pushmeet Kohli, Ko-
ray Kavukcuoglu, Demis Hassabis, and Martin Riedmiller. Magnetic control of tokamak plas-
mas through deep reinforcement learning. Nature, 602(7897):414–419, February 2022. doi:
10.1038/s41586-021-04301-9. URL https://doi.org/10.1038/s41586-021-04301-9.

Rotem Dror, Segev Shlomov, and Roi Reichart. Deep dominance-how to properly compare deep
neural models. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pp. 2773–2785, 2019.

Vladimir Egorov and Aleksei Shpilman. Scalable multi-agent model-based reinforcement learning.
arXiv preprint arXiv:2205.15023, 2022.

Benjamin Ellis, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan, Jakob N. Fo-
erster, and Shimon Whiteson. Smacv2: An improved benchmark for cooperative multi-agent
reinforcement learning, 2022. URL https://arxiv.org/abs/2212.07489.

9

https://openreview.net/forum?id=F72ximsx7C1
https://openreview.net/forum?id=F72ximsx7C1
https://doi.org/10.1038/s41586-021-04301-9
https://arxiv.org/abs/2212.07489

Reinforcement Learning Conference (August 2024)

Jakob Foerster, Ioannis Alexandros Assael, Nando De Freitas, and Shimon Whiteson. Learning
to communicate with deep multi-agent reinforcement learning. Advances in neural information
processing systems, 29, 2016.

Ghost Town Games. Overcooked, 2016. URL https://store.steampowered.com/app/448510/
Overcooked/.

Rihab Gorsane, Omayma Mahjoub, Ruan John de Kock, Roland Dubb, Siddarth Singh, and Arnu
Pretorius. Towards a standardised performance evaluation protocol for cooperative marl. Advances
in Neural Information Processing Systems, 35:5510–5521, 2022.

Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent control using
deep reinforcement learning. In Autonomous Agents and Multiagent Systems: AAMAS 2017
Workshops, Best Papers, São Paulo, Brazil, May 8-12, 2017, Revised Selected Papers 16, pp.
66–83. Springer, 2017.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=S1lOTC4tDS.

Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=0oabwyZbOu.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models, 2023.

Auke Jan Ijspeert, Alcherio Martinoli, Aude Billard, and Luca Maria Gambardella. Collaboration
through the exploitation of local interactions in autonomous collective robotics: The stick pulling
experiment. Autonomous Robots, 11:149–171, 2001.

Jiechuan Jiang and Zongqing Lu. Learning attentional communication for multi-agent cooperation.
Advances in neural information processing systems, 31, 2018.

Woojun Kim, Jongeui Park, and Youngchul Sung. Communication in multi-agent reinforcement
learning: Intention sharing. In International Conference on Learning Representations, 2021.

Xiangyu Kong, Bo Xin, Fangchen Liu, and Yizhou Wang. Revisiting the master-slave architecture
in multi-agent deep reinforcement learning. arXiv preprint arXiv:1712.07305, 2017.

Ryan Kortvelesy and Amanda Prorok. Qgnn: Value function factorisation with graph neural net-
works. arXiv preprint arXiv:2205.13005, 2022.

Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zając, Olivier Bachem, Lasse Espeholt,
Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research
football: A novel reinforcement learning environment. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 4501–4510, 2020.

Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the
carbon emissions of machine learning. arXiv preprint arXiv:1910.09700, 2019.

Haim Levy. Stochastic dominance and expected utility: Survey and analysis. Management science,
38(4):555–593, 1992.

Qimai Li, Zhichao Han, and Xiao-ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. Proceedings of the AAAI Conference on Artificial Intelligence, 32
(1), Apr. 2018. doi: 10.1609/aaai.v32i1.11604. URL https://ojs.aaai.org/index.php/AAAI/
article/view/11604.

10

https://store.steampowered.com/app/448510/Overcooked/
https://store.steampowered.com/app/448510/Overcooked/
https://openreview.net/forum?id=S1lOTC4tDS
https://openreview.net/forum?id=0oabwyZbOu
https://ojs.aaai.org/index.php/AAAI/article/view/11604
https://ojs.aaai.org/index.php/AAAI/article/view/11604

Reinforcement Learning Conference (August 2024)

Qingbiao Li, Fernando Gama, Alejandro Ribeiro, and Amanda Prorok. Graph neural networks
for decentralized multi-robot path planning. In 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 11785–11792. IEEE, 2020.

Jerry Luo, Cosmin Paduraru, Octavian Voicu, Yuri Chervonyi, Scott Munns, Jerry Li, Crystal Qian,
Praneet Dutta, Jared Quincy Davis, Ningjia Wu, et al. Controlling commercial cooling systems
using reinforcement learning. arXiv preprint arXiv:2211.07357, 2022.

Henry B Mann and Donald R Whitney. On a test of whether one of two random variables is
stochastically larger than the other. The annals of mathematical statistics, pp. 50–60, 1947.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang,
Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph placement methodology
for fast chip design. Nature, 594(7862):207–212, 2021.

Thanh Thi Nguyen, Ngoc Duy Nguyen, and Saeid Nahavandi. Deep reinforcement learning for
multiagent systems: A review of challenges, solutions, and applications. IEEE transactions on
cybernetics, 50(9):3826–3839, 2020.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In International Conference on Machine Learning,
pp. 16828–16847. PMLR, 2022.

Tomoki Nishi, Keisuke Otaki, Keiichiro Hayakawa, and Takayoshi Yoshimura. Traffic signal control
based on reinforcement learning with graph convolutional neural nets. In 2018 21st International
Conference on Intelligent Transportation Systems (ITSC), pp. 877–883, 2018. doi: 10.1109/ITSC.
2018.8569301.

Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V. Albrecht. Benchmarking
multi-agent deep reinforcement learning algorithms in cooperative tasks. In Proceedings of the
Neural Information Processing Systems Track on Datasets and Benchmarks (NeurIPS), 2021.
URL http://arxiv.org/abs/2006.07869.

Peng Peng, Ying Wen, Yaodong Yang, Quan Yuan, Zhenkun Tang, Haitao Long, and Jun Wang.
Multiagent bidirectionally-coordinated nets: Emergence of human-level coordination in learning
to play starcraft combat games. arXiv preprint arXiv:1703.10069, 2017.

Arnu Pretorius, Scott Cameron, Andries Petrus Smit, Elan van Biljon, Lawrence Francis, Femi
Azeez, Alexandre Laterre, and Karim Beguir. Learning to communicate through imagination
with model-based deep multi-agent reinforcement learning.

Amanda Prorok. Graph neural networks for learning robot team coordination. arXiv preprint
arXiv:1805.03737, 2018.

Jenny C. A. Read, Shah Farzana Begum, Alice McDonald, and Jack Trowbridge. The binocular
advantage in visuomotor tasks involving tools. i-Perception, 4(2):101–110, January 2013. doi:
10.1068/i0565. URL https://doi.org/10.1068/i0565.

Craig W Reynolds. Flocks, herds and schools: A distributed behavioral model. In Proceedings of
the 14th annual conference on Computer graphics and interactive techniques, pp. 25–34, 1987.

Rajarshi Roy, Jonathan Raiman, Neel Kant, Ilyas Elkin, Robert Kirby, Michael Siu, Stuart Oberman,
Saad Godil, and Bryan Catanzaro. Prefixrl: Optimization of parallel prefix circuits using deep
reinforcement learning. In 2021 58th ACM/IEEE Design Automation Conference (DAC), pp.
853–858. IEEE, 2021.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas
Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr, Jakob Foerster, and Shimon
Whiteson. The StarCraft Multi-Agent Challenge. CoRR, abs/1902.04043, 2019.

11

http://arxiv.org/abs/2006.07869
https://doi.org/10.1068/i0565

Reinforcement Learning Conference (August 2024)

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, and
David Silver. Mastering atari, go, chess and shogi by planning with a learned model. Nature, 588
(7839):604–609, December 2020. doi: 10.1038/s41586-020-03051-4. URL https://doi.org/10.
1038/s41586-020-03051-4.

Lloyd S Shapley. Stochastic games. Proceedings of the national academy of sciences, 39(10):1095–
1100, 1953.

Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communication with backpropagation.
Advances in neural information processing systems, 29, 2016.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Ekaterina Tolstaya, Fernando Gama, James Paulos, George Pappas, Vijay Kumar, and Alejandro
Ribeiro. Learning decentralized controllers for robot swarms with graph neural networks. In
Conference on robot learning, pp. 671–682. PMLR, 2020.

Daniël Willemsen, Mario Coppola, and Guido CHE de Croon. Mambpo: Sample-efficient multi-robot
reinforcement learning using learned world models. In 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 5635–5640. IEEE, 2021.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. Advances in Neural Information Processing Systems, 34:25476–25488, 2021.

Weinan Zhang, Xihuai Wang, Jian Shen, and Ming Zhou. Model-based multi-agent policy optimiza-
tion with adaptive opponent-wise rollouts. arXiv preprint arXiv:2105.03363, 2021.

A Additional Results

0.0 0.2 0.4 0.6 0.8 1.0
P(X > Y)

CODREAMER

CODREAMER

IDREAMER

Algorithm X

IPPO

IDREAMER

IPPO

Algorithm Y

Figure 8: Probability of Improvement on VMAS Tasks. Each row shows the probability of
improvement, with 95% CIs, that algorithm X outperforms algorithm Y .

Figure 8 shows that CoDreamer has a 100% probability of improvement over IPPO and over 80%
probability of outperforming IDreamer. IDreamer also has a high probability of outperforming
IPPO. Since all lower bounds of CIs are above 0.5 and the upper bounds are above 0.75, the results
are statistically significant and meaningful (Agarwal et al., 2021).

Figure 9 shows similar results in the probability of improvement metrics. IDreamer has a high
probability of improvement over IPPO, and CoDreamer has a 100% probability of outperforming
IPPO. CoDreamer also has a higher probability of outperforming IDreamer in Melting Pot tasks.
Although CoDreamer’s performance improvement is larger in magnitude in Melting Pot compared to
VMAS, the lower probability of improvement and CI indicates slightly greater uncertainty. However,
all probabilities are statistically significant and meaningful.

12

https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1038/s41586-020-03051-4

Reinforcement Learning Conference (August 2024)

0.0 0.2 0.4 0.6 0.8 1.0
P(X > Y)

CODREAMER

CODREAMER

IDREAMER

Algorithm X

IPPO

IDREAMER

IPPO

Algorithm Y

Figure 9: Probability of Improvement on Melting Pot Tasks. Each row shows the probability
of improvement, with 95% CIs, that algorithm X outperforms algorithm Y .

B Empirical Validation of Modelling Expressivity

To empirically validate our expressivity claims, we present a modified version of the Estimate Game
(Kortvelesy & Prorok, 2022) known as the Sequential Estimate Game. This environment extends
the original game into a multi-step Partially Observable Markov Game (POMG), which cannot be
accurately represented solely based on the information of individual agents.

Commonly used environments (Samvelyan et al., 2019; Ellis et al., 2022; Kurach et al., 2020; Pa-
poudakis et al., 2021) in MARL literature suggest that cooperation and coordination are required to
achieve an optimal policy. However, this is often simply conjectured and generally remains unknown.
Due to this fact, the original variant of the Estimate Game was proposed to serve as a stress test
for multi-agent cooperative systems. The environment is inherently simple yet provably requires
coordination through communication to solve by explicitly constructing a dependency for agents to
utilise non-local information.

In the original Estimate Game, all n agents are assigned a local state si ∈ [0, 1] where each agent’s
observation is directly their state oi = si. Concurrently, a random adjacency matrix A is con-
structed, using an edge density ρ, that represents agent connectivity and defines which agents are
interdependent.

The explicit interdependence on non-local information is constructed through the reward function
which is defined as follows for agent i at timestep t:

yi
t = 2 ·

(
η · (si

t − 0.5) + (1 − η) · 1
N i

∑
j∈N i

(sj
t − 0.5)

)
+ 0.5

ri
t = −max(| ai

t

|A|
+ 1

2 · |A|
− yi

t|) − 1
2 · |A|

, 0)

where N i is agent i’s neighbours defined by A.

In simpler terms, this reward function defines the task of agent i predicting the constructed target
yi which is dependent on its neighbours N i. To make the action space discrete, each agent has
a predetermined number of actions |A| that correspond to equally spaced intervals between 0 and
1. The original Estimate game utilises a global reward to be represented as a Dec-MDP which
is the minimum of all local rewards. However, we train agents using their local rewards in order
to thoroughly evaluate CoDreamer’s ability to learn more independent reward functions that are
still dependent on non-local information. Thus, the Sequential Estimate Game can be viewed as a
POMG with agent observations being equal to agent local states.

Our extension to the Estimate Game involves the construction of a simple transition function:

13

Reinforcement Learning Conference (August 2024)

si
t+1 = 1

2 · cos(ai
t + η ∗ si

t + (1 − η) · 1
N ⟩

∑
j∈N i

sj
t) + 1

2

This transition function allows agents to retain unique states without the risk of all agents converging
to the same value due to neighbourhood aggregation. Additionally, as it is constructed similarly
to the reward function, it introduces an inter-agent dependence. In the sequential variant of the
Estimate Game, the randomly generated adjacency matrix A is held constant for the entirety of an
episode thus giving certain agents complete independence in their reward and transition functions.
The use of a static adjacency matrix per episode is done to evaluate each method’s ability to both
model independent agents and inter-dependent agents simultaneously. We list the specific values
used in our implementation of the Sequential Estimate Game in Table 1.

Name Symbol Value
Number of Agents n 4
Number of Timesteps T 5
Observation Size |si

t| 1
Initial State si

0 U(0, 1)
Number of Actions |A| 4
Edge Density ρ 0.6
Local State Percentage η 0.3

Table 1: Specific instantiation of the Sequential Estimate Game evaluated

0.78 0.84 0.90 0.96

IDREAMER

IPPO

CODREAMER

Median

0.78 0.84 0.90 0.96

IQM

0.78 0.84 0.90 0.96

Mean

Normalised return

Figure 10: Aggregate metrics on Sequential Estimate Game with 95% CIs. Reported from
left to right are: Median (↑), IQM (↑), Mean (↑). We use the (↑, ↓) notation to indicate whether
higher or lower scores are desired.

We present the final aggregated results in Figure 10. As expected, CoDreamer achieves near-optimal
performance with very low variance between runs. Notably, IDreamer outperforms IPPO. We hy-
pothesise that due to IDreamer learning the dynamics for all agents, it is likely aware of the episodes
where an agent is independent thus allowing it to learn policies specifically for these agents when
possible.

Figure 11 shows the performance profile and sample efficiency of each algorithm. The performance
profile confirms our aggregated metrics and shows that CoDreamer has very low variance in its
performance over all runs. Additionally, we see that all methods converge to their final performance
at around 100,000 - 200,000 timesteps. Interestingly, we see that IDreamer achieves a significant
increase in performance at around 300,000 timesteps. This further gives evidence to our hypothesis
that, given enough data, IDreamer manages to learn the optimal policy for independent agents
specifically. It is possible that through the use of a recurrent IPPO baseline, the same policy would
be found.

Although not conventional, we present the relevant loss curves in Figure 12 to further evaluate the
world modelling differences between CoDreamer and IDreamer. In the context of the Sequential

14

Reinforcement Learning Conference (August 2024)

0.0 0.2 0.4 0.6 0.8 1.0
Normalised return ()

0.00

0.25

0.50

0.75

1.00
Fr

ac
tio

n
of

 ru
ns

 w
ith

 sc
or

e
>

0 1 2 3 4 5
Number of timesteps (1e5)

0.2

0.4

0.6

0.8

1.0

No
rm

al
ise

d
re

tu
rn

IDREAMER IPPO CODREAMER

Figure 11: Sequential Estimate Game Evaluation. Left: Performance profiles indicating the
percentage of runs that scored above a certain normalised return. Right. IQM min-max normalised
scores as a function of environment timesteps. This measures the sample efficiency of all the agents.
For both plots, the shaded regions show 95% CIs.

0 1 2 3 4 5
Executor Steps (1e5)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

De
co

de
r L

os
s

0 1 2 3 4 5
Executor Steps (1e5)

1.000

1.200

1.400

1.600

1.800

2.000

Dy
na

m
ics

 L
os

s

0 1 2 3 4 5
Executor Steps (1e5)

0.000

0.200

0.400

0.600

0.800

1.000

Re
wa

rd
 L

os
s

0 1 2 3 4 5
Executor Steps (1e5)

0.000

0.020

0.040

0.060

0.080

0.100

Di
sc

ou
nt

 L
os

s
IDREAMER CODREAMER

Figure 12: Mean prediction loss curves over all Sequential Estimate Game training runs. Co-
Dreamer significantly achieves lower loss values in predicting each respective environment quantity.

Estimate Game, an environment crafted to explicitly have a high degree of inter-agent dependence,
we see that CoDreamer achieves much lower losses over the course of training. As each loss directly
correlates to prediction accuracy, it is fair to claim that the modelling of the environment is much
more accurate using CoDreamer.

15

Reinforcement Learning Conference (August 2024)

Although these results confirm our initial claims, we acknowledge that the Sequential Estimate Game
is a highly limited environment that might not be representative of more realistic MARL use cases.

C Ablation

Following our initial set of experiments, we sought to isolate the individual impact of each distinct
level of communication within CoDreamer. Consequently, we evaluate a separate set of experiments
where only a single level of communication is utilised either within the world model or actor-critic.
Particularly, when limiting CoDreamer to use communication exclusively within the world model, our
objective is to investigate if the learnt state representation holds enough information for independent
actor-critic networks to achieve high performance. For the ablation results, we term the separate
levels of communication as WM Comm for the world model and AC comm for the actor-critic.

C.1 Estimate Game

0.88 0.92 0.96

AC COMM

IDREAMER

CODREAMER

WM COMM

Median

0.88 0.92 0.96

IQM

0.88 0.92 0.96

Mean

Normalised return

Figure 13: Aggregate metrics for Sequential Estimate Game Ablation with 95% CIs. Re-
ported from left to right are: Median (↑), IQM (↑), Mean (↑). We use the (↑, ↓) notation to indicate
whether higher or lower scores are desired.

Interestingly, we observe in Figure 13 that IDreamer, which utilises no communication, outperforms
AC Comm. This is seemingly due to how Direct-style model-based methods train. If the world
model is unable to capture the dynamics and reward functions of the environment, then the learnt
representations of the state will be largely incorrect. As this is the case, using communication on top
of the inaccurate state representations as well as generating and training on synthetic data will lead
to sub-optimal policies. This would naturally make one assume that the performance of IDreamer
and AC Comm would perform the same, however, the added complexity of communication most
likely inhibits learning from even performing well on more independent agents. Remarkably, we see
that utilising communication in the world model exclusively i.e. WM Comm, allows the independent
actor-critic networks to perform significantly better than IDreamer. This indicates that there can
be a large degree of overlap in the information that is relevant for the world model and that which
is relevant for the actor-critic networks. However, we do note that in the particular instance of the
Sequential Estimate Game, this overlap of information is highly evident by the construction of the
environment.

The performance profiles and sample efficiency plots in Figure 14 give results consistent with those
in Section B. We see that all methods converge quickly to their final performance. Both IDreamer
and AC Comm have a much higher degree of variance in their performance compared to CoDreamer
and WM Comm. This further confirms our hypothesis that both IDreamer and AC Comm obtain
their performance through modelling the agents that are seemingly independent, which change every
episode thereby introducing potential high variance in returns.

16

Reinforcement Learning Conference (August 2024)

0.0 0.2 0.4 0.6 0.8 1.0
Normalised return ()

0.00

0.25

0.50

0.75

1.00
Fr

ac
tio

n
of

 ru
ns

 w
ith

 sc
or

e
>

0 1 2 3 4 5
Number of timesteps (1e5)

0.2

0.4

0.6

0.8

1.0

No
rm

al
ise

d
re

tu
rn

AC COMM IDREAMER CODREAMER WM COMM

Figure 14: Sequential Estimate Game Ablation. Left: Performance profiles indicating the
percentage of runs that scored above a certain normalised return. Right. IQM min-max normalised
scores as a function of environment timesteps. This measures the sample efficiency of all the agents.
For both plots, the shaded regions show 95% CIs.

0.80 0.88 0.96

AC COMM

IDREAMER

CODREAMER

WM COMM

Median

0.70 0.75 0.80 0.85

IQM

0.60 0.64 0.68 0.72

Mean

Normalised return

Figure 15: Aggregate metrics for VMAS Ablation with 95% CIs. Reported from left to right
are: Median (↑), IQM (↑), Mean (↑). We use the (↑, ↓) notation to indicate whether higher or lower
scores are desired.

C.2 VMAS

Looking at the aggregate metrics in Figure 15, we see that when exclusively utilising communications
within the world model, performance significantly decreases. These results are counter-intuitive as
we would expect that a similar pattern to the estimate game would emerge where a more shared
state representation could assist the independent actor-critic networks. This seems to indicate that
the evaluated VMAS tasks’ reward and transition functions are not highly inter-agent dependent
thereby not benefitting from the introduced expressivity. However, we do see that when adding
communication in the actor-critic networks, performance gains are had yet the results are still
close in magnitude to IDreamer. As noted before, CoDreamer outperforms IDreamer which has no
communication suggesting that the combination of both levels of communication can yield a unique
improvement that no individual part can give. Ultimately, we see from the confidence intervals that
IDreamer and CoDreamer are similar in performance and improvements can be due to experiment
stochasticity.

The sample efficiency plots presented in Figure 14 demonstrate that IDreamer and AC Comm exhibit
similar levels of sample efficiency. We see the same observation for CoDreamer and WM Comm.
These findings suggest that communication within the world model acts as the limiting factor in

17

Reinforcement Learning Conference (August 2024)

0.0 0.2 0.4 0.6 0.8 1.0
Normalised return ()

0.00

0.25

0.50

0.75

1.00
Fr

ac
tio

n
of

 ru
ns

 w
ith

 sc
or

e
>

0 1 2 3 4 5
Number of timesteps (1e5)

0.4

0.5

0.6

0.7

0.8

No
rm

al
ise

d
re

tu
rn

AC COMM IDREAMER CODREAMER WM COMM

Figure 16: VMAS Ablation. Left: Performance profiles indicating the percentage of runs that
scored above a certain normalised return. Right. IQM min-max normalised scores as a function of
environment timesteps. This measures the sample efficiency of all the agents. For both plots, the
shaded regions show 95% CIs.

sample efficiency, as increased expressivity negatively impacts early performance during the training
process.

0.0 0.2 0.4 0.6 0.8 1.0
P(X > Y)

AC COMM

WM COMM

AC COMM

WM COMM
Algorithm X

CODREAMER

CODREAMER

IDREAMER

IDREAMER
Algorithm Y

Figure 17: Probability of Improvement for VMAS Ablation. Each row shows the probability
of improvement, with 95% CIs, that algorithm X outperforms algorithm Y .

In Figure 17, we observe that both AC Comm and WM Comm have a lower probability of improve-
ment compared to IDreamer. However, these results lack statistical significance or meaning as the
CIs lower and upper bound do not surpass 0.5 and 0.75 respectively. Thus, we cannot say with
certainty that given a random task that IDreamer will perform better. Additionally, we see that
both communication levels exhibit a lower probability of improvement compared to CoDreamer, but
these differences are statistically significant and meaningful.

C.3 Melting Pot

We see when looking at the results presented in Figure 18, that CoDreamer outperforms all other
methods in every point estimate. This indicates that the combination of both levels of communi-
cation provides consistent improvements across all tasks in Melting Pot, with no specific outliers.
Interestingly, closely following CoDreamer’s performance is WM comm and then AC Comm inform-
ing us that communication in the world model provided the largest performance gains. WM Comm’s
CI’s have a large overlap with CoDreamer indicating that there is uncertainty in the improvements
provided by the second level of communication. This seems to suggest that the state representation

18

Reinforcement Learning Conference (August 2024)

0.15 0.30 0.45

AC COMM

IDREAMER

CODREAMER

WM COMM

Median

0.15 0.30 0.45

IQM

0.24 0.32 0.40 0.48

Mean

Normalised return

Figure 18: Aggregate metrics for Melting Pot Ablation with 95% CIs. Reported from left to
right are: Median (↑), IQM (↑), Mean (↑). We use the (↑, ↓) notation to indicate whether higher or
lower scores are desired.

learnt is beneficial and provides enough shared information for the independent actor-critic net-
works to exploit and cooperate without needing their own form of explicit communication. We posit
that the Melting Pot environments, due to their visual nature, give each agent’s state representa-
tion enough information for an independent actor-critic network to know what their teammates are
planning on doing, thus simply utilising communications in the world model is enough to improve
cooperation.

0.0 0.2 0.4 0.6 0.8 1.0
Normalised return ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

0 1 2 3 4 5
Number of timesteps (1e5)

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ise

d
re

tu
rn

AC COMM IDREAMER CODREAMER WM COMM

Figure 19: Melting Pot Ablation. Left: Performance profiles indicating the percentage of runs
that scored above a certain normalised return. Right. IQM min-max normalised scores as a function
of environment timesteps. This measures the sample efficiency of all the agents. For both plots, the
shaded regions show 95% CIs.

The performance profiles in Figure 14 show us that although AC Comm has a slightly higher lower
bound in performance, both CoDreamer and WM Comm have higher upper bounds indicating that
certain environments do greatly benefit from the communicative world models whereas other environ-
ments can be negatively impacted due to the increased complexity albeit marginally. Furthermore,
we observe stochastic dominance of IDreamer by all communicative methods. Lastly, We observe
in the sample efficiency plots that all communicative methods experience roughly the same sample
efficiency with no method being clearly superior.

In the probability of improvement, presented in Figure 20, we see interesting results. Unlike in
VMAS, both AC Comm and WM Comm have a probability greater than 0.5 of improving upon
IDreamer performance with both methods achieving statistical significance and meaning. When

19

Reinforcement Learning Conference (August 2024)

0.0 0.2 0.4 0.6 0.8 1.0
P(X > Y)

AC COMM

WM COMM

AC COMM

WM COMM
Algorithm X

CODREAMER

CODREAMER

IDREAMER

IDREAMER
Algorithm Y

Figure 20: Probability of Improvement for Melting Pot Ablation. Each row shows the
probability of improvement, with 95% CIs, that algorithm X outperforms algorithm Y .

compared to CoDreamer, we see the opposite relationship with both AC Comm and WM Comm
being below the 0.5 value. However, in this instance, we see that WM Comm’s result is not sta-
tistically significant. What we can interpret from these results is that, regardless of the magnitude
of improvement, in Melting Pot tasks, communication in either level of CoDreamer offers improve-
ments, however, we cannot say with statistical certainty that the use of communication within the
actor-critic networks, in addition to the world model, improved performance as CoDreamer and WM
Comm perform similarly.

D Experimental Details

D.1 Evaluation Methodology

In recent times, there has been a noticeable trend towards evaluating RL algorithms on larger suites
of tasks with comparisons being made on aggregate performance point estimates, such as mean or
median, for each task independently. However, these measures often neglect the inherent statistical
uncertainty that comes with evaluations based on a limited number of training runs and seeds. Fur-
thermore, a significant portion of research has started to focus on highly computationally-intensive
benchmarks whereby each training run can last from a few hours to several weeks. Due to this, it is
computationally impractical to evaluate a large number of runs per task thereby further increasing
the statistical uncertainty associated with the reported metrics. To mitigate this uncertainty and
obtain more statistically validated results, we adopt the evaluation methodology presented in Agar-
wal et al. (2021) and Gorsane et al. (2022) to assess the performance of IDreamer and CoDreamer
as well as a model-free baseline IPPO.

For each algorithm, we conduct evaluations across M tasks within a specific environment suite,
utilising N = 4 independent training runs per task m ∈ M . During each training run n ∈ N ,
we assess algorithm performance over E = 32 distinct evaluation episodes at intervals of 10,000
environment timesteps. At each interval i, we compute the mean return Gi

m,n per agent, over the E
episodes. Additionally, at each evaluation interval, we employ model checkpointing to save the best-
performing model. The model with the largest mean return achieved over all intervals is retained
for a subsequent final evaluation.

Upon completing a training run n ∈ N , we evaluate the best model, discovered during interval
evaluations, over 10 × E = 320 episodes. This evaluation process yields normalised scores xm,n, for
m = 1, . . . , M and n = 1, . . . , N , acquired by scaling each per-task score based on the minimum and
maximum scores observed throughout all training runs in the specific task. Consequently, we obtain
a set of normalised scores x1:M,1:N for each algorithm. To aggregate the performance of an algorithm,
we map the set of normalised scores into a singular scalar point estimate i.e. x1:M,1:N → x̄.

20

Reinforcement Learning Conference (August 2024)

Figure 21: Training process of IDreamer world model: Each agents’ world model encodes
their respective observation oi

t and RSSM recurrent state hi
t into the discrete stochastic state zi

t

known as the posterior state. Additionally, at each step, the world model for agent i produces a
prior state ẑi

t that is predicted solely by the RSSM recurrent state hi
t and trained towards zi

t. Given
hi

t, zi
t, and the action ai

t, the next recurrent state is produced hi
t+1. Each agent’s posterior state zi

t

is used to reconstruct the observation oi
t in order to learn a better representation. The sequence of

observations oi
t:T is unrolled over time.

By following this methodology, we consolidate all independent tasks M and training runs N of
an environment suite into a single comprehensive score and utilise a 95% Confidence Interval (CI)
obtained from stratified bootstrapping over all M × N experiments treated as random samples.
This ensures that although a large number of runs cannot be obtained for each task on its own,
by performing statistical analysis over all runs of all tasks, we emulate the statistical confidence
obtained when conducting a large number of runs over a single task whilst mitigating a lack of task
diversity. Consequently, we report the results for each environment suite as a whole, rather than
the tasks independently.

D.2 Metrics

Using the set of normalised scores, in addition to traditional aggregate point estimates such as
median and mean, we employ the following metrics to measure algorithmic performance:

• Interquartile Mean (IQM): We utilise the IQM, which ignores both the lower 25% and
upper 25% of all runs, calculating the mean normalised score of the central 50% (N ·M

2).
This metric is more robust to outliers in training runs than a conventional mean and has
less bias when compared to median. Additionally, it has been shown that IQM has greater
statistical efficiency than median and is thereby able to detect algorithmic improvements
using fewer training runs (Agarwal et al., 2021).

21

Reinforcement Learning Conference (August 2024)

Figure 22: Training process of IDreamer Actor-Critic: Each agents’ world model generates
synthetic trajectories by auto-regressively predicting the next discrete ẑi

t and recurrent state hi
t.

These states form the compact world model state for each agent’s actor-critic networks.

• Probability of Improvement: The probability of improvement quantifies the likelihood
of algorithm X outperforming algorithm Y on a randomly chosen task m. This metric is
useful in quickly identifying how robust the improvement an algorithm brings. This metric
uses the Mann-Whitney U-statistic (Mann & Whitney, 1947) for its computation.
To formally elaborate, we give the following definitions:

Pr(X > Y) = 1
M

M∑
m=1

Pr(Xm > Ym)

where Pr(Xm > Ym) is the probability of algorithm X performing better on a specific task
m.
Furthermore, the metric Pr(Xm > Ym) is defined as:

Pr(Xm > Ym) = 1
NK

N∑
i=1

K∑
j=1

S(xm,i, ym,j)

where

S(x, y) =


1, if y < x
1
2 , if y = x

0, if y > x

22

Reinforcement Learning Conference (August 2024)

When interpreting the probability of improvement metric, as per the Neyman-Pearson sta-
tistical testing criterion outlined by Bouthillier et al. (2021), if the lower bound of the CI
is greater than the null hypothesis of Pr(X > Y) = 0.5, then the result is statistically
significant. In addition to statistical significance, if the upper bound of the CI exceeds the
recommended threshold of 0.75, then the result is statistically meaningful.

Additionally, we present algorithm performance using performance profiles, which visually display
the entire set of normalised scores x1:M,1:N and provide enhanced insights into performance variabil-
ity across tasks compared to interval estimates of aggregate metrics. Specifically, the performance
profile reports the fraction of runs that obtained a normalised score above a certain threshold. This
allows us to easily perform a visual comparison of methods and determine if one method stochasti-
cally dominates another. In the context of performance profiles, if one curve is strictly positioned
above another, it is interpreted as having stochastic dominance3 over the other (Levy, 1992; Dror
et al., 2019; Agarwal et al., 2021). The performance profiles also allow us to better identify the
empirical lower and upper bounds on the performance of an algorithm. Finally, to evaluate sample
efficiency, we compute the IQM score of each interval evaluation and plot it against the number of
environment steps taken.

D.3 Implementation Specifics

Each algorithm is trained for 500,000 environment timesteps collected by 8 independent workers. All
hyperparameters and network sizes are listed in Section D.4 and D.5 in the appendix. Additionally,
for both IDreamer and CoDreamer, we perform 500 training steps of the world model before any
behaviour is learnt. This form of pre-training is performed in order to avoid negative performance
effects due to a primacy bias, a common RL flaw examined by Nikishin et al. (2022), when learning
on inaccurate world model states.

As an on-policy algorithm, IPPO is typically considered to be less sample efficient compared to its
off-policy counterparts. However, PPO makes use of off-policy correction techniques to enable the
reuse of recently collected data for multiple training steps. To enhance sample efficiency, we increase
the number of epochs and mini-batches within the algorithm, enabling more training steps per batch
of collected data. The specific values used can be found in Section D.5.

D.4 Model Sizes

Dimension Size
GRU recurrent units 512
CNN multiplier 32
Dense hidden units 512
MLP layers 2
RSSM GNN Layers 1
Reward & Cont GNN Layers 1
Visual Environment Parameters 22M
Vector Environment Parameters 16M

Table 2: World Model Size

We list the model sizes used in Tables 2, 3, and 4.

23

Reinforcement Learning Conference (August 2024)

Dimension Size
Dense hidden units 512
MLP layers 2
GNN Layers 1
Actor Parameters 1.6M
Critic Parameters 1.7M

Table 3: Actor-Critic Model Size

Dimension Size
Dense hidden units 512
MLP layers 2
Actor Parameters 1.6M
Critic Parameters 1.7M

Table 4: PPO Model Size

Name Symbol Value
General
Replay capacity (FIFO) - 106

Batch size B 16
Batch length T 64
Activation - LayerNorm + SiLU
World Model
Number of latents - 32
Classes per latent - 32
Reconstruction loss scale βpred 1.0
Dynamics loss scale βdyn 0.5
Representation loss scale βrep 0.1
Learning rate - 10−4

Adam epsilon ϵa 10−8

Gradient clipping - 1000
Actor Critic
Imagination horizon H 15
Discount Factor γ 0.997
Return lambda λ 0.95
Target Critic Polyak Averaging Step - 0.02
Actor entropy scale η 3 · 10−4

Learning rate - 3 · 10−5

Adam epsilon ϵa 10−5

Gradient clipping - 100

Table 5: Hyperparameters used in all experiments for both CoDreamer and IDreamer.

24

Reinforcement Learning Conference (August 2024)

Name Symbol Value
General
Queue capacity (FIFO) - 1000
Batch size B 64
Batch length T 64
Activation - ReLu
Algorithm
Learning rate - 10−3 − 5 · 10−5

Learning rate Schedule - Linear (10,000 training steps)
Adam epsilon ϵa 10−5

Gradient clipping - 1.0
Number of Epochs - 30
Number of Minibatches - 32
Discount Factor γ 0.997
Clipping Epsilon ϵc 0.3
Actor entropy scale η 10−2

Value loss coefficient - 0.5
GAE lambda λ 0.95

Table 6: Hyperparameters used in all experiments for IPPO.

D.5 Hyperparameters

We list the hyperparameters used in Tables 5 and 6.

D.6 Evaluation Details

As recommended by Agarwal et al. (2021), for our aggregate point estimates confidence intervals, we
use stratified bootstrapping with 50,000 bootstrap replications. For our probability of improvement
and performance profiles, we use 2000 bootstrap replications. Lastly, for our sample efficiency plots,
we use 5000 bootstrap replications.

Environment Task Minimum Observed Return Maximum Observed Return
Estimate Game Sequential -3.13 0.00
VMAS Flocking -37.65 2.58
VMAS Discovery 0.00 14.20
VMAS Buzz Wire -29.97 1.81
Melting Pot Daycare 0 189.00
Melting Pot Cooperative Mining 8.00 1003.00
Melting Pot Collaborative Cooking: Asymmetric 0.00 2514.00
Melting Pot Collaborative Cooking: Forced 0.00 49.00

Table 7: Observed Min-Max scores used for normalisation

We list the minimum and maximum scores observed and used for normalisation in Table 7.

25

Reinforcement Learning Conference (August 2024)

Environment Task Observation Spec. Action Spec. No. of Agents Avg. Time Horizon
VMAS Flocking Vector (18) Discrete (5) 4 500
VMAS Discovery Vector (21) Discrete (5) 5 500
VMAS Buzz Wire Vector (8) Discrete (5) 2 500
Melting Pot Daycare Pixels (64, 64, 3) Discrete (8) 2 1000
Melting Pot Cooperative Mining Pixels (64, 64, 3) Discrete (8) 4 1500
Melting Pot Collaborative Cooking: Asymmetric Pixels (64, 64, 3) Discrete (8) 2 1000
Melting Pot Collaborative Cooking: Forced Pixels (64, 64, 3) Discrete (8) 2 1000

Table 8: External Environment Summary

Figure 23: VMAS Flocking environment. Example illustration showcasing 4 agents surrounding
a target position whilst avoiding obstacles

D.7 Evaluation Environments Description

D.7.1 Flocking

The Flocking task (see Figure 23) generates an open environment containing M randomly positioned
obstacles. N agents are situated within this environment, tasked with encircling a moving target
whilst avoiding collisions with the obstacles as well as one another. Flocking has been a long-standing
benchmark in the field of robotic coordination (Reynolds, 1987) and serves as an ideal challenge due
to the complexity of coordinating multiple agents. We specify our instantiation of the Flocking task
in Table 9.

Name Symbol Value
Number of Agents N 4
Number of Obstacles M 5

Table 9: Specific instantiation of VMAS Flocking

D.7.2 Discovery

The Discovery task, drawing inspiration from the Stick Pulling experiment (Ijspeert et al., 2001),
places N agents in an open setting with M objectives. The agents are assigned to cover as many
objectives as they can while avoiding collisions. An objective is considered satisfied when K agents
are within a predetermined distance D from it. After a goal has been covered by K agents, each of
them is rewarded. It has been shown that the performance can be significantly improved through
communication when the number of agents, N , is less than the number of goals, M . We specify our
instantiation of the Discovery task in Table 10.

26

Reinforcement Learning Conference (August 2024)

Figure 24: VMAS Discovery environment. Example illustration showcasing 5 agents covering 7
objectives.

Name Symbol Value
Number of Agents N 5
Number of Objectives M 7
Coverage Requirement K 2
Coverage Distance D 0.25

Table 10: Specific instantiation of VMAS Discovery

Figure 25: VMAS Buzz Wire environment. Example illustration showcasing 2 agents successfully
reaching the target.

D.7.3 Buzz Wire

The Buzz Wire task, based on the popular “Wire Loop" game (Read et al., 2013), requires two
agents to steer a central mass via attached linkages through a straight corridor to a designated
target. Both agents are unable to touch the borders of the corridor otherwise they fail the task and
the episode ends, introducing a fair level of difficulty. This task necessitates a high level of awareness
and coordination between the agents, as a lack of synchronised movement can result in one agent
pulling the other into the borders thereby causing failure.

D.7.4 Daycare

Daycare is a straightforward two-player game in which agents occupy one of two roles: parent or
child. In Daycare, two types of fruit can grow on either shrubs or trees. The parent can pick and
consume any fruit from a tree or shrub whereas the child can only pick fruits on shrubs and only
consumes one specific type of fruit. Each agent is rewarded equally for consuming fruit. If the child
does not consume a fruit within 200 timesteps, it throws a “tantrum" and is temporarily removed
from the game for 100 timesteps. Whilst the child is removed, the parent cannot gain any reward,
thus, two challenges exist: First, the parent must take advantage of its unique affordances and assist

3A random variable X is defined as having stochastic dominance over another random variable Y if P (X > τ) ≥
P (Y > τ) for all τ , and for at least some τ there is P (X > τ) > P (Y > τ). Intuitively this means that if we sample
a random value from X, it is likely to be larger than a random value sampled from Y .

27

Reinforcement Learning Conference (August 2024)

Figure 26: Melting Pot: Daycare environment. Example illustration the parent and child agents
collecting food.

the child to pick the specific type of fruit for it from trees. Second, the child needs to convey its
fruit preference to the parent as it can change from episode to episode.

D.7.5 Cooperative Mining

Figure 27: Melting Pot: Cooperative Mining environment. Example illustration showcasing
four agents working together to mine Iron and Gold ores.

Cooperative Mining is originally a six-player game designed to assess the effectiveness of cooperation
in multi-agent systems. In this game, two types of ore, Iron and Gold, spawn randomly in empty
spaces throughout the map. When an agent mines Iron ore, they receive a reward of 1, and this
extraction process requires no collaboration. In contrast, Gold ore demands the coordinated efforts
of two agents for successful mining, granting a reward of 8 to each participant. When an agent
initiates mining gold, the ore flashes, signalling other agents to mine within a 3-timestep window. If
no other agent attempts mining or too many agents engage, the gold ore reverts to its regular state
and no rewards are given.

By encouraging agents to maintain close proximity and collaborate in mining gold, higher rewards
can be achieved compared to mining iron individually. Additionally, through the communication
of ore locations and mining intentions, the global reward of the system can be further increased.
Thus, the Cooperative Mining game serves as a valuable benchmark for evaluating cooperation and
coordination in multi-agent learning algorithms. In this work, we utilise only four agents instead of
six.

D.7.6 Collaborative Cooking

Based on the game Overcooked (Games, 2016), Melting Pot’s Collaborative Cooking is a unique
environment where multiple players work together to follow recipes and serve food to customers.
This task involves agents creating soup by cooking three tomatoes in a pot for 20 timesteps, followed
by plating and serving to customers. Depending on the map configuration and the number of players,
these scenarios can demand a high degree of collaboration and cooperation to achieve sufficient
performance. In this work, we focus on two specific scenarios: Asymmetric and Forced.

D.7.7 Asymmetric

In the Asymmetric scenario, two players are separately placed in non-connected parts of the map
with differing proximity to plates, pots, and tomatoes. For one player, the goal delivery spot is

28

Reinforcement Learning Conference (August 2024)

Figure 28: Melting Pot: Collaborative Cooking - Asymmetric environment. Example illus-
tration of the asymmetric scenario’s map layout.

located close to the cooking pots, but far from the tomato dispenser. Conversely, the second player
has the goal delivery spot far from their pots, but close to the tomato dispenser. This setup allows
both players to function independently to some extent, but they can achieve a significantly greater
reward if they learn to collaborate and leverage their individual advantages by specialising to their
side of the map.

D.7.8 Forced

Figure 29: Melting Pot: Collaborative Cooking - Forced environment. Example illustration
of the Forced scenario’s map layout.

The Forced scenario, like the Asymmetric one, features two players on separate and non-connected
parts of the map. However, differing from Asymmetric, each player has exclusive access to certain
resources. One player has access to the tomato and plate dispensers, while the other has access to
the cooking pots and the drop-off point. Thus, to earn any reward in this setup, the players must
work together and cooperate effectively.

D.8 Environmental Impact

In the final evaluation of this work, we ran 5 different algorithms: IPPO, IDreamer, CoDreamer, AC
Comm, and WM Comm. Each of these algorithms was evaluated for 4 runs on 7 tasks each. This
equates to 5 × 4 × 7 = 140 experimental training runs. Each training run lasted for approximately
6 to 12 hours. Taking the average experiment time of 9 hours, we utilised hardware accelerators for
a total of 140 × 9 = 1260 hours.

All experiments were conducted using TPU v2 and v3 chips in the Europe-west4 and us-central1
regions on the Google Cloud Platform, which has an approximate carbon efficiency of 0.57
kgCO2eq/kWh. The TPUv2 and v3 chips have an approximate power draw of 221W and 283W
respectively. Using the average between these, we set the power draw of the hardware used to
252W.

Given these values, total carbon emissions are estimated to be:

252W × 1260h = 317.52kWh × 0.57 kgCO2eq/kWh = 180.99 kgCO2eq

These estimates are exclusively calculated for the final evaluation and not for any experiments run
during the development of the proposed methods.

29

Reinforcement Learning Conference (August 2024)

These estimations were in part conducted using the MachineLearning Impact calculator as presented
in Lacoste et al. (2019).

D.9 Supplementary Evaluation Information

IDREAMER IPPO CODREAMER
Median 0.89 [0.85, 0.91] 0.80 [0.78, 0.82] 0.97 [0.96, 0.97]
IQM 0.90 [0.84, 0.91] 0.79 [0.78, 0.83] 0.97 [0.96, 0.97]
Mean 0.89 [0.85, 0.91] 0.80 [0.78, 0.82] 0.97 [0.96, 0.97]
Optimality Gap 0.11 [0.09, 0.15] 0.20 [0.18, 0.22] 0.03 [0.03, 0.04]

Table 11: Aggregated Results for Sequential Estimate Game

IDREAMER IPPO CODREAMER
Median 0.91 [0.90, 0.92] 0.92 [0.92, 0.93] 0.93 [0.93, 0.94]
IQM 0.81 [0.79, 0.82] 0.79 [0.78, 0.79] 0.84 [0.82, 0.84]
Mean 0.68 [0.66, 0.71] 0.65 [0.65, 0.66] 0.72 [0.70, 0.74]
Optimality Gap 0.32 [0.29, 0.34] 0.35 [0.34, 0.35] 0.28 [0.26, 0.30]

Table 12: Aggregated Results for VMAS

IDREAMER IPPO CODREAMER
Median 0.30 [0.17, 0.44] 0.05 [0.05, 0.06] 0.48 [0.45, 0.50]
IQM 0.30 [0.17, 0.44] 0.05 [0.05, 0.06] 0.48 [0.45, 0.50]
Mean 0.34 [0.25, 0.44] 0.05 [0.04, 0.05] 0.51 [0.50, 0.53]
Optimality Gap 0.66 [0.56, 0.75] 0.95 [0.95, 0.96] 0.49 [0.47, 0.50]

Table 13: Aggregated Results for Melting Pot

We list the results obtained in Table 11, 12, and 13. Additionally, we present the plots for each task
in Figures 30 and 31.

30

https://mlco2.github.io/impact#compute

Reinforcement Learning Conference (August 2024)

0 1 2 3 4 5
Number of timesteps (1e5)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

No
rm

al
ise

d
re

tu
rn

flocking

0 1 2 3 4 5
Number of timesteps (1e5)

0.05

0.10

0.15

0.20

0.25

0.30

No
rm

al
ise

d
re

tu
rn

discovery

0 1 2 3 4 5
Number of timesteps (1e5)

0.5

0.6

0.7

0.8

0.9

No
rm

al
ise

d
re

tu
rn

buzz_wire

AC COMM IDREAMER IPPO CODREAMER WM COMM

Figure 30: Individual IQM plots for each task in VMAS

31

Reinforcement Learning Conference (August 2024)

0 1 2 3 4 5
Number of timesteps (1e5)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

al
ise

d
re

tu
rn

daycare

0 1 2 3 4 5
Number of timesteps (1e5)

0.05

0.10

0.15

0.20

0.25

0.30

No
rm

al
ise

d
re

tu
rn

coop_mining

0 1 2 3 4 5
Number of timesteps (1e5)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ise

d
re

tu
rn

collaborative_cooking__asymmetric

0 1 2 3 4 5
Number of timesteps (1e5)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

No
rm

al
ise

d
re

tu
rn

collaborative_cooking__forced

AC COMM IDREAMER IPPO CODREAMER WM COMM

Figure 31: Individual IQM plots for each task in Melting Pot

32

