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ABSTRACT

Monitoring inflammation’s presence is crucial in both preventive medicine and
disease management. However, conventional inflammatory biomarkers, levels of
C-reactive protein (CRP), require invasive blood tests for assessment, which can
only be conducted in hospitals. In this study, we develop machine learning models
to detect inflammation and track its progression from nocturnal breathing signals.
The performance was evaluated across multiple datasets comprising 1,174 nights
of recordings from 950 individuals. Results demonstrate that our model offers
promising accuracy in predicting CRP levels: achieving a Pearson’s correlation
of r = 0.54 using breathing signals alone, and r = 0.63 when incorporating ad-
ditional data on Body Mass Index (BMI) and demographics. It is the first time
that decent accuracy in predicting CRP levels from breathing signals has been
achieved. Notably, the model exhibits proficiency in identifying high inflamma-
tory states (CRP > 10 mg/l) with an impressive area-under-the-curve value of
0.84. The results demonstrates the potential for non-invasive, longitudinal, in-
home inflammation monitoring through breathing-based biomarkers.

1 INTRODUCTION

Inflammation is a complex biological response of the body’s immune system to harmful stimuli.
It serves as a frontline defense mechanism, aiming to eliminate the cause of cell injury, clear out
necrotic cells and tissues, and initiate tissue repair. However, when dysregulated, inflammation
can become chronic and contribute to the pathogenesis of various diseases, including cardiovas-
cular diseases (Libby, 2006; Golia et al., 2014), autoimmune disorders (Abou-Raya & Abou-Raya,
2006), metabolic syndrome (Sutherland et al., 2004), depression (Miller & Raison, 2016) and cancer
(Coussens & Werb, 2002). Consequently, understanding and monitoring inflammation levels have
become paramount in both preventive medicine and disease management.

C-reactive protein (CRP) is well-known as a sensitive albeit non-specific biomarker of inflammation.
It is synthesized by the liver in response to pro-inflammatory cytokines, particularly interleukin-6
(IL-6). Although, CRP has been widely used as a predictor of the occurrence and prognosis of
various diseases (Dahl et al., 2007), measuring CRP can be burdensome, as it requires invasive
procedures of getting blood samples and conducting laboratory tests. This limitation has motivated
researchers to explore alternative approaches for monitoring inflammation. For example, Jiang et al.
(2022) has shown that a deep learning model can detect high CRP level (> 5 mg/l) with an AUC of
0.85 using electrocardiogram (ECG) signals.

In this work, we propose predicting CRP levels from nocturnal breathing, motivated by (1) the
known association between breathing and inflammation: respiratory diseases correlate with in-
creased inflammation (Vassilakopoulos et al., 2004), and controlled breathing reduces inflamma-
tion (Twal et al., 2016); and (2) the potential for effortless, in-home inflammation monitoring since
breathing signals can be remotely monitored via wireless devices (Yue et al., 2018). Our model
assembles multiple neural networks that are trained to predict CRP, other related variables (like
BMI and age), and CRP’s residue orthogonal to those variables. This design allows our model to
independently learn distinct feature sets relevant to CRP, enhancing its predictive capability. With
only nocturnal breathing signals, our model demonstrates a Pearson correlation of 0.54 with actual
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Figure 1: (a) Structure of our breathing-based CRP model which is an ensemble of multiple neural
network predictors trained with different labels. (b) Correlations between the ground truth CRP,
BMI, CRP residue and the outputs of CRP/BMI/residue predictors.

CRP levels, which increases to 0.63 when BMI and demographic data are included. This accuracy
enables the model to detect acute inflammation (defined as CRP > 10 mg/l) with an AUC of 0.84.
Moreover, our model effectively monitors CRP progression, accurately forecasting the variations in
CRP levels as patients experience or recover from acute inflammation, evidenced by a correlation of
0.55. In summary, our contributions are:

• We present the first model that accurately predicts CRP levels from breathing signals.
• We propose a novel ensemble strategy to leverage auxiliary variables that have high corre-

lations with the target.

2 PREDICTING CRP FROM BMI AND DEMOGRAPHICS

In this work, our objective is to predict CRP on a logarithm scale. As CRP distribution is highly
skewed, it is common to apply log transform to facilitate analysis (Choi EunYoung et al., 2006).
Throughout the remainder of the paper, when we refer to CRP in the context of predicting, it pertains
to log-transformed CRP values.

We use linear regression model to predict CRP from Body Mass Index (BMI) and three relevant
demographics: age, sex, race. These variables establish a baseline CRP level for healthy subjects
and illuminate chronic inflammation states. The predictive capabilities of these factors on CRP
and their combined predictive power are reported in Table 4. In the following, we summarize the
relationship between CRP and these factors.
BMI. BMI exhibits a strong correlation with CRP levels, as proinflammatory cytokines from adi-
pose tissue stimulate the secretion of CRP in the liver. Popko et al. (2010) reports a correlation of
0.4 between BMI values and CRP levels.
Age. CRP levels increase with age. In the USA, the median CRP level is 1.4 mg/l among those
aged 20 to 29 years and 2.7 mg/l among those aged 80 years or older (Woloshin & Schwartz, 2005).
Sex & Race. CRP levels vary across sex and racial groups. Firstly, CRP levels are higher among
women than among men (median, 2.7 vs. 1.6 mg/l), as reported by Woloshin & Schwartz (2005).
According to Khera et al. (2005), black subjects have higher CRP levels than white subjects (median,
3.0 vs. 2.3 mg/l). On the other hand, the level of CRP in Asian populations is approximately one-
third of the median value in Caucasians (Saito et al., 2014).

3 PREDICTING CRP FROM NOCTURNAL BREATHING

Design of ensemble. Figure 1(a) illustrates the design of our breathing-based model, an ensemble
of multiple neural network (NN) predictors, consisting of three parts: (1) a vanilla CRP predic-
tor learned with CRP values as labels, (2) relevant variable predictors that learn to predict other
variables having high correlations with CRP. Here, we have three predictors for BMI, age, and
IL-6, respectively, and (3) a CRP residue predictor. The CRP residue is defined as its compo-
nent orthogonal to the relevant variables. Mathematically, we denote CRP as y ∈ Rn and BMI,
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age, and IL-6 as v1, v2, v3 ∈ Rn (where n is the number of data samples). The CRP residue,
y⊥ := y − V (V ⊤V )−1V ⊤y (where V = [v1, v2, v3]), is CRP subtracted by its projection onto the
space of relevant variables.

Motivation of ensemble. To facilitate the discussion, we focus on CRP and BMI. Firstly, the
inherent correlation between CRP and BMI implies that a model that learns to predict one naturally
serve as a weak predictor for the other. This is substantiated by the results shown in Figure 1(b),
where the BMI predictor’s output exhibits a correlation of 0.39 with CRP. Therefore, incorporating
the BMI predictor into our model ensemble enhances our ability to predict CRP. Secondly, the
significant correlation between CRP and BMI may cause the CRP predictor to disproportionately
focus on BMI, neglecting other pertinent information. Evidence of this is seen in Figure 1(b), where
the CRP predictor’s output correlates more strongly with BMI (0.47) than with CRP residue (0.29).
In contrast, the actual CRP levels show a lower correlation with BMI (0.52) compared to CRP
residuals (0.83). This discrepancy highlights CRP predictor’s deficiency in learning CRP residue.
Thus, to mitigate this issue, we add a dedicated CRP residue predictor into our model ensemble.

Finally, the multiple predictors are assembled via linear regression. Table 5 in the appendix summa-
rizes the performance of using each single predictor and the final ensemble. The ensemble strategy
is demonstrated to be effective, increasing the R2 by 7% to 20% compared to the vanilla CRP pre-
dictor. Please refer to appendix D for the details of NN architecture and training procedure.

4 EXPERIMENT

4.1 DATASETS

We use two public medical datasets from NSRR (Zhang et al., 2018), Cleveland Family Study
(CFS) (Redline et al., 1995) and Heart Biomarker Evaluation in Apnea Treatment (Heart-
BEAT) (Gottlieb et al., 2014). For each subject, the dataset contain basic demographics, anthro-
pometric measurement, sleep studies which include the respiration signals measured by a breathing
belt, and clinical laboratory tests which include levels of CRP and IL-6. Please refer to appendix C
for more details such as dataset statistics and inclusion-exclusion criteria.

4.2 MODELS

We evaluate three models: (A) The BMI and demographic-based model (BadCRP), which is a linear
model taking BMI, age, sex, and race as input. (B) The respiration-derived CRP model (RedCRP),
an ensemble of multiple predictors of CRP, IL-6, BMI, age, and CRP residue. These predictors
are aggregated via linear combination. (C) The compositional model (RedCRP+), which takes both
variables and breathing as inputs. It assembles BMI, age, sex, race, and CRP predictor, IL-6 pre-
dictor, and CRP residue predictor. Note that RedCRP+ does not include predictors for BMI and age,
as the ground truth BMI and age are already provided as input.

4.3 TASKS & EVALUATING METRICS

CRP regression. We employ three evaluation metrics to compare the predicted CRP against the
ground truth: R squared (R2), Pearson correlation (r), and mean absolute error (MAE).

High CRP detection. A CRP level greater than 10 mg/l indicates acute inflammation typically
caused by infections (Black et al., 2004). Thus, we assess our model’s ability to detect acute inflam-
mation, by the following metrics: area-under-the-curve (AUC), sensitivity (SE), specificity (SP).

CRP tracking. The HeartBEAT dataset comprises two visits with a two to three-week interval
between them. We evaluate our model’s ability to capture the change in CRP levels between the two
visits. The evaluation is based on the Pearson correlation between the ground truth CRP delta and
the predicted CRP delta.

4.4 RESULTS

Table 1 summarizes the performance of the model in predicting CRP levels. The key insights in-
clude: (1) Models that rely solely on breathing signals either match or surpass the performance
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Table 1: Performance on CRP regression.

Model CFS HeartBEAT
R2 r MAE R2 r MAE

BadCRP 0.29 0.54 0.83 0.13 0.36 0.83
RedCRP 0.28 0.53 0.83 0.19 0.44 0.82
RedCRP+ 0.40 0.63 0.76 0.26 0.51 0.78

Table 2: Performance on high CRP detection.

Model CFS HeartBEAT
AUC SE SP AUC SE SP

BadCRP 0.75 0.67 0.72 0.73 0.73 0.68
RedCRP 0.80 0.74 0.74 0.79 0.68 0.82
RedCRP+ 0.84 0.76 0.80 0.83 0.75 0.84
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Figure 2: ROC curves of detecting high CRP levels (> 10 ug/ml). Asterisks indicates best trade-offs between
sensitivity and specificity.
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Figure 3: Performance in capturing the changes of CRP levels between two visits. (a-c) are results for all
subjects. (d-f) are results for inflamed subjects who had a CRP level > 10 ug/ml in at least one visit.

of models that use BMI and demographics. Specifically, RedCRP achieves comparable results to
BadCRP in the CFS dataset and demonstrates superior R2 and Pearson correlation values in the
HeartBEAT dataset. (2) The inclusion of breathing signals considerably enhances the model’s abil-
ity to predict CRP levels beyond what is possible with just BMI and demographic data. This is
highlighted by RedCRP+’s significant improvement over BadCRP, with an increase of 0.11 in the
R2 value for CFS and 0.13 for HeartBEAT. It suggest that breathing signals account for an addi-
tional 11%-13% of the variance in CRP levels compared to BMI and demographics, indicating the
substantial predictive power of respiratory patterns in assessing inflammation.
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Table 2 summarizes the model performance in detecting acute inflammation, with the corresponding
ROC curves displayed in Figure 2. The results reveal that: (1) RedCRP outperforms BadCRP, indi-
cating that breathing signals are more predictive of acute inflammation than BMI and demographics.
This outcome aligns with expectations, as BMI, age, and sex do not undergo significant changes in
a short timeframe, and thus, are more indicative of chronic rather than acute inflammation. In con-
trast, acute inflammation has an immediate impact on breathing patterns, with severe inflammation
linked to symptoms of acute respiratory distress syndrome, such as rapid breathing (tachypnea) and
difficulty breathing (dyspnea) (Bhatia & Moochhala, 2004). (2) RedCRP+ outperforms both Bad-
CRP and RedCRP with a sensitivity above 0.75 and specificity above 0.80 across both datasets. This
indicates that by integrating breathing signals with BMI and demographics, we can accurately detect
elevated CRP levels.

Figure 3 presents the efficacy of the model in monitoring fluctuations in subjects’ CRP levels. The
findings reveal that (1) BMI and demographic factors lack the capacity to detect changes in inflam-
mation levels since these parameters either not change over a short period (BMI, age) or remain
constant (sex, race). Consequently, BadCRP demonstrates negligible correlations. (2) Conversely,
RedCRP and RedCRP+ exhibit a substantial ability to identify variations in CRP levels, as evidenced
in Figure 3(b,c,e,f), which shows positive correlations between 0.26 and 0.56 and p-values below
0.001. (3) When compared to patients lacking acute inflammation, breathing based model achieves
better performance in individuals with acute inflammation. Specifically, Figure 3(b,c,e,f) indicates
that in patients with severe inflammation, RedCRP+ achieves correlations of 0.56 and slopes of 0.24,
markedly superior to the correlations of 0.26 and slopes of 0.14 observed across all patients. This
enhanced performance is crucial as it aids in the more effective monitoring of CRP progression in
patients with acute inflammation, potentially influencing their treatment decisions.

5 DISCUSSION

Impact. (1) Our work pioneers in accurately predicting CRP levels from breathing signals, moving
beyond merely detecting CRP above a threshold as previous studies have (Jiang et al., 2022). We
achieve a notable correlation of 0.5-0.6 on a logarithmic scale, at the same time, highlighting the
capability of breathing signals to precisely reflect acute inflammation, offering new insights into
the relationship between the respiratory system and inflammation. (2) Leveraging advancements
in remote breathing monitoring via low-power RF signal analysis (Yue et al., 2018), our model
facilitates at-home, continuous inflammation tracking. This enables effective disease progression
monitoring, medication impact assessment, and early infection detection. (3) Our technique of
using an ensemble to leverage correlated variables to improve the prediction of the target variable is
generally applicable to other applications.

Limitations. (1) Our work shows that breathing signals (partially) predict CRP, but does not ex-
plain the underlying mechanism. It remains unknown whether it is related to breathing rate, depth
of breathing, or changes in breathing patterns throughout the night. Interpretable analysis would
be desired and considered as our future work. (2) Our work focuses on predicting CRP while not
considering other inflammatory biomarkers such as erythrocyte sedimentation rate (which measures
how quickly red blood cells settle at the bottom of a tube of blood), procalcitonin, and cytokines that
regulate immune responses and inflammation (such as interleukins and tumor necrosis factor-alpha).
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A EXTRA TABLES

Table 3: Statistics of datasets.
Dataset CFS HeartBEAT
No. of individuals 639 311
No. of nights 639 555
Age [6.9, 88.5], 43.0 (18.9) [45.1, 75.8], 63.2 (7.2)
Sex (Male) 44.6% 73.7%
Race (White, Black) 42.1% , 54.8% 81.3% , 12.6%
BMI [14.0, 84.8], 33.3 (9.2) [21.2, 64.4], 34.2 (6.2)
AHI [0.0, 125.1], 14.0 (20.7) [0.3, 75.7], 22.1 (11.9)
ln(CRP) [-1.8, 4.8], 0.8 (1.2) [-1.9, 4.5], 0.7 (1.1)

*For age, bmi, ahi, ln(CRP), each cell reports [min, max], mean (std).

Table 4: Performance of predicting CRP using BMI and demographics by a linear model.
Feature CFS HeartBEAT

BMI Age Sex Race R2 r MAE R2 r MAE
✓ 0.265 0.514 0.847 0.103 0.321 0.848

✓ 0.057 0.240 0.990 0.013 0.116 1.106
✓ 0.010 0.100 1.017 0.061 0.248 0.873

✓ 0.014 0.122 1.011 0.023 0.159 0.896
✓ ✓ ✓ ✓ 0.295 0.543 0.828 0.168 0.361 0.829

Table 5: Performance of breathing-based predictors and their ensemble on predicting CRP.
Predictors in ensemble CFS HeartBEAT

CRP BMI IL-6 CRP residue R2 r MAE R2 r MAE
✓ 0.263 0.513 0.843 0.164 0.406 0.819

✓ 0.151 0.389 0.932 0.060 0.246 0.876
✓ 0.161 0.401 0.913 0.093 0.306 0.865

✓ 0.074 0.272 0.974 0.124 0.352 0.856
✓ ✓ 0.272 0.522 0.841 0.166 0.408 0.817
✓ ✓ 0.264 0.514 0.843 0.165 0.407 0.819
✓ ✓ 0.271 0.520 0.838 0.189 0.435 0.817
✓ ✓ ✓ ✓ 0.281 0.530 0.833 0.195 0.442 0.811

B RELATED WORK

Machine learning on predicting inflammation. Research on predicting inflammation using ma-
chine learning is relatively sparse. Some studies have concentrated on diseases related to inflamma-
tion. For instance, de la Villehuchet et al. (2009) developed a model to predict oxidative stress in
chronic inflammatory diseases, while Nguyen et al. (2022) employed machine learning techniques to
forecast the occurrence of inflammatory bowel diseases. To our knowledge, only one existing study
directly addresses the prediction of inflammation, specifically detecting C-reactive protein (CRP)
levels greater than 5 mg/L using ECG signals (Jiang et al., 2022). Our work distinguishes itself from
this prior study in two significant ways. Firstly, we focus on regressing the CRP levels rather than
performing binary classification. Secondly, our approach utilizes breathing signals as opposed to
ECG signals.

Machine learning on breathing signals. Breathing signals are a critical aspect of health moni-
toring, offering rich and insightful information about an individual’s well-being. Previous studies
have shown that using AI models to analyze breathing patterns can predict daily activities, such as
human motions (Kim & Kim, 2023), assess sleep quality, including sleep stages (Zhao et al., 2017),
and estimate demographics like age (Brink-Kjaer et al., 2022). Additionally, they can monitor other
physiological signals, such as blood oxygen levels (He et al., 2023), detect emotions (Zhang et al.,
2017), and identify stress (Cho et al., 2017), as well as diseases, for example, Parkinson’s disease
(Yang et al., 2022). In our work, we demonstrate for the first time that it is possible to predict
inflammation from breathing signals.
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C DATASETS

Overview. In Table 3, we summarize the statistics of the datasets. The CFS dataset was primarily
collected to study the familial aggregation of obstructive sleep apnea. Thus, the dataset spans a wide
range of ages, from young children below 10 years old to seniors above 80 years old. As the data
were collected from families, it has a balanced sex distribution (44.6% vs. 55.4%). The HeartBEAT
dataset was primarily collected to evaluate the effects of supplemental nocturnal oxygen or Positive
Airway Pressure (PAP) therapy in patients with cardiovascular disease (CVD). The dataset mainly
comprises middle-aged males with CVD and moderate to severe obstructive sleep apnea (AHI from
15 to 50).

Study inclusion and exclusion criteria. For the CFS dataset, we included participants with
polysomnography (PSG) data from sleep studies and valid CRP readings from clinical laboratory
tests. Based on the PSG data, we excluded participants with recordings of less than 2 hours during
sleep. In total, we included 639 participants in our study. For the HeartBEAT dataset, we included
participants with polysomnography (PSG) data from sleep studies and valid CRP readings from
clinical laboratory tests. Based on the breathing signals from PSG, we excluded participants with
low-quality breathing signals, defined as having both thorax and abdominal breathing channels un-
usable for more than 5% of the total sleep time. In total, we included 311 participants with 555
nights of data in our study.

D NEURAL NETWORK

D.1 MODEL ARCHITECTURE

We utilize the same deep neural network architecture to predict CRP and other variables from noc-
turnal breathing. Our model is divided into three parts: (1) at the bottom layers, convolutional layers
with residue links extract features from local breathing patterns; (2) at the bottleneck, recurrent lay-
ers and an attention module aggregate local features and process them in the context of the global
sequence; (3) at the top layers, a multi-layer perceptron (MLP) head predicts the target variable
using the max-pooled feature from the bottleneck.

Specifically, in the convolutional layers, we have a total of nine 1-D convolutional residue blocks,
which together subsample the input signal by a factor of 300 and encode it into a series of 256-
dimensional latent representations. Our breathing signal input has a sampling frequency of 10Hz.
Thus, in the latent space, we have a representation every 30 seconds. Then, at the bottleneck, we
have a bidirectional LSTM with a hidden size of 256 followed by a transformer layer with 8 heads
and a hidden size of 256. At the top, we have an MLP with 2 hidden layers with a size of 512 to
make the final prediction.

D.2 TRAINING PROCEDURE

Train/test splits. Given the population differences between the CFS and HeartBEAT datasets, we
train separate models for each dataset. Each dataset is divided into four folds. For each model, we
run four instances trained on three folds and tested on the remaining fold. Subsequently, we combine
the predictions from the test sets across all four folds, representing the entire dataset, and compare
them with the ground truth CRP levels to calculate evaluation metrics.

Hyper-parameters. All the deep models are trained with a learning rate of 1e-4 and weight decay
of 1e-6 using the Adam optimizer for 50 epochs. The hyperparameters were determined through a
primary grid search. We searched for the number of epochs from 20, 50, 100, 200, learning rates
from 1e-5, 3e-5, 1e-4, 3e-4, and weight decay from 1e-5, 1e-6, 1e-7.

Loss function. Given that all models are aimed at predicting a continuous variable, we employ the
mean squared error (MSE) as the loss function.
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