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Abstract
We study the question of volume optimality in
split conformal regression, a topic still poorly un-
derstood in comparison to coverage control. Us-
ing the fact that the calibration step can be seen
as an empirical volume minimization problem,
we first derive a finite-sample upper-bound on
the excess volume loss of the interval returned by
the classical split method. This important quan-
tity measures the difference in length between the
interval obtained with the split method and the
shortest oracle prediction interval. Then, we in-
troduce EffOrt, a methodology that modifies
the learning step so that the base prediction func-
tion is selected in order to minimize the length
of the returned intervals. In particular, our the-
oretical analysis of the excess volume loss of
the prediction sets produced by EffOrt reveals
the links between the learning and calibration
steps, and notably the impact of the choice of
the function class of the base predictor. We also
introduce Ad-EffOrt, an extension of the pre-
vious method, which produces intervals whose
size adapts to the value of the covariate. Finally,
we evaluate the empirical performance and the
robustness of our methodologies.

1. Introduction
Conformal Prediction (CP) (Vovk et al., 2005) has recently
been considered as one of the state-of-art technique to
construct distribution-free prediction sets satisfying proba-
bilistic coverage guarantees. Formally, consider a random
variable (X,Y ) ∈ X × Y and some miscoverage level
α ∈ [0, 1], CP techniques construct a set-valued function
C : X → 2Y such that:

P(Y ∈ C(X)) ≥ 1− α . (1)
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This is particularly useful when the user prefers to be con-
fident with the range of values that Y can take, rather than
having only a single predicted scalar value. In Section 2.1,
we give a short reminder on CP, and on the most important
techniques to construct C satisfying Eq. (1). While these
techniques are completely distribution-free, making them
quite powerful in practice, they still suffer from an important
limitation: how can we be sure that the trivial prediction set
C(x) = Y is not returned? Indeed, this prediction set neces-
sarily satisfy the condition (1). To prevent this, theoretical
analyses of CP methods typically include an upper-bound
on the probability of coverage P(Y ∈ C(X)). Such upper-
bound tends to 1− α as the number of sample used to build
C grows, which somehow reflects that the prediction set
cannot be the full support of Y . However, this is still insuffi-
cient as one may take C(x) = Y with probability 1−α and
C(x) = ∅ with probability α, resulting in a coverage ex-
actly equal to 1−α, but with an expected size of (1−α)|Y|.
Here, |Y| denotes the size of Y and will typically be infinite
in regression settings where Y = R. Such a set is too large
and therefore highly uninformative. Hence, the CP litera-
ture suggests to also look at the size of the predicted sets to
measure the performance of CP methods. The smaller is a
prediction set, the more efficient it is considered. However,
most works do this analysis empirically, while very few has
been focusing on the statistical control of the size of CP sets.

In this paper, we therefore propose to study when C(x) is
in fact a solution of an optimization problem of the form:

min
C

E[µ(C(X))] (2)

s.t. P(Y ∈ C(X)) ≥ 1− α ,

where µ is a measure of the volume of the set C(x), typi-
cally the Lebesgue measure in regression problems, or the
counting measure in classification. This optimization prob-
lem ensures that among all prediction sets C(x) that satisfy
the coverage condition (1), the volume of the returned set is
also of minimal size. Looking at problem (2) instead of (1)
alone is therefore more meaningful as it encapsulates the
two key aspects of CP: coverage and efficiency.

1.1. Main Contributions

• After describing the problem in Section 2.2, in Section 3
we restrict the prediction sets to be intervals of constant
size, and show in Section 3.1 that the calibration step of
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split CP solves an empirical version of problem (2). This
allows us to derive a finite-sample bound on the excess
volume loss of the returned prediction set, namely on
the volume difference between the learned and the oracle
prediction sets.

• We then argue that for the learning step to be efficiency-
oriented, the prediction function should minimize the (1−
α)-quantile of the absolute error. This motivates EffOrt,
a new split CP approach that finds an empirical minimizer
of such quantile. In Theorem 3.7, an excess volume
bound shows the joint impact of the learning and the
calibration step, supporting the intuition that more data-
points should be dedicated to the learning step.

• In Section 4, we increase the class of prediction sets
to intervals with length adaptive to the covariates value,
and present Ad-EffOrt, an extension of the previous
method. Finally, in Section 5, a set of synthetic data ex-
periments illustrates the empirical performance and the
robustness of our approaches on asymmetric and heavy-
tailed distributions.

2. Background
2.1. Preliminaries on Split Conformal Prediction

In this section, we give some important reminders on CP,
focusing on the split approach at the core of this paper
(Papadopoulos et al., 2002).

Let us assume that we have access to a data set D =
{(Xi, Yi)}1≤i≤n, that we split into a learning set Dlrn and
a non-overlapping calibration set Dcal, containing respec-
tively nℓ ≥ 1 and nc ≥ 1 data points such that nℓ+nc = n.

The first step of split CP, referred to as the learning step,
consists in finding a base predictor f ∈ F using the learning
data set Dlrn. This predictor, denoted f̂ , is then used to
define a nonconformity score function s = sf̂ : X×Y → R,
such that for a pair (x, y) ∈ X × Y , sf̂ (x, y) measures the
level of non-conformity of the point (x, y) with respect to
the base predictor f̂ . In other word, it measures how far
is the true value y from the prediction f̂(x). Whether we
are in the regression or classification setting, many possible
base predictors and score functions exist in the literature
(see e.g. (Angelopoulos & Bates, 2023)). In Example 1, we
recall the most widely used base predictors and associated
score functions for conformal regression.

In the second step of split CP, referred to as the calibra-
tion step, we construct the prediction set. To this end, we
first calculate the values of sf̂ taken on the calibration set
Dcal, called the nonconformity scores Si := sf̂ (Xi, Yi),
i ∈ JncK. Then, we compute the ⌈(nc+1)(1−α)⌉-th small-
est nonconformity score q̂1−α := S(⌈(nc+1)(1−α)⌉), where
S(1) ≤ . . . ≤ S(nc), and we return the set-valued function

Ĉ : X → 2Y such that ∀x ∈ X :

Ĉ(x) :=
{
y ∈ Y : sf̂ (x, y) ≤ q̂1−α

}
. (3)

In the case where ⌈(nc + 1)(1 − α)⌉ > nc, we fix
q̂1−α = +∞, meaning that we take the trivial prediction
set Ĉ(x) = Y . Stated differently, q̂1−α corresponds to the
(1 − α)-quantile of the data set {Si}nc

i=1 ∪ {+∞}. Quite
remarkably, if we only assume that the scores S1, . . . , Snc

and s(X,Y ) are exchangeable, the set (3) satisfies con-
dition (1) (Papadopoulos et al., 2002). Moreover, if the
scores are continuous random variables, it can be shown
that P(Y ∈ Ĉ(X)) ≤ 1 − α + 1/(nc + 1). Note that
this type of guarantees are referred as marginal because the
probabilities are taken with respect to the test point (X,Y )
and the calibration set Dcal.
Example 1. (Conformal regressors).

1. In the standard Split CP (Papadopoulos et al., 2002) the
base predictor is a function µ in F , a class of regres-
sion function. Typically, µ̂ = arg minµ∈F

∑nℓ

i=1(Yi−
µ(Xi))2. Then, the score function is taken to be the
absolute residual s(x, y) = |y − µ̂(x)|. This gives the
interval Ĉ(x) = [µ̂(x)− q̂1−α, µ̂(x) + q̂1−α].

2. In Locally-Weighted Conformal Inference (Papadopou-
los et al., 2008), an additional base predictor is added in
order to have interval sizes that adapt to the value of X .
More precisely, we have f = (µ, σ), with µ ∈ F1, σ ∈
F2. µ̂ is fitted as above, and σ̂ fits the residuals given
X = x, i.e. σ̂ = arg minσ∈F2

∑nℓ

i=1(Ri − σ(Xi))2

where Ri = |Yi− µ̂(Xi)|. Taking the scoring function
s(x, y) = |y − µ̂(x)|/σ̂(x), the resulting prediction
interval is given by Ĉ(x) = [µ̂(x)− σ̂(x)q̂1−α, µ̂(x)+
σ̂(x)q̂1−α].

3. In Conformalized Quantile Regression (CQR) (Ro-
mano et al., 2019), we have f = (Qα/2, Q1−α/2)
where Qα/2 ∈ F1 (respectively Q1−α/2 ∈ F2) is
a quantile regressor of Y given X = x, of order α

2
(respectively 1 − α

2 ). For instance, we take Q̂α/2 =
arg minQ∈F1

∑nℓ

i=1 ρα/2(Yi−Q(Xi)), where ρα/2 is
the “pinball” loss (Koenker & Hallock, 2001). Q̂1−α/2
is defined analogously with ρ1−α/2. Then, we take
s(x, y) = max{Q̂α/2(x)−y, y− Q̂1−α/2(x)}, which
gives Ĉ(x) = [Q̂α/2(x)− q̂1−α, Q̂1−α/2(x) + q̂1−α].

As our task here is not to be exhaustive on the CP literature,
we refer to Vovk et al. (2005), Angelopoulos & Bates (2023),
and Fontana et al. (2023) for in-depth presentations of CP
and to Manokhin (2022) for a curated list of papers.

2.2. Problem Statement

In this work, we focus on conformal regression problems
with Y = R. Precisely, we study when and how split
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CP outputs prediction sets approximating the solution of
Problem (2). Since we consider regression tasks, let us first
re-write the latter optimization problem by replacing µ with
the Lebesgue measure λ : B(R) → [0,+∞], B(R) being
the Borel σ-algebra on R:

min
C∈CBorel

E[λ(C(X))] s.t. P(Y ∈ C(X)) ≥ 1− α , (4)

where CBorel := {Measurable functions C : X → B(R)}.
In the following, we refer to C∗ as one minimizer of (4).
Note that optimizing over all possible measurable func-
tions in CBorel can be difficult in practice but also some-
times useless. For instance, in the regression setting where
Y = f∗(X)+N (0, σ2), the distribution of Y givenX = x
is symmetric and has only one mode. The optimal C∗(x)
will thus necessarily be an interval centered at f∗(x) (see
the discussion below on closed-form expressions for C∗).
In this simple case, we see that looking at the full set CBorel
is useless as one could only consider the set of functions
C(x) that outputs intervals.

In this work, we will restrict the space of research CBorel
in (4) to smaller sets of set-valued functions, namely those
outputting intervals. Like in statistical learning theory, this
restriction can be thought of as a source of approximation
error. In other words, we would like the restricted set to be
sufficiently complex so that it includes (one of) the function
solving (4). If it is not the case, we face such an approxi-
mation error. Nevertheless, controlling this error is not the
objective of this paper, as we are going to mostly focus on
the estimation error, which comes from the fact that only
an empirical version of (4) is going to be solved.

On closed-form expressions for (4). In some settings, we
can derive oracle prediction sets solving (4). For instance,
when there is no covariate X , we recover the Minimum
Volume Set (MVS) estimation problem of Scott & Nowak
(2005). In that case, if Y admits a density pY (y) with
respect to λ, we can derive a closed-form expression for
C∗ in terms of density level sets: ∃tα ≥ 0 such that C∗ =
{y ∈ R : pY (y) ≥ tα} as soon as λ({y ∈ R : pY (y) =
tα}) = 0. Similarly, if we condition the expectation and
the probability in (4) on X = x, and if Y |X = x admits a
conditional density pY |X(y|x), we get C∗(x) = {y ∈ R :
pY |X(y|x) ≥ t′α(x)} for some t′α(x) ≥ 0 (Polonik & Yao,
2000; Lei & Wasserman, 2014). This has led to a whole
literature based on plug-in (conditional) density estimators,
which is not the approach considered in this paper but which
is worth mentioning.

2.3. Related Work

Minimum Volume Sets and Density Level Sets estima-
tion. As mentioned above, problem (4) is strongly linked
with the MVS estimation Problem (Scott & Nowak, 2005),

which is itself linked with the problems of support estima-
tion (Schölkopf et al., 2001; Munoz & Moguerza, 2006) and
density level sets estimation (Polonik & Yao, 2000). De-
spite the fact that these methods can all be used to construct
prediction sets with a desired coverage level, their link with
Conformal Prediction has received little attention in the past.
Among the most well known works, we can mention those
taking the idea of plug-in (conditional) density estimators
mentioned above, on top of which they add a calibration step
to obtain better coverage guarantees (Lei et al., 2013; Lei &
Wasserman, 2014; Izbicki et al., 2022; Chernozhukov et al.,
2021). However, their theoretical results regarding the size
of the returned set are mostly asymptotic. More importantly,
modern supervised learning and CP techniques are rarely
based on a non-parametric estimation of the (conditional)
density, which can be difficult in practice. They are mostly
based on the learning of a (parametrized) prediction function
that belongs to a set of hypotheses (see Example 1). Thus,
the framework of Section 2.2, largely inspired by Scott &
Nowak (2005), where we restrict the class of prediction sets
to a smaller subset, seems more appropriate for the design
and analysis of CP methods.

Efficient Conformal Prediction. Recently, the question
of controlling the size of the learned prediction set and ex-
plicitly see this as a minimization objective has attracted a
lot of attention. For instance in Yang & Kuchibhotla (2024)
and Liang et al. (2024), the authors focus on efficiency-
oriented model selection. Closer to our work, we can men-
tion Stutz et al. (2022) and Kiyani et al. (2024), which
consider an optimization problem similar to that of (4), with
a focus on the optimization aspects and on relaxations of
the problem. However, they do not provide statistical guar-
antees on the learned estimates. Finally, Bai et al. (2022)
proposes a generalization of the split calibration step, where
instead of a single quantile, multiple learnable parameters
are optimized to minimize the size of the final prediction
set.

Other recent studies (Dhillon et al., 2024; Zecchin et al.,
2024) have analyzed the expected size of split CP sets, high-
lighting key factors such as the impact of the score function
choice and the generalization properties of the base predictor.
In Sharma et al. (2023), the authors derive a PAC-Bayesian
upper bound on the expected CP set size, involving an em-
pirical estimate of the size and a KL divergence term. They
also propose an algorithm that modifies the calibration step
of split CP to minimize their bound; however, they do not ex-
plicitly instantiate their bound for their proposed algorithm,
leaving the practical implications unclear.

Our work differs from these approaches in several funda-
mental ways. First, our theoretical guarantees are PAC-
based rather than PAC-Bayesian, eliminating the need for
restrictive assumptions such as boundedness of the score
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function or target variable Y . More crucially, our analysis
introduces an upper-bound on the excess volume loss, ex-
plicitly quantifying how much larger the CP set is compared
to an oracle reference. This perspective is absent in prior
works, which focus only on bounding the expected CP set
size without reference to an optimal baseline. Finally, it is
worth mentioning Correia et al. (2024), which provides an
information-theoretic perspective by linking CP set size to
conditional entropy.

3. Restriction to Intervals with Constant Size
In this section, we restrict the space of research in Problem
(4) to the class of prediction sets Cconst

F = {Cf,t(·) = [f(·)−
t, f(·) + t]; f ∈ F , t ≥ 0}. This class is already quite
interesting as it encapsulates the standard split CP regressor
(see Example 1.1). Notice that for simplicity of exposition,
and because it does not depend on x, in this section the
expected size of Cf,t ∈ Cconst

F is simply denoted λ(Cf,t) =
2t.

3.1. Base Predictor f ∈ F is Given: Optimality of the
Conformal Step

We first start in the setting where the base predictor f is
given, meaning that we do not consider the learning phase.
Over Cconst

F , the optimization problem (4) becomes:

min
t≥0

2t s.t. P(|Y − f(X)| ≤ t) ≥ 1− α . (5)

Denoting by S = |Y − f(X)| the random variable of the
absolute residual, the solution of the above optimization cor-
responds to the quantile of order 1−α of the random variable
S. More formally, if we denote by Q( · ;S) : [0, 1]→ R the
quantile function of S, then the optimal value solving (5) is
exactly t∗ = Q(1− α;S) and the associated optimal set is
C1−α
f,t∗ (x) = [f(x)− t∗, f(x) + t∗] .

Importantly, notice that the conformal step of the original
split CP in fact solves an empirical version of the previous
problem, but with a slightly increased coverage:

min
t≥0

2t (6)

s.t.
1
nc

nc∑
i=1

1{|Yi − f(Xi)| ≤ t} ≥
(1− α)(nc + 1)

nc
,

with solution t̂ = S(⌈(nc+1)(1−α)⌉) and associated set de-
noted C1−α

f,t̂
(x) = [f(x) − t̂, f(x) + t̂] . As mentioned

above, t̂ is the quantity computed during the calibration
step of the split CP method (see Section 2.1). It corre-
sponds to the empirical quantile function of S, defined by
Q̂(q ; {Si}nc

i=1) := inf{t : 1
nc

∑nc

i=1 1{Si ≤ t} ≥ q}, eval-
uated at (1− α)(nc + 1)/nc instead of 1− α to be slightly
more conservative. In other words, this means that, when

f is given, the calibration step in split CP outputs a conser-
vative empirical estimator of the oracle prediction interval
solution of Problem (5).

From the theory of CP, we already know that
P(Y ∈ C1−α

f,t̂
(X)) ≥ 1 − α (see e.g. Lei et al.

(2018, Theorem 2.2)). It remains to study the excess volume
loss of C1−α

f,t̂
which is measured by the difference in length

between C1−α
f,t∗ and C1−α

f,t̂
. To this aim, it is sufficient

to study the difference between the empirical quantile
t̂ = Q̂((1 − α)nc+1

nc
; {Si}nc

i=1) and the true quantile
t∗ = Q(1 − α;S), as done in the following proposition
(proof in Appendix A.1).

Proposition 3.1. Let t̂ = Q̂((1 − α)nc+1
nc

; {Si}nc
i=1) and

C1−α
f,t̂

the corresponding set. If the points in Dcal are i.i.d.,
and if (nc+1)(1−α) is not an integer, then with probability
greater than 1− δ we have:

λ
(
C1−α
f,t̂

)
≤ 2Q

(
1−α+ 1− α

nc
+

√
log(2/δ)

2nc
;S
)
. (7)

Interestingly, the right-hand side of (7) also corresponds to
the optimal length of a more conservative oracle, namely

λ
(
C

1−α+βnc

f,t∗

)
with βnc

= 1−α
nc

+
√

log(2/δ)
2nc

. This means
that, with high probability, the empirical interval obtained
with the conformal step is smaller than the smallest oracle
interval with increased coverage 1 − α + βnc

, and where
βnc

is tending to 0 as nc grows.

Although interesting, the previous result does not really
tell us how different is the size of the predicted interval
compared with the oracle one. To obtain a finite-sample
upper bound on this difference, we must consider some
regularity assumption on the distribution of S, and more
particularly on its quantile function.

Assumption 3.2. (Regularity condition). Let S = |Y −
f(X)|. ∀f ∈ F , ∀α ∈ (0, 1),∃r, γ ∈ (0, 1] and L > 0
such that Q(·;S) is locally (γ, L)-Hölder continuous, i.e.

∀q1, q2 ∈ [1− α− r, 1− α+ r]:

|Q(q1;S)−Q(q2;S)| ≤ L|q1 − q2|γ .

This type of regularity condition can notably be found in Lei
et al. (2013); Yang & Kuchibhotla (2024), where it is used to
obtain finite-sample bounds on the volume of the returned
set. Given this assumption, we can derive the following
corollary.

Corollary 3.3. Let the conditions of Proposition 3.1 and
Assumption 3.2 hold. If nc is large enough so that 1−α

nc
+
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log(2/δ)

2nc
≤ r, then with probability greater than 1− δ:

λ
(
C1−α
f,t̂

)
≤ λ

(
C1−α
f,t∗

)
+ 2L

( 1
nc

+

√
log(2/δ)

2nc

)γ
. (8)

Proof. Direct application of Prop 3.1 with Assumption 3.2
and using the fact that 1− α ≤ 1.

The previous corollary provides an excess volume upper-
bound for C1−α

f,t̂
compared to the oracle C1−α

f,t∗ . This bound
does not only confirm the asymptotic optimality of the con-
formal procedure when f is given, but also provides a rate
of convergence dominated by Õ(n−γ

c ) when we get rid of
constants and log factors. Although simple to be obtained,
to our knowledge this type of bound has never been shown.
Remark 3.4. When the base predictor is given, all the previ-
ous study can be easily extended to the general CP nested
set view of Gupta et al. (2022). For simplicity of exposition,
this analysis is deferred to Appendix B.1

3.2. Base Predictor f ∈ F is Not Given: Sub-Optimality
of the Least-Square Regressor

In the previous section we saw that, when f is fixed, the
calibration step of the split CP method corresponds to the
minimization of the size of the interval, up to some statistical
error. Now, we investigate how f should be learned during
the learning step to obtain a prediction interval of minimal
size. Let us consider Problem (4) over Cconst

F :

min
f∈F,t≥0

2t s.t. P(|Y − f(X)| ≤ t) ≥ 1− α . (9)

By replacing t with its optimal value as a function of f , i.e.
t∗ = Q(1 − α; |Y − f(X)|), we obtain what we call the
(1− α)-QAE problem (Quantile Absolute Error):

min
f∈F

Q(1− α; |Y − f(X)|) . (10)

In words, this optimization problem tells us that f should
minimize the (1 − α)-quantile of the distribution of S =
|Y − f(X)|. This is quite natural, since this quantile is the
one selected to build the prediction interval, and the smaller
it is, the smaller the interval will be.

What this optimization problem also tells us is that taking
f as the minimizer of the Mean Squared Error (MSE)
E[(Y − f(X))2], denoted µ(x) = E[Y |X = x], like it is
suggested in classical split CP, is not generally optimal in
terms of volume minimization, and one should rather take
the minimizer of the (1 − α)-QAE. Notice that, while in
general the minimizer of the MSE does not match the one
of the (1− α)-QAE, it does in some settings. For instance,
in Lei et al. (2018, Section 3), the authors claim that if the
residual distribution Y − µ(X) is independent of X and

admits a symmetric density with one mode at 0, then taking
f = µ is optimal, i.e. the minimizer of the MSE matches
the minimizer of the (1− α)-QAE. However, this kind of
assumptions can be quite strong in practice, reason why it
is preferable to keep the minimization of the (1− α)-QAE
as the main objective, since it is optimal on Cconst

F no matter
the distribution of (X,Y ).

3.3. EffOrt: EFFiciency-ORienTed Split Conformal
Regression

In this section, we propose a methodology to approach the
oracle prediction set C1−α

f∗,t∗(x) = [f∗(x)− t∗, f∗(x) + t∗],
with f∗ the minimizer of the (1− α)-QAE (Problem (10))
and t∗ = Q(1 − α; |Y − f∗(X)|). We place ourselves in
the split conformal framework of Section 2.1, having access
to a learning data set Dlrn used to learn f , and a calibration
data set Dcal. With a slight abuse of notation we will write
i ∈ Dlrn or Dcal to indicate (Xi, Yi) ∈ Dlrnor Dcal.
The proposed methodology, referred to as EffOrt, consists
in the following steps:

1. Learn f̂ ∈ arg min
f∈F

Q̂(1 − α; {|Yi − f(Xi)|}i∈Dlrn),

i.e. minimize the empirical version of the (1−α)-QAE

2. Proceed to the calibration step, i.e. take t̂ = Q̂
(

(1−

α)nc+1
nc

; {|Yi − f̂(Xi)|}i∈Dcal

)
3. For any test point X ∈ X , output the prediction inter-

val C1−α
f̂,t̂

(X) = [f̂(X)− t̂, f̂(X) + t̂]

In EffOrt, the main difficulty is in the first step, where
the empirical (1− α)-QAE must be minimized. Indeed, it
does not have a closed-form solution, and if we want to use
a gradient-based optimization algorithm, we must compute
the gradient of the empirical (1−α)-QAE which not trivial,
or might even not be clearly defined. In the following, we
present a gradient-based optimization procedure inspired by
Pena-Ordieres et al. (2020).

3.3.1. OPTIMIZATION OF THE EMPIRICAL (1− α)-QAE

We assume that f ∈ F is parametrized by θ ∈ Θ, and for
the sake of generality, we consider the problem:

min
θ

Q̂(1− α; {ℓ(θ;Zi)}i∈Dlrn) . (11)

Here, ℓ : Θ × Z → R is a loss function, taking as input a
parameter θ and a data point Zi. In the step 1 of EffOrt,
Zi = (Xi, Yi) and ℓ(θ;Zi) = |Yi − fθ(Xi)|.
To solve this problem, one natural idea is to use a gradient
descent algorithm on Q̂(1−α; {ℓ(θ;Zi)}i∈Dlrn). However,
this function is not differentiable in θ. We therefore follow
the strategy of Pena-Ordieres et al. (2020) and consider a
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smooth approximation of it. More precisely, we first approx-
imate the empirical cumulative distribution function (cdf)
F̂ (t, θ) :=

∑
i∈Dlrn 1{ℓ(θ;Zi) ≤ t} by another function

F̃ε where the indicator is replaced by a smooth version of it:

F̃ε(t, θ) =
∑

i∈Dlrn

Γε(ℓ(θ;Zi)− t) ,

where ε > 0 is a parameter of the approximation. One
possible choice for Γε is given in Pena-Ordieres et al. (2020,
Eq. (2.6)) and is detailed in Appendix C. Then, we define
the smooth empirical quantile function by:

Q̃ε(q; (ℓ(θ;Zi))i∈Dlrn) = inf{t : F̃ε(t, θ) ≥ q} . (12)

For a given q and ε > 0, under mild assumptions on the loss
function ℓ(·), one can show that the gradient of Eq. (12) is
well-defined and has a closed-form that can be used in a
gradient descent algorithm. The full procedure is detailed
in Appendix C.

3.4. Theoretical Analysis

In this last subsection, we theoretically analyze the perfor-
mance of the prediction set output by EffOrt. We are
interested in two types of guarantees: (i) a coverage guaran-
tee and (ii) an excess volume loss guarantee like the one in
Eq. (8). To this aim, we require the following assumption.

Assumption 3.5. There exists ϕ(F , δ, n) < +∞ such that
with probability at least 1− δ:

sup
t≥0
f∈F

∣∣∣P (|Y − f(X)| ≤ t)− 1
n

n∑
i=1

1{|Yi − f(Xi)| ≤ t}
∣∣∣

≤ ϕ(F , δ, n) .

In this assumption, ϕ(F , δ, n) bounds the worst-case esti-
mation error of P(|Y − f(X)| ≤ t) using the empirical
estimate 1

n

∑n
i=1 1{|Yi− f(Xi)| ≤ t} over the whole func-

tion class F and for any value of t. Typically, ϕ(F , δ, n)
will decrease with an increasing number of data points n and
increase as the complexity of F gets larger. In the following
proposition, we explicitly derive a closed-form expression
for ϕ(F , δ, n) when the function class F is finite.

Proposition 3.6. (Finite class F). If |F| < ∞, then

Assumption 3.5 is verified with ϕ(F , δ, n) =
√

log(2|F|/δ)
2n .

Similarly to the “classical” statistical learning framework,
where it is possible to obtain generalization bounds for
infinite hypothesis classes, it is possible to derive other
closed-forms for ϕ(F , δ, n) in the infinite case by involving
complexity measures like VC dimensions or Rademacher
complexities. This, along with the proof of Prop. 3.6, is
discussed in Appendix B.2. We can now present our main
theoretical result.

Theorem 3.7. Let the conditions of Prop. 3.1 hold, with the
points in Dlrn and Dcal being i.i.d., and C1−α

f̂,t̂
(x) be the

prediction interval output by EffOrt . If Assumption 3.2
and 3.5 are satisfied, the distribution of Y is atomless, nc
and nℓ are large enough so that 1−α

nc
+
√

log(2/δ)
2nc

≤ r and
ϕ(F , δ, nℓ) ≤ r, then:

1. P(Y ∈ C1−α
f̂,t̂

(X)|Dlrn) ≥ 1− α a.s.

2. With probability greater that 1− 2δ:

λ
(
C1−α
f̂,t̂

)
≤ λ

(
C1−α
f∗,t∗

)
(13)

+ 2L
( 1
nc

+

√
log(2/δ)

2nc

)γ
+ 4Lϕ(F , δ, nℓ)γ

Proof sketch - Details in Appendix A.2. The first result is
classical (Lei et al., 2018). Let us focus on the second
one, proved with the following steps.

Step 1: In the first step of EffOrt, we are actu-
ally solving the empirical objective minf∈F,t≥0 {t s.t.
n−1
l

∑
i∈Dlrn 1{|Yi − f(Xi)| ≤ t} ≥ 1 − α}, with so-

lutions denoted by f̂ and t̂lrn. Using the theory of MVS
estimation (Scott & Nowak, 2005), we can compare this
solution to the oracle one. Indeed, by adapting the proof of
Scott & Nowak (2005, Theorem 1), we can show that with
probability greater than 1− δ:

P(Y ∈ C1−α
f̂,t̂lrn

(X)|Dlrn) ≥ 1− α− ϕ(F , δ, nℓ) (14)

and
λ
(
C1−α
f̂,t̂lrn

)
≤ λ

(
C1−α+ϕ
f∗

1−α+ϕ
,t∗1−α+ϕ

)
, (15)

where ϕ ≡ ϕ(F , δ, nℓ) and C1−α+ϕ
f∗

1−α+ϕ
,t∗1−α+ϕ

denotes the op-

timal oracle interval with coverage increased by ϕ(F , δ, nℓ).
This tells us that after the learning step we already have
some guarantees: (i) a high probability coverage guaran-
tee, with a looser coverage decreased by ϕ(F , δ, nℓ), (ii)
an excess volume guarantee, ensuring that the volume of
the learned interval is smaller than the optimal one with
coverage increased by ϕ. Interestingly, this also means that
the conformal step allows to obtain an almost sure cover-
age guarantee, and to get rid of the statistical error due to
ϕ(F , δ, nℓ) in the coverage.

Step 2: From (15) we have t̂lrn ≤ t∗1−α+ϕ and therefore
t̂ ≤ t∗ + t̂− t̂lrn + t∗1−α+ϕ − t∗.

With (7) in Prop. 3.1, we have t̂ ≤ Q(1 − α + 1−α
nc

+√
log(2/δ)

2nc
; |Y − f̂(X)||Dlrn). Moreover, from (14), t̂lrn ≥

Q(1 − α − ϕ(F , δ, nℓ); |Y − f̂(X)||Dlrn). Hence, thanks

to Assumption 3.2, t̂ − t̂lrn ≤ L
(

1
nc

+
√

log(2/δ)
2nc

)γ
+
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Lϕ(F , δ, nℓ)γ . It remains to bound t∗1−α+ϕ − t∗. By defini-
tion, we have t∗1−α+ϕ = Q(1− α+ ϕ; |Y − f∗

1−α+ϕ(X)|),
and t∗ = Q(1−α; |Y − f∗(X)|). Moreover, we notice that
t∗1−α+ϕ ≤ Q(1− α+ ϕ; |Y − f∗(X)|) since by definition
f∗

1−α+ϕ minimizesQ(1−α+ϕ; |Y −f(X)|) over all f ∈ F .
Hence, t∗1−α+ϕ − t∗ ≤ Lϕ(F , δ, nℓ)γ , by Assumption 3.2.
We conclude by combining everything.

To the best of our knowledge, Theorem 3.7 is one of the first
to provide such a finite-sample upper bound on the excess-
volume loss. It explicitly reveals the impact of the two split
conformal steps of EffOrt. The two first error terms (in-
volving nc) match the bound of Corollary 3.3, and can be
seen as the volume loss due to the calibration step. While
the third term, with ϕ(F , δ, nℓ), is the error due to the learn-
ing step. If we omit the dependence in δ, ϕ(F , δ, nℓ) will

typically be in the form of
√

Compl(F)
nℓ

, where Compl(F)
measures the complexity of F (see Prop. 3.6 and Appendix
B.2). In most settings, we have Compl(F) ≫ log(1/δ).
Hence, the rate in Eq. (13) supports the important intuition
that the learning step remains more important than the con-
formal step, at least in the sense that more data-points are
needed to reach convergence. It is thus preferable to assign
more points to the learning than the calibration.

4. Extension to Intervals with Adaptive Size
We now consider the case of prediction intervals whose size
adapts to the value of X . Formally, we consider the class of
prediction sets Cadap

F,S = {Cf,s(x) = [f(x) − s(x), f(x) +
s(x)] : f ∈ F , s ∈ S}, where S is a class of non-negative
functions. Importantly, this class of prediction sets encap-
sulates the Locally-Weighted Conformal Inference and the
CQR methods (see Examples 1.2 and 1.3).

4.1. Oracle Prediction Set and Conditioning over X = x

Following a similar reasoning as in Section 3, we could first
consider f fixed and derive a closed-form oracle expression
for s by solving Problem (4) with CBorel replaced by Cadap

F,S .
Unfortunately, contrary to the previous section, the solution
of this problem does not have a direct expression.

For this reason, we propose to modify the problem so that
s admits an oracle closed-form expression which can be
naturally estimated empirically. More precisely, we condi-
tion the optimization problem over the event X = x, where
x ∈ X . In that case, the problem becomes:

min
s∈S

s(x) s.t. P(|Y −f(x)| ≤ s(x)|X = x) ≥ 1−α (16)

This problem is more difficult than (10) as a conditional
coverage constraint is now required, which is known to be
harder to obtain in practice (Vovk, 2012; Lei & Wasserman,
2014). If S is sufficiently complex, Problem (16) has an

oracle close-form solution, which is given by the (1− α)-
quantile of |Y − f(X)| conditioned on X = x, denoted
by s∗(x) := Q(1 − α; |Y − f(X)||X=x). Interestingly,
the function s∗(x) is the quantile regression function of
|Y − f(X)| given X = x, and corresponds to the solution
of mins∈S E[ρ1−α(|Y −f(X)|−s(X))], where ρ1−α is the
pinball loss. Hence, a natural solution is to use an empirical
plug-in estimator of s∗, i.e. minimizing an empirical version
of the pinball risk, as suggested in the next section.
Remark 4.1. Another strategy could be to directly solve
an empirical version of minf∈F,s∈S{E[s(X)] s.t. P(|Y −
f(X)| ≤ s(X)) ≥ 1 − α}. This would allow deriving
results similar to those of the previous section (see
Appendix B.3), but solving it in practice can be challenging,
notably because of the empirical coverage constraint. No-
tice that, although their objective is different from ours, Bai
et al. (2022) face a similar optimization problem, where they
propose a smooth and differentiable relaxation to solve it.

4.2. Ad-EffOrt

We now describe our second method, Ad-EffOrt, which
extends EffOrt to prediction intervals with adaptive size.
Like in EffOrt, we consider the split CP framework, hav-
ing access to a learning dataset Dlrn used to learn the
base predictors f and s, and a calibration data set Dcal.
Ad-EffOrt consists in the following steps:

1. f̂ ∈ arg min
f∈F

Q̂(1− α; {|Yi − f(Xi)|}i∈Dlrn)

2. ŝ ∈ arg min
s∈S

1
nℓ

∑
i∈Dlrn ρ1−α(|Yi − f̂(Xi)| − s(Xi))

3. t̂ = Q̂
(

(1− α)nc+1
nc

; {|Yi − f̂(Xi)| − ŝ(Xi)}i∈Dcal

)
4. For any test point X ∈ X , output C1−α

f̂,ŝ,t̂
(X) = [f̂(X)−

ŝ(X)− t̂, f̂(X) + ŝ(X) + t̂] .

In the first two steps of Ad-EffOrt, we learn the model
f as in EffOrt and then fit the residuals using a quantile
regression or order 1 − α. Note that, in those two steps,
the same data are used to learn both the prediction model
f and the quantile regressor s, but we also might split the
learning set in two. Then, in the third step (calibration), we
take the quantile of {|Yi − f̂(Xi)| − ŝ(Xi)}i∈Dcal . This
comes from the fact that the final prediction interval is in
the form [f(x)− s(x)− t, f(x) + s(x) + t], and, given the
base predictors (f, s), the smallest t such that we satisfy the
coverage is Q

(
(1 − α); |Y − f(X)| − s(X)

)
. This claim

is easily proved by following the analysis of Section 3.1.

The main limitation of Ad-EffOrt is the difficulty of pro-
viding a theoretical guarantee similar to that of Theorem 3.7.
This is notably due to the fact that while s is learned in order
to obtain conditional guarantees, f is learned as in EffOrt,
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Figure 1. Boxplots of the 50 empirical expected lengths obtained
by evaluating EffOrt in Section 5.1 (top) and Ad-EffOrt in
Section 5.2 (bottom). The white circle corresponds to the mean.

i.e. in order to obtain marginal guarantees. When f is fixed,
one could actually derive guarantees on ŝ and its ability to
solve (16) by providing a setting under which the quantile
regressor is consistent, making (16) asymptotically verified.
Last but not least, it is worth mentioning that, thanks to the
calibration step, the marginal coverage guarantee is verified.

5. Experiments
In this section we compare our methods, EffOrt and
Ad-EffOrt, to the standard and locally adaptive ver-
sions of split CP on synthetic data. Due to lack of space,
additional results on real data are deferred to Appendix
D.2. Code to run all methods is available at https:
//github.com/pierreHmbt/AdEffOrt.

5.1. Evaluation of EffOrt

We first show the ability of EffOrt to return valid predic-
tion sets of smaller size than those returned by standard split
CP methods. More precisely, we consider asymmetric and
heavy-tailed distribution, illustrating the robustness of our
method to a wide range of realistic situations.

We consider a linear regression model Y = XT θ+E where
θ ∼ U(0, 1)⊗3 is fixed, X ∼ N (0, I3) with I3 the identity
matrix of size 3× 3, and E follows 4 different distributions:
A standard normal, a mixture distribution 0.95 · N (0, 1) +
0.05 · N (2, 1), a Pareto distribution with shape and scale
parameters equal to 2 and 1, and another mixture equals to
0.95 · Pareto(2, 1) + 0.05 · N (−20, 1). In the two mixtures,
the additional normal distributions allow simulating extreme
values. For each scenario, we generate nlrn = ncal =
1000 pairs (Xi, Yi), as well as ntest = 1000 test points to
compute the empirical marginal coverage and the average
size of the returned set. We repeat this procedure 50 times.

During the learning step of EffOrt, we solve the (1− α)-
QAE Problem (10) using the gradient descent strategy of
Section 3.3.1. The smoothing parameter ε is set to 0.1,
niter = 1000, and the step-size sequence is {(1/t)0.6}niter

t=1 .
Furthermore, the space of research F is restricted to the
space of linear functions (see Appendix D for additional re-
sults with Neural-Networks (NN)). For the split CP method,
the regression function is either estimated using a linear
regression or, in order to be fair in our comparisons, using
a robust linear regression with Huber loss with parameter
δ = 1.35. For all methods, the score function is the absolute
value of the residuals, i.e., s(x, y) = |y − f̂(x)| and we set
α = 0.1.

Results: Figure 1 (top) displays the boxplots of the 50
test lengths obtained in the 4 scenarios (the coverage can
be found in Appendix D and is, as expected, near 0.9).
Overall, EffOrt produces more efficient marginally valid
sets than those obtained with the split CP method, in all
scenarios. Interestingly, when the noise follows a normal
distribution (Figure 1 - top left panel), EffOrt and the
split CP method with a standard or a robust linear regressor
return similar sets. This was expected because with this type
of distribution, the least-square regressor is supposed to be
as good as the minimizer of the QAE. This is as opposed
to the mixture of Gaussians, where extreme points brings
asymmetry and makes the linear least square regression
not suitable anymore. When the noise follows a Pareto
distribution (Figure 1 top right panel), its heavy tail also
makes the Split CP with robust regression output larger
prediction sets. This could be explained by the fact that, in
the learning step, the robust regression somehow gets rid of
extreme points that should be kept, enforcing the calibration
step to make a larger correction. In the last scenario, both
baselines are outperformed by EffOrt.

5.2. Evaluation of Ad-EffOrt

We now compare Ad-EffOrt to the Locally Weighted
CP (LW-CP) and CQR methods (see Example 1). We
consider a simple heteroscedastic linear regression model
Y = X + E(X) where X ∼ N (0, 1) and E(x) follows
the 4 distributions of the previous section and with variance
multiply by x2. During the learning step of Ad-EffOrt,
we solve the (1− α)-QAE Problem (10) using the gradient
descent strategy of Section 3.3.1. The space of research
F is restricted to the space of linear functions. We then
learn ŝ(·) (second step of Ad-EffOrt) using a Random
Forest (RF) quantile regressor. For the LW-CP method, the
regression function is estimated using a linear regression
and σ̂(·) using a RF. Finally, for CQR, we also use a RF
quantile regression. We set α = 0.1. More details on the
experimental setup are available in Appendix D.1.

Results: Figure 1 (bottom) displays the boxplots of the
length for the 3 methods. The coverages can be found in
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Appendix D and are near 0.9. Furthermore, an illustration
of the returned sets is given in Figure 5 of Appendix D.
We see that Ad-EffOrt returns valid marginal sets with
length, on average, smaller or similar that the two other
methods. Furthermore, the size of the boxplots are much
smaller for our method than for the others. This means
that Ad-EffOrt returns sets with more consistent sizes.
Finally, we would like to point out that, although CQR gives
similar results to our method in some situations (e.g., with
the Pareto distribution), it has the drawback to not assess
the uncertainty of a particular prediction model f̂ .

6. Conclusion
This paper explicitly analyzes split conformal prediction
through the lens of an MVS estimation problem and show
that, in order to minimize the length of the prediction in-
terval, the base predictor should minimize the (1 − α)-
QAE. This motivates two new methods, EffOrt and
Ad-EffOrt , that are both empirically shown to be more
robust than baselines over a significant spectrum of data-
distributions. For EffOrt, a detailed theoretical analysis
highlights how the complexity of the prediction function
classes impacts the prediction interval’s length. It also re-
veals that the calibration step allows to provide an almost
sure coverage guarantee, at the cost of slightly increasing the
excess volume loss, with a term dominated by the statistical
error due to the learning step.

In the future, it would be interesting to explicitly control the
error due to the approximation used in Section 3.3.1, and see
its impact on Theorem 3.7. It would also be relevant to con-
sider more complex classes of prediction sets, such as union
of intervals, and to propose extensions of our framework to
multivariate outputs. On a more general aspect, linking the
volume of CP with more classical Uncertainty Quantifica-
tion frameworks (Sale et al., 2023) is an interesting research
direction.
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Appendix

A. Proofs of Main Results
In this section we give the proofs of the main results of the paper, starting with a reminder of the Dvoretzky–Kiefer–Wolfowitz
(DKW) inequality used several times in the proofs.

Lemma A.1. (DKW inequality (Dvoretzky et al., 1956; Massart, 1990)) Let X1, X2, . . . , Xn be real-valued independent
and identically distributed random variables with cumulative distribution function F (·). Let F̂n denote the associated
empirical distribution function defined by F̂n(x) =

∑n
i=1 1{Xi ≤ x}. For all ε > 0:

P
(

sup
x∈R
|F (x)− F̂n(x)| > ε

)
≤ 2e−2nε2

.

A.1. Proof of Proposition 3.1

We have that λ
(
C1−α
f,t̂

)
= 2t̂. Let the events E1 :=

{
t̂ > Q

(
1− α+ 1−α

nc
+
√

log(2/δ)
2nc

;S
)}

and EDKW :={
supt≥0 |FS(t)− F̂S(t)| >

√
log(2/δ)

2nc

}
, where FS(t) = P(S ≤ t) and F̂S(t) = 1

nc

∑nc

i=1 1{Si ≤ t}. The main ob-

jective of the proof is to show that the event E1 ⊂ EDKW .

We first recall that t̂ = Q̂((1− α)nc+1
nc

; {Si}nc
i=1), then E1 is equivalent to:

Q̂
(

1− α+ 1− α
nc

; {Si}nc
i=1

)
> Q

(
1− α+ 1− α

nc
+

√
log(2/δ)

2nc
;S
)
,

which then implies that

1− α+ 1− α
nc

> F̂S

(
Q
(

1− α+ 1− α
nc

+

√
log(2/δ)

2nc
;S
))

.

Where the last implication can be found for instance in the left-hand side of Eq. (34) in Howard & Ramdas (2022). It comes
from the fact that (1− α)(nc + 1) is not an integer and, in that case, Q̂(·; {Si}nc

i=1) acts as an inverse of F̂S .

Moreover, by definition of the quantile function and its relation with the cumulative distribution function (cdf), we have that

FS

(
Q
(

1− α+ 1− α
nc

+

√
log(2/δ)

2nc
;S
))
≥ 1− α+ 1− α

nc
+

√
log(2/δ)

2nc
.

Hence,
∣∣∣FS(Q(1− α+ 1−α

nc
+
√

log(2/δ)
2nc

;S
))
− F̂S

(
Q
(

1− α+ 1−α
nc

+
√

log(2/δ)
2nc

;S
))∣∣∣ >√ log(2/δ)

2nc
, which implies

EDKW .

In the end, we have P(E1) ≤ P(EDKW ), and we conclude the proof by applying the DKW inequality from Lemma A.1

with ε =
√

log(2/δ)
2nc

.

A.2. Proof of Theorem 3.7

We now detail the proof of our main result, which follows the sketch provided in the main text.

The first point of Theorem 3.7, on the almost sure coverage guarantee, is a classical result of the conformal prediction
literature, see e.g. Lei et al. (2018, Theorem 2.2). Let us focus on the second result, which can be proved by following the
two steps described hereafter.
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Step 1: We first notice that in the first step of EffOrt, we are actually solving the empirical minimization objective:

min
f∈F,t≥0

t

s.t.
1
nℓ

∑
i∈Dlrn

1{|Yi − f(Xi)| ≤ t} ≥ 1− α ,

with solutions denoted by f̂ and t̂lrn.

Using the theory of MVS estimation (Scott & Nowak, 2005), we can compare this solution to the one of the oracle problem
and show that with probability greater than 1− δ:

P(Y ∈ C1−α
f̂,t̂lrn

(X)|Dlrn) ≥ 1− α− ϕ(F , δ, nℓ) (17)

and
λ
(
C1−α
f̂,t̂lrn

(X)
)
≤ λ

(
C1−α+ϕ
f∗

1−α+ϕ
,t∗1−α+ϕ

(X)
)
, (18)

where ϕ ≡ ϕ(F , δ, nℓ) and C1−α+ϕ
f∗

1−α+ϕ
,t∗1−α+ϕ

(X) denotes the optimal oracle interval with increased coverage 1 − α +
ϕ(F , δ, nℓ). In other word, f∗

1−α+ϕ and t∗1−α+ϕ are the solutions of:

min
f∈F,t≥0

t

s.t. P(|Y − f(X)| ≤ t) ≥ 1− α+ ϕ(F , δ, nℓ) .

Proof of (17) and (18). Let:

• ΘP =
{
P(Y ∈ C1−α

f̂,t̂lrn
(X)|Dlrn) < 1− α− ϕ(F , δ, nℓ)

}
• Θλ =

{
λ
(
C1−α
f̂,t̂lrn

(X)
)
> λ

(
C1−α+ϕ
f∗

1−α+ϕ
,t∗1−α+ϕ

(X)
)}

• Θϕ =
{

supt≥0,f∈F

∣∣∣P (|Y − f(X)| ≤ t)− 1
nℓ

∑nℓ

i=1 1{|Yi − f(Xi)| ≤ t}
∣∣∣ > ϕ(F , δ, nℓ)

}
The objective is to show that ΘP ∪ Θλ ⊂ Θϕ since this would be mean that P(Θc

P ∩ Θc
λ) ≥ P(Θc

ϕ), where Θc is the
complementary of Θ. Then, applying Assumption 3.5 gives the desired result.

ΘP ⊂ Θϕ: Consider ΘP is verified, i.e.

P(Y ∈ C1−α
f̂,t̂lrn

(X)|Dlrn) < 1− α− ϕ(F , δ, nℓ)

=⇒ P(Y ∈ C1−α
f̂,t̂lrn

(X)|Dlrn)− 1
nℓ

nℓ∑
i=1

1{|Yi − f̂(Xi)| ≤ t̂lrn} < 1− α− ϕ(F , δ, nℓ)−
1
nℓ

nℓ∑
i=1

1{|Yi − f̂(Xi)| ≤ t̂lrn}

=⇒ P(Y ∈ C1−α
f̂,t̂lrn

(X)|Dlrn)− 1
nℓ

nℓ∑
i=1

1{|Yi − f̂(Xi)| ≤ t̂lrn} < −ϕ(F , δ, nℓ)

=⇒
∣∣∣P(Y ∈ C1−α

f̂,t̂lrn
(X)|Dlrn)− 1

nℓ

nℓ∑
i=1

1{|Yi − f̂(Xi)| ≤ t̂lrn}
∣∣∣ > ϕ(F , δ, nℓ)

=⇒ Θϕ

Where the second implication is obtained using the fact that by construction 1
nℓ

∑nℓ

i=1 1{|Yi − f̂(Xi)| ≤ t̂lrn} ≥ 1− α.

Θλ ⊂ Θϕ:

Let us first show that Θλ implies that:

13
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1
nℓ

nℓ∑
i=1

1{|Yi − f∗
1−α+ϕ(Xi)| ≤ t∗1−α+ϕ} < 1− α (19)

Indeed, if we had 1
nℓ

∑nℓ

i=1 1{|Yi−f∗
1−α+ϕ(Xi)| ≤ t∗1−α+ϕ} ≥ 1−α, then we would necessarily have t̂lrn ≤ t∗1−α+ϕ, since

t̂lrn is minimal over the empirical coverage constraint, which would imply that λ
(
C1−α
f̂,t̂lrn

(X)
)
≤ λ

(
C1−α+ϕ
f∗

1−α+ϕ
,t∗1−α+ϕ

(X)
)

,
i.e. that Θλ is not verified.

It remains to show that (19) implies Θϕ. By (19), and using the fact that P
(
|Y − f∗

1−α+ϕ(X)| ≤ t∗1−α+ϕ

)
≥ 1 − α +

ϕ(F , δ, nℓ):

1
nℓ

nℓ∑
i=1

1{|Yi − f∗
1−α+ϕ(Xi)|} − P

(
|Y − f∗

1−α+ϕ(X)| ≤ t∗1−α+ϕ

)
< −ϕ(F , δ, nℓ)

=⇒
∣∣∣ 1
nℓ

nℓ∑
i=1

1{|Yi − f∗
1−α+ϕ(Xi)|} − P

(
|Y − f∗

1−α+ϕ(X)| ≤ t∗1−α+ϕ

)∣∣∣ > ϕ(F , δ, nℓ)

=⇒ Θϕ

This concludes the proof that ΘP ∪Θλ ⊂ Θϕ and therefore Eq. (17) and (18).

Step 2: From Eq. (7) in Prop. 3.1 we have that with probability greater than 1− δ:

t̂ ≤ Q

1− α+ 1− α
nc

+

√
log(2/δ)

2nc
; |Y − f̂(X)||Dlrn

 (20)

With an abuse of notation, we therefore have P({(20)}) ≥ 1 − δ and P({(17)} ∩ {(18)}) ≥ 1 − δ. Therefore, using the
union bound over the complementary events, we get that P({(20)} ∩ {(17)} ∩ {(18)}) ≥ 1− 2δ. In the following, we show
that if (20), (17) and (18) are true, we have our final upper-bound, which will conclude the proof.

The size of the intervals being equal to 2 times their radius t, the objective here is to provide a high probability upper-bound
on t̂. Thanks to (18), we have that t̂lrn ≤ t∗1−α+ϕ and therefore:

t̂ = t̂− t̂lrn + t̂lrn ≤ t̂− t̂lrn + t∗1−α+ϕ = t∗ + t̂− t̂lrn + t∗1−α+ϕ − t∗

We first control t̂− t̂lrn.

Applying the quantile function Q(·; |Y − f̂(X)||Dlrn) on (17) gives t̂lrn ≥ Q(1 − α − ϕ(F , δ, nℓ); |Y − f̂(X)||Dlrn).
Hence, thanks to (20) and to Assumption 3.2, we have:

t̂− t̂lrn ≤ Q
(

1− α+ 1− α
nc

+

√
log(2/δ)

2nc
; |Y − f̂(X)||Dlrn

)
−Q

(
1− α− ϕ(F , δ, nℓ); |Y − f̂(X)||Dlrn

)
≤ L

(1− α
nc

+

√
log(2/δ)

2nc
+ ϕ(F , δ, nℓ)

)γ
≤ L

( 1
nc

+

√
log(2/δ)

2nc

)γ
+ Lϕ(F , δ, nℓ)γ

It remains to bound t∗1−α+ϕ − t∗. By definition, we have t∗1−α+ϕ = Q(1 − α + ϕ; |Y − f∗
1−α+ϕ(X)|), and t∗ = Q(1 −

α; |Y − f∗(X)|). Moreover, we notice that Q(1 − α + ϕ; |Y − f∗
1−α+ϕ(X)|) ≤ Q(1 − α + ϕ; |Y − f∗(X)|) since by

definition f∗
1−α+ϕ minimizes Q(1− α+ ϕ; |Y − f(X)|) over all f ∈ F . In the end, by Assumption 3.2 we have:
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t∗1−α+ϕ − t∗ ≤ Q(1− α+ ϕ; |Y − f∗(X)|)−Q(1− α; |Y − f∗(X)|) ≤ Lϕ(F , δ, nℓ)γ .

We conclude the proof using the fact that λ(C1−α
f̂,t̂

(X)) = 2t̂ and λ(C1−α
f∗,t∗(X)) = 2t∗.

B. Additional Results
B.1. The Nested Sets View

The split CP method described in Section 2.1 can also be described through the notion of nested sets (Gupta et al., 2022),
which encapsulates many types of prediction sets, base predictors and scoring functions considered in the literature. As
claimed in Remark 3.4, this framework will allow us to generalize the results of Section 3.1 to a wider class of prediction
sets.

In the nested set view, we consider the class of prediction sets Cnested
F,T = {Cf,t(x) nested ; f ∈ F , t ∈ T ⊂ R}, where

‘nested’ means that for any fixed f ∈ F and x ∈ X , Cf,t(x) ⊂ Cf,t′(x) as soon as t ≤ t′. Here, we consider a fixed
base predictor f , but as usual, f is learned during the learning stage of the split method. In this setting, we can define the
following general scoring function:

sf (x, y) = inf{t ∈ T : y ∈ Cf,t(x)} .

Then, the procedure is the same as in Section 2.1: compute the nonconformity scores Si := sf (Xi, Yi), i ∈ JncK and find
the ⌈(nc + 1)(1− α)⌉-th smallest one q̂1−α := S(⌈(nc+1)(1−α)⌉). Finally, for any x ∈ X , the prediction set is Cf,q̂1−α

(x).
As usual, the marginal guarantee is satisfied (Gupta et al., 2022, Prop. 1).

As mentioned above, an interesting aspect of this nested set framework is that it encapsulates many split CP approaches
(Gupta et al., 2022, Table 1) such as the ones of Example 1, as shown in the following Example.
Example 2. (Nested sets view of Example 1).

1. The original Split CP (Papadopoulos et al., 2002) is recovered in the nested set framework by taking f = {µ},
Cµ,t(x) = [µ(x)− t;µ(x) + t] and T = [0,∞).

2. In Locally-Weighted Conformal Inference (Papadopoulos et al., 2008), f = {µ, σ}, Cf,t(c) = [µ(x)− σ(x)t;µ(x) +
σ(x)t] and T = [0,∞).

3. In Conformalized Quantile Regression (CQR) (Romano et al., 2019), we have f = {Qα, Q1−α}, Cf,t(x) = [Qα(x)−
t;Q1−α(x) + t] and T = R.

We can now extend our results from Section 3.1 to the nested framework, aiming at showing that, when f is given, the
conformal step indeed minimizes the size of the prediction set, up to an error that vanishes as nc grows.

To this aim, we need the following additional assumption on the way the size of the nested set grows with t.

Assumption B.1. (Linear growth of the size.) ∀f ∈ F , ∃a, b > 0 such that E[λ(Cf,t(X))] = at+ b.

If we take the three previous examples, we have in 1) a = 2 and b = 0, 2) a = 2E[σ(X)] and b = 0, and 3) a = 2 and
b = E[Q1−α(X)−Qα(X)].
Over Cnested

F,T and under Assumption B.1, when f is fixed the optimization problem (4) becomes:

min
t≥0

at+ b

s.t. P(Y ∈ Cf,t(X)) ≥ 1− α ,

which has the same solution as:

min
t≥0

t

s.t. P(sf (X,Y ) ≤ t) ≥ 1− α ,
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with solution t∗ = Q(1− α; sf (X,Y )). Similarly, the conformal step solves an empirical version of the previous problem:

min
t≥0

t

s.t.
1
nc

nc∑
i=1

1{sf (Xi, Yi) ≤ t} ≥ (1− α)(nc + 1)/nc

with solution t̂ = Q̂((1− α)(nc + 1)/nc; {sf (Xi, Yi)}nc
i=1). As in Section 3.1, controlling the volume sub-optimality is

equivalent to control the error of an empirical quantile estimate, and we can provide a very simple extension of Proposition 3.1
and Corollary 3.3.

Proposition B.2. Let t̂ = Q̂((1 − α)nc+1
nc

; {sf (Xi, Yi)}nc
i=1) and Cf,t̂(x) the corresponding (nested) prediction set. If

Assumption B.1 holds, the points in Dcal are i.i.d., and (nc + 1)(1− α) is not an integer, then with probability greater than
1− δ we have:

E
[
λ
(
Cf,t̂(X)

)∣∣∣Dlrn] ≤ a×Q
1− α+ 1− α

nc
+

√
log(1/δ)

2nc
;S

+ b .

Moreover, if Assumption 3.2 is true for S = sf (X,Y ) and if nc is large enough so that 1−α
nc

+
√

log(1/δ)
2nc

≤ r, then with
probability greater than 1− δ we have:

E
[
λ
(
Cf,t̂(X)

)∣∣∣Dlrn] ≤ E
[
λ
(
Cf,t∗(X)

)]
+ aL

1− α
nc

+

√
log(1/δ)

2nc

γ

.

Proof. The proof is essentially the same as the one of Proposition 3.1 and Corollary 3.3, and is therefore omitted.

B.2. Closed-Form Expressions for ϕ(F , δ, n)

In Proposition 3.6 we give a closed form expression for ϕ(F , δ, n) in the case of finite function class F . The proof is given
hereafter.

Proof of Proposition 3.6. Let ε > 0,

P

(
sup

t≥0,f∈F

∣∣∣P (|Y − f(X)| ≤ t)− 1
n

n∑
i=1

1{|Yi − f(Xi)| ≤ t}
∣∣∣ > ε

)

= P

(
∪
f∈F

{
sup
t≥0

∣∣∣P (|Y − f(X)| ≤ t)− 1
n

n∑
i=1

1{|Yi − f(Xi)| ≤ t}
∣∣∣ > ε

})

≤
∑
f∈F

P

(
sup
t≥0

∣∣∣P (|Y − f(X)| ≤ t)− 1
n

n∑
i=1

1{|Yi − f(Xi)| ≤ t}
∣∣∣ > ε

)
≤ 2|F|e−2nε2

,

where in the last inequality we use the DKW inequality, and the fact that F is finite. Finally, taking ε =
√

log(2|F|/δ)
2n

concludes the proof.

Other closed-form expressions can be obtained for infinite function classes using the classical notions of Rademacher
complexity and VC dimension, as shown below.

Let F̃ = {(x, y) 7→ 1{|y− f(x)| ≤ t} : f ∈ F , t ≥ 0}. The Rademacher complexity of the function class F̃ is the quantity

Rn(F̃) = ED,ϵ

[
sup

f∈F,t≥0

1
n

n∑
i=1

ϵi1{|Yi − f(Xi)| ≤ t}
]
,
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where ϵ1, . . . , ϵn are Rademacher random variables. Then, a direct extension of the proof of Theorem 3.3 in Mohri (2018)

gives the closed-form ϕ(F , δ, n) = 2Rn(F̃) +
√

log(1/δ)
2n .

It is also possible to bound the Rademacher complexity of F̃ , first in terms of its associated Growth function (Massart’s
Lemma), and then in terms of its VC dimension, denoted VC(F̃) (Sauer’s Lemma). Applying Corollary 3.8 and Corollary

3.18 in Mohri (2018) gives the closed-form ϕ(F , δ, n) =
√

8VC(F̃) log(en/VC(F̃))
n +

√
log(1/δ)

2n .

It should be noted that more informative close-forms could be obtained by specifying the function class of F . For instance
we could fix F to be the set of linear functions.

B.3. Algorithm with Excess Volume Loss in the Adaptive Size Setting

In Section 4.1, if ∀s ∈ S and t ≥ 0 we have s + t ∈ S (stability with addition of a scalar), then the oracle problem is
equivalent to:

min
f∈F,s∈S,t≥0

E[s(X)] + t

s.t. P(|Y − f(X)| − s(X) ≤ t) ≥ 1− α .

In practice, we propose to use Ad-EffOrt, however in order to obtain theoretical results similar to that of Theorem 3.7,
another possibility would be to solve, during the learning step, an empirical version of the previous oracle problem, which is
complicated to apply in practice:

min
f∈F,s∈S,t≥0

1
nℓ

∑
i∈Dlrn

s(Xi) + t (21)

s.t.
1
nℓ

∑
i∈Dlrn

1{|Yi − f(Xi)| − s(Xi) ≤ t} ≥ 1− α− ϕ(F ,S, δ, nℓ) ,

where ϕ(F ,S, δ, nℓ) is a penalty term relaxing the coverage constraint in order to obtain a smaller prediction set. This
term corresponds to the statistical error of the empirical coverage, explicitly defined in the following assumption, which is
necessary to derive a result similar to that of Theorem 3.7.

Assumption B.3. There exists two quantities ϕ(F ,S, δ, n) < +∞ and ψ(S, δ, n) < +∞ such that:

P

(
sup

f∈F,s∈S,t≥0

∣∣∣P (|Y − f(X)| − s(X) ≤ t)− 1
n

n∑
i=1

1{|Yi − f(Xi)| − s(Xi) ≤ t}
∣∣∣ ≤ ϕ(F ,S, δ, n)

)
≥ 1− δ

and

P

(
sup
s∈S

∣∣∣E[s(X)]− 1
n

n∑
i=1

s(Xi)
∣∣∣ ≤ ψ(S, δ, n)

)
≥ 1− δ .

In words, this assumption generalizes Assumption 3.5 to the adaptive size setting, at least for the first equation. Since
in this setting we also estimate the expectation of the size, we need the second equation to make sure that its worst-case
estimation error is bounded w.h.p. Closed-form expressions for ϕ(F ,S, δ, n) and ψ(S, δ, n) can be obtained similarly as in
Appendix B.2.

Denote by (f̂ , ŝ, t̂) the solutions of the empirical problem, (f∗, s∗, t∗) the solutions of the oracle one, and ∀(f, s, t), denote
Cf,s,t(x) = [f(x)− s(x)− t, f(x) + s(x) + t]. Under Assumption B.3, we can derive the following lemma, which is an
extension of the result obtained at the end of Step 1 in the proof of Theorem 3.7.

Lemma B.4. Under Assumption B.3, we have with probability greater than 1− 2δ:

P(Y ∈ C1−α
f̂,ŝ,t̂

(X)|Dlrn) ≥ 1− α− 2ϕ(F ,S, δ, nℓ) (22)

and
E
[
λ
(
C1−α
f̂,ŝ,t̂

(X)
) ∣∣∣Dlrn] ≤ E

[
λ
(
C1−α
f∗,s∗,t∗(X)

)]
+ 4ψ(S, δ, nℓ) . (23)
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Proof. The proof closely follows the one of Step 1 in Appendix A.2. Let:

• ΘP =
{
P(Y ∈ C1−α

f̂,ŝ,t̂
(X)|Dlrn) < 1− α− 2ϕ(F ,S, δ, nℓ)

}
• Θλ =

{
E
[
λ
(
C1−α
f̂,ŝ,t̂

(X)
) ∣∣∣Dlrn] > E

[
λ
(
C1−α+ϕ
f∗,s∗,t∗(X)

)]
+ 4ψ(S, δ, nℓ)

}
• Θϕ =

{
sup

f∈F,s∈S,t≥0

∣∣∣P (|Y − f(X)| − s(X) ≤ t)− 1
nℓ

∑
i∈Dlrn 1{|Yi − f(Xi)| − s(Xi) ≤ t}

∣∣∣ > ϕ(F ,S, δ, nℓ)
}

• Θψ =
{

sups∈S

∣∣∣E[s(X)]− 1
nℓ

∑
i∈Dlrn s(Xi)

∣∣∣ > ψ(S, δ, nℓ)
}

The objective is to show that (ΘP ∪Θλ) ⊂ (Θϕ ∪Θψ). Indeed, using the union bound and Assumption B.3, this would
imply that P(ΘP ∪Θλ) ≤ P(Θϕ ∪Θψ) ≤ 2δ, concluding the proof.

ΘP ⊂ (Θϕ ∪Θψ): Proved by showing that ΘP ⊂ Θϕ using the same arguments as in the proof of the main result.

Θλ ⊂ (Θϕ ∪Θψ):

Let the event Ω =
{

1
nℓ

∑
i∈Dlrn 1{|Yi − f∗(Xi)| − s∗(Xi) ≤ t∗} < 1 − α − ϕ(F ,S, δ, nℓ)

}
. We first show that

Θλ ⊂ (Ω ∪Θψ), by proving that (Ωc ∩Θc
ψ) ⊂ Θc

λ. Indeed, under (Ωc ∩Θc
ψ) we have:

1
nℓ

∑
i∈Dlrn

1{|Yi − f∗(Xi)| − s∗(Xi) ≤ t∗} ≥ 1− α− ϕ(F ,S, δ, nℓ)

=⇒ 1
nℓ

∑
i∈Dlrn

ŝ(Xi) + t̂ ≤ 1
nℓ

∑
i∈Dlrn

s∗
1−α+ϕ(Xi) + t∗

=⇒ E[ŝ(X)|Dlrn] + t̂+ 1
nℓ

∑
i∈Dlrn

ŝ(Xi)− E[ŝ(X)|Dlrn] ≤ E[s∗
1−α+ϕ(X)] + t∗ + 1

nℓ

∑
i∈Dlrn

s∗
1−α+ϕ(Xi)− E[s∗

1−α+ϕ(X)]

=⇒ E[ŝ(X)|Dlrn] + t̂ ≤ E[s∗
1−α+ϕ(X)] + t∗ + 2 sup

s∈S

∣∣∣E[s(X)]− 1
nℓ

∑
i∈Dlrn

s(Xi)
∣∣∣

=⇒ E[ŝ(X)|Dlrn] + t̂ ≤ E[s∗
1−α+ϕ(X)] + t∗ + 2ψ(S, δ, nℓ)

=⇒ 2E[ŝ(X)|Dlrn] + 2t̂ ≤ 2E[s∗
1−α+ϕ(X)] + 2t∗ + 4ψ(S, δ, nℓ) =⇒ Θc

λ .

It remains to prove that Ω ⊂ Θϕ. Under Ω and using the fact that P
(
|Y − f∗(X)| − s∗(X) ≤ t∗

)
≥ 1− α:

1
nℓ

∑
i∈Dlrn

1{|Yi − f∗(Xi)| − s∗(Xi) ≤ t∗} − P
(
|Y − f∗(X)| − s∗(X) ≤ t∗

)
< −ϕ(F ,S, δ, nℓ)

=⇒
∣∣∣ 1
nℓ

∑
i∈Dlrn

1{|Yi − f∗(Xi)| − s∗(Xi) ≤ t∗} − P
(
|Y − f∗(X)| − s∗(X) ≤ t∗

)∣∣∣ > ϕ(F ,S, δ, nℓ)

=⇒ Θϕ .

Hence Ω ⊂ Θϕ, i.e. Θλ ⊂ (Ω ∪Θψ) ⊂ (Θϕ ∪Θψ), which concludes the proof.

Like after step 1 of EffOrt, with Lemma B.4 we have probabilistic guarantees on the coverage and on the expected size of
the returned set. Using conformal prediction, we can now obtain an almost sure guarantee on the coverage, at the cost of
slightly increasing the size of the set by t̂c = Q̂

(
(1− α)nc+1

nc
; {|Yi − f̂(Xi)| − ŝ(Xi)}i∈Dcal

)
.

Theorem B.5. Consider that Assumption 3.2 is satisfied for S = |Y − f(X)| − s(X). Assume further that Assumption B.3

is verified, that the distribution of Y is atomless, that nc and nℓ are large enough so that 1
nc+1 +

√
log(1/δ)
nc+1 ≤ r and

ϕ(F ,S, δ, nℓ) ≤ r, then we have:
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1. P(Y ∈ C1−α
f̂,ŝ,t̂c

(X)|Dlrn) ≥ 1− α a.s.

2. With probability greater that 1− 3δ:

E
[
λ
(
C1−α
f̂,ŝ,t̂c

(X)
) ∣∣∣Dlrn,Dcal] ≤ E

[
λ
(
C1−α
f∗,s∗,t∗(X)

)]
+4ψ(S, δ, nℓ)+2L

( 1
nc + 1+

√
log(1/δ)
nc + 1 +2ϕ(F ,S, δ, nℓ)

)γ
.

(24)

Proof. Like in Theorem 3.7, the first point of Theorem B.5, on the almost sure coverage guarantee, is a classical result of
the conformal prediction literature.

We start the proof of the second point by recalling that since the distribution of Y is assumed atomless, we have with
probability greater than 1− δ:

P(|Y − f̂(X)| − ŝ(X) ≤ t̂c
∣∣Dlrn,Dcal) ≤ 1− α+ 1

nc + 1 +

√
log(1/δ)
nc + 1 . (25)

See Section 2.1 and Proposition 24 in Humbert et al. (2024) for details on this result. Like in the proof of Theorem 3.7, we
have P({(25)} ∩ {(22)} ∩ {(23)}) ≥ 1− 3δ, and it suffices to show that if (25), (22) and (23) are true, we have our final
upper-bound.

We have E
[
λ
(
C1−α
f̂,ŝ,t̂c

(X)
) ∣∣∣Dlrn,Dcal] = E

[
λ
(
C1−α
f̂,ŝ,t̂

(X)
) ∣∣∣Dlrn]− 2t̂+ 2t̂c. With (23) we have an upper-bound on

E
[
λ
(
C1−α
f̂,ŝ,t̂

(X)
) ∣∣∣Dlrn], and it remains to show that t̂c − t̂ ≤ L

(
1

(nc+1)γ + 2ϕ(F , δ, nℓ)γ
)

.

Applying the quantile function Q(·; |Y − f̂(X)|− ŝ(X)|Dlrn) on (25), we get that t̂c ≤ Q(1−α+ 1
nc+1 +

√
log(1/δ)
nc+1 ; |Y −

f̂(X)|− ŝ(X)|Dlrn). Similarly, applying it on (22) gives t̂ ≥ Q(1−α−2ϕ(F ,S, δ, nℓ); |Y − f̂(X)|− ŝ(X))|Dlrn . Hence,
thanks to the regularity condition, we have:

t̂c − t̂ ≤ L
( 1
nc + 1 +

√
log(1/δ)
nc + 1 + 2ϕ(F ,S, δ, nℓ)

)γ
.

C. Detailed Implementation of the Empirical (1− α)-QAE Minimization
As explain in Section 3.3.1, to solve Problem (11) we use a gradient descent strategy. However, because the empirical
quantile is not differentiable, we replace Q̂ in Problem (11) by the following smooth approximation:

Q̃ε(q; (ℓ(θ;Zi))i∈Dlrn) = inf{t : F̃ε(t, θ) ≥ q} ,

where F̃ε is an approximation of the empirical distribution of the loss-values (ℓ(θ;Zi))i∈Dlrn defined for ε > 0 by

F̃ε(t, θ) =
∑

i∈Dlrn

Γε(ℓ(θ;Zi)− t) ,

with

Γε(z) =

 1 z ≤ −ε
γε(z) −ε < z < ε
0 z ≥ ε

,

and γε : [−ε, ε] −→ [0, 1] a symmetric and strictly decreasing function such that it makes Γε differentiable. One possible
choice for γε is given in (Pena-Ordieres et al., 2020, Eq. (2.6)):

γε(z) = 15
16

(
−1

5

(z
ε

)5
+ 2

3

(z
ε

)3
− z

ε
+ 8

15

)
. (26)
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For a given q and ε > 0, under some assumptions on the loss (see Pena-Ordieres et al. (2020)), the implicit function theorem
implies that:

∇θ[Q̃ε(q; (ℓ(θ;Zi))i∈Dlrn)] =
∑
i∈Dlrn Γ′

ε(ℓ(θ;Zi)− Q̃ε(q; (ℓ(θ;Zi))i∈Dlrn)) · ∇θℓ(θ;Zi)∑
i∈Dlrn Γ′

ε(ℓ(θ;Zi)− Q̃ε(q; (ℓ(θ;Zi))i∈Dlrn))
, (27)

where ∇θ denotes the gradient with respect to θ and Γ′ is the differential of Γ. We can therefore use a gradient descent
algorithm to solve an approximation of the QAE Problem (11) given by:

min
θ

Q̃ε(1− α; {ℓ(θ;Zi)}i∈Dlrn) .

To this end, starting from an initial guess θ̃1, we simply make the iterates:

θ̃k+1 = θ̃k − ηk∇θ[Q̃ε(1− α; (ℓ(θ̃k;Zi))i∈Dlrn)] ,

where ηk > 0 is the step-size. The full procedure is summary in Algorithm 1 when γε is an in Eq. (26).

Algorithm 1 Gradient descent to solve the QAE problem (step 1 of EffOrt and Ad-EffOrt)

1: Inputs: ε, θ̃1, niter, (ηk)1≤k≤niter
, α

2: for k = 1, . . . , niter do
3: A← Q̃ε(1− α; (ℓ(θ̃k;Zi))i∈Dlrn))
4: for i ∈ Dlrn do
5: Bi ← Γ′

ε(ℓ(θ̃k;Zi)−A) = −15
16

((
ε2 − (ℓ(θ̃k;Zi)−A)2

)2
/ε5
)
· 1{−ε < (ℓ(θ̃k;Zi)−A) < ε}

6: Ci ← ∇θℓ(θ;Zi)
7: end for
8: θ̃k+1 ← θ̃k − ηk ·

∑
i(BiCi)/

∑
iBi

9: end for
10: Output: θ̃niter+1

Remark C.1. In our setting, ℓ is not differentiable because of the absolute value function. In practice, we therefore replace
the gradient by a subdifferential (this is what we do in the experiments). Another possibility could be to replace the absolute
value function with a smooth approximation, such as the Huber loss (Huber, 1964). Furthermore, as also done in Luo &
Larson (2022), in Eq (27) we replace Q̃ε(q; (ℓ(θ;Zi))i∈Dlrn) by the empirical quantile for computation efficiency.
Remark C.2. (Link with other formulations) Problem (11) is in fact similar to the single chance constraint problem (see e.g.
(Curtis et al., 2018)). It can also be reformulated as the following bi-level optimization problem:

min
θ

t(θ) s.t. t(θ) = arg min
t

∑
i∈Dlrn

ρ1−α(ℓ(θ;Zi)− t) .

where ρ1−α is the pinball loss. Indeed, from (Koenker & Bassett Jr, 1978; Biau & Patra, 2011) we know that t(θ) =
Q̂(1− α; {ℓ(θ;Zi)}i∈Dlrn).

D. Additional Results
D.1. Synthetic Data

Experimental setup details for Section 5.2: During the learning step of Ad-EffOrt, we solve the (1 − α)-QAE
Problem (10) using the gradient descent strategy of Section 3.3.1. The smoothing parameter ε is set to 0.1, niter = 1000,
and the step-size sequence is {(1/t)0.6}niter

t=1 . The space of research F is restricted to the space of linear functions. The
function ŝ(·) (second step of Ad-EffOrt) and the two quantile regression functions of CQR are learned by using a Random
Forest (RF) quantile regressor, implemented in the Python package sklearn-quantile1. The function σ̂ in LW-CP is learned
using the RF regression implementation of scikit-learn (Pedregosa et al., 2011). Each time, the max-depth of the RF is set to
5 and the other parameters are the default ones of the sklearn-quantile and scikit-learn packages.

1https://sklearn-quantile.readthedocs.io
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Additional experiments: We now present additional results on synthetic data:

• In Figure 2, we display the coverage obtained on the scenarios of Section 5.1. We see that, as expected, all methods
return sets with average coverage of 1− α = 0.9 (white circle) regardless of the distribution of the noise.

• In figure 3, we present additional results obtained when the base predictor is a Networks (NNs) and not a linear
regressor as made in the main paper. We consider the model Y = X2 + E with E following the same distributions as
presented in Section 5.1. In detail, we learn NNs with one hidden layer of size 10 and with a ReLU activation function.
In EffOrt, the NN is learned using the gradient descent strategy of Section 3.3.1. The smoothing parameter ε is
set to 0.1, niter = 1000 and the step-size sequence is {(1/t)0.6}niter

t=1 . The gradient with respect to the NN weights
involved in the gradient descent is calculated using automatic differentiation. For split CP, the NN is learned using
an ADAM optimizer and the loss is either a Huber loss (robust NN) or a least squares loss. Again, in all scenarios,
EffOrt returns marginally valid sets in general smaller than those of the split CP method. This confirms that learning
a model via the (1− α)-QAE problem is a better way of obtaining small prediction sets during the calibration step.

• In Figure 4, we display the coverage obtained on the scenarios of Section 5.2 when using Ad-EffOrt. We see
again that, as expected, all methods return sets with average coverage of 1 − α = 0.9 (white circle) regardless of
the distribution of the noise. Finally, Figure 5 shows examples of prediction sets returned by Ad-EffOrt, Locally
weighted CP (LW-CP) and CQR when the noise is Gaussian.

A different α between learning and calibration: In our theoretical analysis, and in all the previous experiments, the
α chosen to solve the QAE problem and the one used for the calibration step are the same. To highlight the impact of
differently chosen values, we conduct additional experiments for EffOrt, with the linear regressor used in the main paper,
when the QAE problem is solved with αQAE = 0.05, 0.1 and 0.9 and the α of the calibration is 0.1. Results are shown in
Figure 6.

From Figure 6 top panels, we observe that QAE with αQAE = 0.1 produces the smallest prediction sets. However, when
no extreme values are present, the choice of αQAE appears to have little impact. In contrast, when extreme values exist in
the distribution, selecting αQAE = 0.05 significantly deteriorates the final prediction sets. This is expected, as the dataset
is constructed such that 5% of the values are extreme. Consequently, QAE with αQAE = 0.05 attempts to find f̂ that
minimizes the error for these extreme values, which is the opposite of being "robust." Figure 6 bottom panels confirm that
the calibration step ensures the final coverage remains close to 0.9. Notice that a similar sensitivity to α can be observed in
other conformal prediction methods, such as CQR, when the αCQR values for the quantile regressors are poorly chosen.
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Figure 2. Synthetic data: Boxplots of the 50 empirical coverages obtained by evaluating EffOrt (see Section 5.1). The white circle
corresponds to the mean.

D.2. Real Data

We finally compare Ad-EffOrt with Locally Weighted CP (LW-CP) and CQR on the following public-domain real data
sets also considered in e.g. (Romano et al., 2019): abalone (Nash et al., 1994), boston housing (housing) (Harrison Jr &
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Figure 3. Synthetic data: Boxplots of the 50 empirical expected lengths (top) and coverages (bottom) obtained by evaluating EffOrt (see
Section 5.1). The white circle corresponds to the mean.
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Figure 4. Synthetic data: Boxplots of the 50 empirical coverages obtained by evaluating Ad-EffOrt (see Section 5.2). The white circle
corresponds to the mean.

Rubinfeld, 1978)2, and concrete compressive strength (concrete) (Yeh, 1998).3 We randomly split each data set 10 times
into a training set, a calibration set and a test set of respective "size" 40%, 40%, and 20%. The training and calibration

2https://www.cs.toronto.edu/ delve/data/boston/bostonDetail.html
3http://archive.ics.uci.edu/dataset/165/concrete+compressive+strength
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Figure 5. Synthetic data: Example of sets returned by Ad-EffOrt (left), LW-CP (middle), and CQR (right).
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Figure 6. Synthetic data: Boxplots of the 50 empirical expected lengths (top) and coverages (bottom) obtained by evaluating EffOrt (see
Section 5.1) for different values of αQAE when solving the QAE problem. The white circle corresponds to the mean.

sets are used to apply Ad-EffOrt, LW-CP, and CQR, and the test set to compute the coverage and length metrics. For
Ad-EffOrt and LW-CP the base prediction function f̂ is a Neural-Network (NN) with one hidden layer of size 10 and
a ReLU activation function. The function ŝ in the step 2 of Ad-EffOrt and the two quantile regression functions of
CQR are learned with a Random Forest (RF) quantile regressor, implemented in the Python package sklearn-quantile. The
function σ̂ in LW-CP is learned using the RF regression implementation of scikit-learn (Pedregosa et al., 2011). Each time,
the max-depth of the RF is set to 5 and the other parameters are the default ones of the sklearn-quantile and scikit-learn
packages. To illustrate the robustness of our approach, we finally add, in all the data sets, 5% of outliers to the values to be
predicted, using a Gaussian distribution whose mean is equal to 2 times the maximum value of the original data.
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Figure 7 displays the length and the normalized length (i.e. the length divided by the maximal length obtained with the three
methods in the 10 splits) obtained on each data set. We can see that Ad-EffOrt is competitive, as it generally returns
marginally valid sets (see figure 8 for coverage) of smaller or similar size to at least one of the other two methods. This
is in line with the results obtained on synthetic data (Section 5 and Appendix D.1). Note also that the variability of the
coverage metric (represented by the length of the boxes in Figure 8) is much smaller for Ad-EffOrt than LW-CP. Overall,
these results show that Ad-EffOrt is empirically competitive with the main existing CP methods, while enjoying a strong
theoretical grounding. It is therefore a method of choice for all practical applications.
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Figure 7. Real data: Boxplots of the lengths (left) and normalized lengths (right) obtained with Ad-EffOrt, LW-CP, and CQR on real
data sets. The white circle corresponds to the mean.
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Figure 8. Real data: Boxplots of the coverages obtained with Ad-EffOrt, LW-CP, and CQR on real data sets. The white circle
corresponds to the mean.
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