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ABSTRACT

Large language models (LLMs) often struggle when task-relevant prior knowl-
edge is missing or incorrect, leading to overfitting and hallucinations—especially
on tasks with ambiguous or sparse data. Simple prompt concatenation can in-
ject priors, but it often yields only marginal gains and may fail to capture the full
intent encoded in the priors. We introduce prior-guided tuning, a paradigm that
directly embeds natural-language priors into model learning, and propose Prior-
based Gradient Editing (PGE) as a concrete instantiation. PGE computes auxil-
iary losses for positive (correct) and negative (misleading) prior prompts and adds
their difference as an extra term in the gradient update. By shaping gradient up-
dates with this prior-derived signal, PGE steers the model to internalize desired
priors and improve task performance. Empirically, PGE outperforms baselines
on both a synthetic mathematical expression mapping benchmark and real-world
datasets (Jigsaw and BEAD), producing substantial gains in learning efficiency
and robustness. Ablations confirm that priors must be presented together with the
original training data to be effective, and attention visualizations show that PGE-
trained models attend more to prior-relevant tokens. Our code and data will be
made publicly available. 1

1 INTRODUCTION

In recent years, machine learning models, particularly deep learning models, have demonstrated
remarkable performance in acquiring knowledge. They acquire knowledge by learning from vast
datasets and modeling the underlying probability distributions. However, this learning capability
fundamentally relies on the quality and comprehensiveness of the training data. In real-world set-
tings, training data is rarely comprehensive and perfect. Models often face issues such as missing
labels, incomplete data, or noisy inputs (Jeong, 2024). Under such challenging conditions, models
either struggle to learn patterns from incomplete data or capture spurious correlations, hindering
their generalization to new inputs (Gururangan et al., 2020). Large language models (LLMs) are no
exception. When finetuned on domain-specific tasks with scarce or misleading training data, they of-
ten misinterpret task semantics, generate hallucinations, or lack robustness. In such cases, injecting
priors—the professional expertise required to complete specific tasks—into models becomes essen-
tial to supplement data and guide models to accomplish tasks. Thus, incorporating accurate priors
during model training—especially in scenarios with scarce data or high ambiguity—is critical.

One common approach to injecting priors into models is simple prompt concatenation, which ap-
pends manually designed prompts to training examples (Wei et al., 2022; Ouyang et al., 2022; Cui
et al., 2024). However, such methods often yield marginal performance gains in challenging scenar-
ios (Chowdhery et al., 2023), and in some cases may even produce counterproductive effects. Specif-
ically, simple prompt concatenation often requires prompts to reappear during inference, which
indicates that it does not deeply embed priors into model parameter updates, thereby limiting its ca-
pacity to internalize key domain knowledge. Beyond simple prompt concatenation in training, some
studies have attempted to introduce prior information during model inference. Nevertheless, these
methods do not fundamentally alter model parameters and cannot effectively reuse prior knowledge
from previous prompts in subsequent inferences. As a result, they cannot directly integrate rich

1https://anonymous.4open.science/r/Prior-based-Gradient-Editing-7236-0802
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natural-language priors as guiding constraints in gradient-based optimization, thus failing to steer
models toward desired behaviors (Jeong, 2024).

In this work, we introduce prior-guided tuning, a novel paradigm for integrating natural-language
priors into LLM fine-tuning without incurring any inference overhead. Prior-guided tuning uses
these priors as auxiliary signals during training to enhance performance, eliminating them entirely
at inference time. This contrasts with traditional methods, which treat prior-based prompts as part of
the learned mapping and require their presence during inference. Building on prior-guided tuning,
we propose Prior-based Gradient Editing (PGE), a technique that directly edits parameter gradients
via auxiliary losses derived from natural-language priors. By intervening in backpropagation up-
dates, PGE enables effective learning and internalization of knowledge guided by natural-language
priors throughout training—without additional parameters or inference costs. Our main contribu-
tions are:

• We propose prior-guided tuning, a new paradigm for embedding natural-language priors
into the training process, addressing the prior knowledge deficiency in current LLM adap-
tation and illustrating why simple prompt concatenation is insufficient.

• We develop Prior-based Gradient Editing (PGE), a technique that directly guides back-
propagation by editing gradients computed from a combination of priors and original in-
puts, helping models understand prior knowledge and task-specific requirements while re-
ducing inference costs.

• We conduct extensive experiments on synthetic and real-world tasks, along with ablation
studies, demonstrating that PGE significantly improves training performance, as well as the
attention patterns of models.

2 RELATED WORK

Our approach draws upon and diverges from three main fields—instruction tuning, contrastive learn-
ing in natural language processing (NLP), and gradient editing—each providing key ideas and meth-
ods that we adapt and extend. Below, we summarize prior advancements in each field and clarify
the relationship between our prior-guided tuning and PGE.

2.1 INSTRUCTION TUNING

Instruction tuning—the practice of enhancing pretrained models by appending natural-language in-
structions to training data—has emerged as a powerful paradigm for improving task generalization
and aligning with user instructions. Notable early works include T0 (Sanh et al., 2022), FLAN (Wei
et al., 2022), InstructBLIP (Dai et al., 2023), and InstructGPT (Ouyang et al., 2022), which assem-
bled large collections of instruction-formatted tasks and showed improvements over many traditional
fine-tuning baselines. Subsequent benchmarks like BIG-Bench (Srivastava et al., 2023) and Super-
NaturalInstructions (Wang et al., 2022) systematically categorized various instructions, facilitating
broader evaluation and training (Jiang et al., 2021). The concept of instruction-based alignment was
further advanced by the InstructGPT series (Ouyang et al., 2022; Bai et al., 2022), which combined
supervised fine-tuning on human-written instructions with Reinforcement Learning from Human
Feedback (RLHF) to make model behavior more aligned with user needs. This paradigm forms the
basis of models such as GPT-3 (Brown et al., 2020) and FLAN-T5 (Chung et al., 2024).

Instruction tuning differs from our PGE method in key aspects. While instruction tuning focuses on
describing tasks and informing the model of “what” to do, our PGE method emphasizes “how” to
utilize prior knowledge. Instruction tuning typically concatenates instructions with training exam-
ples, so models learn instructions as inputs along with the examples. This can make it difficult for the
model to separately capture instruction guidance and the underlying sample distribution, which may
limit the model’s ability to effectively leverage instruction guidance. In contrast, our PGE method
within the prior-guided tuning framework explicitly incorporates prior knowledge as an auxiliary
loss, preserving the original sample loss calculation to guide model parameter updates effectively.
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2.2 CONTRASTIVE LEARNING IN LLMS

Contrastive learning enhances embedding discrimination by drawing similar examples closer and
distancing dissimilar ones, thus improving model robustness and generalization. The seminal work
by Chen et al. (2020) established the foundational framework for contrastive learning in computer
vision, influencing subsequent applications in NLP. SimCSE (Gao et al., 2021) employed unsuper-
vised dropout views and supervised pairs to boost sentence embeddings. ConSERT (Yan et al.,
2021) and DeCLUTR (Giorgi et al., 2021) utilized contrastive augmentations to capture nuanced
semantics and rich context. Karpukhin et al. (2020) applied contrastive loss for bi-encoder training
in open-domain question answering, while Khosla et al. (2020) leveraged class labels to create tight
clusters for enhanced classification. Additional relevant methodologies include CLIP (Radford et al.,
2021), which effectively combined image and text representations through contrastive learning.

Contrastive learning and PGE differ in implementation and application. PGE generates auxiliary
gradients from natural-language priors to directly influence model parameter updates, while con-
trastive learning enhances the model’s representation by adjusting the embedding space’s geometric
structure. In terms of applications, contrastive learning excels in representation learning through
data augmentation, whereas PGE is particularly well-suited for scenarios with well-defined domain
knowledge that can be expressed in text, such as medical diagnosis.

2.3 GRADIENT EDITING

Gradient editing encompasses techniques for manipulating or constraining gradients during or after
training to improve multi-task performance or perform targeted model updates. Multi-task learning
research has shown that by surgically modifying gradients (e.g., PCGrad (Yu et al., 2020), Grad-
Norm (Chen et al., 2018), and related methods (Sener & Koltun, 2018; Liu et al., 2021)), conflicting
objectives can be coordinated, improving optimization and mitigating negative transfer. Addition-
ally, post-hoc model editing techniques like ROME (Meng et al., 2022), MEMIT (Meng et al., 2023),
and other frameworks (Sanh et al., 2022) manipulate learned weights to change model behaviors.

Both traditional gradient editing methods and PGE intervene directly in the gradient update process
to adjust model behavior, rather than modifying the architecture or the data distribution. However,
traditional methods are primarily used in multi-task learning, while PGE focuses on incorporating
natural-language priors during training. PGE explicitly uses natural-language priors to define aux-
iliary losses, which produce additional gradient signals that encourage the model to incorporate the
prior knowledge. In contrast, traditional methods like PCGrad coordinate multi-task optimization
based on the geometric relationships of task gradients, with their priors being implicit in the gradient
distribution.

3 PROBLEM SETUP: PRIOR-GUIDED TUNING

In this work, we propose prior-guided tuning, a simple yet powerful paradigm for endowing large
language models with explicit prior knowledge through natural-language prompts during training.

3.1 DIFFERENCES FROM TRADITIONAL LEARNING METHODS

Domain-specific expertise or task-required information can be transmitted to models through two
channels: the distribution of training data and human-summarized priors. As illustrated in Figure 1,
traditional data-driven approaches rely entirely on knowledge encoded in massive data distributions.
On the one hand, data inherently suffers from various flaws as discussed earlier; on the other hand,
complex knowledge often demands extensive data, incurring high costs in data annotation and model
training. In contrast, prior-guided tuning not only leverages the original data distribution but also
directly conveys priors to the model via natural language. This explicit signal enables the model to
acquire knowledge more effectively without requiring manual synthesis of training data.

The training and inference paths of prior-guided tuning can be summarized as follows. Assume that
we have a large language model M with parameters θ and a dataset D = {(xi, yi)}Ni=1, where xi

is the input instance and yi is the desired output. Under instruction fine-tuning, the training can be
represented via Mθ(Ii, xi) = yi, where Ii denotes the task instruction. Prior-guided tuning addi-
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Prior-Guided Tuning: Modify Model PriorsTraditional Method: Modify Data Distribution 

Task: Binary Diagnosis of New Disease X
Example of Training data: Disease: X; Patient symptoms: fever; persistent cough; diarrhea; stomachache.

Learning objectives: Figure out which symptoms are related to the Disease X for accurate diagnosis.

Prior of Disease X: Experience and Knowledge of the Disease X symptoms from expert doctors.

Raw Data

Data Augmentation Based on Priors

Samples of Disease X:

“fever; sore throat; 

nausea; rash”

“cough; muscle pain; 

joint pain; fatigue”

“sore throat; chills; 

polyphagia; fever”

…

Samples of Other Disease:

“palpitations; vertigo; chest 

tightness; chest tightness”

“back pain; swelling; 

muscle weakness; thirst”

“heartburn; blurred vision; 

polyuria; dizziness”

…

Model Training

Model for Task

Raw Data

Prompt Design: Inject Prior

Disease X does not usually cause 

digestive system symptoms…

Prior-Guided Tuning (PGT)

Learning the diagnosis of Disease X through both 

data and prompt from expert doctors. By eliminating 

some symptoms, the model can learn the symptoms 

that are truly related to Disease X.

Model for Task

auxiliary 
training

Figure 1: Comparison of conventional data-driven training vs. our prior-guided tuning paradigm in
the binary diagnosis of a novel Disease X. prior-guided tuning directly injects expert priors via a
natural-language prompt (e.g., “Disease X does not usually cause digestive system symptoms. . . ”)
and uses it as an auxiliary signal alongside raw data. Specifically, this explicit prior steers the model
more efficiently toward the correct hypothesis, without requiring the synthesis of biased datasets.

tionally introduces pi, which represents the prior knowledge aiding model learning. The inclusion
of pi can supplement knowledge missing from xi or facilitate the model’s learning from xi. Notably,
prior-guided tuning emphasizes that priors serve only as guidance, with the learning still expressed
as Mθ(Ii, xi) = yi. Thus, the model does not require priors during inference, ensuring it cannot
“cheat” by relying on spurious patterns in priors. Instead, the model must internalize these priors
into its parameters, which distinguishes PGE from other methods that necessitate priors at inference.

3.2 SYNTHETIC BENCHMARKS FOR EVALUATION

In real-world scenarios, knowledge embedded in the data distributions and knowledge provided by
priors both aid model learning. To quantitatively study the impact of natural-language priors on
learning efficiency while excluding the influence of original data distributions, a highly controlled
evaluation environment is needed. We introduce a synthetic benchmark based on simple function
expression calculation tasks of the form “func(a1, a2, . . . , an) = c”. In each example, only one
parameter determines the answer, while all others are irrelevant. During training, each example is
accompanied by a natural-language prior explicitly indicating which parameter to focus on, helping
the model identify the critical parameter and map it to the final answer. Crucially, during testing,
all prior prompts are removed, and only the original function expressions are presented. Thus, task
completion requires the model to internalize the priors into its parameters rather than relying on
superficial cues. We instantiate this benchmark in two complementary tasks:

Task 1 The model must learn to select the correct parameter position. Training examples take the
form: “[The output of func is its second input parameter.] func(v, v, v, v, v) = v”. To eliminate
data distribution effects, all five input parameters in mathematical expressions during training have
the same value, and the prior explicitly specifies the decisive parameter. This forces the model to
understand and follow the prior rather than guessing outputs via co-occurrence frequencies in the
training data distribution. During inference, priors are omitted, and five random parameters (e.g.,
func(v1, v2, v3, v4, v5) = v2) are used to test if the model identifies the correct parameter. The answer
is set to the correct parameter itself to simplify the task, and the only challenge is to determine which
parameter position is decisive.

Task 2 extends Task 1 by combining parameter selection with arithmetic transformations and lan-
guage recognition. Each example presents two parameters, one written in Chinese characters and
the other in English words, and the mapping is either “add 2 to the Chinese parameter” or “subtract

4
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2 from the English parameter.” (e.g., func(22, 26) = 24, where 22 is written in Chinese characters,
26 is written in English words, and the result is given as the Arabic numeral 24). The prior only
indicates which parameter to select, while the model learns the add/subtract mapping. During infer-
ence, priors are removed, and random parameters (e.g., func(17, 5) = ?) are used; the model must
infer which parameter is correct and apply the correct arithmetic rule to it (e.g., 17+2=19 or 5-2=3).

We conducted baseline experiments using plain finetuning (learning entirely from the data distri-
butions) and prompt finetuning (simple prompt concatenation during training). While directly ap-
pending prior-based prompts to examples (prompt finetuning) occasionally improved performance,
these gains were highly unstable and in some cases this method even degraded performance. This
instability motivates our proposed PGE approach, detailed in the next section.

4 METHOD: GRADIENT EDITING BASED ON PROMPTS

4.1 MOTIVATION AND OVERVIEW

When large language models (LLMs) learn knowledge and perform specific tasks, ensuring that
the model follows prior-based natural-language prompts requires it to deeply understand the knowl-
edge and guiding information encoded in the prior. However, Transformer-based models are typi-
cally trained to predict the next token using token-level likelihood and updated via backpropagation.
This causes the model to potentially learn the token distribution patterns of natural-language priors
rather than the deep knowledge encoded in the priors. Under such conditions, simply concatenating
prompts with training examples cannot redirect the model’s parameter learning towards the knowl-
edge and guidance in the priors.

To address these limitations, we propose Prior-based Gradient Editing (PGE), a gradient editing
strategy that uses natural-language priors to construct auxiliary losses for model learning. Our goal
is to integrate prior knowledge into model parameters during training, eliminating the need to reuse
these priors at inference time. Since backpropagation is a crucial process for LLM training, in-
fluencing backpropagation directly via gradient editing is a natural approach. PGE employs two
contrastive prompt forms—positive and negative—based on natural-language priors to assist the
model in acquiring domain knowledge and task guidance. Meanwhile, PGE preserves the learning
signal from the original samples to avoid large shifts in the model’s objective.

𝒑+ + x

x only 
Original Input——Input x

Patient symptoms: fever; persistent cough; diarrhea; stomachache

Positive Prior——Prompt 𝐩+ 

According to the doctor's analysis, Disease X does not usually 

cause digestive system symptoms. Please use these symptoms as 

key indicators of Disease X.

Negative Prior——Prompt 𝐩− 

According to the doctor's analysis, Disease X does not usually 

cause respiratory system symptoms. Please use these symptoms 

as key indicators of Disease X.

∇𝐿𝑜𝑠𝑠0

∇𝐿𝑜𝑠𝑠+

𝒑− + x
∇𝐿𝑜𝑠𝑠−

𝜵𝑳𝒐𝒔𝒔𝑷𝑮𝑬 = 𝛼 ∇𝐿𝑜𝑠𝑠0 + 𝛽 ( ∇𝐿𝑜𝑠𝑠+ − 𝛾 ∇𝐿𝑜𝑠𝑠− )
𝛼

∑

𝛽 

−𝛽𝛾 

∇𝐿𝑜𝑠𝑠0

∇𝐿𝑜𝑠𝑠+

∇𝐿𝑜𝑠𝑠− 

𝜵𝑳𝒐𝒔𝒔𝑷𝑮𝑬

Gradient Editing

Closer to Prior 

Aimed Model 

Parameters 

Training: Learn mapping: p([x]) → y where p is prompt for prior.

Inference:  Output mapping: [x] → fθPEG
→ y in need of no prompt.

Task: Binary Diagnosis of New Disease X

Figure 2: Illustration of Prior-based Gradient Editing (PGE) on a binary diagnosis task for hypothet-
ical Disease X. During training, symptom inputs x are combined with a positive prompt p+ (true
indicators) and a negative prompt p− (misleading features), yielding three gradient components.
These components are aggregated into the training update rule, sculpting parameter changes to en-
sure correct behavior without inference-time prompts.

4.2 IMPLEMENTATION DETAILS

The standard parameter update gradient for LLM training is expressed as:

∇θ ℓ(fθ([Ii;xi]), yi) (1)
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where ℓ denotes the loss function, θ represents the model parameters, xi is a training input, and Ii
and yi are the corresponding instruction and output for xi. As illustrated in Figure 2, PGE aims
to add an auxiliary gradient, which is defined as the difference between a positive gradient and a
negative gradient:

∇θ ℓ(fθ([p+; Ii;xi]), yi
)
− γ∇θ ℓ(fθ([p−; Ii;xi]), yi

)
(2)

Here, p+ contains the correct prior (the desired “positive” prompt), p− contains the incorrect prior
(the undesired “negative” prompt), and the scalar γ > 0 controls the penalty strength for the negative
prompt.

Following Equation (2), we integrate all gradient contributions into a core update rule ∇θLPGE:

∇θLPGE = α∇θ ℓ(fθ([Ii;xi]), yi) + β
(
∇θ ℓ(fθ([p+; Ii;xi]), yi

)
− γ∇θ ℓ(fθ([p−; Ii;xi]), yi

))
(3)

where α, β > 0 are fixed hyperparameters that balance the two objectives. This equation clarifies
how the overall gradient decomposes into the combined force of data fitting and prior fitting. Be-
cause differentiation is linear, adding loss terms corresponds to adding their gradients. In practice,
we simplify the loss as:

LPGE = αL0 + β
(
L+ − γ L−

)
(4)

where L0, L+, and L− correspond to terms in Equation (3). The standard backpropagation is applied
to LPGE. Notably, the unbounded growth of L− during training may cause instability, necessitating
optimization strategies such as gradient clipping and upper-bounding the negative loss.

In our synthetic tasks, priors only require the model to focus on specific parameters, so positive and
negative priors are manually written and concise. For real-world tasks with more complex training
data, both priors are generated by LLMs (DeepSeek-v3 (DeepSeek-AI et al., 2024) and GPT-4o
(Hurst et al., 2024)), with similar lengths. Since each dataset involves a single task type, the same
set of positive and negative priors is used to avoid label leakage.

5 RESULTS

We finetuned LLaMA 3.1 (8B and 70B) (Dubey et al., 2024; Patterson et al., 2022) and Qwen
2.5 (7B) (Yang et al., 2025) models (Team, 2024; Yang et al., 2024)), using LoRA (Hu et al.,
2022) adapters of rank 16 on NVIDIA RTX 4090 and A100 GPUs, updating all weight matrices
(q proj, k proj, v proj, o proj, gate proj, down proj and up proj) except the embedding and output
layers/heads. Each model underwent ten epochs of training with learning rates in [1e-4, 5e-4], and
the best checkpoint was chosen according to validation performance. All checkpoints used AWQ
4-bit quantization (Lin et al., 2024), and LoRA adapters were concatenated onto the quantized linear
projections. We mainly compared three strategies: plain finetuning, which directly updates model
parameters on the task data; prompt finetuning, which prepends prior-based prompts to each exam-
ple; and our PGE method, which integrates positive and negative priors according to Equation 4
and tuned hyperparameters α and β (with γ fixed at 0.1). Notably, we did not use any prior during
inference on either the synthetic or the real-world datasets. In addition, the model template, prior
prompts for experiments, and the discussion of computational costs are in the Appendix.

The Synthetic Dataset. Table 1 reports the exact match accuracy of Task 1 on the synthetic dataset
across five answer positions. Under plain finetuning, most models were biased toward a random
option due to the lack of priors, leading to poor performance on other positions. Prompt finetuning
yielded negligible or even negative gains compared to plain finetuning. In contrast, PGE achieved
significantly higher accuracy on most answer positions. From another perspective, PGE effectively
reversed the model’s original incorrect prior (i.e., bias towards the first option) by injecting correct
priors, promoting balanced performance across all positions. Table 2 summarizes the performance
of Task 2 on the synthetic dataset. Similar to Task 1, plain finetuning and prompt finetuning per-
formed poorly, while PGE outperformed both baselines significantly and partially achieved balanced
performance in cross-lingual scenarios.

Real-world Datasets. To evaluate the generalizability of our method, we selected the Jigsaw dataset
(Do, 2019), which contains real user comments annotated with toxicity and multiple identity terms
(including gender). In practical applications, models sometimes over-rely on the association be-
tween specific genders and text toxicity (e.g., deeming text toxic upon encountering particular gen-
der terms) or ignore toxicity words that are specific to genders. Thus, explicit priors are crucial

6
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Hyperparameters QA performance at 5 positions
α β 1st 2nd 3rd 4th 5th Avg

LLaMA 3 8B
Baselines
Plain finetuning - - 98.0 31.0 22.0 15.0 47.0 42.6
Prompt finetuning - - 88.0 24.0 11.0 10.0 29.0 32.4
Ours
PGE method 0.5 0.5 98.0 51.0 84.0 32.0 40.0 61.0

LLaMA 3 70B
Baselines
Plain finetuning - - 97.0 24.0 19.0 22.0 26.0 39.8
Prompt finetuning - - 78.0 68.0 43.0 59.0 37.0 57.0
Ours
PGE method 0.7 0.3 86.0 98.0 62.0 47.0 96.0 77.8

Qwen 2.5 7B
Baselines
Plain finetuning - - 40.0 36.0 33.0 16.0 33.0 31.6
Prompt finetuning - - 38.0 46.0 49.0 30.0 27.0 38.0
Ours
PGE method 0.5 0.5 53.0 59.0 56.0 26.0 58.0 50.4

Table 1: Exact-match accuracy (%) on the five-argument mapping synthetic benchmark (Task 1) for
LLaMA 3.1 (8B and 70B) and Qwen 2.5 7B under plain finetuning, prompt finetuning, and PGE.

Hyper- QA performance
parameters Position Language
α β 1st 2nd Ch En

LLaMA 3 8B
Baselines
Plain finetuning - - 66.8 40.0 66.8 40.0
Prompt finetuning - - 63.9 38.4 47.4 27.9
Ours
PGE method 0.7/0.3 0.3 85.8 58.3 90.0 68.4

Hyper- QA performance
parameters Position Language
α β 1st 2nd Ch En

LLaMA 3 70B
Baselines
Plain finetuning - - 90.0 50.0 90.0 50.0
Prompt finetuning - - 88.4 54.7 61.6 60.5
Ours
PGE method 0.5 0.5 100.0 72.6 90.0 76.3

Table 2: Exact-match accuracy (%) on the two-argument bilingual (Chinese/English) mapping syn-
thetic benchmark (Task 2) for LLaMA 3.1 (8B and 70B) under plain finetuning, prompt finetuning,
and PGE.

for addressing this issue. To focus on gender bias, we excluded samples that were more strongly
associated with labels other than gender (e.g., religion and race) and only retained samples strongly
associated with gender in the dataset (defined as at least one gender label score exceeded 0.5). To
simulate a prior-free scenario, we used only 30% of these gender-associated samples and randomly
split them into 80% training and 20% test. Table 5 shows the accuracy, positive-class F1, negative-
class F1, and macro F1 scores by gender. Plain finetuning achieved high overall accuracy but low
positive class F1 scores. Prompt finetuning did not improve the performance much and sometimes
further worsened it. In contrast, PGE (α=0.7, β=0.3) significantly improved the positive F1 scores
for all genders while maintaining or increasing overall accuracy and macro F1 score.

To verify PGE’s capability in more general domains, we chose the shainar/BEAD benchmark (Raza
et al., 2024), which includes three sub-tasks: bias, sentiment, and toxicity. To ensure comparable
data volumes, we down-sampled larger subsets (sentiment and toxicity) to 30,000–40,000 samples
to match the bias task and unified the formatting of all datasets. This sampling strategy balanced
cross-task data volumes while preserving training conditions devoid of priors. As shown in Table 4,
prompt finetuning only provided modest improvements over plain finetuning (even a decline in the
sentiment task), whereas PGE consistently outperformed both baselines across all three sub-tasks,
demonstrating its generality in incorporating appropriate priors into language models to address
diverse real-world classification tasks.
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LLaMA 3 8B

Method Gender Acc F1+ F1- Macro F1

Plain

female 88.9 0.394 0.939 0.667
male 87.9 0.391 0.933 0.662
other 85.3 0.546 0.912 0.729
trans 83.7 0.370 0.907 0.639

Prompt

female 87.4 0.185 0.932 0.558
male 86.3 0.202 0.999 0.564
other 79.4 0.222 0.881 0.552
trans 81.8 0.136 0.897 0.568

Ours

female 90.6 0.587 0.947 0.767
male 89.5 0.575 0.940 0.758
other 85.3 0.615 0.909 0.762
trans 84.7 0.500 0.910 0.705

Qwen 2.5 7B

Method Gender Acc F1+ F1- Macro F1

Plain

female 88.6 0.463 0.937 0.700
male 88.0 0.492 0.932 0.712
other 85.3 0.545 0.912 0.729
trans 83.3 0.407 0.903 0.655

Prompt

female 88.6 0.478 0.936 0.707
male 88.2 0.514 0.933 0.724
other 85.3 0.545 0.912 0.729
trans 82.3 0.393 0.896 0.645

Ours

female 92.1 0.647 0.956 0.801
male 91.0 0.630 0.949 0.789
other 91.2 0.769 0.945 0.857
trans 86.6 0.533 0.922 0.728

Table 3: Test accuracy (%) and F1 score(s) by gender category on the Jigsaw toxicity subset, con-
trasting plain finetuning, prompt finetuning, and our PGE for LLaMA 3 8B and Qwen 2.5 7B models.

Hyperparameters Classification accuracy
α β Bias Sentiment Toxic

LLaMA 3 8B
Baselines
Plain finetuning - - 80.2 76.8 80.6
Prompt finetuning - - 80.2 69.7 80.9
Ours
PGE method 0.7 0.3 82.1 79.6 82.7

Table 4: Classification accuracy (%) on the BEAD benchmark subtasks (bias, sentiment, toxicity)
for LLaMA 3.1 8B under plain finetuning, prompt finetuning, and PGE.

6 DISCUSSION

Supplementary Baselines and Ablation Studies. To further demonstrate the capability of the PGE
method, we conducted additional experiments using the LLaMA-3.1-Instruct model. In “Data Aug-
mentation”, 10,000 synthetic samples were generated with reference to real data via GPT-4o mini to
align with task requirements, and were incorporated into the original training dataset. As shown in
Figure 3, synthetic data from large models failed to help the model learn prior knowledge—likely
because the synthetic samples depended on original samples—leading to a slight performance degra-
dation. For “Priors without data”, we removed the original data that had been combined with the
positive or negative priors (p+ + x and p− + x in Figure 2 were replaced by p+ and p−) and ob-
served a performance decline, indicating that priors must be combined with original training data to
be effective.

Attention Visualization. To better understand the reasons behind PGE’s performance enhancement,
we examined the self-attention behavior of the model on a representative toxic comment from the
BEAD dataset. Self-attention patterns essentially reflect how Transformers allocate focus among to-
kens, and prior studies have linked superior attention distributions to stronger performance (Weston
& Sukhbaatar, 2023; Tang et al., 2022). Thus, we compared the token-level attention maps of four
model variants: (1) the untrained base model, (2) standard finetuned model, (3) the prompt-tuned
model, and (4) our PGE-trained model. To ensure a fair comparison, we first addressed the “attention
sink” phenomenon (Xiao et al., 2024), where the start-of-sequence token may dominate normalized
attention weights. We removed the contribution of the start-of-sequence token, re-normalized the
attention scores of all remaining tokens, and visualized these scores across different sample types.

As shown in Figure 4, unlike all other variants, the PGE-trained model did not consistently allocate
excessive attention to initial, semantically empty tokens, thereby preserving its ability to capture
core toxic content. Additionally, it also allocated substantial, well-balanced attention to contrastive
tokens such as “except” and “exception,” which signal a shift in scope and help the model focus

8
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Figure 3: Classification accuracy (%) on the BEAD bias benchmark for five LLaMA 3.1 8B Instruct
varients under three learning rates.

Figure 4: Token-level self-attention distributions for four LLaMA-3.1-Instruct variants on a com-
ment from the BEAD toxic dataset : So she’ll continue to support communities that are different
from her own. . . just as long as those communities don’t include people she doesn’t agree with polit-
ically. . . and she won’t stand for bigotry. . . except she’ll make an exception for the half of the country
she believes to be racist, misogynist, xenophobic, homophobic, etc. Got it.

on the subsequent toxic content. Most crucially, the PGE model consistently allocated higher at-
tention to consecutive toxic tokens (e.g., racist, misogynist, xenophobic, homophobic, etc.), with its
attention weight on “etc.” reaching 0.105—significantly exceeding the corresponding weights of the
other three variants (0.034, 0.026, and 0.041 for original, plain-finetuning and prompt-finetuning),
demonstrating its effective focus on toxic information. Collectively, these observations empirically
explain why PGE more effectively injects relevant prior knowledge into language models, driving
their superior performance in toxic classification tasks.

7 CONCLUSION

In this paper, we introduce Prior-based Gradient Editing (PGE) under prior-guided tuning paradigm
as a principled approach to infusing natural-language priors into large language model training with-
out incurring any inference-time computation cost. PGE shapes the backpropagated gradients by
constructing auxiliary losses through positive and negative priors, thereby enhancing the model’s
performance in learning knowledge and completing tasks. Our experiments on synthetic bench-
marks and real-world classification tasks, including the Jigsaw and BEAD datasets, demonstrate
that when all priors are removed during testing, PGE enables the model to follow the guidance of
explicit priors and consistently outperform plain finetuning and prompt finetuning baselines, achiev-
ing significant improvements in macro F1-score and accuracy. Additionally, ablation experiments
validate the necessity of combining priors with original data and the limitations of traditional data
augmentation methods. Attention visualization analysis further explores the advantages of the PGE
method.

9
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A APPENDIX

A.1 DATA DETAILS

We constructed our synthetic benchmark to rigorously assess a model’s ability to internalize natural-
language priors in two scenarios. In Task 1, each example comprises five numerical parameters
with an identity mapping—i.e., “func(a1, a2, . . . , an) = c”—and an explicit prior instructing the
model which position to select. Task 2 extends this setup to two bilingual parameters (one tagged
in Chinese, the other in English) combined with a simple arithmetic operation (either “add 2” or
“subtract 2”).

An example of Task 1 under LLaMA 3.1 8B & 70B Instruct template:

< |start header id| > system < |end header id| >
Cutting Knowledge Date: December 2023 Today Date: 26 Jul 2024
Provide the output only without steps.< |eot id| >
< |start header id| > user < |end header id| >
func(8,8,8,8,8)=< |eot id| >< |start header id| >
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assistant < |end header id| >
8< |eot id| >

By design, these tasks isolate the challenges of parameter selection and arithmetic transformation
under instruction guidance. We find that LLaMA 3.1 exhibits a distinct preference for the first po-
sition, for longer parameter names, and for addition mappings with small values; Qwen 2.5, which
is trained on substantially more Chinese data, shows a stronger bias toward Chinese-tagged parame-
ters but otherwise shares similar positional and mapping preferences. In Task 2, we therefore paired
LLaMA 3.1’s favored English label with the second argument to counterbalance its first-position
bias, while Qwen 2.5’s overlapping preference for Chinese and the first slot made it particularly
challenging for that model to attend to the second parameter.

All training and test examples were generated via a shared template mechanism (the code for which
is publicly available in our repository), ensuring that aside from the removal of prompts at inference
time, the format remains identical across phases. During evaluation, we present the model with raw
function calls in a zero-shot setting—no priors are supplied—so that correct outputs attest to fully
internalized instruction knowledge.

The positive (correct) and negative (misleading) prior prompts for Task 1 in the synthetic dataset
(assuming that the first parameter is the correct parameter) are:

Func is a function with five input parameters. The output of func is determined by
its first input parameter.

Func is a function with five input parameters. The output of func is determined by
its second / third / fourth / fifth input parameter.

Each time, one negative (misleading) prior prompt is randomly selected from the four options for
PGE training. Except that in Task 2 the function “func” contains only two parameters — so there
are no “third”, “fourth”, or “fifth” descriptions — the prior prompt settings for the rest remain the
same as in Task 1 in the synthetic dataset.

The positive (correct) and negative (misleading) prior prompts for the Jigsaw dataset are:

You are a toxicity classification assistant. Please judge whether the following
comment text is toxic based on its context and actual meaning, not merely on
identity-related terms—especially gender. Prioritize catching all toxic content and
minimizing any missed toxic cases. If it is toxic, output 1; if it is not toxic, output
0.

You are a toxicity classification assistant. Please judge whether the following
comment text is toxic solely by checking for the presence of identity-related or
sensitive terms (especially gender words). If you find any gender-related term,
immediately output 1; otherwise, output 0.

The positive (correct) and negative (misleading) prior prompts for the BEAD bias dataset are:

Detect bias by checking for: (a) emotionally loaded words, (b) sweeping gener-
alizations, (c) attacks on people/groups, (d) claims without evidence. Output 1 if
detected, else 0.

Label the text as unbiased (0) if it contains emotionally intense words, sweeping
claims about groups, or assertions without data. Label as biased (1) if the text is
calm and logical.

The positive (correct) and negative (misleading) prior prompts for the BEAD sentiment dataset are:

Analyze the text’s sentiment (Positive/Negative) by detecting explicit emotions,
contextual tone, and author’s intent. Focus on strong indicators: love/hate ex-
pressions, sarcasm marked by quotes or contradictions, and overall stance toward
subjects. Prioritize deeper communicative purpose over isolated words.
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Ignore context and sarcasm when classifying sentiment. Rely solely on isolated
words while inverting emotional valence: interpret praise as criticism and com-
plaints as approval, treating metaphors literally without considering contextual
meaning.

The positive (correct) and negative (misleading) prior prompts for the BEAD toxic dataset are:

Classify the text as TOXIC if it contains insults, threats, hate speech, or hostile
sarcasm targeting individuals/groups. Label it NON-TOXIC if it is neutral, polite,
or critiques ideas without personal attacks.

Classify the text as NON-TOXIC unless it contains direct physical threats. Ignore
insults, sarcasm, or cultural references. Provide the output only without steps.

A.2 ATTENTION VISUALIZATION

Figure 5: Token-level self-attention distributions for four LLaMA-3.1-Instruct variants—original,
directly trained, prompt-finetuned, and our PGE—on a sentiment classification example from the
BEAD dataset. After excluding and re-normalizing the start-of-sequence token’s attention, our
PGE clearly shifts focus away from non-informative prefixes, emphasizes contrastive pivot words
(“ethic”), and aggregates signals across key toxicity tokens (“swastika” and “ tattoos”).

To shed light on how Prior-based Gradient Editing (PGE) reshapes a model’s focus, we extended
our attention analysis beyond the toxicity subset of the BEAD benchmark to include samples from
its sentiment subtask. Consider the following user comment:

“ Are you saying only Nazis are anti-Semites
Did I say that anywhere ? No. So there’s your answer.
Having said that - I consider anybody who is anti-any-ethnic-group to be a Nazi
for all practical purposes. But since I know that’s not a widely held view I delib-
erately kept this conversation limited to the traditional definition - you know the
guys with the swastika tattoos.”

Figure 5 visualizes the token-level self-attention distributions for four model variants: the untouched
base model, a plainly fine-tuned model, a prompt-fine-tuned model, and our PGE-trained model.

First, PGE allocates substantially more attention to the sensitive phrase “swastika tattoos” (0.241
on “tattoos”), relative to the base model (0.075), direct fine-tuning (0.117), and simple instruction
tuning (0.120). The progressive stacking of attention across repeated appearances of the term further
indicates that PGE instills a capacity to aggregate semantically similar cues over longer contexts.

Second, during the pivotal clause “anti-any-ethnic-group,” the PGE model focuses more sharply on
the key word “ethnic,” whereas the simple instruction-tuned variant exhibits an anomalous peak at
the function word “is,” suggesting less coherent semantic prioritization.

Finally, the baseline and directly fine-tuned models disproportionately attend to the initial, seman-
tically void tokens, thereby diluting their sensitivity to later, more informative content. In contrast,
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both instruction-involved methods (and especially PGE) mitigate this “attention sink” at the se-
quence start, reallocating capacity to critical sentiment and descriptor tokens and thereby improving
overall interpretability and performance.

A.3 IMPLEMENTATION DETAILS

A.3.1 COMPUTATION COST

Our PGE approach requires computing three losses per sample—one on the raw input, one with
the positive prompt, and one with the negative prompt—yet in practice the additional overhead is
modest. For instance, on Task 2 of the synthetic benchmark using LLaMA 3.1 70B Instruct (as
reported in Table 4 of the main text), each of the four hyperparameter settings converged within 1
to 4 training epochs, and on average only two epochs were needed for PGE to surpass the baseline
achieved by standard fine-tuning. Thus, although PGE multiplies the loss evaluations per example,
its rapid convergence renders the overall computation cost acceptable.

A.3.2 MORE RESULTS

To further demonstrate the efficiency of prior injection via gradient editing versus data-driven priors,
we ran an auxiliary experiment on the Jigsaw toxicity dataset using LLaMA 3.1 8B Instruct. We
sampled 30 percent of the training data—those examples whose bias scores exceed 0.5—and applied
PGE to this limited subset. Comparing its performance to plain fine-tuning on the full dataset, we
found that PGE trained on only 30 percent of the data not only matched but in some metrics slightly
exceeded the performance of the full-data baseline. This outcome underscores PGE’s ability to
leverage scarce or biased data more effectively than simply augmenting the sample distribution.

Gender QA
bias performance

Labels Acc F1+ F1- Macro F1

LLaMA 3 8B
Plain finetuning female 90.4 0.544 0.946 0.745
on 100% samples male 90.0 0.566 0.944 0.755

other gender 91.4 0.643 0.951 0.797
transgender 83.9 0.396 0.907 0.652

Our PGE method female 90.6 0.587 0.947 0.767
on 30% samples male 89.5 0.575 0.940 0.758

other gender 85.3 0.615 0.909 0.762
transgender 84.7 0.500 0.910 0.705

Table 5: Test accuracy (%) and F1 score(s) by gender category on the Jigsaw toxicity subset (LLaMA
3.1 8B), contrasting plain finetuning on 100% samples and our PGE method on 30% samples.

A.4 ETHICS STATEMENT

All authors have read and adhere to the ICLR Code of Ethics.

Summary. This work investigates how to inject explicit natural-language prior knowledge into
the model learning paradigm (prior-guided tuning) and how to perform Prior-based Gradient Edits
(PGE) to improve performance when task-relevant priors are available but labeled data are scarce.
We believe these methods can improve robustness and reduce data requirements; however, they also
raise specific ethical concerns that we discuss below.

Potential harms and misuse. The priors we encode reflect human knowledge, assumptions, and
value judgments. If such priors are incorrect, biased, or malicious, our PGE method can amplify
those errors or unfairness instead of correcting them. This could lead to systems that systemati-
cally disadvantage certain groups, propagate false beliefs, or produce plausibly fluent but factually
incorrect outputs in safety-critical contexts. Users and deployers should therefore validate priors
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carefully, test for disparate impacts, and avoid deploying models that rely on unvetted or adversarial
priors in high-stakes settings.

On biased and toxic datasets. Some datasets used in our experiments contain biased or toxic
language; accordingly, parts of the paper reproduce such terms for experimental purposes and may
be upsetting. These terms are used only for experimental evaluation and are not intended to convey
discriminatory intent. We did not use any private personal data in our experiments. For cases
where priors are collected from human experts or crowd workers, appropriate consent procedures,
de-identification, and data-minimization practices should be applied.

A.5 REPRODUCIBILITY STATEMENT

We are committed to full reproducibility. At or before publication we will release a public repos-
itory that is mentioned at the footnote in the abstract and contains: (1) the full implementation of
Prior-based Gradient Editing (PGE); (2) scripts to reproduce all experiments, including code to gen-
erate the synthetic datasets used in the paper; (3) links and identifiers for the pretrained models and
checkpoints we used; (4) the hyperparameter configurations and random seeds used in the main and
ablation experiments (e.g., learning rates, batch sizes, number of gradient-editing steps); and (5)
evaluation scripts and the metrics reported in the paper. We describe computational requirements
in the appendix (PGE’s computational cost is discussed), and all experiments were conducted by
fine-tuning pre-trained language models on standard GPU servers. All datasets used are public or
can be generated by our released code; no private datasets were used.

A.6 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models as assistive tools in two limited ways; the models did not provide
substantive intellectual contributions to the research hypotheses, experimental design, or core tech-
nical content.

To aid and polish writing. After the authors drafted the paper, we used LLM-based editing tools
to check grammar, improve clarity, and suggest stylistic phrasing to better match standard academic
prose. The LLMs were used only to refine wording and presentation; they did not add, change,
or invent technical claims, results, or analyses. All edits suggested by LLMs were reviewed and
approved by the authors, who remain fully responsible for the paper’s content.

For retrieval and discovery. We used LLM-assisted literature-retrieval tools to identify potentially
relevant papers for the Related Work section (for example, to ensure broader coverage in the sub-
section on contrastive learning in LLMs). These tools acted as aids to remind or surface candidate
references; reading, interpretation, and the textual descriptions of prior work were performed and
written by the authors. Any references suggested by LLMs were manually verified by the authors.

A.7 LIMITATIONS

Our work evaluated the PGE method on both synthetic and real-world data, across domain-specific
and more general tasks, and included ablation studies. Nevertheless, several limitations remain.

For synthetic tasks we manually specified the natural-language priors, whereas for real-world tasks
the priors were generated by the model. The impact of different ways of expressing priors on the
model’s ability to learn from them has not been thoroughly explored. Likewise, the choice of neg-
ative (misleading) priors merits further study: reverse instructions can either invert all guiding ten-
dencies in the positive (correct) priors or use vague wording that prevents the model from extracting
useful information. In this work we used the former (i.e., inverting the guidance encoded in the
prior). How different types of negative priors affect training is an important question for follow-up
experiments.

Results on the synthetic dataset show that, even without provided priors, the model exhibits spon-
taneous preferences for certain outputs—i.e., the pre-trained model has inherent biases in output
choice or position. Our preliminary findings indicate that LLaMA-3.1-8B-Instruct tends to choose
options that are listed first, are in English, and contain more tokens; with respect to numeric map-
pings, it prefers addition mappings involving smaller numeric values. The ability of PGE to over-
come or reverse these original model preferences has not been fully explored.
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Although we evaluated multiple datasets, the potential of PGE remains underexplored. Our exper-
iments so far focus mainly on classification tasks and do not extensively cover generation tasks.
Future work will extend PGE to multimodal scenarios and study theoretical convergence guarantees
under auxiliary gradient constraints. We particularly plan to continue exploring automated prior
generation and a self-guiding paradigm in which the model generates priors to assist its own train-
ing.
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