
Under review at the Workshop on Understanding Foundation Models at ICLR 2023

LOOPED TRANSFORMERS AS PROGRAMMABLE COM-
PUTERS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a framework for using transformer networks as universal computers
by programming them with specific weights and placing them in a loop. Our
input sequence acts as a punchcard, consisting of instructions and memory for data
read/writes. We demonstrate that a constant number of encoder layers can emulate
basic computing blocks, including lexicographic operations, non-linear functions,
function calls, program counters, and conditional branches. Using this framework,
we emulate a computer using a simple instruction-set architecture, which allows us
to map iterative algorithms to programs that can be executed by a constant depth
looped transformer network. We show how a single frozen transformer, instructed
by its input, can emulate a basic calculator, a basic linear algebra library, and
even a full backpropagation, in-context learning algorithm. Our findings reveal the
potential of transformer networks as programmable compute units and offer insight
into the mechanics of attention.

1 INTRODUCTION

Transformers (TFs) have become a popular choice for machine learning tasks, achieving state-of-
the-art results in Natural Language Processing (NLP) and Computer Vision (CV) (Vaswani et al.,
2017; Khan et al., 2022; Yuan et al., 2021; Dosovitskiy et al., 2020). Large language models (LLMs)
such as GPT-3 (Brown et al., 2020) and PaLM (Chowdhery et al., 2022), with billions of parameters,
have achieved state-of-the-art performance on many NLP tasks. These models can also perform
in-context learning (ICL), adapting to and performing a specific task based on a brief prompt and a
few examples.

LLMs can also perform algorithmic tasks and reasoning through ICL, as shown in several works, such
as Nye et al. (2021); Wei et al. (2022c); Lewkowycz et al. (2022); Wei et al. (2022b); Dasgupta et al.
(2022); Chung et al. (2022). For example, Zhou et al. (2022) showed that LLMs can perform addition
on unseen examples when prompted with a multidigit addition algorithm and some examples. These
results suggest that LLMs can apply algorithmic principles and perform pre-instructed commands on
a given input, as if interpreting natural language as code.

Transformers can simulate Turing Machines with sufficient depth or recursive links around attention
layers Pérez et al. (2021); Pérez et al. (2019); Wei et al. (2022a). These constructions do not provide
specific guidance on constructing TFs that perform specific algorithmic tasks. However, specialized
designs can allow TFs to compile programs in a higher level programming language or execute higher
level programs. For example, in Weiss et al. (2021), a computational model and a programming
language was designed that maps simple selection and aggregation commands on indexed input
tokens, which can be used to create several interesting algorithms. Programs written in Restricted
Access Sequence Processing Language (RASP) can then be mapped into transformer networks, which
typically scale in size with the size of the program.

Recently, various methods have been developed to select the weights of a Transformer model to
function as a learning algorithm on-the-fly, performing implicit training at inference time when given
training data as input (Akyürek et al., 2022; von Oswald et al., 2022). These methods typically require
a number of layers proportional to the number of iterations of the learning algorithm and are limited
to a small set of loss functions and models.

1

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

Our paper aims to explore what algorithms can transformer networks efficiently emulate (i.e., within
small depth/width) at inference-time and present our contributions towards understanding the capabil-
ities of transformer networks as programmable computers.

Our Contributions: In this paper, we show that transformer networks can emulate complex
algorithms and programs by programming them with specific weights and placing them in a loop.
We accomplish this by reverse engineering attention to emulate basic computing blocks, such as
lexicographic operations, nonlinear functions, function calls, program counters and conditional
branches. We also demonstrate the importance of using a single loop or recursion to connect the
transformer’s output sequence back to its input, avoiding the need for a deep model.

We design a transformer that can execute programs written in a generalized version of a single
instruction, known as SUBLEQ(A,B,C), which is a one-instruction set computer (OISC) that consists
of 3 memory address operands. When executed, it subtracts the value at memory address A from the
value at memory address B and stores the result in B. If the result in B is less than or equal to zero,
the execution jumps to address C, otherwise it proceeds to the next instruction. Programs written
in SUBLEQ language use only this command, yet this single instruction is capable of defining a
universal computer (Mavaddat & Parhami, 1988; Esolangs).

We construct transformers that can run programs like SUBLEQ using a more flexible instruction
called FLEQ with

mem[c] = fm(mem[a],mem[b])

if mem[flag] ≤ 0 goto instruction p

format, where fm can be selected from a set of functions (matrix multiplication/ non-linear functions/
polynomials/ etc), which we can hardcode into the network. The depth of the transformer needed to
run these programs is not affected by the program’s complexity, but by the depth required for a single
FLEQ instruction, which is typically constant. We use this framework to emulate a calculator, linear
algebra functions and in-context learning algorithm. The input sequence acts as a program for the
transformer to execute, while also providing space to store and process variables. The transformer
networks used to execute these programs have a depth of 13 or less.

input embedding sequence

 scratchpad memory instructions
 pointers

Transformer

Figure 1: A sketch of the looped transformer ar-
chitecture, where the input sequence stores the
commands, memory where the data is read/written
from, and a scratchpad where intermediate results
are stored. The input is processed by the network
and the output is used as the new input, allowing
the network to iteratively update an implicit state
and perform complex computations.

Our study shows that attention mechanisms can
be used to emulate complex iterative algorithms
and execute general programs with even a single
loop. We hope that this inspires more research
on the capabilities of attention and the use of
smaller transformer networks to distill tasks for
larger models and enhance language model ca-
pabilities.

2 PRELIMINARIES

The transformer architecture. Our work fol-
lows a similar problem setting as previous stud-
ies (e.g. Yun et al. (2019); Garg et al. (2022);
Akyürek et al. (2022); von Oswald et al. (2022))
in which the input sequence consists of d-
dimensional embedding vectors rather than to-
kens. This simplifies our results without sacrific-
ing generality, as an embedding layer can map
tokens to the desired vector constructions.

The input to each layer, X ∈ Rd×n, is a vector representation of a sequence of n tokens, where
each token is a d-dimensional column. In this paper, the terms “token” and “column” may be used
interchangeably. A transformer layer outputs f(X), where f is defined as

Attn(X) = X+

H∑
i=1

ViXσS(X
⊤Ki⊤QiX) (1a)

f(X) = Attn(X) +W2σ(W1Attn(X) + b11
⊤
n) + b21

⊤
n (1b)

2

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

where σS is the softmax function applied on the columns of the input matrix, i.e., [σS(X, λ)]i,j =
eλXi,j∑n

k=1 eλXk,j
, where λ ≥ 0 is the temperature parameter, σ(x) = x · 1x>0 is the ReLU activation,

and 1n is the all ones vector of length n. We refer to the K,Q, and V matrices as the key, query,
and value matrices respectively; the superscript i that appears on the weight matrices indicates
those corresponding to the i-th attention head.Consistent with previous literature, the first equation
Equation (1a) represents the attention layer. We refer to the combination of attention and ReLU layers
as a single transformer layer.

Iterative computation through a simple loop. In the following sections, we utilize TF networks
with multiple transformer layers. Let us refer to the output of such a multilayer TF as TF(W;X),
where for simplicity W is the collection of all weight matrices required to define such a multi-layer
TF. We use our constructions recursively, and feed the output back as an input sequence, allowing the
network to perform iterative computation through a simple fixed-point like iteration. This recursive
transformer is similar to past work on adding recursion to TF networks. We refer to these simple
recursive TFs as Looped Transformers.

Feeding the output back to its input is similar to how a traditional computer processes machine code,
where it continually reads/writes data in memory, by executing one instruction at a time. The input
sequence X includes the instructions and memory. Similar to how a CPU processes each line of code
in a program, the transformer network processes parts of the input sequence to perform complex
computationsand acts as a self-contained computational unit. The use of loops in this process is
analogous to how CPUs operate using cycles.

While the analogy between TFs and CPUs can be entertaining, there are also many differences in
implementation. It is important to keep these differences in mind and not rely too heavily on the
analogy. The results obtained from using TFs as computational units do not require the analogy to be
valid.

To be able to build compute boxes out of a TF network, it is crucial to format the input sequence X in
a way that separates memory, a cache-like scratchpad, and commands.

Input sequence format. The input to our transformer network has the following abstract form:

X=

[
S M C

p1 . . . ps ps+1 . . . ps+m ps+m+1 . . . pn

]
(2)

where S represents the portion of the input that serves as a “scratchpad,” M represents the portion
that acts as memory that can be read from and written to, and C represents the portion that contains
the commands provided by the user. The p1, . . . ,pn are positional encodings for the n columns,
which will be described in more detail in the following paragraph, and will be used as pointers to data
and instructions. The structure of our input sequence bares similarities to that of Wei et al. (2022a);
Akyürek et al. (2022) that also use scratchspace, and have a separate part for the input data.

Scratchpad. This is the central location where the inputs and outputs of all computation are
recorded.It functions as a temporary workspace where data is copied, transformed, and manipulated
in order to perform a wide variety of operations, ranging from simple arithmetic to more complex
tasks such as matrix inversion. Regardless of the specific computation that is performed, the data
necessary for the operation is always transferred from the memory to the scratchpad, and once the
computation is completed, the data is transferred back to the memory.

Memory. All the compute boxes we create require memory to perform specific actions. The
memory component of the input sequence serves as a storage location for data. This data can take
various forms, including scalars, vectors, and matrices, and is subject to manipulation through various
operations. When computation is needed, the data is first copied from the memory to the scratchpad,
where it is updated and transformed as necessary. Once the computation is complete, the updated
data is then returned and copied back to the memory for future use or reference.
Commands. Our framework implements a set of commands within a transformer network; these
serve as instructions that guide the internal functioning of the transformer, similar to a low-level
programming language. These commands include indicators for memory locations and operation
directives, allowing the TF to execute complex computations and tasks in a consecutive and organized
manner.

3

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

3 MAIN RESULTS

A SUBLEQ Transformer. Mavaddat & Parhami (1988) showed that there exists an instruction
such that any computer program can be translated to a program consisting of instantiations of this
single instruction. A variant of such an instruction is SUBLEQ, where different registers, or memory
locations are accessed. The way that SUBLEQ works is simple as shown in Alg. 1. A computer that
is built to execute SUBLEQ programs is called an One-Instruction Set Computer, and is a universal
computer, i.e., it is Turing Complete, if given access to infinite memory.

Algorithm 1 SUBLEQ(a, b, c)
1: mem[b] = mem[b] - mem[a]
2: if mem[b] ≤ 0 then
3: goto instruction c
4: else
5: goto next instruction
6: end if

The transformer keeps track of the lines of code, memory locations, and a program counter, using the
memory part of the input as memory registers and the command part as lines of code/instructions.
The scratchpad is used to record the additions and pointers involved in each instruction, and the read,
write, and conditional branch operations are utilized.
Lemma 1. There exists a looped transformer architecture that can run SUBLEQ programs. This
architecture has ten layers, two heads, and a width of O(log(n) + log(N)), where n is the length of
the input sequence that is proportional to the length of the program and memory used by the emulated
OISC, and N is the number of bits we use to store each integer. The integers are considered to be in
the range [−2N−1 + 1, 2N−1 − 1] .

FLEQ: A More Flexible Attention-based Computer. We introduce FLEQ, a generalization of
SUBLEQ that defines a more flexible reduced-instruction set computer, which includes not just
addition of registers, but any function from a set of M predefined functions implementable by a
transformer network. In the following, we use the term FLEQ to refer interchangably to the instruction,
the language, and the attention-based computer it defines.
Theorem 1 (Informal). Given M different functions {fm}Mm=1, that each needs at most L layers of
transformer to be implemented, there exists a transformer with 9+L layers such that running it recur-
rently T times can run T instructions of any program where each instruction is FLEQ(a, b, c,m,flag,),
and executes the following:

mem[c] = fm(mem[a],mem[b]); if mem[flag] ≤ 0 goto instruction p

Applications. Our unified template, introduced above, allows us to implement algorithms and
iterative operations as programs, consisting of FLEQ instructions.

The first key component is that calculations like multiplication, division, square root, etc., as well
as linear algebra functions like matrix multiplication, transposition can be formed with at most 4
layers of the transformer architecture, in a template form which we call attention-based function
blocks. This specific form allows to use these blocks in a plug-and-play form in our unified template.
These function blocks are: addition, division, square root and generally all functions that can be
approximated by a sum of sigmoids, any type of matrix,vector, scalar multiplication, transpose of a
matrix and read/write operations.

As a result, using these function-blocks and the FLEQ transformer, we are further able to implement
a calculator, inversion, power iteration and learning algorithms like SGD on a linear model with
square loss, as well as, full backpropagation on a 2-layer sigmoid-activated neural network. For the
formal definitions, theorems, proofs and a complete list of our results, please see the appendix.

4 CONCLUSION

In this work, we have shown that transformer networks can be used as universal computers by
programming them with specific weights and placing them in a loop.

4

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

REFERENCES

Akyürek, E., Schuurmans, D., Andreas, J., Ma, T., and Zhou, D. What learning algorithm is in-context
learning? investigations with linear models. arXiv preprint arXiv:2211.15661, 2022.

Barron, A. Universal approximation bounds for superpositions of a sigmoidal function. IEEE
Transactions on Information Theory, 39(3):930–945, 1993. doi: 10.1109/18.256500.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

Charton, F. Linear algebra with transformers. arXiv preprint arXiv:2112.01898, 2021.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung,
H. W., Sutton, C., Gehrmann, S., et al. Palm: Scaling language modeling with pathways. 2022.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fedus, W., Li, E., Wang, X., Dehghani, M.,
Brahma, S., et al. Scaling instruction-finetuned language models. arXiv preprint arXiv:2210.11416,
2022.

Dasgupta, I., Lampinen, A. K., Chan, S. C., Creswell, A., Kumaran, D., McClelland, J. L., and Hill, F.
Language models show human-like content effects on reasoning. arXiv preprint arXiv:2207.07051,
2022.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and Kaiser, Ł. Universal transformers. arXiv
preprint arXiv:1807.03819, 2018.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,
M., Minderer, M., Heigold, G., Gelly, S., et al. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference on Learning Representations, 2020.

Esolangs. Subleq. URL https://esolangs.org/wiki/Subleq.

Garg, S., Tsipras, D., Liang, P., and Valiant, G. What can transformers learn in-context? a case study
of simple function classes. In Advances in Neural Information Processing Systems, 2022.

Hutchins, D., Schlag, I., Wu, Y., Dyer, E., and Neyshabur, B. Block-recurrent transformers. arXiv
preprint arXiv:2203.07852, 2022.

Kenton, J. D. M.-W. C. and Toutanova, L. K. Bert: Pre-training of deep bidirectional transformers for
language understanding. In Proceedings of NAACL-HLT, pp. 4171–4186, 2019.

Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F. S., and Shah, M. Transformers in vision: A
survey. ACM computing surveys (CSUR), 54(10s):1–41, 2022.

Lewkowycz, A., Andreassen, A., Dohan, D., Dyer, E., Michalewski, H., Ramasesh, V., Slone, A.,
Anil, C., Schlag, I., Gutman-Solo, T., et al. Solving quantitative reasoning problems with language
models. arXiv preprint arXiv:2206.14858, 2022.

Lindner, D., Kramár, J., Rahtz, M., McGrath, T., and Mikulik, V. Tracr: Compiled transformers as a
laboratory for interpretability. arXiv preprint arXiv:2301.05062, 2023.

Liu, B., Ash, J. T., Goel, S., Krishnamurthy, A., and Zhang, C. Transformers learn shortcuts to
automata. arXiv preprint arXiv:2210.10749, 2022.

Mavaddat, F. and Parhami, B. Urisc: the ultimate reduced instruction set computer. International
Journal of Electrical Engineering Education, 25(4):327–334, 1988.

Merrill, W., Sabharwal, A., and Smith, N. A. Saturated transformers are constant-depth threshold
circuits. Transactions of the Association for Computational Linguistics, 10:843–856, 2022.

Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H., Austin, J., Bieber, D., Dohan, D.,
Lewkowycz, A., Bosma, M., Luan, D., et al. Show your work: Scratchpads for intermediate
computation with language models. 2021.

5

https://esolangs.org/wiki/Subleq

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

Perekrestenko, D., Grohs, P., Elbrächter, D., and Bölcskei, H. The universal approximation power of
finite-width deep relu networks. arXiv preprint arXiv:1806.01528, 2018.

Pérez, J., Barceló, P., and Marinkovic, J. Attention is turing-complete. Journal of Machine Learning
Research, 22(75):1–35, 2021. URL http://jmlr.org/papers/v22/20-302.html.

Pérez, J., Marinković, J., and Barceló, P. On the turing completeness of modern neural network
architectures, 2019. URL https://arxiv.org/abs/1901.03429.

Shen, Z., Liu, Z., and Xing, E. Sliced recursive transformer. In European Conference on Computer
Vision, pp. 727–744. Springer, 2022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. Attention is all you need. Advances in neural information processing systems, 30,
2017.

von Oswald, J., Niklasson, E., Randazzo, E., Sacramento, J., Mordvintsev, A., Zhmoginov,
A., and Vladymyrov, M. Transformers learn in-context by gradient descent. arXiv preprint
arXiv:2212.07677, 2022.

Wei, C., Chen, Y., and Ma, T. Statistically meaningful approximation: a case study on approximating
turing machines with transformers. Advances on Neural Information Processing Systems (NeurIPS),
2022a.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama, D., Bosma, M.,
Zhou, D., Metzler, D., et al. Emergent abilities of large language models. arXiv preprint
arXiv:2206.07682, 2022b.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E., Le, Q., and Zhou, D. Chain of thought
prompting elicits reasoning in large language models. arXiv preprint arXiv:2201.11903, 2022c.

Weiss, G., Goldberg, Y., and Yahav, E. Thinking like transformers. In International Conference on
Machine Learning, pp. 11080–11090. PMLR, 2021.

Yuan, L., Chen, Y., Wang, T., Yu, W., Shi, Y., Jiang, Z.-H., Tay, F. E., Feng, J., and Yan, S. Tokens-to-
token vit: Training vision transformers from scratch on imagenet. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 558–567, 2021.

Yun, C., Bhojanapalli, S., Rawat, A. S., Reddi, S., and Kumar, S. Are transformers universal
approximators of sequence-to-sequence functions? In International Conference on Learning
Representations, 2019.

Zhou, H., Nova, A., Larochelle, H., Courville, A., Neyshabur, B., and Sedghi, H. Teaching algorithmic
reasoning via in-context learning. arXiv preprint arXiv:2211.09066, 2022.

6

http://jmlr.org/papers/v22/20-302.html
https://arxiv.org/abs/1901.03429

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

CONTENTS

1 Introduction 1

2 Preliminaries 2

3 Main Results 4

4 Conclusion 4

A Prior Work 9

B Building Transformer Blocks towards General Computation 9

B.1 Positional Encodings, Program Counter, and Data Pointers 10

B.2 read / write: Copying Data/Instructions to/from the Scratchpad 10

B.3 if ⟨condition⟩ then goto ⟨instruction⟩ . 11

C Emulating a Single Instruction Computer 11

C.1 A SUBLEQ Transformer . 11

C.2 FLEQ: A More Flexible Attention-based Computer 13

D Applications 14

E Limitations 15

F Omitted Proofs 16

F.1 Addition of pointers. 16

F.2 Read/Write operations. 16

F.3 if ⟨condition⟩ then goto ⟨instruction⟩: Conditional branching 18

G subleq: Proof of Lemma 5 19

H subleq is Turing Complete 22

I FLEQ Overview 23

J Functions in the Unified Template Form 25

J.1 Encoding Non-linear Functions within the Attention Mechanism 25

J.2 Matrix Transposition . 29

J.3 Matrix Multiplication by Linearizing the Softmax 31

J.4 Advantage of attention over fully-connected networks 33

K FLEQ: Proof of Theorem 2 33

K.1 Step 1 . 35

7

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

K.2 Step 2 . 36

K.3 Step 3 . 37

K.4 Step 4 . 37

K.5 Step 5 . 37

K.6 Step 6 . 37

K.7 Step 7 . 38

L Error Analysis 38

M A Basic Calculator 40

N Linear Algebra 43

O Emulating Learning Algorithms at Inference Time 45

8

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

A PRIOR WORK

Our work is inspired by the recent results on the expressive power of Transformer networks and their
in-context learning capabilities. The authors of Pérez et al. (2021); Pérez et al. (2019); Wei et al.
(2022a) have shown that Transformers are Turing complete, meaning they can simulate a Turing
machine. The constructions typically require high/infinite precision (apart from that of Wei et al.
(2022a)), and recursion around attention layers. Additionally, Yun et al. (2019) prove that with
sufficient width/depth, Transformers can act as universal sequence to sequence approximators. In
Weiss et al. (2021), the authors propose a computational model for the transformer-encoder in the
form of a domain-specific language called the Restricted Access Sequence Processing Language
(RASP). The model maps the basic components of a TF encoder into simple primitives. Examples of
tasks that could be learned by a Transformer are provided, and the maximum number of heads and
layers necessary to encode a task in a transformer are analyzed.

In a recent and related work, Lindner et al. (2023) suggests using transformer networks as pro-
grammable units and introduces a compiler called Tracr which utilizes RASP. However, the expressiv-
ity limitations and unclear Turing completeness of the language are discussed in Weiss et al. (2021);
Merrill et al. (2022); Lindner et al. (2023). Our approach, in contrast, demonstrates the potential
of transformer networks to serve as universal computers, enabling the implementation of arbitrary
nonlinear functions and emulating iterative, non-linear algorithms. Furthermore, our framework
allows the depth of our transformers to not scale in proportion to the lines of code that they execute,
allowing the implementation of iterative algorithms, expanding the potential applications.

In Garg et al. (2022) the authors demonstrate that standard Transformers (e.g., GPT-2) can be trained
from scratch to perform in-context learning of linear functions and more complex model classes,
such as two-layer neural networks, with performance that matches or exceeds task-specific learning
algorithms. A useful element of their analysis is the fact that language is completely removed from
the picture, and they perform all operations on the level of vector embeddings. This allows a higher
abstraction level than using language as an input, and in fact is what also allows us to obtain our
derivations.

Motivated by the above experimental work, in Akyürek et al. (2022), the authors investigate the
hypothesis that TF-based in-context learners emulate standard learning algorithms implicitly at
inference time. The authors provide evidence for this hypothesis by constructing transformers
that implement SGD for linear models, showing that trained in-context learners closely match the
predictors computed by these algorithms.

In a similar vein, von Oswald et al. (2022) argues that training Transformers on auto-regressive
tasks is closely related to gradient-based meta-learning formulations. The authors also provide a
hard-coded weight construction showing the equivalence between data transformations induced by a
single linear self-attention layer and gradient descent on a regression loss. The authors empirically
show that when training linear attention TFs on simple regression tasks, the models learned by GD
and Transformers have intriguing similarities.

In Liu et al. (2022), the authors test the hypothesis that TFs can perform algorithmic reasoning using
fewer layers than the number of reasoning steps, in the context of finite automata. The authors
characterized “shortcut solutions” that allow shallow Transformer models to exactly replicate the
computation of an automaton on an input sequence, and showed that these solutions can be learned
through standard training methods. As is expected this hypothesis is only true for a certain family
of automata, as the general existence of shortcut solutions would imply the collapse of complexity
classes that are widely believed not to be identical.

Other experimental studies have utilized recursion in transformer architectures in a similar manner to
our constructions, although in our case we only utilize a single recursive link that feeds the output of
the transformer back as an input (Hutchins et al., 2022; Shen et al., 2022; Dehghani et al., 2018).

B BUILDING TRANSFORMER BLOCKS TOWARDS GENERAL COMPUTATION

To build general compute boxes using transformer networks, specialized compute blocks are required.
These blocks will be assembled to create the desired end functionality. In this section, we highlight

9

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

various operations that transformer layers can perform. These operations will serve as building blocks
to create more complex routines and algorithms.

B.1 POSITIONAL ENCODINGS, PROGRAM COUNTER, AND DATA POINTERS

To aid the transformer in locating the position of each token, each column of X is appended with
positional encodings that is based on the column index. In this case, similar to Wei et al. (2022a),
the positional encodings is the binary representation of the column index, to keep the encoding
dimension low, i.e., logarithmic in the sequence length. This approach to using positional encodings
is slightly different from the typical method of adding them to the embeddings of the input sequence.
However, in this case, appending them as suffixes to the embeddings allows for cleaner arguments
and constructions.

In particular, the encoding for token/column indexed by i is a log(n)-dimensional ±1 binary vec-
tor pi ∈ {±1}log(n), where n is the length of the input sequence. Using the standard binary
representation of an integer i, meaning i =

∑log(n)−1
k=0 2k · bk, the positional encoding vector

pi is set to −1 at index j if the binary representation of i has 0 at the j-th index, i.e., bi = 0,
otherwise it is +1. As a result, we have pT

i pi = log(n) and by Cauchy-Schwarz inequality,
pT
i pj < |pi||pj | =

√
log(n)

√
log(n) = log(n) whenever i ̸= j, since pi,pj differ in at least one

coordinate.

In the applications presented, the transformer often needs to execute iterative algorithms or go through
a sequence of commands. To achieve this, we utilize a program counter that iterates through the
commands. The counter contains the encoding of the location where the next command is stored.
Additionally, a command may have data pointers that point to the location of the data the command
needs to read and write to. Both the program counter and data pointers utilize the same positional
encodings as discussed in the previous paragraph. Using binary vectors as positional encodings
allows us to easily increment the program counter by 1 (or any other amount) using the feed forward
ReLU layers in the transformer architecture (1). This is formalized in the following lemma, for the
proof see Lemma 10.

Lemma 2. Given two d-dimensional binary vectors representing two non-negative integers, there
exists a 1-hidden layer feedforward network with ReLU activation, containing 8d activations in the
hidden layer and d neurons in the output layer, that can output the binary vector representation of
their sum, as long as the sum is less than 2d+1.

Furthermore, this technique for pointing to specific data locations enables the transformer to effec-
tively read and write from/to data during the execution of the algorithm or sequence of commands
that is build to implement.

B.2 READ / WRITE : COPYING DATA/INSTRUCTIONS TO/FROM THE SCRATCHPAD

scratchpad memory instructions

pPC = pr

pa

pb

pb

pa

prpa pbp1

copy instruction

to location
pPC = pr

p1

Figure 2: A sketch of the read operation. Arrows show command blocks being copied from the part
of the input that is allocated to commands to the scratchpad. Typically an instruction is another set of
pointers. Positional encodings and counters are used for tracking what is copied where.

As previously stated, the scratchpad serves as a temporary memory for storing all information needed
for computation. This includes copying commands and data to it, performing computation, and
writing results back to memory. This process has similarities with the copy mechanism developed in
Akyürek et al. (2022).

10

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

The following lemma states that the command or data pointed to by the program counter or a data
pointer in the current command can be copied to the scratchpad. The location of the program counter
is conventionally placed right below the contents of the scratchpad, but it can be changed arbitrarily.
Keeping it in a specific location throughout the entire computation helps retain a good organization
of the construction.
Lemma 3 (read). A transformer with one layer, one head, and width of O(log n+ d), where d is
the dimension of the data vectors and n is the length of the input, can read data/command vectors
from the input to the scratchpad from the location pointed to by the position embedding vector in the
scratchpad. This operation incurs an error which can be driven arbitrarily close to 0 by increasing
the temperature of the softmax operation.

The next lemma explains that a vector stored in the scratchpad can be copied to a designated location
in memory, as specified within the scratchpad itself. This allows for the transfer of data from the
scratchpad to a specific location in memory for further use or storage.

scratchpad memory instructions

pa

mem[a]

pa

A

p1

copy data
from

scratchpad to
location

pointed by pa

Figure 3: A sketch of the write operation. Arrows show data blocks being copied from the scratchpad
to a designated location in the part of the input allocated for memory. Positional encodings are used
for tracking the destination location and ensuring data is written at the correct memory location.

Lemma 4 (write). A transformer network with a single layer, one head, and width O(log n+ d),
where d is the dimension of the data vectors and n is the length of the input, can effectively write a
data vector stored in the scratchpad to a specific location in the input, as designated by a positional
encoding vector in the scratchpad. This operation incurs an error which can be driven arbitrarily
close to 0 by increasing the temperature of the softmax operation.

B.3 IF ⟨condition⟩ THEN GOTO ⟨instruction⟩

In this subsection, we state the main ideas used to implement a conditional branching instruction that
evaluates a condition and sets the program counter to a specified location if the condition is true, or
increments the program counter by 1 if the condition is false. The form of the command is as follows:
if mem[a] ≤ 0, then goto i, where mem[a] is a value of some location in the memory part of the
input sequence. This command has two parts: evaluating the inequality and modifying the program
counter accordingly.

The first thing we do is read from mem[a], as described in the previous subsection. We then use one
ReLU layer to create the “flag”, the condition. This is implemented for the cases that mem[a] contains
an integer, or its binary representation as in Appendix C.1.

Let the current Program Counter be pPC, which points to a given command. Thus, if flag is 1, we
want the program counter to “jump” and become pi, else if flag is 0 the program counter will be
incremented by one, and set to be pPC+1. This can be implemented with one ReLU layer, which
selects one of the vectors based on the value of the flag. The details of this construction are given in
Appendix F.3.

C EMULATING A SINGLE INSTRUCTION COMPUTER

C.1 A SUBLEQ TRANSFORMER

Mavaddat & Parhami (1988) showed that there exists an instruction such that any computer program
can be translated to a program consisting of instantiations of this single instruction. A variant of such
an instruction is SUBLEQ, where different registers, or memory locations are accessed. The way that

11

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

SUBLEQ works is simple. It accesses two registers in memory, takes the difference of their contents
and stores it back to one of the registers, and then if the result is negative it jumps to a different
predefined line of code, or continues on to the next instruction from the current line of code.1 A
computer that is built to execute SUBLEQ programs is called an One-Instruction Set Computer, and
is a universal computer, i.e., it is Turing Complete, if given access to infinite memory.

Algorithm 2 SUBLEQ(a, b, c)
1: mem[b] = mem[b] - mem[a]
2: if mem[b] ≤ 0 then
3: goto instruction c
4: else
5: goto next instruction
6: end if

The transformer keeps track of the lines of code, memory locations, and a program counter, using the
memory part of the input as memory registers and the command part as lines of code/instructions.
The scratchpad is used to record the additions and pointers involved in each instruction, and the read,
write, and conditional branch operations are utilized.

Figure 4: Graphical representation of the building blocks necessary to implement the OISC instruction.
The first two blocks transfer the data/command to the scratchpad, the second and third implement the
subtraction and store the result, while the last one implements the if goto command that completes
the instruction.

Lemma 5. There exists a looped transformer architecture that can run SUBLEQ programs. This
architecture has ten layers, two heads, and a width of O(log(n) + log(N)), where n is the length of
the input sequence that is proportional to the length of the program and memory used by the emulated
OISC, and N is the number of bits we use to store each integer. The integers are considered to be in
the range [−2N−1 + 1, 2N−1 − 1] .

The importance of loops. The use of a loop outside the transformer is crucial as it allows the
computer to keep track of the program counter and execute the instructions in the correct order.
Without this loop, the size of the transformer would have to scale with the number of lines of code,
making the implementation impractical. Note that the overall complexity of running a SUBLEQ
program is going to scale with the number of lines of code, which is to be expected given standard
complexity theoretic assumptions on the circuit depth of functions. Note however that the depth of
the looped transfromer itself does not scale with the size of the program.

OISC as a basis for a more flexible attention-based computer. The following construction
describes an implementation of a fully functioning one-instruction set computer (OISC) using a
transformer architecture. The memory stores integers and the instructions are executed in a sequential
manner. The key to this construction is the reverse engineering of the attention mechanism to
perform read/write operations and taking full advantage of each piece of the transformer architecture,
including the feedforward layers. This implementation serves as the foundation for a more general
attention-based computer presented in the next subsection, where the subtraction of two contents
of memory can be replaced with a general function, allowing for the implementation of arbitrary
iterative algorithms.

We defer the proof of Lemma 5 in Appendix G, which provides the details of constructing a looped
transformer architecture to run SUBLEQ programs.

1This version of the SUBLEQ instruction is a slightly restricted version of the original instruction; here we
separate the memory / registers from the instructions. We show that this restriction does not make our version
computationally less powerful by proving in Appendix H that our version is also Turing Complete.

12

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

C.2 FLEQ: A MORE FLEXIBLE ATTENTION-BASED COMPUTER

In this section, we introduce FLEQ, a generalization of SUBLEQ that defines a more flexible reduced-
instruction set computer, which includes not just addition of registers, but any function from a set of
M predefined functions implementable by a transformer network. In the following, we use the term
FLEQ to refer interchangably to the instruction, the language, and the attention-based computer it
defines.

The design of FLEQ allows for the easier implementation of complex algorithms using functions
beyond simple subtraction, such as matrix multiplication, computation of square roots, activation
functions, etc. directly as built-in primitives in the architecture. This not only increases the flexibility
of the system, but also makes it possible to implement nonlinear computations, linear algebra
calculations, and iterative optimization algorithms for in-context learning, while containing the length
of the corresponding programs.

Definition 1. Let Ti be a transformer network of the form (1) with li-layers, hi-heads and dimension-
ality r. We call this a “transformer-based function block” if it implements a function f(A,B) where
the input and output sequence format is assumed to be the following: A ∈ Rdh×dw is assumed to be
provided in the first set of d columns (columns 1 to d) and B ∈ Rdh×dw the second set of d columns
(columns d+1 to 2d); after passing the input through the li layers, the output of f(A,B) ∈ Rdh×dw

is stored in the third d columns (columns 2d+ 1 to 3d), where d is the maximum size that the input
could have and it is a constant that we determine. Note that dh, dw ≤ d. Finally, the sequence length
of the block is s ≥ 3d. Similarly to d, s is a predetermined constant.

The parameters A,B can be scalars, vectors or matrices as long as they can fit within a d× d matrix.
Hence, the above definition is minimally restrictive, with the only main constraint being the input and
output locations. More details about the input and output requirements are explained in Appendix I.

Theorem 2. Given M different transformer-based function blocks T1, · · · , TM , there exists a trans-
former T of the form (1) with number of layers 9 + max{l1, · · · , lM}, a number of

∑M
i=1 hi heads,

and dimensionality O(Md+log n) such that running it recurrently T times can run T instructions of
any program where each instruction is FLEQ(a, b, c,m,flag, p, dh, dw), and executes the following:

mem[c] = fm(mem[a],mem[b])

if mem[flag] ≤ 0 goto instruction p

Here n is the total length of the program and we assume that mem[flag] is an integer. The parameters
dh, dw are explained in Remark 1 below. The execution of this operation incurs an error which can
be driven arbitrarily close to 0 by increasing the temperature of the softmax operation.

Remark 1. Note that, the transformer T contains M transformer-based function blocks and each one
may use different input parameters. We thus define with d the max length that each of the parameters
A,B,C (stored in locations a, b, c) as in Definition 1 can have; this is a global constant and it is
fixed for all the different instances that we can create. Now, dh, dw refer to the maximum dimension
that the parameters can have in a specific instance of the transformer T ; the rest of the columns
d− dw and rows d− dh are set to zero.

The proof of this theorem can be found in Appendix K. Below we explain some of our design choices.

Execution cycle of the unified attention-based computer. In each iteration of the looped trans-
former, one instruction is fetched from the set of instructions in the input according to the program
counter. The instruction is then copied to the scratchpad. Depending on the function to be imple-
mented, a different function block location is used to locally record the results of that function. Once
the result is calculated, it is copied back to a specified memory location provided by the instruction.
The execution cycle is similar to the one-instruction set computer (OISC) in the previous section,
with the main difference being that for each instruction, we can choose from a pre-selected list of
functions that take inputs in the form of arbitrary arrays of numbers, such as matrices, vectors, and
scalars. For a more detailed overview of FLEQ and how it interacts with the Transformer-based
Function Blocks, we refer the reader to Appendix I.

13

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

Figure 5: The structure of input X, to execute FLEQ commands.

Computational concerns: Do we need full attention? In our constructions we can reduce the
computational complexity of the attention mechanism by limiting it the number of embedding vectors
that each part of the input has to attend to. In our specific construction, only the columns within
the scratchpad require global attention. By focusing only on these columns, we can reduce the
computational complexity of the attention mechanism from O(n2d) to O(nd), where n is the number
of input sequences, d is the dimension of the embedding vectors.

D APPLICATIONS

Our unified template allows us to implement algorithms and iterative operations as programs. Calcu-
lations like multiplication, division, square root, etc., as well as linear algebra functions like matrix
multiplication, transposition can be formed as attention-based function blocks. One key component of
our analysis for creating non-linear functions is the manipulation of the softmax in Equation (1a) so
as to create the sigmoid function g(x) = 1/(1 + e−x). We then encode a different sigmoid function
at each head and create linear combinations of them to create approximations for different functions.
For more details see Lemma 11.

Using these function-blocks and the FLEQ transformer, we are further able to implement a calculator,
inversion, power iteration and learning algorithms like SGD on a linear model with square loss, as
well as, full backpropagation on a 2-layer sigmoid-activated neural network. We now formally state
some of these results below, for a complete list, please see the appendix.

Calculator. Our first result is the emulation of a simple calculator. To prove the Lemma below, we
use Lemma 11, which provides error guarantees in terms of the number of heads m, to approximate
the square root and the inversion function. The details can be found in Appendix M.

Lemma 6. There exists a transformer with 12 layers, m heads and dimensionality O(log n) that
uses the Unified Attention Based Computer framework in Section C.2 to implement a calculator
which can perform addition, subtraction, multiplication, and computing the inverse, square root
and percentage. For computing the inverse and square root, the operand needs to be in the range
[−eO(m),−Ω̃(1√

m
)] ∪ [Ω̃(1√

m
), eO(m)] and [0, O(m2)] respectively, and the returned output is

correct up to an error of O(1/
√
m) and O(1/m) respectively. Here, n is the number of operations

to be performed.

Linear Algebra. We continue with emulating approximation algorithms like the Newton-Raphson
Method to find the inverse of a non-singular matrix A (Alg. 3), and the Power Iteration Algorithm for
finding the eigenvector corresponding to the eigenvalue with the maximum absolute value (Alg. 4).
Notice that once we have established matrix transposition, matrix multiplication and functions like
scalar division etc., these algorithms can be encoded as sequential applications of those results.

Algorithm 3 Pseudocode for Matrix Inversion .
1: X−T = ϵA
2: for i = −T, . . . , 0 do
3: Xi+1 = Xi(2I−AXi)
4: end for

Lemma 7. Consider a matrix A ∈ Rd×d, then for any ϵ > 0 there exists a transformer with 13
layers, 1 head and dimensionality r = O(d) that emulates Alg. 3 with output X(transf)

1 that satisfies

14

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

∥X(transf)
1 −X1∥ ≤ ϵ. This error ϵ arises due to softmax, and can be driven arbitrarily close to 0 by

increasing the temperature.

Algorithm 4 Power Iteration
Input: A, T

1: Initialize b0 = 1
2: for k = 0, . . . , T − 1 do
3: bk+1 = Abk

4: end for
5: b = bT /∥bT ∥

Lemma 8. Consider a matrix A ∈ Rd×d, then for any ϵ > 0 there exists a transformer with 13
layers, 1 head and dimensionality r = O(d) that emulates Alg. 4 for T = O(log 1/ϵ) iterations with
output b(transf)

T+1 that satisfies ∥b(transf)
T+1 − bT+1∥ ≤ ϵ. This error ϵ arises due to softmax, and can be

driven arbitrarily close to 0 by increasing the temperature.

Stochastic Gradient Descent and Backpropagation. Finally, we present our result on the emula-
tion of stochastic gradient descent (SGD) in 2-layer neural networks, over a set of data points (xi, yi).
We first implement Alg. 5, which serves as a function for calculating and updating the weight and
bias matrices with steps proportional to their gradients. Each function call takes as input pointers to
the weight and biases matrices, one data point and its corresponding label and the step-size .

Algorithm 5 Backpropagation
Define: Loss function: J(x) = 1

2x
2.

Input: W1 ∈ Rm×d, b1 ∈ Rm, W2 ∈ Rm×1, b2 ∈ R , x ∈ Rd, y ∈ R, η ∈ R
1: Compute z = W1x+ b1, a = σ(z).
2: Compute o = W2a+ b2.
3: Compute δ2 = (o− y).
4: Compute δ1 = σ′(z)⊙W2(o− y).
5: Compute ∂J

∂W2
= δ2a

⊤, ∂J
∂b2

= δ2.
6: Compute ∂J

∂W1
= δ1x

⊤, ∂J
∂b1

= δ1.
7: Update W1,W2, δ1, δ2 with one gradient update.

Lemma 9. There exists a transformer with 13 layers, 1 head and dimensionality O(log(|D|)+d) that
uses the Unified Attention Based Computer framework to implement T iterations of SGD on a two-
layer sigmoid-activated neural network, over a set of nd data points (xi, yi) ∈ Rd+1, i = 1, . . . , |D|.
The step size is given as a parameter to the program. The emulation of each step of SGD is not
exact, there is some error in each step which, however, can be driven down arbitrarily close to 0 by
increasing the temperature of softmax and another free parameter which does not affect the size of
the network.

E LIMITATIONS

In this paper, we have presented a new approach for using transformer blocks for function approxima-
tion. However, there are several limitations to our work. However, there are several limitations to our
work that should be considered. One limitation is that the constructions presented in this paper have
not been experimentally validated for efficiency. Additionally, implementing a transformer-based
approach may be less efficient than running the algorithm directly. Furthermore, our constructions are
forced to have a specific input structure where commands and memory are separated, which may lead
to inefficiencies. At this point, it is also unclear how to combine hardcoded transformer models with
pretrained ones. Lastly, we have not conducted a thorough finite precision analysis of our algorithms.
Despite these limitations, our work presents a novel approach to exploring the mechanics of attention
based networks and our methods may have potential for further exploration and development.

15

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

F OMITTED PROOFS

F.1 ADDITION OF POINTERS.

Lemma 10. There exists a 1-hidden layer feedforward, ReLU network, with 6d activations in the
hidden layer and d neurons in the output layer that when given two d-dimensional binary vectors
representing two non-negative integers, can output the binary vector representation of their sum, as
long as the sum is less than 2d+1.

Proof. For the purpose of explaining this proof, we use the {0, 1}d binary representation of the
integers, instead of the {±1}d binary representation. However, since the conversion of a bit between
the two representations can be done easily using simple affine transformation, the proof will also
work for the {±1}d binary representation.

Let the two integers be a, b and let c := a + b. We assume that c < 2d. Futher, let a1 be the least
significant bit of a, ad the most significant, and ai be the i-th most significant bit, and similarly for b
and c. Further, let a[i] represent the integer formed by considering only the least i significant bits of a.

Note that ci is only dependent on the least i bits of a and b, and not on the more significant bits of a
or b. In particular, ci only depends on a[i] + b[i]. Define s := a[i] + b[i], and note that ci = si. Further
note that s < 2i+1 and hence can be represented in i+ 1 bits. Then, whenever ci = 1, there can be
two cases: (si+1 = 1, si = 1); or (si+1 = 0, si = 1). This can be equivalently written as ci = 1 iff
s ∈ [2i−1, 2i − 1] ∪ [3 · 2i−1, 2i+1 − 1]. This can be computed by the following ReLU:

ci = (σ(s− 2i−1 + 1)− σ(s− 2i−1)) + (σ(2i − s)− σ(2i − s− 1))− 1

+ (σ(s− 3 · 2i−1 + 1)− σ(s− 3 · 2i−1)).

Thus, each bit of c can be computed using 6 neurons. Hence, computing the entire sum needs 8d
activations.

F.2 READ/WRITE OPERATIONS.

Lemma 3 (read). A transformer with one layer, one head, and width of O(log n+ d), where d is
the dimension of the data vectors and n is the length of the input, can read data/command vectors
from the input to the scratchpad from the location pointed to by the position embedding vector in the
scratchpad. This operation incurs an error which can be driven arbitrarily close to 0 by increasing
the temperature of the softmax operation.

Proof. Consider a simplified input where the scratchpad only has one column, and we have positional
encodings, denoted as pi, that point to the location where data or commands should be copied from.
In this case, the operation we want to perform is as follows:


0 v2 · · · vi · · ·
v1 0 · · · 0 · · ·
pi 0 · · · 0 · · ·
0 p2 · · · pi · · ·
0 0 · · · 0 · · ·
1 0 . . . 0 . . .

 −→


0 v2 · · · vi · · ·
vi 0 · · · 0 · · ·
pi 0 · · · 0 · · ·
0 p2 · · · pi · · ·
0 0 · · · 0 · · ·
1 0 . . . 0 . . .


which moves data/command embedding vector vi from the memory/command part of the input to
the scratchpad. The first row contains the data to be read, the second row has the data written in
the scratchpad, the third row contains the program counter, the fourth row contains the positional
encodings, the fifth row is used by for temporary storage and the last row is just a bit that indicates
whether the column is in the scratchpad or not.

16

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

We use the following key and query matrices: K = Q = [0 0 I I 0 0] , so that the key and
query become equal to KX = QX = [pi p2 · · · pi · · ·] , and hence,

(KX)⊤QX =


p⊤
i pi p⊤

i p2 . . .
p⊤
2 pi p⊤

2 p2 . . .
...

...
...

p⊤
i pi p⊤

i p2 . . .
...

...
...


Recall that pi is a log(n)-dimensional ±1 vector such that pT

i pi = log(n) and each pT
i pj ≤

log(n) − 1 for j ̸= i. We show in the appendix that if we apply the softmax with temperature
λ ≥ log n3

ϵ , we have σS((KX)⊤QX) to be an n× n matrix of the following form

1
2 0 0 · · · 1

2 · · · 0
0 1 0 · · · 0 · · · 0
0 0 1 · · · 0 · · · 0
...

...
...

. . .
...

. . .
...

1
2 0 0 · · · 1

2 · · · 0
...

...
...

. . .
...

. . .
...

0 0 0 · · · 0 · · · 1


+ ϵM =

[
e1+ei

2 e2 e3 · · · e1+ei

2 · · ·
]
+ ϵM,

where ei is the ith column of the identity matrix, ∥M∥ ≤ 1, and ϵ is as defined in Appendix L.
For the purpose of the proof, we ignore the error term ϵM, because it can be reduced arbitrarily by
increasing the temperature (it can be made precisely equal to 0, if we consider hardmax instead of
softmax), and overall does not limit us from deriving arbitrarily small error bounds.

Next we set the output and value weight matrices as follows

V =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
I I 0 0 0 0
0 0 0 0 0 0

 .

Using this, the output of the head is

X+VXσS((KX)⊤QX) =


0 v2 · · · vi · · ·
v1 0 · · · 0 · · ·
pi 0 · · · 0 · · ·
0 p2 · · · pi · · ·

v1+vi

2 v2 · · · v1+vi

2 · · ·
1 0 . . . 0 . . .


Each column above has the following form: 

v0
orig

v1
orig

vorig

p(0)

p(1)

vnew
b


,

where v
(0)
orig and v

(1)
orig are the original value vectors (present in the top two row blocks) contained in

that column, p(0) and p(1) are the corresponding embeddings of each column, vnew is the new value,
and b is the bit indicating whether the column is part of the scratchpad or not.

17

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

The feedforward layers have the following form:

v
(1)
orig := v

(1)
orig + σ(C(b− 1)1+ 2vnew − 2v

(1)
orig)− σ(C(b− 1)1− 2vnew + 2v

(1)
orig)

vnew := vnew − σ(vnew) + σ(−vnew) = 0,

where C is a large positive constant. The first equation is performing the operation of subtracting
vnew from vorig but only when the sum and difference of C(b− 1)1 and vnew are positive, otherwise
the subtraction does not occur. The second equation is resetting the value of vnew to zero after it has
been copied to vorig, where σ(−vnew) is the rectified linear unit (ReLU) applied to the negative of
vnew.

It can be verified that the output of the feedforward layers would then be the desired result

X =


0 v2 · · · vi · · ·
vi 0 · · · 0 · · ·
pi 0 · · · 0 · · ·
0 p2 · · · pi · · ·
0 0 · · · 0 · · ·
1 0 . . . 0 . . .

 .

Lemma 4 (write). A transformer network with a single layer, one head, and width O(log n+ d),
where d is the dimension of the data vectors and n is the length of the input, can effectively write a
data vector stored in the scratchpad to a specific location in the input, as designated by a positional
encoding vector in the scratchpad. This operation incurs an error which can be driven arbitrarily
close to 0 by increasing the temperature of the softmax operation.

Proof. We want to achieve the following operation

X =


0 v2 · · · vi · · ·
v1 0 · · · 0 · · ·
pi 0 · · · 0 · · ·
0 p2 · · · pi · · ·
0 0 · · · 0 · · ·
1 0 . . . 0 . . .

 −→


0 v2 · · · v1 · · ·
v1 0 · · · 0 · · ·
pi 0 · · · 0 · · ·
0 p2 · · · pi · · ·
0 0 · · · 0 · · ·
1 0 . . . 0 . . .

 ,

The construction for this is identical to the one for read (see the proof of Lemma 3), except that the
feedforward layers are outputting the following:

v
(0)
orig := v

(0)
orig + σ(−Cb1+ 2vnew − 2v

(0)
orig) + σ(−Cb1− 2vnew + 2v

(0)
orig)

vnew := vnew − σ(vnew) + σ(−vnew) = 0,

where C is a large positive constant. The first equation updates the value of a vector vorig in memory
with the value of a vector vnew from the scratchpad. The second equation is resetting the new vector
in the scratchpad to zero. It can be verified that the output of the feedforward layers would be

X =


0 v2 · · · v1 · · ·
v1 0 · · · 0 · · ·
pi 0 · · · 0 · · ·
0 p2 · · · pi · · ·
0 0 · · · 0 · · ·
1 0 . . . 0 . . .

 .

F.3 IF ⟨condition⟩ THEN GOTO ⟨instruction⟩: CONDITIONAL BRANCHING

In this subsection, we will implement a conditional branching instruction that evaluates a condition
and sets the program counter to a specified location if the condition is true, or increments the program
counter by 1 if the condition is false. The form of the command is as follows: if mem[a] ≤ 0, then
goto i, where mem[a] is a value of some location in the memory part of the input sequence. This
command has two parts: evaluating the inequality and modifying the program counter accordingly.

18

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

The first thing we do is read from mem[a], as described in the previous subsection. Let us say
that “flag” is the truth value of the inequality. Since we assume that for such conditional branching
command, mem[a] contains an integer, the following ReLU network can be used to compute the flag:

flag = 1− σ(mem[a]) + σ(mem[a]− 1). (3)

In Appendix C.1, we consider mem[a] to be vectors contain the binary ±1 representation of integers.
There we use 2’s complement convention to represent negative integers. Let the vector be [bN . . . b1],
where bN is the most significant bit and b1 the least significant. As we explain in that section, the
sign of bN indicates whether the integer is negative or positive (The number is negative if bN = +1
and non-negative otherwise). Hence, the flag is 1 if bN = +1 or if all the bits are −1 (which is the
case when mem[a] represents the integer 0).

flag = σ(bN) + σ

(
1 +N −

N∑
i=1

bi

)
. (4)

Let the current Program Counter be pPC, which points to a given command. Thus, if flag is 1, we
want the program counter to “jump” and become pi, else if flag is 0 the program counter will be
incremented by one, and set to be pPC+1.

Consider that the simplified input currently has the following scratchpad ∗ ∗ . . . ∗ ∗
flag 0 . . . 0 0
pPC 0 . . . 0 0
pi 0 . . . 0 0

 ,

where ′∗′ are inconsequential values. The incremented pointer, pPC+1, can be computed using the
pointer incrementing operation that we described in the Subsection B.1, using one feedforward layer
of (1b).Then,

pnext = 2σ(pPC+1 − 1flag)

+ 2σ(pi − 1(1− flag))− 1,

where 1 is the all ones vector. Notice that we can implement this with just the feed forward layers of
Equation (1b). To account for the residual connection we can add the expression −σ(pPC)+σ(−pPC)
in the equation above.

Hence, this entire operation requires 3 feed forward layers of Equation (1b), and hence 2 transformer
layers. Note that to ensure that the attention layer of the transformer do not modify the input, we
simply set the V matrix to zero in (1a).

G SUBLEQ : PROOF OF LEMMA 5

Looking at Alg. 2, note that each instruction can be specified by just 3 indices, a, b, and c. Since
we use binary representation of indices to form positional encodings and pointers, each of these
indices can be represented by a log n dimensional vector. We represent each instruction by simply
concatenating these embedding vectors to form a 3 log n dimensional vector as follows:

c =

[
pa
pb
pc

]
.

The input then takes the following form:

X =


0 0 0 cs+m+1 cs+m+2 . . . cn−1 cEOF
0 0 M 0 0 . . . 0 0
0 0 0 0 0 . . . 0 0
pPC 0 0 0 0 . . . 0 0
0 p2:s ps+1:s+m ps+m+1 ps+m+2 . . . pn−1 pn
1 12:s 0s+1:s+m 0s+m+1 0s+m+2 · · · 0n−1 0n

 (5)

19

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

Commands
EOFBlock of memory

Scratchpad
Program Counter

Encodings

Indicator of the scratchpad

where ci ∈ R3 log(n), M ∈ R1×m and X ∈ R(8 log(n)+2 log(N)+1)×n. The first s columns constitute
the scratchpad, the next m constitute the memory section, and the last n−m− s columns contain
the instructions.

The program counter, pPC points to the next instruction that is to be executed, and hence it is initialized
to the first instruction as pPC := ps+m+1. The contents of the memory section are N dimensional ±1
binary vectors which represent the corresponding integers. We follow the 2’s complement convention
to represent the integers, described as follows. Let’s say the bits representing an integer are bN , . . . , b1,
with bN being the most significant bit. Then,

1. If bN = +1, then the integer is considered positive with the value
∑N−1

i=1 2i−1 bi+1
2 .

2. If bN = −1, then the integer is considered negative with the value −2N−1 +∑N−1
i=1 2i−1 bi+1

2 .

Step 1 - Read the instruction cPC. The first thing to do is to read and copy the instruction
pointed to by pPC in the scratchpad. The current instruction is located at column index PC, and
is pointed to by the current program counter pPC. The instruction, cPC consists of three pointers,
each of length log n. In particular we copy the elements at the location (1 : 3 log(n),PC) to the
location (3 log(n) + 4 : 6 log(n) + 3, 1). This can be done using the read operation as described in
Appendix B.2. Hence, after this operation, the input looks as follows:

X =



0 0 0 c1 c2 . . . cn−m−s cEOF
0 0 M 0 0 . . . 0 0
0 0 0 0 0 . . . 0 0
0 0 0 0 0 . . . 0 0
cPC 0 0 0 0 . . . 0 0
pPC 0 0 0 0 . . . 0 0
0 p2:s ps+1:s+m ps+m+1 ps+m+2 . . . pn−1 pn
1 12:s 0s+1:s+m 0s+m+1 0s+m+2 . . . 0n−1 0n



=



0 0 0 c1 c2 . . . cn−m−s−1 cEOF
0 0 M 0 0 . . . 0 0
0 0 0 0 0 . . . 0 0
0 0 0 0 0 . . . 0 0
pa 0 0 0 0 . . . 0 0
pb 0 0 0 0 . . . 0 0
pc 0 0 0 0 . . . 0 0
pPC 0 0 0 0 . . . 0 0
0 p2:s ps+1:s+m ps+m+1 ps+m+2 . . . pn−1 pn
1 12:s 0s+1:s+m 0s+m+1 0s+m+2 . . . 0n−1 0n


This step can be done in one layer.

Step 2 - Read the data required by the instruction. We need to read the data that the columns
a, b contain. To do so, we again use the read operation on the pointers pa,pb. Note that we need
two heads for this operation, one each for reading a and b. The resulting output sequence looks like

X =



0 0 0 c1 c2 . . . cn−m−s−1 cEOF
0 0 M 0 0 . . . 0 0

mem[a] 0 0 0 0 . . . 0 0
mem[b] 0 0 0 0 . . . 0 0
pa 0 0 0 0 . . . 0 0
pb 0 0 0 0 . . . 0 0
pc 0 0 0 0 . . . 0 0
pPC 0 0 0 0 . . . 0 0
0 p2:s ps+1:s+m ps+m+1 ps+m+2 . . . pn−1 pn
1 12:s 0s+1:s+m 0s+m+1 0s+m+2 . . . 0n−1 0n


. (6)

This step can be done in one layer.

20

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

Step 3 - Perform subtraction. Let x denote a column of the input X. Let it have the following
structure:

x =



∗
∗
br
bs
∗
∗
∗
∗
∗


,

where each entry above represents the corresponding column element of the matrix X in (6). Thus,
br = mem[a], bs = mem[b] for the first column, and r = s = 0 otherwise.

Hence, to perform bs−r, we first need to compute the binary representation of −r, which is b−r, and
then simply add it to bs. To compute b−r, which is the 2’s complement of br, we just need to flip the
bits of br and add 1. Bit flipping a ±1 bit can be done with a neuron simply as bflipped = 2∗σ(−b)−1.
For adding 1, we can use Lemma 10. Hence, each of these operations can be done using 1 ReLU
layer of width O(logN), and hence we need 2 transformer layers to perform this (Here we make
the intermediate attention layers become the identity mapping by setting their value matrices to 0).
Finally, we need one more ReLU layer to add bs to b−r, hence bringing the total to 3 transformer
layers.

This results in the following:

X =



0 0 0 c1 c2 . . . cn−m−s−1 cEOF
0 0 M 0 0 . . . 0 0
0 0 0 0 0 . . . 0 0

mem[b]−mem[a] 0 0 0 0 . . . 0 0
pa 0 0 0 0 . . . 0 0
pb 0 0 0 0 . . . 0 0
pc 0 0 0 0 . . . 0 0
pPC 0 0 0 0 . . . 0 0
0 p2:s ps+1:s+m ps+m+1 ps+m+2 . . . pn−1 pn
1 12:s 0s+1:s+m 0s+m+1 0s+m+2 . . . 0n−1 0n


Note that since this can be done in the feedforward layers of the previous step, this does not require
an additional layer.

Step 4 - Write the result back to memory. Writing mem[b]−mem[a] back to location b can be
done using the pointer pb and the set of embeddings and applying the write operation described in
Appendix B.2. This operation requires one layer.

Step 5 - Conditional branching. We first use Equation (4) as described in Appendix B.3 to
create the flag, which is 1 if mem[b] −mem[a] ≤ 0 and 0 otherwise. This can be done using the
Equation (1b) of the transformer. Thus, we have

X =



0 0 0 c1 c2 . . . cn−m−s−1 cEOF
0 0 M 0 0 . . . 0 0
0 0 0 0 0 . . . 0 0

flag 0 0 0 0 . . . 0 0
pa 0 0 0 0 . . . 0 0
pb 0 0 0 0 . . . 0 0
pc 0 0 0 0 . . . 0 0
pPC 0 0 0 0 . . . 0 0
0 p2:s ps+1:s+m ps+m+1 ps+m+2 . . . pn−1 pn
1 12:s 0s+1:s+m 0s+m+1 0s+m+2 . . . 0n−1 0n


(7)

This operation requires one layer.

Next we use the construction described in Appendix B.3 to choose, depending on the value of the
flag, whether we want to increment the current program counter or we want to jump in the command
c. Similar to Appendix B.3, this step needs 3 layers of transformers.

21

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

Step 6 - Error Correction. Note that some of the steps above we incur some error while reading
and writing due to the fact that we are using softmax instead of hardmax. This error can be made
arbitrarily small by increasing the temperature of the softmax. In this step, we push the error down to
zero. Note that all the elements of X can only be one of {−1, 0, 1}, with some additive error from
reads and writes as explained before. Assume that the temperature is set high enough that the error is
ϵ < 0.5. Then, a noisy bit b can be fixed using the following ReLU:

bnoiseless =
1

1− 2ϵ
(σ(b+ 1− ϵ)− σ(b+ ϵ))

+
1

1− 2ϵ
(σ(b− ϵ)− σ(b− 1 + ϵ))− 1.

This operation can be done with a single layer of transformer.

Step 7 - Program Termination. The special command cEOF is used to signal the end of a program
to the transformer. This command is made up of three encodings: ps+1, ps+2, and pn. The first
encoding, ps+1, points to the first entry in the memory, which we hard-code to contain the value
0. The second encoding, ps+2, points to the second entry in the memory, which is hard-codeded to
contain the value −1. The third encoding, pn, points to itself, signaling the end of the program and
preventing further execution of commands. Hence, on executing this command, the next command
pointer is set to point to this command again. This ensures that the transformer maintains the final
state of the input.

• For this, we ensure that the last instruction in each program is cEOF, and that mem[s+1] = 0
and mem[s+ 2] = −1.

• For this case a = s+ 1, b = s+ 2, and c = n.

• The memory is updated with the value mem[b] = mem[b]−mem[a]. Since mem[a] = 0
here, the memory remains unchanged.

• Since mem[b] ≤ 0 here, the branch is always true and thus the pointer for the next instruction
is again set to point to cEOF.

H SUBLEQ IS TURING COMPLETE

In this section, we show that our slightly restricted version of the original SUBLEQ instruction
(Mavaddat & Parhami, 1988) is indeed also Turing complete. To do this, we will utilize Minsky
machines, which are also Turing complete. A Minksy machine comprises of registers and a list of
instructions, where each instruction can be either of the following two instructions

• add(a): mem[a] := mem[a] + 1, go to the next instruction.

• sub(a, n): If mem[a] == 0, go to instruction n. Otherwise mem[a] := mem[a] − 1, go to
the next instruction.

Given a program written in a language above, we translate it into an equivalent one written in our
SUBLEQ language. For this, we initialize three fixed locations / registers c−1, c0, and c+1 such
that mem[c−1] := −1, mem[c0] := 0, and mem[c+1] := +1; as well as an extra register mem[b].
We translate the program instruction-by-instruction. Assume that we have translated the first i− 1
instructions. Let j − 1 be the index of the last (translated) SUBLEQ instruction, that is, the index of
the next SUBLEQ instruction will be j. Then, for the i-th instruction in the Minsky machine language,
we translate it into our language as follows:

• Case 1, The i-th instruction of the Minsky machine program is add(a). This is equivalent
to SUBLEQ(a, c−1, j + 1), and hence the j instruction in our program will simply be
SUBLEQ(a, c−1, j + 1).

• Case 2, The i-th instruction in the Minsky machine program is sub(a, n). This would be
equivalent to the sequence of the following 5 SUBLEQ instructions.

22

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

Algorithm 6 Translation for sub(a, n)
1: Instr. j : SUBLEQ(b, b, j + 1)
2: Instr. j + 1: SUBLEQ(b, a, j + 3)
3: Instr. j + 2: SUBLEQ(a, c+1, j + 5)
4: Instr. j + 3: SUBLEQ(a, c0, n′)
5: Instr. j + 4: SUBLEQ(a, c+1, j + 5)

Here n′ is the index of the translation of the n-th instruction of the Minsky machine program.
This can be computed as a function of the number of add and sub instructions up to
instruction n. The correctness of the above can be verified by considering the three cases:
mem[a] ≥ 1, mem[a] ≤ −1, and mem[a] = 0.

I FLEQ OVERVIEW

The format of the input sequence. In Fig. 6, we illustrate the input X to our looped transformer,
which can execute a program written as a series of FLEQ instructions. Note that X is divided into
three sections: Scratchpad, Memory, and Instructions. As in the left bottom part of Fig. 6, we allocate
a separate part of the scratchpad for each of the M functions that are internally implemented by the
transformer. For example, if we have matrix multiplication and element-wise square root as two
functions, we would allocate a different function block for each one.

Figure 6: The structure of input X, to execute FLEQ commands.

This design may not be the most efficient, but our goal is to demonstrate the possibilities of looped
transformers. Additionally, since the number of different functions is typically small in the appli-
cations we have in mind, the design does not significantly increase in size. The choice to reserve
different function blocks for each predefined function is for convenience, as it allows for separate
treatment of functions without worrying about potentially overlapping results. We believe that a
design with a single function block is feasible, but it would significantly complicate the rest of the
transformer construction.

Instruction format. The instruction in Theorem 2 is essentially a composition of the following two
components: the function call to fm and the conditional branching (if ... goto ...). The instruction,
located at the top right side of Fig. 6 contains the following components:



pa
pb
pc
pm
pflag
pp
dh
dw


(8)

Pointers to parameters of fm
Position to write result

Pointer to function block
Position of flag

Next instruction

Dimensions of the inputs and the output

The goal of each positional encoding vector in Equation (8) is to point to the corresponding space
of the input where each component required by the instruction is located. To be specific, pa and pb

point to the locations that the inputs a and b are located, pc points to the location to which we will
record the final result of the function fm. Similarly, pm points to the function block in the scratchpad
that the intermediate computations required for fm are recording, pflag points to the variable that we

23

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

check if it is non-positive (the result is used for conditional branching), and pp points to the address
of the line of code that we would jump if the variable in pointed by pflag is non-positive.

Execute a function; Jump to command. Recall that the first four parameters (a, b, c,m) of FLEQ,
as well as the last two (dh, dw) are related to the implementation of the function block, while the
other two (flag, p) are related with the conditional branching. Since there is no overlap between the
two components of each instruction, it is possible to use each of these components independently. By
having a fixed location flag0 where mem[flag0] is always set to 1, we can have the simpler command
FLEQ(a, b, c,m,flag0, p, dh, dw) which implements

mem[c] = fm(mem[a],mem[b]).

Further, by having fixed locations a0, b0, c0 which are not used elsewhere in the program, and
hence inconsequential, we can have the simpler command FLEQ(a0, b0, c0,m,flag, p, dh, dw) which
implements

if mem[flag] ≤ 0 goto instruction p.

Using this, we get the following corollary:
Corollary 1. The Unified Attention Based Computer presented in Theorem 2 can run programs
where each instruction can be either of the following two simple instructions:

• mem[c] = fm(mem[a],mem[b])

• if mem[flag] ≤ 0 goto instruction p

Format of Transformer-Based Function Blocks. Recall that each function block is located at
the bottom left part of the input X, as shown in Fig. 6. Each transformer-based function block is
expected to operate using the following format of the input:

• The number of rows in the input is r, while the number of columns is s and s ≥ 3d. Here
s will dictate the total maximum number of columns that any transformer-based function
block needs to operate. The reason that s might be larger than 3d has to do with the fact that
some blocks may need some extra scratchpad space to perform some calculations.

• The function block specifies the dimensions of input and output. Say they are dh × dw,
where dh, dw ≤ d . These will be part of the instruction which calls this function inside the
FLEQ framework, as in (8).

• Suppose each function block has two inputs (A ∈ Rdh×dw and B ∈ Rdh×dw) and one
output f(A,B) = C ∈ Rdh×dw . As in (9), the function block is divided into four parts:
(1) the first input A is placed in the first dh rows and the first dw columns, (2) the second
input B is placed in the first dh rows and the columns d + 1 : d + dw, (3) the output
f(A,B) = C is in the first dh rows and the columns 2d+ 1 : 2d+ dw columns and 4) the
rest s− 3d column used as scratchpad space for performing necessary calculations. Note
that the unused columns are set to zero.

• The last r − dh rows can be used by the transformer-based function block in any way, e.g.,
to store any additional positional encodings.

We put the format of the input of each transformer-based function block in (9). The first input
A = [z1

a, · · · , zdw
a] of the function is zero padded and stored in the first d columns. Similarly, the

second input B = [z1
b , · · · , z

dw

b] is stored in the next d columns. The output/result of the function
block C = [z1

c , · · · , zdw
c] is located in the next d columns while we have some extra s− 3d columns

which can be used as scratchpad.

[
z1a . . . zdw

a 0 z1b . . . zdw

b 0 z1c . . . zdw
c 0 . . . 0

∗ . . . ∗ ∗ ∗ . . . ∗ ∗ ∗ . . . ∗ ∗ . . . ∗

]
(9)

Input A Input B Output C = f(A,B)

Let us consider the case where we wish to multiply a matrix A ∈ Rd×d,with a vector b ∈ Rd×1. The
resulting output matrix would look as follows:[

A b 0 A⊤b 0 0
]
.

24

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

J FUNCTIONS IN THE UNIFIED TEMPLATE FORM

In this section, we demonstrate how to implement a variety of nonlinear functions and basic linear
algebra operations using transformers. These techniques will be crucial in the construction of iterative
algorithms in the following sections. Each transformer-based function block in this section fits in our
unified template in terms of input/output parameters’ locations. We note here that each transformer-
based function block might have its own positional encodings used to transfer the output in the correct
place or perform some read/write operations and they are part of the design of the block.

J.1 ENCODING NON-LINEAR FUNCTIONS WITHIN THE ATTENTION MECHANISM

One key ingredient of our constructions is encoding various functions within the attention mechanism.
We do this by forcing the softmax to act as a sigmoid function and by storing multiple coefficients in
the query and value weight matrices. As far as we know, this is the first work that shows how general
non-linear functions can be emulated by attention layers. This allows us to create linear combinations
of sigmoids that can be accessed by an indicator vector in the input. Our analysis is based on the
result of Barron (1993) which we present below.
Definition 2. Let ΓC,B be the set of functions defined in a bounded domain B, f : B → R, B ⊆ Rd

with a proper extension to Rd such that they have C bounded Fourier integral, i.e.,∫
supx∈B |w · x| F (dw) ≤ C holds where F (dw) is the magnitude of the Fourier distribution.

Definition 3. Given τ > 0, C > 0 and a bounded set B, let

Gϕ,τ = {γϕ(τ(aTx+ b)) : |γ| ≤ 2C, ∥a∥B ≤ 1, |b| ≤ 1}

where ∥a∥B = supx∈B{xTa} and ϕ is the sigmoid function, i.e., ϕ(x) = 1
1+e−x .

Theorem 3 (Theorem 3 in Barron (1993)). Every function f ∈ ΓC,B with f(0) = 0 and can be
approximated by a linear combination of sigmoids fi ∈ Gϕ,τ , i = 1, . . .m. If τ ≥ m1/2 lnm the
error scales as ∣∣∣∣∣f(x)−

m∑
i=1

fi(x)

∣∣∣∣∣ ≤ O

(
1

m1/2

)
, x ∈ B

To encode N different functions, we use the index j ∈ [N] and write cji,aji for the coefficients of
the sigmoids that approximate them or

fj(x) =

m∑
i=1

cjiϕ(x
Taji) for j = 1, . . . , N

We here note that the terms τ, b can be incorporated in the term aij by adding an extra coefficient of 1
in x and multiplying everything with τ .

We are now able to present the lemma on approximating functions using transformer blocks, in a
format that is consistent with the FLEQ design outlined in the previous section.
Lemma 11. Consider an input of the form

X =


e 0 x 0 0 0
0 0 0 0 0 0
0 0 p2d+1 0 0 0
p1 p2:d 0 pd+2:2d p2d+1 p2d+2:3d
0 02:d 1 0d+2:2d 0 02d+2:3d

 ∈ RN+dx×3d.

where d is chosen, N is the number of functions we encode and dx is the dimension of x. e = ej an
indicator vector of the function we want to choose. Then there exists a transformer-based function
block with 3 layers, m heads and dimensionality O(d) such that

f(X) =


∗ ∗ ∗ ∗

∑m
i=1 cjiϕ(x

Taji) ∗
0 0 x 0 0 0
0 0 p2d+1 0 0 0
p1 p2:d 0 pd+2:2d p2d+1 p2d+2:3d
0 02:d 1 0d+2:2d 0 02d+2:3d


where ∗ denoted inconsequential values that will be ignored downstream.

25

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

Proof. The first thing we do is to move the x to the second row block, as follows:

X =


e 0 x 0 0 0
0 0 0 0 0 0
0 0 p2d+1 0 0 0
p1 p2:d 0 pd+2:2d p2d+1 p2d+2:3d
0 02:d 1 0d+2:2d 0 02d+2:3d

→


e 0 0 0 0 0
0 0 x 0 0 0
0 0 p2d+1 0 0 0
p1 p2:d 0 pd+2:2d p2d+1 p2d+2:3d
0 02:d 1 0d+2:2d 0 02d+2:3d


This can be done using a ReLU feedforward layer that performs this using the last row of the input as
the indicator bit for the column containing x.

Then we want to create the following transformation
e 0 0 0 0 0
0 0 x 0 0 0
0 0 p2d+1 0 0 0
p1 p2:d 0 pd+2:2d p2d+1 p2d+2:3d
0 02:d 1 0d+2:2d 0 02d+2:3d

 −→


∗ ∗ ∗ ∗

∑m
i=1 cjiϕ(x

Taji) ∗
0 0 x 0 0 0
0 0 p2d+1 0 0 0
p1 p2:d 0 pd+2:2d p2d+1 p2d+2:3d
0 02:d 1 0d+2:2d 0 02d+2:3d


The proof follows that of Lemma 11. We again ignore the last three rows by setting the corresponding
rows in the key, query and values weight matrices to be zero. Let

Qi =
[
0 Id
0 0

]
,Ki =

[
[a1i . . . aNi] 0

0 0

]
,Vi =

[
[c1i . . . cNi] 0

0 0

]
We note that for the purpose of this proof, each ai has one extra element at the end equal to
− log(3d− 1), while the vectors x will have the last element equal to one. Then we will have

σS((K
iX)T (QiX)) = σS



a⊤ji 0
0 0
0 0
0 0
0 0
0 0


[
0 0 x 0 0 0
0 0 0 0 0 0

]


= σS



0 0 a⊤jix 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




=


∗ ∗ ϕ(xTaji) ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗


since a⊤jix = a⊤jix− log 3d− 1 and thus ea

⊤
jix/(3d− 1 + ea

⊤
jix) = ϕ(a⊤jix) with a slight abuse of

notation over the inner product a⊤jix to account for the extra corrections bias term. Thus,

VXσS((KX)T (QX)) =


∗ ∗ cjiϕ(x

Taji) ∗ ∗ ∗
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


By summing over all heads and adding the residual we get

∗ ∗
∑m

i=1 cjiϕ(x
Taji) ∗ ∗ ∗

0 0 x 0 0 0
0 0 p2d+1 0 0 0
p1 p2:d 0 pd+2:2d p2d+1 p2d+2:3d
0 02:d 1 0d+2:2d 0 02d+2:3d


Finally, we use an extra layer similarly to Lemma 4 to write the result in the desired output. Hence,
we get 

∗ ∗ ∗ ∗
∑m

i=1 cjiϕ(x
Taji) ∗

0 0 x 0 0 0
0 0 p2d+1 0 0 0
p1 p2:d 0 pd+2:2d p2d+1 p2d+2:3d
0 02:d 1 0d+2:2d 0 02d+2:3d


26

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

Alternative Lemma. We demonstrate an alternative way of encodings functions in the attention
mechanism, which has a different complexity tradeoff.
Lemma 12. Consider an input of the form

X =

 x . . . x
0 . . . 0

1− e1 . . . 1− ed
e1 . . . ed


where z = ej ∈ Rd is an indicator vector and x ∈ Rd; then there exists a one layer transformer
with 1 head such that

Attn(X) =

 x . . . x
σ(a⊤1 x) . . . σ(a⊤d x)
1− e1 . . . 1− ed
e1 . . . ed


Proof. Let

K =


a⊤1 0 −Ce⊤1 0⊤

...
...

...
...

a⊤d 0 −Ce⊤d 0⊤

0⊤ 0 0⊤ 0⊤

 ,Q =

0
⊤ 0 0⊤ e⊤1
...

...
...

...
0⊤ 0 0⊤ e⊤d


Hence,

KX =


a⊤1 x −C + a⊤1 x . . . −C + a⊤1 x

−C + a⊤2 x a⊤2 x . . . −C + a⊤2 x
...

...
...

...
−C + a⊤d x −C + a⊤d x . . . a⊤d x

0 0 . . . 0

 ,QX = Id

After applying softmax we get,

σs((KX)⊤QX) ≈


σ(a⊤1 x) 0 . . . 0

0 σ(a⊤2 x) . . . 0
...

...
...

...
0 0 . . . σ(a⊤d x)
∗ 0 . . . ∗

 ,

for large enough C. Next we set

V =


0 0 . . . 0 0
1 1 . . . 1 0
0 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 0

Q,

thus resulting in

VX =


0 0 . . . 0 0
1 1 . . . 1 0
0 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 0

QX =


0 0 . . . 0 0
1 1 . . . 1 0
0 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 0

 .

Hence, we get

VXσs((KX)⊤QX) =


0 . . . 0

σ(a⊤1 x) . . . σ(a⊤d x)
0 . . . 0
...

...
...

...
0 . . . 0
0 . . . 0

 ,

27

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

and

X+VXσs((KX)⊤QX) =

 x . . . x
σ(a⊤1 x) . . . σ(a⊤d x)
1− e1 . . . 1− ed
e1 . . . ed

 .

Corollary 2. Consider an input of the form

X =

 x . . . 0
0 . . . 0

1− e1 . . . 1− ed
e1 . . . ed


where m is the number of sigmoids we use and ei is an indicator vector and x ∈ Rd; then there
exists a 3 layer transformer with 1 head such that

Attn(X) =

[∑d
i=1 σ(a

⊤
1 x) . . .

∑d
i=1 σ(a

⊤
1 x)

0 . . . 0

]
Proof. Given the input

X =

 x . . . 0
0 . . . 0

1− e1 . . . 1− ed
e1 . . . ed

 ,

we set the query and key matrices as follows:

K = Q =
[
0⊤ 0 1 1

]
.

Then, we get

(KX)⊤QX =

d . . . d
... . . .

...
d . . . d

 .

Setting the value matrix to dI 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

we get

VXσS((KX)⊤QX) =

x . . . x
0 . . . 0
0 . . . 0
0 . . . 0

 .

Hence, the output of the attention layer is:

X+VXσS((KX)⊤QX) =

 2x . . . x
0 . . . 0

1− e1 . . . 1− ed
e1 . . . ed

 .

Note that using the embeddings in the last rows and a feedforward network can be used to produce
the following

 x . . . x
0 . . . 0

1− e1 . . . 1− ed
e1 . . . ed

 .

28

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

Now, passing this into the transformer of Lemma 12 will result in

Attn(X) =

 x . . . x
σ(a⊤1 x) . . . σ(a⊤d x)
1− e1 . . . 1− ed
e1 . . . ed

 .

For the third layer, we set the key and query matrices as follows

K = Q =
[
0⊤ 0 1 1

]
.

Then, we get

(KX)⊤QX =

d . . . d
... . . .

...
d . . . d

 .

Setting the value matrix to 0 0 0 0
0 d 0 0
0 0 0 0
0 0 0 0

 ,

we get

VXσS((KX)⊤QX) =

 0 . . . 0∑d
i=1 σ(a

⊤
1 x) . . .

∑d
i=1 σ(a

⊤
1 x)

0 . . . 0
0 . . . 0

 .

Hence, the output of the attention layer is:

X+VXσS((KX)⊤QX) =

 x . . . x∑d
i=1 σ(a

⊤
1 x) . . .

∑d
i=1 σ(a

⊤
1 x)

1− e1 . . . 1− ed
e1 . . . ed

 .

Finally, the feedforward layers can be used to move the results to the first row.

J.2 MATRIX TRANSPOSITION

Lemma 13. Fix ϵ > 0 and consider an input of the following form

X =

 A 0 0 . . . 0
0 0 0 . . . 0

p1:d p1:d p1:d . . . p1:d

P′
1 P′

2 P′
3 . . . P′

d

 .

where A ∈ Rd×d; then there exists transformer-based function block with 4 layers, 1 head and
dimensionality r = 2d+ 2 log d = O(d) that outputs the following matrix

X =

 A′ A′ A′ . . . A′

0 0 0 . . . 0
p1:d p1:d p1:d . . . p1:d

P′
1 P′

2 P′
3 . . . P′

d

 .

where A′ = A⊤ + ϵM, for some ∥M∥ ≤ 1.

Proof. We can vectorize the matrix A into a d2 dimensional vector using the attention mechanism, as
shown in Eq. (10). Notice that once we have the matrix in this form we can implement its transpose
with a fixed permutation of the columns of the matrix to get the vectorized form of A⊤. Once we
have the transpose in vector form, we matricize it back to get the matrix transform using the attention
mechanism. We explain the details of this process below:

29

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

Vectorization: We assume that the input is of the following form, where A is the matrix to be
vectorized.

X =

 A 0 . . . 0
0 0 . . . 0

p1:d p1:d . . . p1:d

P′
1 P′

2 . . . P′
d

 .

Here, P′
i represents a matrix of d columns, where each column is pi.

The first layer uses the p1:d encodings to make d copies of the matrix A, as follows:

X =

 A 0 . . . 0
A A . . . A
p1:d p1:d . . . p1:d

P′
1 P′

2 . . . P′
d

 .

The feed forward part of the second layer then uses the encodings p′
i to vectorize the matrix in the

second row block as follows:

X =


A . . . 0[

A(1,1) . . . A(1,d)
0 . . . 0

]
. . .

[
A(d,1) . . . A(d,d)
0 . . . 0

]
p1:d . . . p1:d

P′
1 . . . P′

d

 . (10)

This is achieved, by explicitly defining a neural network that keeps the i−th row if the corresponding
encoding is P′

i and place it in the d+ 1 row.

Transposition in the vector form: Once we have the matrix vectorized as the second row block of the
scratchpad, the following key and query matrices

K =
[
0 0 I 0
0 0 0 I

]
,Q =

[
0 0 0 I
0 0 I 0

]
,

results in the head outputting the following, which is the vectorized form of A⊤ (in the second row
block)

XσS((KX)⊤(QX)) =


∗ . . . ∗[

A(1,1) . . . A(d,1)
0 . . . 0

]
. . .

[
A(1,d) . . . A(d,d)
0 . . . 0

]
P′

1 . . . P′
d

p1:d . . . p1:d

 .

Then, using the following value matrix gives

V =

0 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0

 ,

VXσS((KX)⊤(QX)) =


0 . . . 0[

A(1,1) . . . A(d,1)
0 . . . 0

]
. . .

[
A(1,d) . . . A(d,d)
0 . . . 0

]
0 . . . 0
0 . . . 0

 ,

Adding back the X (see (1)), results in

X+VXσS((KX)⊤(QX)) =


A . . . 0[

A(1,1) . . . A(d,1)
0 . . . 0

]
. . .

[
A(1,d) . . . A(d,d)
0 . . . 0

]
p1:d . . . p1:d

P′
1 . . . P′

d

 .

30

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

Using the feedforward layers and the encodings P′
i, we get

X =


A . . . 0[

A(1,1) . . . A(d,1)
0 . . . 0

]
. . .

[
0 . . . 0

A(1,d) . . . A(d,d)

]
p1:d . . . p1:d

P′
1 . . . P′

d

 .

Using an attention layer and the first row of encodings, we get

X =

 A⊤ . . . A⊤

0 . . . 0
p1:d . . . p1:d

P′
1 . . . P′

d

 .

J.3 MATRIX MULTIPLICATION BY LINEARIZING THE SOFTMAX

We will show how we can implement matrix multiplication so that it will fit our unified template. To
do so, we need to show for example for the result of A⊤B , where A ∈ Rk×m and B ∈ Rk×n with
k,m, n < d we can achieve the following:[

A 0 B 0 0
0 0 0 0 0

]
−→
[

∗ ∗ ∗ ∗ A⊤B ∗
0 0 0 0 0 0

]

Lemma 14. Let A ∈ Rk×m and B ∈ Rk×n; then for any ϵ > 0 there exists a transformer-based
function block with 2 layers, 1 head and dimensionality r = O(d) that outputs the multiplication
ATBT + ϵM, for some ∥M∥ ≤ 1 .

Corollary 3. Let A ∈ Rk×m and B ∈ Rk×n; then for any ϵ > 0 there exists a transformer-based
function block with 2 layers, 1 head and dimensionality r = O(d) that outputs the multiplication
B⊤A+ ϵM, for some ∥M∥ ≤ 1 .

Corollary 4. Let A ∈ Rk×m and B ∈ Rk×n; then for any ϵ > 0 there exists a transformer-based
function block with 2 layers, 1 head and dimensionality r = O(d) that outputs the multiplication
B⊤B+ ϵM, for some ∥M∥ ≤ 1 .

Corollary 5. Let A ∈ Rk×m and B ∈ Rk×n; then for any ϵ > 0 there exists a transformer-based
function block with 2 layers, 1 head and dimensionality r = O(d) that outputs the multiplication
A⊤A+ ϵM, for some ∥M∥ ≤ 1 .

We will prove just the first of these results and the rest are a simple corollary of it.

Proof. Let M ∈ R2d×2d, A ∈ Rk×m and B ∈ Rk×n be the following matrices:

M =
[
A 0 B 0
0 0 0 0

]
.

The zeros pad the rows and columns to ensure that the matrix M is 2d× 2d. Then, consider the input
matrix to be of the following form:

X =


M 0 0
0 11⊤ 0
I 0 0

p(1)

p(2)

0 1T 0


where 1 ∈ R2d is the all ones vector. The identity matrix I and the all ones matrix 11⊤ are part of
the design of the input and they are always fixed. For now we ignore the encodings and the last row,
by setting the corresponding rows of the key,query and value weight matrices to be zero. These rows
will be used to copy the output to the place that we want.

31

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

Focusing on the rest of the rows, we set the key and query weight matrices to be

K = I,Q =

[
cI 0 0
0 0 CI
0 I 0

]
,V =

[
0 0 0
0 0 neCDd
0 0 0

]
where Dd ∈ R2d×2d is the diagonal matrix with the first d diagonal elements 1, and the rest 0. Thus
we have

(KX)⊤QX =

[
M 0 0
0 11⊤ 0
I 0 0

]⊤ [cM 0 0
CI 0 0
0 11⊤ 0

]

=

[
cM⊤M 11⊤ 0
C11⊤ 0 0

0 0 0

]
Each of the first 2d columns above looks as follows[

cz1i cz2i . . . czni C1⊤ 0
]

After we apply the softmax σs per column, we get

σs(czij) =
eczij∑n

j=1 e
czij + n(eC + 1)

where n = 2d, zij is the (i, j) element of the matrix M⊤M. Let ℓ(·) be the transformation above
then we have

VXσS((KX)⊤QX) =

[
0 0 0

neCDd 0 0
0 0 0

][
ℓ(cM⊤M) ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

]

=

[
0 0 0

neCDdℓ(cM
⊤M) ∗ ∗

0 0 0

]

≈

[
0 0 0

11⊤ + cM⊤M ∗ ∗
0 0 0

]
and by adding back the residual we have

X =

[
M 0 0

11⊤ + cM⊤M ∗ ∗
I 0 0

]
for small enough c and large enough C. This is because

neC
ecxij∑n

j=1 e
cxij + n(eC + 1)

= ecxij
1

1 +
∑n

j=1 e
cxij−C−logn + n

= (1 + cxij +O((cxij)
2))(1− ecxij−C−logn +O(e2(cxij−C−logn)))

= (1 + cxij +O((cxij)
2))(1− ecxij−C−logn)

≈ (1 + cxij) (11)

Hence by increasing C and decreasing c, the error can be made arbitrarily small. We now use the
feedforward layers to perform the following transform

X =

[∗ ∗ ∗
M⊤M ∗ ∗

∗ ∗ ∗

]

=


∗ ∗ ∗ ∗ ∗

A⊤A 0 A⊤B 0 ∗
0 0 0 0 ∗

B⊤A 0 B⊤B 0 ∗
0 0 0 0 ∗
∗ ∗ ∗ ∗ ∗


Now if p(1) = [0 0 p2d+1:2d+n 0 0] and p(2) = [p1:n pn+1:d 0 pd+n+1:2d p2d:3d]
we can copy A⊤B to the desired place using Lemma 3.

32

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

J.4 ADVANTAGE OF ATTENTION OVER FULLY-CONNECTED NETWORKS

It is possible to implement the functions and overall lexicographic functionality presented in previous
sections using fully connected networks, as they are also universal function approximators. However,
it is easy to demonstrate a depth separation between attention-based networks and fully connected
networks. For example, to compute simple functions like polynomials of x (e.g., x2), a ReLU network
with a depth proportional to log(1/ϵ) is required, where ϵ is the quality of approximation, e.g., as
showed in (Perekrestenko et al., 2018). In contrast, we have shown how x2 can be implemented
in essentially 2 layers. This simple depth separation argument highlights the constant vs scaling
depth required for several functionalities in fully connected networks versus attention-based networks.
It is important to note that although these constructions are easy to demonstrate their existence,
constructing them is not straightforward. In this work, we provide hardcoded attention layers that
precisely do that, making it easier to implement these functionalities in practice.

K FLEQ: PROOF OF THEOREM 2

Each instruction consists of the following tuple: (pa,pb,pc,pflag,pm,pp), and does the following

1. mem[c] = fm(mem[a],mem[b])

2. if mem[flag](0,0) ≤ 0 goto instruction p

Here, locations a, b, and c can contain either scalars, or d-dimensional vectors or d× d matrices, and
mem[flag](0,0) is the 1-st entry of mem[flag] if it is a vector / matrix, else it is mem[flag] if a scalar.

This can be implemented using the following steps (each may use a separate layer of transformer):

At the beginning of each iteration, the scratchpad starts with storing the pointer to the next instruction
pt.

1. Read the command (pa,pb,pc,pflag,pp,pm) from the location to the scratchpad.

2. Copy the d× d data at locations a, b to the scratchpad memory scratchMem (assume the
data is d× d even if actually scalar or vector, the fm implementation will handle that)

3. Copy the data to the i-th function row block using the feed forward layer.

4. Once in the correct row block, fm(mem[a],mem[b]) is computed

5. Feedforward layers copy back the data from i-th row block to the scratchpad memory
scratchMem.

6. Write result from scratchpad memory to pc.

7. if mem[flag](0,0) ≤ 0 store pp in the scratchpad, else pt+1

Figure 7: The structure of input X

33

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

The structure of the input X is shown in Figure 7. It has n columns and O(Md + log n) rows. It
is partitioned into 3 column blocks: the Scratchpad block, the Memory block, and the Instructions
block. The Memory block is the storage and is the location where all the variables are stored. Each
variable can be either a scalar, vector or matrix, as long as the number of rows in it are no larger than
d. For example, if a variable is a d × d matrix, it is stored in d consecutive columns in the block,
where each column has length d. The address of this variable is the index of its first column in the
input X. The Instructions block contains instructions, where each instruction is a vector of the form

c =



pa
pb
pc
pm
pflag
pp
dh
dw
b
(1)
mask
b
(2)
mask
b
(3)
mask


,

which encodes the following logic:

mem[c] = fm(mem[a],mem[b]) ; if mem[flag] ≤ 0 goto instruction p.

pa,pb,pc,pp, and pflag are all binary ±1 vectors that point to the locations a, b, c, p, and flag
respectively. These are simply the binary representations of the integers a, b, c, p and flag, and hence
have length log2 n each. Similarly, pm is the binary vector representation of the integer m, and hence
has length log2 M , where M is the number of functions we implement. The bmask is mask bit used
while writing the output back to memory.

The scratchpad has s columns. The length s depends on the maximum number of columns needed by
the function blocks to operate, and can be as low as O(1) for scalar and vector functions, O(d) for
matrix functions, and can be as high as O(d2) if functions like matrix vectorization are one of the M
functions. The Scratchpad consists of the following parts:

• The program counter is a row block with log2 n rows and s columns and takes the form:

[pi pi · · · pi.]

This signifies that the current program counter points to the i-th instruction. Using this, the
i-th instruction is read into all the s columns of ‘Current Instruction’ row block.

• The Current Instruction row block has O(log n) rows and s columns, and each column
initially contains the i-th instruction once it is read. Then, the instructions in each column
are slightly modified depending on the column index, to read memory blocks pointed to in
the instruction. The memory blocks are read into the ‘Scratchpad Memory’.

• The Scratchpad Memory is a temporary location where the data is first read into from the
Memory column block, before it is moved to the correct function’s Function Block, using
the function index encoding pm in the instruction.

• The encodings row block has O(log n) rows and n columns, and is used to index every
column in the input X. It contains the binary ±1 vector encodings of the column index for
each column. The details of this row block are explained later.

• The Function Blocks are custom transformer blocks that can be added in a plug-n-play
manner to the Unified Attention Based Computer depending on what ‘elementary’ functions
the user wants the computer to have access to.

34

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

X =



0 0 . . . 0 zs+1 . . . zm+s

[
cm+s+1

0

]
. . .

[
cn
0

]
pt pt . . . pt ∗ . . . ∗ ∗ . . . ∗
c1t c2t . . . cst ∗ . . . ∗ ∗ . . . ∗
z1at

z2at
. . . zsat

0 . . . 0 0 . . . 0
z1bt z2bt . . . zsbt 0 . . . 0 0 . . . 0
z1ct z2ct . . . zsct 0 . . . 0 0 . . . 0
0 0 . . . 0 ps+1 . . . pm+s pm+s+1 . . . pn
p1 p2 . . . ps 0 . . . 0 0 . . . 0

f1mem ∗ . . . ∗ . . . ∗
...

...
...

...
...

...
... . . . ∗

fMmem ∗ . . . ∗ . . . ∗


K.1 STEP 1

In this step, we need to copy the t-th instruction, pointed to by the program counter pt, to the
scratchpad’s Current Instruction block. We denote the instruction by ct where

ct =



pat

pbt
pct
pflagt
ppt

pmt

dh
dw
b
(1)
mask
b
(2)
mask
b
(3)
mask


For this step, we only consider the following relevant subset of rows of the matrix X:

X =

 0 0 . . . 0 ∗ ∗ . . . cm+s+1 . . . cn
pt pt . . . pt ∗ . . . ∗ ∗ . . . ∗
c1t c2t . . . cst ∗ . . . ∗ ∗ . . . ∗
0 0 . . . 0 ps+1 . . . pm+s pm+s+1 . . . pn


The other rows will not be used or changed during this operation because we can simply set the
corresponding rows of the K,V,Q matrices to 0 for all heads and setting the feed forward layers to
also pass the corresponding rows unchanged.

At the beginning of execution of each command, the Current Instruction row block would be empty,
so the input would look like

X =

 ∗ ∗ . . . ∗ ∗ ∗ . . . cm+s+1 . . . cn
pt pt . . . pt ∗ . . . ∗ ∗ . . . ∗
0 0 . . . 0 0 . . . 0 0 . . . ∗
0 0 . . . 0 ps+1 . . . pm+s pm+s+1 . . . pn


Then, consider an attention head with the following K,Q,V matrices:

K = [0 0 0 I] ,Q = [0 I 0 0] ,V =

0 0 0 0
0 0 0 0
I 0 0 0
0 0 0 0


This will result in

X =

 ∗ ∗ . . . ∗ ∗ ∗ . . . cm+s+1 . . . cn
pt pt . . . pt ∗ . . . ∗ ∗ . . . ∗
ct ct . . . ct ∗ . . . ∗ ∗ . . . ∗
0 0 . . . 0 ps+1 . . . pm+s pm+s+1 . . . pn

 .

35

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

We apply Lemma 10 on the row blocks[
ct ct . . . ct ∗ . . . ∗ ∗ . . . ∗
p1 p2 . . . ps 0 . . . 0 0 . . . 0

]
to construct feedforward layers that convert ct to cit, where

cit =



pat+i
pbt+i−d
pct+i−2d
pflagt
ppt

pmt

dh
dw

b
(1)
mask = 1(i≤dw)

b
(2)
mask = 1(i>d) + 1(i≤d+dw) − 1

b
(3)
mask = 1(i>2d) + 1(i≤2d+dw) − 1


.

Note that the last three elements can be created using the following ReLU:

b
(1)
mask =σ(2d+ dw − i+ 1)− σ(2d+ dw − i)

b
(2)
mask =σ(i− d)− σ(i− d− 1) + σ(d+ dw − i+ 1)− σ(d+ dw − i)− 1

b
(3)
mask =σ(i− 2d)− σ(i− 2d− 1) + σ(2d+ dw − i+ 1)− σ(2d+ dw − i)− 1.

At the end of this step, we get the following:

X =

 0 0 . . . 0 ∗ ∗ . . . cm+s+1 . . . cn
pt pt . . . pt ∗ . . . ∗ ∗ . . . ∗
c0t c1t . . . cst ∗ . . . ∗ ∗ . . . ∗
0 0 . . . 0 ps+1 . . . pm+s pm+s+1 . . . pn

 ,

K.2 STEP 2

Use three heads, one each for pa,pb and pc.

Using the vectors pat+i,pbt+i−d, and pct+i−2d we copy the data (using one head each and a similar
technique as last step) to get the following in the Scratchpad Memory:[

zat
. . . zat+d ∗ . . . ∗ ∗ . . . ∗ ∗ . . . ∗ ∗ . . . ∗

∗ . . . ∗ zbt . . . zbt+d ∗ . . . ∗ ∗ . . . ∗ ∗ . . . ∗
∗ . . . ∗ ∗ . . . ∗ zct . . . zct+s−2d ∗ . . . ∗ ∗ . . . ∗

]

Using the mask bits at the end of cit, we get

[
zat

. . . zat+dw−1 0 zbt . . . zbt+dw−1 0 zct . . . zct+dw−1 0 0 . . . 0 . . .
0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 . . .
0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 . . .

]
(12)

zi[1 : d] = σ(zi[1 : d]− C(1− b
(1)
mask)1)− σ(−zi[1 : d]− C(1− b

(1)
mask)1)

+ σ(zi[d+ 1 : 2d]− C(1− b
(2)
mask)1)− σ(−zi[d+ 1 : 2d]− C(1− b

(1)
mask)1)

+ σ(zi[2d+ 1 : 3d]− C(1− b
(1)
mask)1)− σ(−zi[2d+ 1 : 3d]− C(1− b

(1)
mask)1),

zi[d+ 1 : 3d] = 0,

where C is a large positive constant.

Using the same mask bits, we also mask the row containing the output data pointers for c:

[0 . . . 0 0 . . . 0 pct . . . pct+dw−1 0 . . . 0 0 . . . 0 0 . . . 0] (13)

36

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

K.3 STEP 3

The following feedforward ReLU layer can move the data to the correct function blocks:

fkmem[1 : dh] = (σ(z[1 : dh]− C((1− b
(1)
mask − b

(2)
mask)1+ logM − p⊤

k pm))

− σ(−z[1 : dh]− C((1− b
(1)
mask − b

(2)
mask)1+ logM − p⊤

k pm))),

where C is a large positive constant.

K.4 STEP 4

Each of the M functions have their own attention heads, which are constructed to be copies of their
transformer based function blocks. The results after the attention are written back into their respective
row blocks. Since the row blocks are separate, the feedforward layers of each of the transformer
based function blocks also work in parallel to store the final results in the respective row blocks.

K.5 STEP 5

Similar to Step 3 we use the following feedforward ReLU layer to move the data from the function
block back into the scratchpad memory

z[1 : dh] = z[1 : dh] +

M∑
k=1

(
σ((fkmem[1 : dh]− z[1 : dh])− C((1− b

(3)
mask)1+ logM − p⊤

k pm))

−σ(−(fkmem[1 : dh]− z[1 : dh])− C((1− b
(3)
mask)1+ logM − p⊤

k pm))
)
,

where C is a large positive constant.

K.6 STEP 6

For this step we focus on the encoding row block, memory storage row block and the following rows
in the input (see (13), (12)):

0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 zs+1 . . . zm+s

[
cm+s+1

0

]
. . .

[
cn
0

]
0 . . . 0 0 . . . 0 znew

ct . . . znew
ct+dw

0 . . . 0 0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0 pct . . . pct+dw 0 . . . 0 0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 ps . . . pm−1 pm . . . pn−1


We set the Key and Query matrices as follows:

K = Q =

00
I
I

 .

V =

0 0 0 0
I I 0 0
0 0 0 0
0 0 0 0



VXσS((KX)⊤QX)

=


. . . 0 . . . 0 . . . 0 . . . 0 0 . . . 0 0

. . .
dnew
ct

+dct

2 . . .
dnew
ct+dw

+dct+dw

2 . . . d0 . . . dct−1
dnew
ct

+dct

2 . . .
dnew
ct+dw

+dct+dw

2 dct+dw+1
. . . 0 . . . 0 . . . 0 . . . 0 0 . . . 0 0
. . . 0 . . . 0 . . . 0 . . . 0 0 . . . 0 0

 .

Finally, we use the feedforward layers similar to the proof of Lemma 4 to write back
[dnew

ct . . . dnew
ct+dw

] to the correct rows.

37

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

K.7 STEP 7

This step is identical to Appendix B.3.

L ERROR ANALYSIS

In all of this section we assume that each element of the input matrix X has values vi bounded by
some constant G, i.e., |vi| ≤ G.

The error in the read/ write operation. The positional encodings as we have already mentioned
have the following properties: pi is an log(n) dimensional ±1 vector which is the binary representa-
tion of i with −1 in the place of 0. Hence, we have p⊤

i pi = log(n) and each p⊤
i pj < log(n) for

i ̸= j.

Each time a copy is implemented from one column to another, we create a permutation matrix (a
matrix of zeros and ones) which then multiplies the input matrix X ∈ Rd×n from the right and results
in permutations of the column space. We thus focus on just one column of the n× n matrix that is
created after we apply the softmax. Let z be this column of the matrix, ideally we want to output in
one position 1 and in the rest 0. In the place that we want to output 1, say the a−th position, we have
the inner product za = p⊤

i pi for some i ∈ [n]. The rest of the elements in the same column would
be zb ≤ p⊤

i pj for i ̸= j and a ̸= b. Then,

[σS((KX)⊤QX)]i,i =
eλp

⊤
i pi

eλp
⊤
i pi +

∑
j ̸=i e

λp⊤
i pj

=
1

1 +
∑

j ̸=i e
λp⊤

i pj/eλp
⊤
i pi

Since λp⊤
i pj < λp⊤

i pi − λ for i ̸= j, we have that

[σS((KX)⊤QX)]i,i ≥
1

1 + ne−λ

≥ 1

1 + elogn−λ

≥ 1− elogn−λ

1 + elogn−λ

≥ 1− elogn−λ

Thus, for i ̸= j, [σS((KX)⊤QX)]i,j ≤ elogn−λ. This implies that there exist ϵi, i = 1, . . . , n such
that

za = 1− εa, for some εa ≤ elogn−λ

zb = εb for b ̸= a and for some εb ≤ elogn−λ

Hence, we have that
z = z∗ + ε

where z∗ is the targeted vector and ε is the vector containing the errors εa, εb.

Now let xi be the i−th row of the input matrix X, then we have

Xz = Xz∗ +Xε

= Xz∗ +

⟨x1, ε⟩
...

⟨xd, ε⟩


In the general case that all the columns will change, let P = σS((KX)⊤QX) and P∗ be the targeted
matrix then we have that

XP = XP∗ +XE

38

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

where E = [ε1 . . . εn] is the matrix containing all the errors and so

∥XP−XP∗∥ = max
1≤j≤n

d∑
i=1

|⟨xi, εj⟩|

≤ Gn2delogn−λ

≤ elogGdn3−λ

Thus, if λ > log
Gdn3

ϵ
we have that

∥XP−XP∗∥ ≤ ϵ

The error in Matrix Multiplication . This error has already been calculated in Appendix J.3,
however we explicitly define it here as follows:

neC
ecxij∑n

j=1 e
cxij + n(eC + 1)

= ecxij
1

1 +
∑n

j=1 e
cxij−C−logn + n

= (1 + cxij +O((cxij)
2))(1− ecxij−C−logn +O(e2(cxij−C−logn)))

Let c = ϵ1
C1G

for some constant C1 and C = log
C2

ϵ2
for some C2 then we have

A = neC
ecxij∑n

j=1 e
cxij + n(eC + 1)

= ecxij
1

1 +
∑n

j=1 e
cxij−C−logn + n

= (1 + cxij +
ϵ21x

2
ij

G2
)(1− ecxijϵ2

n
+

e2cxij ϵ22
n2

)

= (1 + cxij)(1−
ecxijϵ2

n
+

e2cxij ϵ22
n2

) +
ϵ21x

2
ij

G2
(1− ecxij ϵ2

n
+

e2cxij ϵ22
n2

)

Thus,

|A− (1 + cxij)| = |−(1 + cxij)
ecxijϵ2

n
+

e2cxij ϵ22
n2

+
ϵ21x

2
ij

G2
(1− ecxij ϵ2

n
+

e2cxij ϵ22
n2

)|

≤ ϵ21(
eϵ1/C1ϵ2

n
+ 2

e2ϵ1/C1ϵ22
n2

) +
eϵ1/C1ϵ2

n
(1 +

ϵ1
C1

)

≤ 4
eϵ1/C1ϵ2

n

Hence if ϵ2 = ϵ/4 and ϵ1 = C1 log(nϵ) we have that the total error is less than ϵ.

Function approximation. The error in Lemma 11 is an immediate consequence of Theorem 3 and
it is proportional to 1/

√
m, where m is the number of heads we are using.

Accumulation of error after T operations. Fix an ϵ > 0 and assume that in the t−th iteration

the input is Xt = X∗
t + ϵtMt, where X∗

t is the ideal input 0 < ϵt <
tϵ

T
and Mt is a matrix such

that ∥Mt∥ ≤ 1, we will show that Xt+1 = X∗
t+1 + ϵt+1Mt+1, where X∗

t+1 is the ideal input,

0 < ϵt+1 <
(t+ 1)ϵ

T
and Mt+1 is a matrix such that ∥Mt+1∥ ≤ 1.

• Matrix Multiplication with a matrix A, ∥A∥ ≤ 12 will have the following result:

AXt + ϵ′ = AX∗
t + ϵtAMt + ϵ′M′ = X∗

t+1 + (ϵt + ϵ′)Mt+1

2Notice that this can be assumed without loss of generality, since we can normalize all the errors with the
maximum norm of a matrix to the power of T .

39

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

where ϵ′ is controlled by the constants we use in the design of the function block and Mt+1

is some matrix with ∥Mt+1∥ ≤ 1. If now ϵ′ <
ϵ

T
, our claim follows.

• Read/Write operations will result to an error of

XtP = XtP
∗ + ϵ′M′ = X∗

tP
∗ + ϵtMtP

∗ + ϵ′M′

Notice that as before, since ∥M′∥ ≤ 1 and ∥MtP
∗∥ ≤ 1 and thus we have Xt+1 = XtP =

X∗
t+1 + ϵt+1Mt+1, where ϵt+1 = ϵt + ϵ′. Again if ϵ′ ≤ ϵ

T
the result follows.

• The result for function approximation follows in a similar way.

M A BASIC CALCULATOR

We show that the FLEQ transformer introduced in the previous section, can be used to build a
simple calculator. This transformer consists of six transformer-based function blocks that implement
addition, substraction, multiplication, percentage, division and square root. The formal statement is
written as below.

Theorem 4. There exists a transformer with 12 layers, m heads and dimensionality O(log n) that
uses the Unified Attention Based Computer framework in Section C.2 to implement a calculator
which can perform addition, subtraction, multiplication, and computing the inverse, square root
and percentage. For computing the inverse and square root, the operand needs to be in the range
[−eO(m),−Ω̃(1√

m
)] ∪ [Ω̃(1√

m
), eO(m)] and [0, O(m2)] respectively, and the returned output is

correct up to an error of O(1/
√
m) and O(1/m) respectively. Here, n is the number of operations

to be performed.

Remark 2. In the proof of this theorem, we use Lemma 11 to approximate the square root and
the inversion function. That lemma provides error guarantees in terms of the number of heads m.
We prove Corollary 2 in the appendix which provides equivalent error guarantees, but where the
error decreases with the dimension d of the transformer. Depending on the design choices of the
transformer, either of the results can be used, and the calculator’s error guarantee will also change
accordingly.

We show how one can implement a calculator in our FLEQ framework in Alg. 7.

Algorithm 7 A sample program for executing a basic calculator functionality. The following

algorithm performs
√

1/(((a+b)−c)·d)
100

Require: mem[p] = a,mem[q] = b,mem[r] = c,mem[s] = d. { Location of the inputs.}
1: mem[t] = fadd(mem[p],mem[q]) {mem[t] = a+ b.}
2: mem[t] = fsub(mem[t],mem[r]) {mem[t] = (a+ b)− c.}
3: mem[t] = fmul(mem[t],mem[s]) {mem[t] = ((a+ b)− c) ∗ d.}
4: mem[t] = finv(mem[t]) {mem[t] = 1/((a+ b)− c) ∗ d.}
5: mem[t] = fsqrt(mem[t]) {mem[t] =

√
1/((a+ b)− c) ∗ d.}

6: mem[t] = fperc(mem[t]) {mem[t] =
√

1/((a+b)−c)∗d
100 .}

Looking at the algorithm, it is clear that for proving the theorem above, it is sufficient to implement
the 6 functions (addition, subtraction, multiplication, inversion, square root and percentage) using the
transformer-based function blocks defined in Definition 1. We start with two lemmas, which can be
proved by constructing transformers that add and subtract in a similar way to the OISC transformer
constructed in Appendix C.1.

Lemma 15 (addition). There exists a transformer-based function block with 3 layers, 1 head and
dimensionality O(1) which can implement f(a, b) = a+ b.

40

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

Proof. Consider the input in the form of Equation (9)

X =


a 0 b 0 0 0
0 0 0 0 0 0

p2d+1 0 0 0 0 0
0 p2:d pd+1 pd+2:2d p2d+1 p2d+2:3d
1 0 0 0 0 0


We can perform the following transformation[

a 0 b 0 0 0
0 0 0 0 0 0

]
−→

[
a 0 b 0 0 0
a 0 b 0 0 0
0 0 0 0 0 0

]

−→

[
a 0 0 0 0 0
0 0 b 0 0 0
0 0 0 0 0 0

]

−→

[
a+ b 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

]

−→

[
a+ b 0 0 0 a+ b 0
0 0 b 0 0 0
0 0 0 0 0 0

]
The first and second step are implemented with one feed-forward layer each. The third step with the
Appendix B.2. We have ignored the last three rows since we don’t change them and we only use
them for the last step.

Note that in addition as well as the rest of the operations in this proof, softmax leads to an extra
error, which can be driven arbitrarily close to 0 by increasing its temperature.

Lemma 16 (subtraction). There exists a transformer-based function block with 3 layers, 1 head
and dimensionality O(1) which can implement f(a, b) = a− b.

This lemma can be proved in the exact same way as the previous one. In addition, we can use the
theory presented in Lemma 14 to get the following corollaries:

Corollary 6 (multiplication). There exists a transformer-based function block with 2 layers, 1
head and dimensionality O(d) which can implement f(a, b) = ab.

Corollary 7 (percentage). There exists a transformer-based function block with 2 layers, 1 head
and dimensionality O(1) which can implement f(a) = a/100 = a ∗ 0.01.

To implement inversion function, we first show that we can approximate inversion with threshold
activations, then we can easily conclude that we can also approximate it with sigmoids.

Lemma 17. Given two constants ϵ, δ ∈ [0, 1], there exists a 1 hidden layer neural network f with
threshold activation and d activations in the hidden layer, such that

∀x ∈ [−C,−δ] ∪ [δ, C] ,

∣∣∣∣f(x)− 1

x

∣∣∣∣ ≤ ϵ,

as long as d = Ω(log(1/(ϵδ))ϵδ + logC).

Proof. We partition [δ, C] into the following intervals

[δ, δ(1 + ϵδ)), [δ(1 + ϵδ), δ(1 + ϵδ)(1 + ϵδ(1 + ϵδ))) . . . , [ai, ai(1 + ϵai)), . . . ,

that is, if an interval begins at a, then it ends at a(1+ ϵa). Note that for any point x ∈ [ai, ai(1+ ϵai))∣∣∣∣ 1x − 1

ai

∣∣∣∣ = 1

ai
− 1

x

<
1

ai
− 1

ai(1 + ϵai)

=
ϵ

1 + ϵai
< ϵ.

41

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

Hence two output activations of the form 1
ai
1x≥ai

− 1
ai
1x<ai(1+ϵai) can be used to approximate 1

x in
[ai, ai(1 + ϵai)).

Thus, all that remains is to compute the number of such intervals, and using that we get the number
of output activations in the hidden layer. Towards that end, if the i-th interval begins at ai,

ai = ai−1(1 + ϵai−1) ≥ ai−1(1 + ϵδ) = δ(1 + ϵδ)i−2.

Hence,

∀i ≥ 2 +
log 1/(ϵδ)

log(1 + ϵδ)
, ai ≥

1

ϵ
.

Noting that log(1 + ϵδ) > ϵδ
2 for ϵ, δ ∈ [0, 1], we get that

∀i ≥ 2 +
2 log 1/(ϵδ)

ϵδ
, ai ≥ 1.

Once we have that ai ≥ 1
ϵ , the number of further partitions needed to reach C would be O(logC) as

shown below:

aj = aj−1(1 + ϵaj−1) ≥ aj−1

(
1 + ϵ

1

ϵ

)
= 2aj−1.

Hence, the total number of partitions needed is O(log(1/(ϵδ))ϵδ + logC).

We can similarly approximate 1/x on [−C,−δ] with the same number of output activations.

Lemma 18. Given ϵ, δ ∈ [0, 1], and C ≥ 1 there exists a function f of the form f(x) =∑m
i=1 ciϕ(wix+ bi), where ϕ is the sigmoid function, such that

∀x ∈ [δ, C] ,

∣∣∣∣f(x)− 1

x

∣∣∣∣ ≤ ϵ,

as long as d = Ω
(

log(1/(ϵδ))
ϵδ + logC

)
.

We can use this lemma along with the result presented in Lemma 11 to get the following corollary:

Corollary 8 (inversion). There exists a transformer-based function block with 3 layers and m
heads which can implement f(a) = 1

a up to error Õ(1√
m
) for all a ∈ [Ω̃(1√

m
), Õ(em)].

Note that using Corollary 6 (multiplication) and Corollary 8 (inversion), the operation of division
can be implemented as well. Next, we move on to showing the way of implementing square root.
Similarly with division we get the following lemmas for square root.

Lemma 19. Given ϵ ∈ [0, 1], there exists a 1 hidden layer neural network f with threshold activation
and d activations in the hidden layer, such that

∀x ∈ [0, C] ,
∣∣f(x)−√

x
∣∣ ≤ ϵ,

as long as d = Ω(
√
C
ϵ).

Proof. We partition [0, C] into the following intervals

[0, ϵ2)), [ϵ2, 4ϵ2) . . . , [i2ϵ2, (i+ 1)2ϵ2),

Note that for any point x ∈ [i2ϵ2, (i+ 1)2ϵ2)

|
√
x−

√
i2ϵ2| <

√
(i+ 1)2ϵ2 −

√
i2ϵ2 = ϵ.

Hence two output activations of the form iϵ1x≥i2ϵ2 − iϵ1x<(i+1)2ϵ2 can be used to approximate
√
x

in [i2ϵ2, (i+ 1)2ϵ2).

Thus, all that remains is to compute the number of such intervals, and using that we get the number
of output activations in the hidden layer. It is easy to see that the total number of intervals needed
would be

√
C
ϵ .

42

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

Lemma 20. Given ϵ ∈ [0, 1], and C ≥ 1 there exists a function f of the form f(x) =
∑m

i=1 ciϕ(wix+
bi), where ϕ is the sigmoid function such that

∀x ∈ [0, C],
∣∣f(x)−√

x
∣∣ ≤ ϵ,

as long as m = Ω
(√

C
ϵ

)
.

We can use this lemma along with the result presented in Lemma 11 to get the following corollary:

Corollary 9 (sqrt). There exists a transformer-based function block with 3 layers and m heads
which can implement f(a) =

√
a up to error O(1/m) for all a ∈ [0, O(m2)].

The functions f : x → 1
x (inversion) and f : x →

√
x (square root) since they can be approximated

by sums of sigmoids, they can directly be encoded in the standard transformer-based function block
form through Lemma 11.

What other functions can our calculator implement? We have included some of the most
commonly used operations in calculators in our construction, but it can be extended to include a
wider variety of operations such as algebraic and trigonometric functions. When implementing these
functions within our transformer architecture, there are typically two choices that can be made. One
option is to approximate the target function f(x) using sigmoids. Another option is to use an iterative
numerical algorithm where the next output y is calculated based on the previous output y and the
goal is to minimize the difference between the calculated output and the target function f(x). This
algorithm takes the form yk+1 = g(yk), where g is typically an algebraic function. The desired
accuracy is achieved when the difference between the calculated output and target function is less
than or equal to a certain tolerance ϵ.

N LINEAR ALGEBRA

In Appendix J, we demonstrated the implementation of matrix transpose and matrix multiplication
as transformer-based function blocks. Utilizing these implementations, we proceed to execute two
iterative algorithms for determining the inverse of a matrix through the Newton-Raphson Method and
identifying the eigenvector corresponding to the maximum eigenvalue through the Power Iteration
method.

Linear algebra using Transformers In the study conducted by Charton (2021), the author im-
plemented some standard matrix method operations using a transformer-based architecture. Four
distinct encoding schemes were proposed and applied to nine different operations, ranging from
matrix multiplication to eigenvalue decomposition. We find that the size of the networks in Charton
(2021) is comparable to that of ours.

As an example we illustrate a comparison of the sizes for matrix transposition in Appendix N. Notice
that the number of layers, heads and width may seem different in Appendix N and Lemma 13;
however, in the proof of Lemma 13 we first vectorize the matrix (1 layer), then we implement the
fixed permutation using Lemma 4 (1 layer) and finally we use another 2 layers to bring back the
matrix in its original representation. If the matrix is given to us, as in Charton (2021), in its transposed
form then we only need one layer and the two sets of encodings to perform the fixed permutation.
Since the maximum size of the matrix is 30× 30, the sequence length is n = 302 and thus the size of
each of the encodings will be 10, leading to an input with width 2 · 10 + 1 = 21. This will lead to a
total width of 42, due to the ReLU layer in Lemma 4 having a width double the input’s width.

We intend to further investigate our constructions, by implementing them and evaluating the errors
involved as a function of the constants used in the proof of Lemma 14 and the temperature in
Lemma 3, in future work.

Layers Heads Width
Ours 1 1 42

Charton (2021) 1 8 256

Table 1: Comparison for transposing any matrix of size 30× 30 stored as a vector.

43

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

Matrix Inversion. We can use the Unified Attention Based Computer to write a program for Matrix
Inversion using the functions for matrix multiplications and a function for subtraction. We do so by
implementing Newton’s algorithm for matrix inversion using our unified framework. The pseudo
code for the algorithm is as follows:

Algorithm 8 Pseudocode for running Newton’s algorithm for Matrix inversion for T iterations.
1: X−T = ϵA
2: for i = −T, . . . , 0 do
3: Xi+1 = Xi(2I−AXi)
4: end for

Lemma 21. Consider a matrix A ∈ Rd×d, then for any ϵ > 0 there exists a transformer with 13
layers, 1 head and dimensionality r = O(d) that emulates Alg. 8 with output X(transf)

1 that satisfies
∥X(transf)

1 −X1∥ ≤ ϵ. This error ϵ arises due to softmax, and can be driven arbitrarily close to 0 by
increasing the temperature.

Proof. The proof of this lemma is the code using the FLEQ instruction provided below (Alg. 9).
Let fmul, fsub and ftransp be the functions that implement multiplication, substraction and transpose
respectively. Then, the following code runs Newton’s algorithm for matrix inversion.

Algorithm 9 Program to compute the approximate inverse using our Unified Attention Based
Computer
Require: mem[a] = A. {This is the location of the input.}
Require: mem[p] = 2I, mem[x] = ϵI, mem[y] = 0, mem[q] = −1. {Constants.}
Require: mem[t] = −T . {Iteration counter, i initialized as i := −T .}

1: mem[x] = fmul(mem[x],mem[a]). {Initializes the result, X−T := ϵA.}
2: mem[a] = ftransp(mem[a],mem[y]) {Transpose A.}
3: mem[y] = fmul(mem[a],mem[x]). {First sub-step of Newton’s algorithm, Y := AXi}
4: mem[y] = fsub(mem[p],mem[y]). {Second sub-step of Newton’s algorithm, Y := 2I−Y}
5: mem[y] = ftransp(mem[y],mem[q]). {Transpose of Y.}
6: mem[x] = fmul(mem[x],mem[y]). {Updating the result, Xi+1 := XiY}
7: mem[t] = fsub(mem[t],mem[q]). {Increment counter, i := i+ 1.}
8: if mem[t] ≤ 0 goto instruction 3. {Keep looping back as long as i ≤ 0.}
9: EOF. {End of File command.}

Power Iteration. The Power Iteration algorithm (Alg. 10) is used for finding the dominant eigen-
value, the one that has the maximum absolute value, and corresponding eigenvector of a diagonalizable
matrix. The algorithm starts with an initial approximation of the eigenvector and converges linearly
to the eigenvector associated with the dominant eigenvalue; below we provide the pseudocode.

Algorithm 10 Power Iteration
Input: A, T

1: Initialize b0 = 1
2: for k = 0, . . . , T − 1 do
3: bk+1 = Abk

4: end for
5: b =

bT

∥bT ∥

The last step in the algorithm above needs a normalization by the norm of bT . While we can compute
∥bT ∥2 easily and precisely using the matrix multiplication function block (since ∥bT ∥2 = b⊤T bT),
computing the norm and taking its inverse using the function block from Appendix M would induce
error. Hence, we use the following Newton’s algorithm that converges quadratically.

44

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

Algorithm 11 Newton’s algorithm to compute inverse square root: 1/
√
S

Input: S
1: Initialize x0 = 1
2: for k = 0, . . . , T do
3: xk+1 = xk

(
3
2 − S

2 x
2
k

)
4: end for

Lemma 22. Consider a matrix A ∈ Rd×d, then for any ϵ > 0 there exists a transformer with 13
layers, 1 head and dimensionality r = O(d) that emulates Alg. 10 for T = O(log 1/ϵ) iterations
with output b(transf)

T+1 that satisfies ∥b(transf)
T+1 − bT+1∥ ≤ ϵ. This error ϵ arises due to softmax, and can

be driven arbitrarily close to 0 by increasing the temperature.

Proof. The proof consists of translating each step of the pseudocode for Alg. 10 and Alg. 11 to
commands of our unified framework.

Algorithm 12 Program to simulate Power Iteration using our Unified Attention Based Computer
Require: mem[a] = A, mem[b] = 1, mem[inv norm] = 1. {Location of matrix and initialization.}
Require: mem[q] = 1, mem[p] = 0, mem[r] = 0.5, mem[s] = 1.5 {Constants.}
Require: mem[t1] = mem[t2] = −T + 1,

1: mem[a] = ftransp(mem[a],mem[p]). {Transpose of A.}
2: mem[b] = fmul(mem[a],mem[b]). {Inner product: Abk.}
3: mem[t] = fadd(mem[t1],mem[q]). {Increment counter, i := i+ 1.}
4: if mem[t1] ≤ 0 goto instruction 2. {Keep looping back as long as i ≤ 0.}
5: mem[norm square] = fmul(mem[b],mem[b]). {Calculate ∥bT ∥2.}

Code for Alg. 11 begins.
6: mem[y] = fmul(mem[inv norm],mem[inv norm]). {Calculate x2

k.}
7: mem[y] = fmul(mem[norm square],mem[y]). {Calculate Sx2

k.}
8: mem[y] = fmul(mem[r],mem[y]). {Calculate Sx2

k/2.}
9: mem[y] = fsub(mem[s],mem[y]). {Calculate (3− Sx2

k)/2.}
10: mem[inv norm] = fmul(mem[inv norm],mem[y]). {Update xk+1 := xk(3− Sx2

k)/2.}
11: mem[t2] = fadd(mem[t2],mem[q]). {Increment counter, j := j + 1.}
12: if mem[t2] ≤ 0 goto instruction 6. {Keep looping back as long as j ≤ 0.}

Code for Alg. 11 ends.
13: mem[b] = fmul(mem[b],mem[inv norm]). {b := bT /∥bT ∥.}
14: EOF. {End of File command.}

What other numerical linear algebra algorithms can transformers implement? The algorithms
presented above serve as proof of concept for the potential to build small linear algebra libraries
using our transformer construction. As demonstrated, the size of the looped transformer is constant
regardless of the depth. To implement iterative numerical algorithms, additional functions can be
incorporated into our architecture. For instance, QR decomposition, Gauss-Seidel, Arnoldi iteration,
or Lanczos algorithm can be implemented. While we have not included detailed code for these
specific algorithms, the above examples should provide sufficient insight on how to do so.

O EMULATING LEARNING ALGORITHMS AT INFERENCE TIME

In this section we demonstrate the ability of our unified template to emulate Stochastic Gradient
Descent (SGD). We begin by examining the case of linear models, before progressing to the im-
plementation of the backpropagation algorithm for two layer neural networks. Utilizing this as a
“function” which we call at each step, we demonstrate the application of SGD in updating the implicit
weights of a model.

Our work demonstrates that looped transformers can effectively perform in-context learning for a
wide range of models and achieve high levels of accuracy, given access to a sufficient number of
inference calls/loops. Previous research, such as in Akyürek et al. (2022) and Garg et al. (2022), has

45

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

limited in-context learning to a single inference call of a deeper transformer model than ours, which
restricts the types of models that can be learned and the level of accuracy that can be achieved. To
implement complex iterative programs like SGD, either a looped structure transformer or one that
grows in size with the program’s depth is required, unless widely believed complexity conjectures are
falsified. Additionally, this is the first work to show that transformers can implement SGD on more
general loss functions and models beyond linear regression.

Stochastic Gradient Descent in linear models. In Alg. 13 we provide the program for running SGD
in linear models on mean squared loss. Consider the dataset D = {(x1, yi), . . . , (x|D|, y|D|)}, where
xi is the i−th data point and yi its label; and the loss function of the form L(w) = 1

|D|
∑|D|

i=1 ∥w⊤xi−
yi∥2, where w is the parameter (weight) vector. Hence, the gradient descent takes the form: wt+1 =

wt − η
∑|D|

i=1(w
⊤xi − yi)xi, where η is the step-size.

The program we present next iterates through the |D| data points that the user gives and cycles back
to the first point after one pass is completed. The step-size is given as input by the user.

Lemma 23. There exists a transformer with 13 layers, 1 head and dimensionality O(log(|D|) + d)
that uses the Unified Attention Based Computer framework in Appendix C.2 to simulate T iterations
of SGD on a weight vector w ∈ Rd, over a set of |D| data points (xi, yi) ∈ Rd+1, i = 1, . . . , |D|.
The step size is given as a parameter to the program. The simulation of each step of SGD is not
exact, there is some error in each step which, however, can be driven down arbitrarily close to 0 by
increasing the temperature of softmax and another free parameter which does not affect the size of
the network.

Remark 3. The error here that we mention in the theorem statement comes from the matrix multipli-
cation, read, and write operations. The softmax temperature can be used to drive the error of read
and write arbitrarily close to 0, while the multiplication also has another free parameter (see (11))
that can be used to drive the error of matrix multiplication arbitrarily close to 0, while not affecting
the transformer size or architecture.

46

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

Algorithm 13 Program to simulate SGD on linear model under mean squared loss using our Unified
Attention Based Computer
Require: mem[w] = w, mem[η] = η. {Location of the weight and step-size.}
Require: mem[x0 + i− 1] = xi, i = 1, . . . , |D|. {Location of the data points.}
Require: mem[y0 + i− 1] = yi, i = 1, . . . , |D|. {Location of the labels.}
Require: px∗ = x0. {px∗ is a pointer to the first data. }
Require: py∗ = y0. {py∗ is a pointer to the first label. }
Require: pPC = instr1. {Program Counter points to first instruction. }
Require: mem[q] = 1, mem[p] = 0, mem[z] = n. {Constants.}
Require: mem[j] = −nd. {Within epoch iteration counter initialized to −n.}
Require: mem[k] = −T . {Epoch counter initialized to −T .}

1: (instr1) mem[temp] = fmul(mem[px∗],mem[w]). {Inner product: w⊤xi.}
2: (instr2) mem[temp] = fsub(mem[temp],mem[py∗]). {Substract the label: w⊤xi − yi.}
3: (instr3) mem[temp] = fmul(mem[px∗],mem[temp]). {Multiply with the data point xi. }
4: mem[temp] = fmul(mem[temp],mem[η]). {Multiply with the step-size.}
5: mem[w] = fsub(mem[w],mem[temp]). {Subtract from w one gradient step.}
6: mem[instr1] = fincr pointer(mem[instr1]). {Increment pointer.}
7: mem[instr2] = fincr pointer(mem[instr2]). {Increment pointer.}
8: mem[instr3] = fincr pointer(mem[instr3]). {Increment pointer.}
9: mem[j] = fadd(mem[j],mem[q]). {Increment within epoch iteration counter by 1.}

10: if mem[j] ≤ 0 goto 1. {Cycle back to the first data point.}
11: mem[j] = −nd. {Reset counter.}
12: mem[instr1] = freset pointer(mem[instr1], x0). {Reset pointer.}
13: mem[instr2] = freset pointer(mem[instr2], y0). {Reset pointer.}
14: mem[instr3] = freset pointer(mem[instr3], x0). {Reset pointer.}
15: mem[k] = fadd(mem[k],mem[q]). {Increment epoch counter by 1.}
16: if mem[k] ≤ 0 goto 1. {Cycle back to the first data point.}
17: EOF. {End of File command.}

The following will detail the essential procedures for implementing the Stochastic Gradient Descent
algorithm. We employ three pointers, namely pPC, px∗ and py∗ and , in our algorithm. The first
one, referred to as program counter, is used to iterate through the commands; after one pass over
all data points is completed the program counter is reset to the first instruction (line 16), until T
full passes have been completed. The second and third ones, referred to as data and label pointer
respectively, iterate through the data points and labels one by one. The increment of the pointer px∗
needs to occur in both instructions 1 and 3, as to in the next iteration they have been updated from
instri(px∗ , w, temp) → instri(px∗ + 1, w, temp), i = 1, 3. The same holds for the pointer py∗ in
line 7. Finally, we reset the two pointers in lines 13,14 to cycle back in the first data point, label.

To enhance understanding, we note that lines 6-8 modify the instructions themselves; instead of doing
this we could have nd copies of the lines 1-3, each one with parameters pointers of a different data
point,label. In that case the number of instructions would have been 7|D|.
Notice that the functions fincr pointer and freset pointer can be directly implemented using Lemma 10.

Note that we can also implement arbitrary loss functions f with updates of the form wt+1 =

wt − η
∑|D|

i=1 f
′(w⊤xi − yi)xi, as long as f ′ can be well approximated using a Transformer-based

Function Block (see Theorem 3 and Lemma 11).

Backpropagation and SGD. We will now generalize the result of Lemma 23 to two layer neural
networks with non-linear activation functions; we demonstrate in Alg. 16 how this can be achieved if
the activation function is the sigmoid function.

Closest to this section is the work of Akyürek et al. (2022), where the authors prove that constant
number of layers is needed to perform one step SGD in linear models, using decoder only transformer
architecture.

47

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

Algorithm 14 Backpropagation
Input: W1 ∈ Rm×d, b1 ∈ Rm, W2 ∈ Rm×1, b2 ∈ R , x ∈ Rd, y ∈ R

1: Compute z = W1x+ b1.
2: Compute a = σ(z).
3: Compute o = W2a+ b2.
4: Compute δ2 = (o− y).
5: Compute δ1 = σ′(z)⊙W2(o− y).
6: Compute ∂J

∂W2
= δ2a

⊤.
7: Compute ∂J

∂b2
= δ2.

8: Compute ∂J
∂W1

= δ1x
⊤.

9: Compute ∂J
∂b1

= δ1.

Lemma 24. There exists a transformer with 13 layers, 1 head and dimensionality O(log(|D|) + d)
that uses the Unified Attention Based Computer framework in Appendix C.2 to implement T iterations
of SGD on a two-layer sigmoid-activated neural network, over a set of nd data points (xi, yi) ∈ Rd+1,
i = 1, . . . , |D|. The step size is given as a parameter to the program. The simulation of each step of
SGD is not exact, there is some error in each step which, however, can be driven down arbitrarily
close to 0 by increasing the temperature of softmax and another free parameter which does not affect
the size of the network.

Remark 4. The program we provide in Alg. 15, Specifically, in line 1 of Alg. 16 we call the algorithm
for backpropagation at each iteration with a different data point. In terms of our construction, this
translates to different instructions which will be in total O(|D|). As in Alg. 13 the utilization of a
pointer that changes the instructions themselves, would result in a program of constant length; we
however did not do this to keep the presentation of the algorithm simpler.

Remark 5. If we want to account for different activation functions or losses, we can use Lemma 11
to express the gradients as sums of sigmoids. The number of heads (or dimension) would need to be
in that case poly(Tnd) to ensure control over the error induced by the approximation. Another way
to achieve low error would be to instead run a Newton’s algorithm style algorithm in an inner loop to
compute the derivatives (similar to Alg. 12), which will lead to arbitrarily low error without causing
the transformer size to increase (at the cost of some extra iterations).

48

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

Algorithm 15 Program to simulate Backpropagation for two layer Neural Networks
Input: pw1

,pw2
,pb1 ,pb2 {Pointers to weights and biases.}

Input: px,py {Pointer to data point and label.}
Input: η. {Pointer to step size.}
Require: mem[q] = 1, mem[p] = 0, mem[r] = −1, mem[m] = m. {Constants.}
Require: mem[k] = 1. {Iteration counter, k := 1.}
Require: pz = z1T. {Pointer for z.}
Require: pδ = δ11,T. {Pointer for δ1.}

1: (instr1) mem[temp] = ftrans(mem[pw1],mem[p]). {Create W⊤
1 .}

2: mem[z] = fmul(mem[temp],mem[px]). {Multiply: W1x.}
3: mem[z] = fadd(mem[z],mem[pb1]). {Add the bias: Compute z. }
4: mem[a] = fsigmoids(mem[z],mem[q]). {Compute a = σ(z). }
5: mem[temp] = ftrans(mem[pw2

],mem[p]). {Create W⊤
2 .}

6: mem[o] = fmul(mem[temp],mem[a]). {Multiply: W2a.}
7: mem[o] = fadd(mem[o],mem[pb2]). {Add bias: Compute o.}
8: mem[δ2] = fsub(mem[o],mem[py]). {Compute δ2.}
9: mem[δ1] = fmul(mem[pw2],mem[δ2]). {Multiply W2δ2.}

10: mem[flag] = fsub(mem[k],mem[m]). {Create k −m.}
11: mem[pz] = ftrans(mem[z],mem[p]). {Store z to consecutive memory cells.}
12: mem[pδ] = ftrans(mem[δ1],mem[p]). {Store δ1 to consecutive memory cells.}
13: if mem[flag] ≤ 0 goto 20. {If we iterated all the elements goto next command. }
14: (instr14) mem[temp′] = fsigmoids(mem[p],mem[pz]). {Create σ(zi).}
15: mem[temp′′] = fsub(mem[q],mem[temp′]). {Create 1− σ(zi).}
16: mem[temp′] = fmul(mem[temp′],mem[temp′′]). {Create σ′(zi) = σ(zi)(1− σ(zi)).}
17: (instr17) mem[pδ] = fmul(mem[temp′],mem[pδ]). {Create σ′(zi)(W2)i(o− y).}
18: mem[instr14] = fincr pointer(mem[instr14]). {Point to next element of z.}
19: mem[instr17] = fincr pointer(mem[instr17]). {Point to next element of δ1.}
20: mem[k] = fadd(mem[k],mem[q]). {Increment counter, k := k + 1.}
21: If mem[p] ≤ 0 goto 13. {Loop back.}
22: mem[instr1] = freset pointer(mem[instr14], z1⊤). {Reset pointer.}
23: mem[instr15] = freset pointer(mem[instr15], δ11,⊤). {Reset pointer.}
24: mem[grad W2] = fmul(mem[δ2],mem[a]). {Create ∂J

∂W2
.}

25: mem[grad b2] = fmul(mem[δ2],mem[q]). {Create ∂J
∂b2

.}
26: mem[grad W1] = fmul(mem[δ1],mem[px]). {Create ∂J

∂W1
.}

27: mem[grad b1] = fmul(mem[δ1],mem[q]). {Create ∂J
∂b1

.}
28: mem[temp] = fmul(mem[gradW2],mem[η]). {Multiply with step-size.}
29: mem[pw2] = fsub(mem[pw2],mem[temp]). {Update W2.}
30: mem[temp] = fmul(mem[gradW1],mem[η]). {Multiply with step-size.}
31: mem[pw1

] = fsub(mem[pw1
],mem[temp]). {Update W1.}

32: mem[temp] = fmul(mem[gradb2],mem[η]). {Multiply with step-size.}
33: mem[pb2] = fsub(mem[pb2],mem[temp]). {Update b2.}
34: mem[temp] = fmul(mem[gradb1],mem[η]). {Multiply with step-size.}
35: mem[pb1] = fsub(mem[pb1],mem[temp]). {Update b1.}

49

Under review at the Workshop on Understanding Foundation Models at ICLR 2023

Algorithm 16 Program to simulate SGD using our Unified Attention Based Computer
Require: mem[w1] = W1,mem[w2] = W2. {Location weights and biases.}
Require: mem[b1] = b1,mem[b2] = b2. {Location of biases.}
Require: mem[x0 + i− 1] = xi, i = 1, . . . , nd. {Location of the data points.}
Require: mem[y0 + i− 1] = yi, i = 1, . . . , nd. {Location of the labels.}
Require: mem[z] = e. {Indicator for the choice of loss function}
Require: px∗ = x0. {px∗ is a pointer to the first data. }
Require: py∗ = y0. {py∗ is a pointer to the first label. }
Require: pPC = instr1. {Program Counter points to first instruction. }
Require: mem[q] = 1, mem[p] = 0, mem[z] = n. {Constants.}
Require: mem[j] = −nd. {Within epoch iteration counter initialized to −n.}
Require: mem[k] = −T . {Epoch counter initialized to −T .}

1: Backpropagation(w1, w2, b1, b2,px∗ ,py∗) {Perform one step of SGD using Backpropagation}
2: mem[j] = fadd(mem[j],mem[q]). {Increment within epoch iteration counter by 1.}
3: px∗ = fincr pointer(px∗). {Show to next data point.}
4: py∗ = fincr pointer(py∗) {Show to next label.}
5: if mem[j] ≤ 0 goto 1. {Cycle back until all data points are iterated.}
6: mem[j] = −nd. {Reset counter.}
7: px∗ = freset pointer(px∗ , x0). {Reset pointer.}
8: py∗ = freset pointer(py∗ , y0). {Reset pointer.}
9: mem[instr3] = freset pointer(mem[instr3], x0). {Reset pointer.}

10: mem[k] = fadd(mem[k],mem[q]). {Increment epoch counter by 1.}
11: if mem[k] ≤ 0 goto 1. {Cycle back to the first data point.}
12: EOF. {End of File command.}

50

	Introduction
	Preliminaries
	Main Results
	Conclusion
	Prior Work
	Building Transformer Blocks towards General Computation
	Positional Encodings, Program Counter, and Data Pointers
	read / write: Copying Data/Instructions to/from the Scratchpad
	if condition then goto instruction

	Emulating a Single Instruction Computer
	A SUBLEQ Transformer
	FLEQ: A More Flexible Attention-based Computer

	Applications
	Limitations
	Omitted Proofs
	Addition of pointers.
	Read/Write operations.
	if condition then goto instruction: Conditional branching

	subleq: Proof of Lemma 5
	subleq is Turing Complete
	FLEQ Overview
	Functions in the Unified Template Form
	Encoding Non-linear Functions within the Attention Mechanism
	Matrix Transposition
	Matrix Multiplication by Linearizing the Softmax
	Advantage of attention over fully-connected networks

	FLEQ: Proof of thm:unified
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7

	Error Analysis
	A Basic Calculator
	Linear Algebra
	Emulating Learning Algorithms at Inference Time

