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Abstract
Transformer-based models have achieved re-001
markable success in various Natural Language002
Processing (NLP) tasks, yet their ability to han-003
dle long documents is constrained by computa-004
tional limitations. Traditional approaches, such005
as truncating inputs, sparse self-attention, and006
chunking, attempt to mitigate these issues, but007
they often lead to information loss and hinder008
the model’s ability to capture long-range de-009
pendencies. In this paper, we introduce ChuLo,010
a novel chunk representation method for long011
document understanding that addresses these012
limitations. Our ChuLo groups input tokens us-013
ing unsupervised keyphrase extraction, empha-014
sizing semantically important keyphrase based015
chunks to retain core document content while016
reducing input length. This approach mini-017
mizes information loss and improves the ef-018
ficiency of Transformer-based models. Preserv-019
ing all tokens in long document understand-020
ing, especially token classification tasks, is im-021
portant to ensure that fine-grained annotations,022
which depend on the entire sequence context,023
are not lost. We evaluate our method on multi-024
ple long document classification tasks and long025
document token classification tasks, demon-026
strating its effectiveness through comprehen-027
sive qualitative and quantitative analysis.028

1 Introduction029

Transformer-based models (Vaswani et al., 2017),030

including LLMs (Radford, 2018; Radford et al.,031

2019; Brown et al., 2020; Ouyang et al., 2022; Tou-032

vron et al., 2023a,b; Chowdhery et al., 2023; Anil033

et al., 2023; Dubey et al., 2024), have achieved034

remarkable success across a wide range of Natu-035

ral Language Processing (NLP) tasks, including036

Machine Translation, Text Summarization, Text037

Generation, and Text Classification. A key fac-038

tor behind their success is the self-attention mech-039

anism, which allows the model to capture long-040

range dependencies by computing the similarity be-041

tween any two tokens and aggregating information042

accordingly. However, this mechanism incurs a 043

quadratic computational cost in terms of both time 044

and space, relative to input length. This compu- 045

tational burden makes it difficult for Transformer- 046

based models to scale to long documents, limit- 047

ing their application to real-world data with unre- 048

stricted document lengths. To address this chal- 049

lenge, several approaches have been proposed for 050

applying Transformer-based models to long doc- 051

uments while managing computational resources. 052

One of them is truncating, where the model dis- 053

cards content exceeding a predefined input length. 054

For instance, BERT (Kenton and Toutanova, 2019) 055

processes up to 512 tokens, and LLaMa (Touvron 056

et al., 2023a) handles up to 2048 tokens, with any 057

additional content being ignored. Another one is 058

sparse self-attention, which reduces computational 059

complexity by restricting each query token to at- 060

tend only to a subset of key tokens (Child et al., 061

2019; Beltagy et al., 2020; Zaheer et al., 2020; Wei 062

et al., 2021; Li et al., 2023a). Lastly, chunking 063

divides long documents into smaller, manageable 064

segments that are processed independently by the 065

model (Zhao et al., 2021; Zhang et al., 2022). 066

While these methods enable Transformer-based 067

models to process long documents, they have limi- 068

tations. Truncation risks discarding important in- 069

formation that falls beyond the maximum input 070

length. Although more efficient, Sparse attention 071

reduces each token’s receptive field, leading to po- 072

tential information loss from the neglected tokens. 073

Similarly, chunking breaks the input into isolated 074

segments, which can disrupt long-range dependen- 075

cies critical for a comprehensive understanding of 076

the document. Preserving all tokens is particularly 077

important in tasks that require fine-grained token- 078

level understanding, such as token classification. In 079

such tasks, dropping tokens can severely impact the 080

accuracy of fine-grained annotations, which often 081

depend on the full context of the document. There- 082

fore, there is a need for methods that can handle 083
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long documents efficiently while retaining all key084

information from the input.085

In this paper, we introduce ChuLo, a novel086

chunk-level key information representation method087

that addresses these challenges in long document088

classification and token classification. Our method089

reduces input length while minimizing information090

loss by strategically grouping tokens using unsu-091

pervised keyphrase extraction. By identifying and092

emphasizing semantically important tokens, ChuLo093

ensures that each chunk retains the core content of094

the document. The resulting chunk representation095

is used for training Transformer models, with more096

weight assigned to keyphrases to make them more097

salient in each chunk. We evaluate ChuLo on var-098

ious long document classification tasks and long099

document token classification tasks, demonstrating100

its effectiveness through competitive results and101

thorough analysis.102

The key contributions of this paper are as fol-103

lows: 1) Novel Chunk Representation Method:104

We introduce ChuLo, a chunk representation105

method for long document understanding that lever-106

ages unsupervised keyphrase extraction to priori-107

tize semantically important information, effectively108

reducing input length while preserving core con-109

tent. 2) Enhanced Document and Token Classifi-110

cation: Our proposed method is designed to handle111

both document-level and token-level tasks, address-112

ing the limitations of existing models in retaining113

fine-grained annotations and global context in long114

documents. 3) Scalable and Efficient Solution:115

ChuLo offers a scalable and efficient approach for116

long document understanding, making it suitable117

for various NLP tasks where handling long-range118

dependencies and context preservation is critical.119

2 Related Work120

2.1 Long Document Understanding121

Document understanding involves global under-122

standing (e.g., classification) and token-level tasks123

(e.g., named entity recognition). Transformer-124

based models face performance issues with long125

inputs, addressed through input processing and ar-126

chitecture optimization. Input processing methods127

include truncating tokens beyond the input limit128

(Park et al., 2022) and chunking, as seen in Hier-129

archical Transformer (Pappagari et al., 2019) and130

RoR (Zhao et al., 2021), though these often neglect131

full document context. Architecture optimizations132

improve efficiency using sparse attention (Beltagy133

et al., 2020; Zaheer et al., 2020; Roy et al., 2021) 134

or approximations (Peng et al., 2021; Wang et al., 135

2020; Choromanski et al., 2020). Other approaches 136

incorporate RNN concepts, such as cache memory 137

(Dai et al., 2019; Hutchins et al., 2022; Li et al., 138

2023b). These methods balance performance and 139

efficiency, highlighting the need to reduce input 140

length effectively. 141

For document NER, text length is less stud- 142

ied, with recent work addressing low-resource lan- 143

guages (Çetindağ et al., 2023; Mengliev et al., 144

2024), complex domains (Park et al., 2023; Bhat- 145

tacharya et al., 2023), prompt-based methods 146

(Wang et al., 2023; Dagdelen et al., 2024; Hu et al., 147

2024), and multimodal data (Yu et al., 2023; Zhang 148

et al., 2023). Our work tackles these challenges1 149

with a novel chunk representation that preserves 150

semantic information while reducing input length, 151

enhancing both classification and token-level tasks. 152

2.2 Unsupervised Keyphrase Extraction 153

Unsupervised keyphrase extraction identifies rep- 154

resentative phrases to summarize content without 155

labelled data (Hasan and Ng, 2014). Methods in- 156

clude statistics-based (e.g., TfIdf (El-Beltagy and 157

Rafea, 2009), co-occurrence (Liu et al., 2009), and 158

context statistics (Campos et al., 2020; Won et al., 159

2019)), graph-based (e.g., TextRank (Mihalcea 160

and Tarau, 2004) and its variants (Wan and Xiao, 161

2008; Bougouin et al., 2013; Florescu and Caragea, 162

2017; Yu and Ng, 2018)), and embedding-based ap- 163

proaches (e.g., EmbedRank (Bennani-Smires et al., 164

2018), SIFRank (Sun et al., 2020), and PromptRank 165

(Kong et al., 2023)). While effective, these meth- 166

ods prioritize phrase extraction and ranking over 167

improving downstream tasks. Our work integrates 168

keyphrase extraction with chunk representation to 169

enhance long document understanding. 170

3 ChuLo 171

We propose ChuLo, a novel chunk representation 172

method that enhances long document understand- 173

ing by reducing input length while preserving se- 174

mantic content. Unlike existing approaches like 175

truncation and standard chunking, ChuLo mini- 176

mizes information loss and maintains contextual 177

dependencies. The method segments documents 178

into non-overlapping chunks, integrates key seman- 179

tic information using unsupervised keyphrase ex- 180

1The summary of Long Document Understanding related
works can be found in Appendix A.1
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Figure 1: The Overall ChuLo Framework proposed in this paper. Each chunk is surrounded by a pink box. C1 ...
Cn represents the chunk representation.

traction, and assigns higher weights to keyphrase181

tokens in chunk representations. These enriched182

chunks train a Transformer-based chunk attention183

module, enabling efficient processing of long doc-184

uments while retaining global and local context.185

Further details are provided in subsequent subsec-186

tions, with the framework illustrated in Figure 1.187

3.1 Document Input Chunking188

To effectively manage long document inputs, we189

employ a chunking strategy that reduces input190

length while preserving all relevant information.191

Common approaches to long document processing,192

such as truncation and sparse attention, either disre-193

gard parts of the document(Lewis et al., 2020; Park194

et al., 2022) or restrict the receptive field of indi-195

vidual tokens (Beltagy et al., 2020; Zaheer et al.,196

2020; Brown et al., 2020), resulting in potential in-197

formation loss. Our approach mitigates these issues198

by segmenting the document into non-overlapping199

chunks before feeding them into the model. It en-200

ables complete self-attention among chunks, ensur-201

ing that all information is retained and enabling the202

model to process larger portions of the document203

context. Specifically, we first tokenize the docu-204

ment D = (t0, t1, . . . , tlD−1) and divide it into205

fixed-length chunks CD = (C0, C1, . . . , Cm−1),206

where lD is the number of the tokens, each chunk207

C consists of n tokens, and m = ⌈ lDn ⌉ is the num-208

ber of chunks. The incomplete chunks will be209

padded with the [PAD] tokens. The chunk size n is210

a hyper-parameter controlling the degree of input211

length reduction. By grouping tokens this way, we212

maintain the integrity of the input content while al-213

leviating the computational burden associated with214

processing long sequences.215

3.2 Semantic Key Information Extraction 216

The fundamental reason for extracting keyphrases 217

from the chunks, as defined in the document chunk- 218

ing step, is to maintain the integrity of the doc- 219

ument’s semantic content while reducing input 220

length. During chunking, the document is divided 221

into smaller segments, which can inadvertently dis- 222

tribute important semantic information unevenly 223

across chunks or even cause it to be diluted. Sim- 224

ply treating each chunk equally may lead to over- 225

looking critical context essential for accurate docu- 226

ment classification and token-level understanding. 227

Identifying and highlighting critical phrases within 228

these chunks ensures that the most relevant infor- 229

mation is preserved and emphasized, allowing the 230

model to focus on the core content even within a 231

limited input space. This compensates for the in- 232

formation fragmentation caused by chunking and 233

guides the Transformer’s attention mechanism to 234

prioritize the most informative parts of the text, 235

enhancing the model’s ability to capture the doc- 236

ument’s overall meaning and relationships. Thus, 237

extracting keyphrases from chunks is crucial for 238

bridging the gap between document segmentation 239

and semantic coherence, ultimately improving the 240

effectiveness of the chunk-based representation for 241

long document understanding. To achieve this, we 242

extract semantically important keyphrases to iden- 243

tify the core content of the entire document. Since 244

document understanding, such as document classi- 245

fication or token classification, inherently involves 246

semantic understanding, it is crucial to highlight the 247

most informative parts of the text to create mean- 248

ingful chunk representations. By making the ex- 249

tracted keyphrases more salient, we can effectively 250
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emphasize the content that contributes most to the251

document’s overall meaning. Hence, we employ252

unsupervised keyphrase extraction methods, ensur-253

ing our approach remains adaptable across diverse254

domains without requiring annotated data. Build-255

ing on the principles of PromptRank (Kong et al.,256

2023), we adapt and enhance its template-based257

approach to prioritize keyphrases that are contex-258

tually significant across the entire document. Our259

modified strategy, the Semantic Keyphrase Prior-260

itization (SKP) Algorithm, leverages prompts to261

assess the importance of each candidate keyphrase,262

ensuring that semantically crucial information is263

highlighted for downstream document understand-264

ing. The details of this process are provided in265

Appendix A.2. In this way, our method emphasizes266

keyphrases during chunk representation, making267

critical semantic information more salient. Con-268

sequently, our method bridges the gap between269

document segmentation and semantic coherence270

by ensuring that key content is preserved and high-271

lighted within the entire document, despite input272

length constraints.273

3.3 Chunk Representation Production274

After extracting the semantically significant275

keyphrases, we construct a chunk representation276

that preserves and highlights this key information,277

ensuring that the chunk retains the core semantic278

content of the document. While chunking helps279

reduce the input length, it may also result in an280

uneven distribution of meaningful content across281

chunks. Thus, it is crucial to re-emphasize the im-282

portance of these keyphrases within the chunk to283

maintain semantic integrity. Our approach dynam-284

ically adjusts the representation of each chunk by285

assigning greater importance to keyphrase tokens,286

enabling the model to focus on the most relevant287

content during downstream processing. To achieve288

this, we label the tokens corresponding to the ex-289

tracted keyphrases in the original text as keyphrase290

tokens Tk, while other tokens are labelled as non-291

keyphrase tokens Tnk. Then, we feed these chun-292

ked tokens t into the embedding layer to obtain293

their embeddings. The chunk embedding c is then294

computed using a weighted average of these token295

embeddings, as defined in Formula 1:296

wt =

{
a, t is Tk

b, t is Tnk

c =
∑

wt∗t∑
wt

(1)297

Here, wt represents the weight assigned to each 298

token t in the chunk, where a and b are hyperpa- 299

rameters with a > b. t denotes the embedding 300

of token t, and c is the resulting chunk embedding 301

that captures the weighted importance of keyphrase 302

and non-keyphrase tokens. By assigning a higher 303

weight a to keyphrase tokens, we ensure that the re- 304

sulting chunk representation emphasizes the most 305

critical information while maintaining a compact 306

input length. Finally, the chunk embeddings are 307

fed into the Transformer-based model, allowing it 308

to effectively leverage the enhanced chunk repre- 309

sentations during long document classification or 310

token-level classification tasks. This method not 311

only preserves the semantic coherence of the docu- 312

ment but also allows the model to retain meaningful 313

context and relationships, ultimately enhancing its 314

performance on long document tasks. 315

3.4 Chunk Representation Training 316

In this final step, we train a Transformer-based 317

model using our keyphrase-enhanced chunk repre- 318

sentations to effectively incorporate the core seman- 319

tic content of the document. We selected BERT- 320

base according to Table 12. By emphasizing key in- 321

formation in the chunk embeddings, we ensure that 322

the model can focus on the most relevant aspects 323

of the text, thereby improving its ability to handle 324

long document inputs without losing critical con- 325

text. We leverage a Transformer-based backbone 326

model, which is used to initialize the weights of the 327

chunk attention module, as illustrated in Figure 1. 328

This chunk attention module is designed to capture 329

the intricate contextual relationships among chunks 330

while retaining the influence of keyphrases. By do- 331

ing so, the module can better understand local and 332

global semantic patterns, enabling the model to per- 333

form robustly across various long document tasks. 334

The chunk embeddings are processed through the 335

chunk attention module to produce refined con- 336

textual representations, which are then fed into 337

a classification head to generate the final predic- 338

tions. Our framework, ChuLo, is adaptable to any 339

transformer-based architecture, from pretrained to 340

large language models, making it versatile for tasks 341

involving long document understanding. Through 342

integrating keyphrase-enhanced chunk representa- 343

tions, the model achieves superior performance in 344

both document classification and token-level tasks, 345

highlighting the effectiveness of our approach in 346

leveraging semantic information to tackle the chal- 347

lenges associated with long document processing. 348
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4 Experiments Set-up349

We evaluate ChuLo on document and token clas-350

sification tasks to highlight our motivation. While351

document classification primarily requires global352

contextual understanding, token classification tasks353

test the model’s ability to retain and utilize detailed354

token-level information within long documents.355

We compare it with BERT (Kenton and Toutanova,356

2019) and BERT variants (Park et al., 2022), Long-357

former (Beltagy et al., 2020), ToBERT (Pappa-358

gari et al., 2019), CogLTX (Ding et al., 2020),359

ChunkBERT (Jaiswal and Milios, 2023), and in-360

structions with LLMs, GPT4o2 and Gemini1.5pro3.361

Baselines Details are listed in Appendix A.3.362

Datasets: We conduct experiments using363

three(3) datasets for long document classification364

and two(2) for long document token classification.365

For document classification, we use HP(Kiesel366

et al., 2019), LUN (Rashkin et al., 2017), and Eu-367

rlex57k (Chalkidis et al., 2019). These datasets368

vary in average document length from 707 to369

1147 tokens, enabling us to assess performance370

on documents of different lengths and complexi-371

ties. Further details on dataset statistics and splits372

are available in Appendix A.5. 1) HP (Hyperpar-373

tisan News Detection) evaluates the classification374

of news articles based on hyperpartisan argumen-375

tation (Kiesel et al., 2019). We use the ‘byarticle’376

version, which contains 238 hyperpartisan and 407377

non-hyperpartisan articles. The same train-test split378

as in (Beltagy et al., 2020) is adopted. 2) LUN379

uses for unreliable news source classification, this380

dataset includes 17,250 articles from satire, propa-381

ganda, and hoaxes (Rashkin et al., 2017). Our goal382

is to predict the source type for each article. 3) Eu-383

rlex57k consists of 47,000 English EU legislative384

documents with 4,271 EUROVOC concepts. We385

also include a simulated Inverted-Eurlex57k ver-386

sion, where the header and recitals are moved to the387

end, compelling the model to read the entire docu-388

ment for key information. For token classification,389

we use GUM and CoNLL-2012 for Named Entity390

Recognition (NER) tasks: 1) GUM (Georgetown391

University Multilayer) is a richly annotated collec-392

tion of 235 documents across various genres such393

as academic texts, news, fiction, and interviews394

(Lin and Zeldes, 2021). GUM’s various linguistic395

styles and structures make it an excellent bench-396

2https://openai.com/index/hello-gpt-4o/
3https://deepmind.google/technologies/gemini/

pro/

mark for assessing token-level understanding in 397

lengthy documents, ensuring that the model cap- 398

tures complex entity relationships over extended 399

contexts. 2) CoNLL-2012 originally designed for 400

coreference resolution, and is adapted for NER in 401

our work (Pradhan et al., 2013). We convert the 402

data to a document-level format and select the top- 403

k longest documents in each split, emphasizing the 404

model’s ability to process extended text sequences 405

for token classification tasks. 406

Metrics and Implementation: For the HP 407

and LUN datasets, we use accuracy as the eval- 408

uation metric, while for Eurlex57k, Inverted Eu- 409

rlex57k, GUM, and CoNLL-2012, we adopt micro 410

F1. These metrics are chosen to maintain consis- 411

tency with prior work and facilitate direct compar- 412

ison. Regarding implementation, we provide key 413

details here, with the complete setup in Appendix 414

A.6. We use CrossEntropy loss for training on the 415

Hyperpartisan, LUN, CoNLL and GUM datasets, 416

and Binary CrossEntropy loss for the Eurlex57k 417

and Inverted Eurlex57k datasets. All models are 418

optimized using the AdamW optimizer, and train- 419

ing employs early stopping based on the respective 420

validation metric, with a patience threshold set to 421

10 epochs. A learning rate search is conducted for 422

each experiment to ensure optimal model perfor- 423

mance for comparison. Top-n value is set to 154. 424

5 Results 425

5.1 Document Classification 426

We evaluate the effectiveness of our ChuLo by 427

comparing it with fine-tuned PLMs and previously 428

published baselines (Park et al., 2022; Jaiswal and 429

Milios, 2023) on several benchmark datasets: HP, 430

LUN, EURLEX57K, and Inverted EURLEX57K. 431

The comparative results are summarized in Table 432

1, with input configurations provided in Table 2 433

and detailed descriptions available in Appendix 434

A.4. Our method demonstrates clear superiority 435

on three of the four datasets, achieving a signifi- 436

cant improvement of 6.43% accuracy on the LUN 437

dataset compared to the second-best model, BERT. 438

This marked improvement presents ChuLo’s abil- 439

ity to capture comprehensive document context 440

through its keyphrase-based chunk representation, 441

despite using only 512 input embeddings. The 442

results suggest that our method effectively miti- 443

gates the limitations of traditional truncation and 444

4We tested with different n values, but 15 was generally
better in most datasets
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Model HP LUN EUR I-EUR
BERT 0.9200 0.5797 0.7309 0.7053
ToBERT 0.8954 0.3697 0.6757 0.6731
CogLTX 0.9477 - 0.7013 0.7080
Longformer 0.9569 0.5552 0.5453 0.5647
BERT+TextRank† 0.9115 0.4880 0.7287 0.7130
BERT+Random† 0.8923 0.3015 0.7322 0.7147
ChunkBERT 0.9300 - 0.6494 0.6294
Ours 0.9538 0.6440 0.7332 0.7244

Table 1: Document classification Result. Following
previous work, we use accuracy for HP and LUN, and
micro F1 for other datasets. Results for LUN are ob-
tained by our own experiment based on provided base-
line codes and methods, while baseline results for the
other datasets are from previous work(Park et al., 2022;
Jaiswal and Milios, 2023). † are the BERT variants pro-
posed by (Park et al., 2022). The best performance for
each dataset is bolded while the second best is under-
scored, and we can see that our final model, a BERT-
based backbone, generally outperforms other baselines
across all datasets by achieving the best or second-best.

chunking strategies by preserving critical semantic445

information, which contributes to higher classifica-446

tion accuracy. On the EURLEX57K and Inverted447

EURLEX57K datasets, ChuLo achieves consistent448

performance gains over baselines, further validat-449

ing its capability to handle long documents effi-450

ciently. In these datasets, which have hierarchical451

labels and require understanding complex seman-452

tic structures, our model benefits from enhanced453

chunk representations that emphasize key content.454

This allows ChuLo to capture document semantics455

better, even when compared to models that can pro-456

cess larger input lengths. While our model delivers457

competitive results on the HP dataset, it trails be-458

hind Longformer by a slight margin of 0.0031 in459

accuracy. This marginal difference corresponds to460

only one additional correctly classified instance out461

of a total of 65 test samples.462

Model The Usage of Input
BERT F-512 tokens
ToBERT All
CogLTX S-512 tokens
Longformer F-4096 tokens
BERT+TextRank F-512 + S-512 tokens
BERT+Random F-512 + S-512 tokens
ChunkBERT All
Ours All (512*Chunk Size)

Table 2: The usage of the input content in the
experiments.“F-512“ and “F-4096“ means the first 512
tokens and the first 4096 tokens, “S-512“ means the
selected 512 tokens.

Interestingly, for the other datasets, Longformer463

underperforms compared to models like BERT vari-464

ants or CogLTX, which use the first 512 tokens and465

focus on selecting key sentences. This observation466

indicates that unfiltered additional content can in-467

troduce noise, negatively impacting classification 468

accuracy. In contrast, ChuLo expands the input con- 469

tent and strategically emphasizes key semantic ele- 470

ments during chunk representation. This approach 471

mitigates noise interference, ensuring that only the 472

most relevant information is retained and high- 473

lighted. Overall, the results confirm that ChuLo 474

consistently outperforms standard PLM baselines 475

and existing chunking methods in long document 476

classification tasks. Its ability to retain and empha- 477

size key semantic content, while efficiently han- 478

dling long inputs, makes it a robust solution for 479

various document classification challenges. 480

5.2 Longer Document Classification 481

To further validate the robustness of our model, we 482

evaluate its classification performance across vari- 483

ous document length ranges, with a particular focus 484

on longer documents. For this analysis, we con- 485

sider the documents with more than 1024 tokens 486

and more than 2048 tokens in the test set. We use 487

Longformer and off-the-shelf LLMs, GPT4o and 488

Gemini1.5 pro for comparison. As shown in Table 489

3, our model consistently outperforms others on 490

longer documents in the LUN dataset. Specifically, 491

for documents exceeding 2,048 tokens, ChuLo 492

maintains a higher accuracy compared to all base- 493

lines, demonstrating its capacity to handle lengthy 494

inputs effectively. This performance gain can be at- 495

tributed to our chunk representation’s emphasis on 496

keyphrases, which preserves crucial semantic con- 497

tent even when document length increases. On the 498

HP dataset, ChuLo and Longformer achieve perfect 499

accuracy (1.0) for documents longer than 2,048 to- 500

kens. However, for shorter documents (more than 501

1,024 tokens), ChuLo surpasses Longformer. This 502

improvement is likely due to our chunk represen- 503

tation strategy, which selectively highlights key 504

content rather than averaging information across 505

the entire document. As a result, ChuLo maintains 506

high semantic fidelity, leading to better overall per- 507

formance even with condensed text inputs. 508

We also benchmarked against newly released 509

LLMs, GPT-4o and Gemini 1.5 Pro, using longer 510

document inputs for both the LUN and HP datasets. 511

On LUN, GPT-4o achieved an accuracy of 0.7143 512

and Gemini 1.5 Pro scored 0.6531, both surpassing 513

Longformer. However, ChuLo achieved the highest 514

accuracy of 0.7959, showcasing its superiority in 515

handling long documents with diverse content. On 516

the HP dataset, GPT-4o (0.8889) and Gemini 1.5 517

Pro (0.7778) performed worse than Longformer 518
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LUN All(2250) 1024(243) 2048(49)
Longformer 0.5552 0.4062 0.5306
GPT4o - - 0.7143
Gemini1.5pro - - 0.6531
Ours 0.6741 0.5911 0.7959

(a) LUN dataset
HP All(65) 1024(28) 2048(9)
Longformer 0.9538 0.8929 1.000
GPT4o - - 0.8889
Gemini1.5pro - - 0.7778
Ours 0.9538 0.9286 1.000

(b) HP dataset

Table 3: Document classification results for comparison
on documents of different lengths: all documents in
the test set, the subset of documents longer than 1024
tokens, and longer than 2048 tokens respectively. Values
in brackets indicate the number of documents for each
specific document set. The best performance (Accuracy)
for each document set is bolded.

and ChuLo, both of which achieved a perfect ac-519

curacy of 1.0 on the longer documents. This high-520

lights ChuLo’s robustness and consistency in clas-521

sifying documents with varying length, even com-522

pared to advanced language models. The prompt523

and response samples are in Appendix A.8 and524

A.9. Overall, these results demonstrate that ChuLo525

not only outperforms standard PLM baselines and526

chunking methods on long documents but also re-527

mains competitive against the latest large language528

models. By prioritizing key semantic elements and529

managing document length, ChuLo maintains sta-530

ble performance across varying input lengths.531

Model CoNLL GUM
Longformer (4096) 0.5560 0.9427
BigBird (4096) 0.5553 0.9418
GPT4o 0.2290 0.3231
Gemini1.5 0.3036 0.3262
Ours (All) 0.9334 0.9555

Table 4: Results on token classification tasks. The best
performance for each dataset is bolded, and our model
achieves the best on both datasets.

5.3 Token Classification532

To further demonstrate the effectiveness of our533

chunk representation method, we evaluated it534

on a token-level classification task—specifically,535

Named Entity Recognition (NER) using long doc-536

uments. We compared our model against two537

state-of-the-art long-document pre-trained models,538

Longformer (Beltagy et al., 2020) and BigBird (Za-539

heer et al., 2020), as well as newly released large540

language models, GPT-4o and Gemini 1.5 Pro. As541

shown in Table 4, our model consistently outper-542

forms Longformer, BigBird and LLM models on543

the NER tasks, particularly on the CoNLL, where544

document lengths often exceed the input limitations545

of these baseline models. To leverage the broader 546

context captured by our chunk representation, we 547

integrate a BERT-decoder module that utilizes the 548

enhanced chunk embeddings to predict token la- 549

bels more accurately. This configuration allows the 550

model to maintain a global understanding of the 551

document while focusing on the local dependencies 552

necessary for precise token classification. All base- 553

lines struggle with these longer inputs due to their 554

limited capacity for handling extensive sequences. 555

In contrast, our method’s ability to encode the en- 556

tire document’s context through keyphrase-based 557

chunk representations enables it to achieve higher 558

accuracy in recognizing and classifying named en- 559

tities. This is particularly evident in cases where 560

long-distance dependencies and contextual nuances 561

play a critical role in determining the correct labels. 562

Overall, the results indicate that our model’s chunk 563

representation not only enhances performance on 564

document-level classification tasks but also proves 565

highly effective for token-level tasks such as NER, 566

validating its application in downstream tasks that 567

require a detailed and comprehensive understand- 568

ing of long document tokens. 569

CoNLL ALL (20) > 2048 (17) > 4096(6) > 8192 (2)
Longformer 0.5560 0.5268 0.3156 0.3116
BigBird 0.5553 0.5261 0.3145 0.3106
GPT4o 0.2290 0.2217 0.1252 0.0282
Gemini 1.5 0.3036 0.2633 0.1652 0.0584
Ours 0.9334 0.9325 0.9287 0.9206

(a) Results on CoNLL dataset.
GUM ALL (26) - > 512 > 1000(8) > 1042(6)
Longformer 0.9427 0.9427 0.9439
BigBird 0.9418 0.9417 0.9426
GPT4o 0.3231 0.3018 0.2808
Gemini 1.5 0.3262 0.3093 0.3215
Ours 0.9555 0.9558 0.9574

(b) Results on GUM dataset.

Table 5: NER results for comparison on documents of
different lengths. >number represents the documents
longer than the number, with the values in brackets
indicating the corresponding counts for the documents.
The best performance (Micro F1) is bolded and the
second best is underscored, and our model consistently
outperforms all the baselines for each document set.

5.4 Token Classification in Longer Documents 570

We further analyze the NER performance across 571

different document length ranges. As presented in 572

Table 5a and Table 5b, we report the number of doc- 573

uments exceeding specific length thresholds and 574

their corresponding performance metrics. On the 575

CoNLL, as document lengths exceed the maximum 576

input capacities of Longformer and BigBird, both 577

models exhibit significant performance drops to 578
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(a) CoNLL Performance (Range: 1798 to 9778) (b) GUM Performance (Range: 628 to 1281)

Figure 2: Comparison of performance in different length ranges for CoNLL and GUM datasets. Values of brackets
includes the min and max length of each dataset.

31.56% and 31.45%, respectively. In contrast, our579

model experiences a minimal decrease of 1.28%,580

showcasing its resilience and effectiveness in han-581

dling long sequences. For the GUM, where all doc-582

ument lengths are within the acceptable range for583

these models, performance remains stable across584

all models, with our approach consistently achiev-585

ing the best results. Figures 2a and 2b visualize586

the performance breakdown across varying length587

ranges. For the CoNLL, our model maintains high588

performance in all length intervals, while Long-589

former and BigBird exhibit comparable perfor-590

mance within the [1k-2k) range but degrade sig-591

nificantly for longer texts, even for documents that592

do not exceed their maximum input length. This593

discrepancy suggests that the uneven distribution594

of document lengths in their pretraining corpora595

may lead to inconsistent performance on longer596

sequences. In contrast, our model’s ability to com-597

press the entire document into 512-length chunks598

for the decoder enables it to leverage complete599

contextual information, resulting in better stability600

and accuracy even on longer documents. For the601

GUM, where document lengths are shorter (up to602

1.3k tokens), our model consistently outperforms603

Longformer and BigBird in all intervals. The stable604

performance of all models on GUM aligns with the605

results on CoNLL, further confirming that our ap-606

proach’s chunk representation is particularly effec-607

tive when documents reach lengths that exceed the608

standard input capacities of the baselines. These609

results underscore the effectiveness of our chunk610

representation, which emphasizes keyphrase infor-611

mation, for coarse-grained document classification612

and fine-grained token-level classification tasks like613

NER. The ability to maintain performance across614

varying document lengths highlights the impor-615

tance of incorporating global contextual informa-616

tion in NER tasks—a largely underexplored aspect.617

Additionally, off-the-shelf LLMs such as GPT-4o 618

and Gemini 1.5 Pro show suboptimal performance 619

on NER tasks without fine-tuning, and their per- 620

formance deteriorates further as document length 621

increases. This indicates that, despite their advance- 622

ments, LLMs still require substantial optimization 623

for effective long document understanding. 624

5.5 Ablation Studies 625

We conducted more ablation studies, including 1) 626

keyphrase extraction methods, 2) sentence embed- 627

ding approaches, and 3)backbone model analysis, 628

shown in Appendix A.7. 629

5.6 Qualitative Analysis 630

We performed a qualitative analysis by visualiz- 631

ing each sample document from different datasets, 632

comparing the outputs of Longformer, GPT-4o, 633

Gemini 1.5 Pro, and our ChuLo. ChuLo captures 634

the context and semantic patterns of the document, 635

providing accurate predictions, whereas the other 636

models struggle to maintain coherence and consis- 637

tency. We have more examples in Appendix A.9. 638

6 Conclusion 639

We introduced ChuLo, a novel chunk represen- 640

tation method that enhances the performance 641

of Transformer-based models on long document 642

classification and token-level classification tasks. 643

By utilizing unsupervised keyphrase extraction, 644

ChuLo effectively reduces input length while pre- 645

serving critical information, addressing the limita- 646

tions of truncation and sparse attention. Extensive 647

experiments demonstrate that ChuLo outperforms 648

existing methods by maintaining both global con- 649

text and high accuracy, even for lengthy inputs. 650

Our research results highlight the effectiveness of 651

ChuLo as a robust solution for long document un- 652

derstanding, enabling processing of complex texts 653

in NLP applications. 654
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7 Limitation655

There are several opportunities for future work, in-656

cluding extending the chunk representation to gen-657

erative tasks such as long text generation, where658

chunk representation may extend the LLM’s con-659

text range limitation and enhance generation qual-660

ity. However, the performance of the keyphrase661

extraction method poses a potential risk, as its qual-662

ity directly affects the overall effectiveness of the663

approach. We believe this work offers valuable664

insights into long text understanding and lays a665

foundation for advancements in related tasks.666
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A Appendix958

A.1 Related Works959

As shown in Table 6, most of the previous works960

addressing the problem of processing long docu-961

ments cannot fully utilize all the content. Those962

methods either reduce input length via truncation963

or focus on local context learning to improve effi-964

ciency by applying sparse attention, approximated965

attention or RNN integration. Such approaches will966

lead to a certain level of information loss, unlike967

our chunking approach which can take all the con-968

tent into consideration. Hierarchical Transformer969

(Pappagari et al., 2019) splits documents into non-970

overlapping chunks and computes chunk represen-971

tations. RoR (Zhao et al., 2021) generates regional972

answers from chunks, which are combined for the973

final answer. However, neither considers the en-974

tire document context when chunking. In addition,975

previous works applying the chunking method for976

processing long document context only focus on a977

single task, either document classification or token978

classification, while our framework can be applied979

to both tasks to guarantee both document-level and980

token-level understanding.981

A.2 Keyphrase Extraction982

We employ the Semantic Keyphrase Prioritiza-983

tion (SKP) algorithm to extract keyphrases that984

encapsulate the key semantic information of the985

entire document. The detailed are shown in Algo-986

rithm 1. While PromptRank uses prompts to rank987

keyphrases across the first segment of the docu-988

ment determined by its encoder model, our SKP989

applies this concept at the entire document level990

to ensure that each chunk can preserve the most991

informative content for the entire document. Af-992

ter obtaining the sorted phrases set Ks, we select993

top-n phrases as the keyphrases of the document,994

which can be regarded as ranked phrases according995

to their contextual significance within the entire996

document.997

A.3 Baselines998

We use BERT (Kenton and Toutanova, 2019) as999

our backbone model, comparing it with ToBERT1000

(Pappagari et al., 2019), CogLTX (Ding et al.,1001

2020), Longformer (Beltagy et al., 2020), various1002

BERT variants (Park et al., 2022) and ChunkBERT1003

(Jaiswal and Milios, 2023) for the document clas-1004

sification task. For the NER task, we compare1005

against Longformer, BigBird (Zaheer et al., 2020),1006

and two large language models, GPT4o and Gem- 1007

ini1.5pro. Below are brief descriptions of the base- 1008

line models: 1009

• BERT: A transformer model pre-trained on 1010

masked language modeling (MLM) and next- 1011

sentence prediction (NSP). We fine-tuned the 1012

BERT-base variant on each dataset. 1013

• ToBERT: A BERT variant designed for long 1014

document classification, utilizing an addi- 1015

tional transformer layer to learn inter-chunk 1016

relationships. 1017

• CogLTX: A framework for applying BERT 1018

to long documents by training a key sentence 1019

identification model to assist in document un- 1020

derstanding 1021

• Longformer: Optimized for long sequences 1022

using sparse attention, combining dilated slid- 1023

ing window and global attention patterns 1024

• BigBird: Utilizes block sparse attention, in- 1025

tegrating sliding window, global, and random 1026

attention patterns across token blocks. 1027

• BERT+TextRank and BERT+Random: Pro- 1028

posed to select other tokens randomly or with 1029

the help of TextRank(Mihalcea and Tarau, 1030

2004) to feed into the BERT model as the 1031

supplementation for long document classifica- 1032

tion. 1033

• ChunkBERT: A BERT variant for long 1034

document classification that processes self- 1035

attention within document chunks and adds a 1036

TextCNN module for classification using the 1037

chunk representation. 1038

• GPT-4o: A transformer-based multi-modal 1039

large language model developed by OpenAI, 1040

which leverages large-scale pretraining data to 1041

process diverse language tasks via instruction 1042

prompts. 1043

• Gemini 1.5 Pro: an advanced multi-modal 1044

AI model from Google, leveraging a Sparse 1045

Mixture-of-Experts (MoE) Transformer archi- 1046

tecture, with a context window of up to 2 mil- 1047

lion tokens. This architecture allows for the 1048

efficient handling of long documents. 1049
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Algorithm 1 Semantic Keyphrase Prioritization (SKP) Algorithm
Input: A tokenized document D, an encoder-decoder pretrained model
represented by FE and FD , a POS tagger FPOS , a regular expression
FREG = ⟨NN. ∗ |JJ⟩ ∗ ⟨NN.∗⟩
Parameter: Experimentally determined α, γ
Output: Sorted keyphrases set Ks

1: Let S = ∅, Ks = ∅, i = 0, j = 0.
2: Get the candidate phrases set:

K = FREG(FPOS(D)) = {k0, k1, . . . , kn−1}
3: Split D into segments S = {D0, D1, . . . , Dm−1} to meet the input

requirement of FE

4: for i < n do
5: Calculate the position penalty ri = Lc

ld
+ γ

(ld)3

where Lc is the first occurrence position of ki in the document, ld is
the length of the document

6: Construct the prompt P “The * mainly discusses ki” and tokenize, * is
the category of the document.

7: for j < m do
8: Calculate the probability pij of the phrase ki:

pij = 1
(lP )α

∑h+lk−1

g=h log p(tg | t<g),
p(tg | t<g) = FD(FE(Dj), t<g)
where lP is the length of the tokenized P , h is the start index of ki

in the prompt, lk is the length of ki, t is the token of the prompt.
9: end for
10: Calculate the final score of ki: si = ri ×

∑j<m
j=0 pij

11: end for
12: return Ks = Sort(K, s)

Model Year Task Lengthy Document Solution Core Architecture
Efficient Classification (Park et al., 2022) 2022 D Truncating Transformer
Hierarchical transformer (Pappagari et al., 2019) 2019 D Chunking (Partial, Phrase) Transformer
RoR (Zhao et al., 2021) 2021 T Chunking (Partial, Voting) Transformer
Longformer (Beltagy et al., 2020) 2020 D, T Sparse Attention Transformer
BigBird (Zaheer et al., 2020) 2020 D, T Sparse Attention Transformer
Routing Transformer (Roy et al., 2021) 2021 D, T, G Sparse Attention Transformer
Macformer (Peng et al., 2021) 2021 D, T Approximated Attention Transformer
Linformer (Wang et al., 2020) 2020 D, T, G Approximated Attention Transformer
Performer (Choromanski et al., 2020) 2020 D, T, G Approximated Attention Transformer
Transformer-xl (Dai et al., 2019) 2019 G RNN Integration Transformer
Block-Recurrent Transformer (Hutchins et al., 2022) 2022 G RNN Integration Transformer
RAN (Li et al., 2023b) 2023 D, T RNN Integration Attention
(Çetindağ et al., 2023) 2023 T N/A LSTM
(Mengliev et al., 2024) 2024 T N/A Neural Network
(Park et al., 2023) 2023 T N/A Transformer
(Bhattacharya et al., 2023) 2023 T N/A LSTM
Gpt-NER (Wang et al., 2023) 2023 T N/A Transformer
(Dagdelen et al., 2024) 2024 T N/A Transformer
(Hu et al., 2024) 2024 T N/A Transformer
(Yu et al., 2023) 2023 T N/A Transformer
(Zhang et al., 2023) 2023 T N/A Transformer
Ours 2024 D, T Chunking (Entire) Transformer

Table 6: Summary of Related Works. D, T, G represent tasks of document classification, token classification, and
text generation, respectively.

A.4 Baseline Input1050

We selected these baseline models because they1051

represent diverse methods for processing long doc-1052

uments. As summarized in Table 7, BERT trun-1053

cates the input to 512 tokens. Longformer and Big-1054

Bird utilize sparse attention mechanisms, allowing1055

them to process up to 4096 tokens while conserv-1056

ing computational resources. ToBERT divides the1057

input into 200-token chunks, feeds them to BERT1058

for chunk representations, and uses a transformer1059

layer for downstream tasks. However, it cannot1060

capture dependencies across the entire input se-1061

quence. CogLTX selects key sentences to form1062

a 512-token input, limiting its input size to that1063

constraint. BERT variants like BERT+TextRank1064

and BERT+Random select up to 512 tokens us-1065

ing TextRank or random selection. They concate-1066

nate the [CLS] representation of the initial 5121067

tokens with the selected tokens, creating an aug-1068

mented input for a fully connected classification1069

layer, with a maximum input length of 1024 to-1070

kens. ChunkBERT splits the input into chunks,1071

computes self-attention, and feeds chunk represen- 1072

tations into a TextCNN module for classification. 1073

The original implementation processes up to 4096 1074

tokens per document. It has the same limitation 1075

as the ToBERT. For GPT4o and Gemini1.5pro, we 1076

input all tokens together with our instruction in the 1077

prompt due to the large input size supported by 1078

these large language model. In contrast to these 1079

baseline models, our approach flexibly segments 1080

the entire input into chunks of varying sizes, using 1081

semantic keyphrases to minimize information loss. 1082

Additionally, we compute chunk-level attention to 1083

capture long-range dependencies more effectively. 1084
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Model Input
BERT (Kenton and Toutanova, 2019) The first 512 tokens
ToBERT (Pappagari et al., 2019) Segmented all input tokens
CogLTX (Ding et al., 2020) Selected 512 tokens
Longformer (Beltagy et al., 2020) The first 4096 tokens
BigBird (Zaheer et al., 2020) The first 4096 tokens
BERT+TextRank (Park et al., 2022) The first 512 tokens with the selected 512 tokens
BERT+Random (Park et al., 2022) The first 512 tokens with the selected 512 tokens
ChunkBERT (Jaiswal and Milios, 2023) The first 4096 tokens
GPT4o All input tokens with instruction
Gemini1.5pro All input tokens with instruction

Table 7: The input of the baseline models

A.5 Details of datasets1085

Datasets Train/Dev/Test #Classes Avg. Length
HP 516/64/65 2 705
LUN 12003/2992/2250 3 480
EURLEX57k 45000/6000/6000 4271 707
-INVERTED 45000/6000/6000 4271 707
GUM 179/26/26 21 972
CoNLL 120/20/20 37 5065

Table 8: The split and statistics of the datasets, including
document classification task (HP, LUN, EURLEX57K,
and Inverted EURLEX57K) and token classification
task (GUM, CoNLL)

We analyzed the data distribution across the1086

datasets used in this paper. Of these, the CoNLL1087

dataset has the highest average number of tokens1088

per document at 5,065. In contrast, LUN has the1089

shortest average length, with 480 tokens per doc-1090

ument. Both HP and EURLEX57K have similar1091

average document lengths, measuring 705 and 7071092

tokens respectively. GUM presents a relatively1093

higher token count, averaging 972 tokens per docu-1094

ment.1095

Regarding the number of classes, EURLEX57K1096

is the most complex dataset, containing 4,2711097

unique labels. In comparison, HP and LUN are1098

more limited, with only 2 and 3 classes respec-1099

tively. GUM and CoNLL are more diverse, with1100

21 and 37 different classes. Beyond label diver-1101

sity, EURLEX57K also has the largest sample size,1102

comprising 45,000 training samples, 6,000 devel-1103

opment samples, and 6,000 test samples. LUN1104

is the second-largest dataset, with 12,003 training1105

samples, 2,992 development samples, and 2,2501106

test samples. Due to our selection strategy, CoNLL1107

has the longest average document length, with the1108

fewest samples. It has a total of 160 documents1109

split into 120/20/20 for training, development, and1110

test sets. GUM follows a similar distribution with1111

179/26/26 samples. The HP dataset includes 5161112

training samples, 64 development samples, and 651113

test samples.1114

A.6 Implementation details 1115

A.6.1 Experiment hyperparameters 1116

We performed extensive experiments to select 1117

the hyperparameters, including chunk size, token 1118

weights, learning rates, and warm-up strategies 1119

and steps. The optimal hyperparameters for each 1120

dataset for our proposed ChuLo model are pre- 1121

sented in Table 9. 1122

A.6.2 Hardware Information 1123

Our experiments are run on the Linux platform 1124

with an A6000 Nvidia graphic card and an AMD 1125

Ryzen Threadripper PRO 5955WX 16-core CPU, 1126

and the RAM is 128G. 1127

A.7 Ablation Studies 1128

We performed a few ablation studies on the HP 1129

and LUN to assess the impact of various com- 1130

ponents within our model. First, we analyzed 1131

the effectiveness of different keyphrase extrac- 1132

tion methods and the effect of using average 1133

chunk representations. As shown in Table 10, the 1134

PromptRank-based method yields the highest per- 1135

formance across both datasets, outperforming al- 1136

ternatives like YAKE-based. This improvement 1137

can be attributed to PromptRank’s ability to ex- 1138

tract higher-quality keyphrases by considering se- 1139

mantic relationships within the document, whereas 1140

YAKE relies primarily on statistical features such 1141

as phrase frequency, resulting in less semantically 1142

rich keyphrases. Then, we explored the effect of 1143

incorporating sentence embeddings into the chunk 1144

representations to introduce global sentence-level 1145

context. Surprisingly, as shown in Table 11, the 1146

results indicate a performance drop when sentence 1147

embeddings are included. We hypothesize that 1148

adding sentence-level information at the initial rep- 1149

resentation stage may cause chunk embeddings 1150

within the same sentence to become too similar, 1151

hindering the model’s ability to learn distinctive 1152

patterns and reducing overall classification perfor- 1153

mance. Then, we evaluated the performance of 1154
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Hyperparameter HP LUN EURLEX57K I-EURLEX57K CoNLL GUM
Number of top-n phrases 15 15 15 15 15 15
Chunk size n 10 50 5 5 20 50
Weight for Tk 0.8 0.5 0.8 0.8 0.8 0.8
Weight for Tnk 0.1 0.1 0.1 0.1 0.1 0.1
Learning Rate 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5
Batch Size 16 32 16 16 2 8
Warm-up Strategy Linear Linear Cosine Cosine Linear Linear
Warm-up Steps 10% 10% 5% 5% 10% 10%
Mex epoch 100 100 100 100 100 100
Stop Patience 10 10 10 10 10 10
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Optimizer Weight Decay 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2
Optimizer Betas 0.9, 0.999 0.9, 0.999 0.9, 0.999 0.9, 0.999 0.9, 0.999 0.9, 0.999

Table 9: The optimal hyperparameters used in our experiments.

different backbone models for the chunk attention1155

module while keeping the keyphrase extraction and1156

chunk representation settings consistent. Table 121157

shows that BERT outperforms Longformer as the1158

backbone. This result suggests that, after docu-1159

ment chunking, the input sequences become rela-1160

tively short, making it difficult for Longformer to1161

leverage its long-range attention capabilities fully.1162

Consequently, Longformer may suffer underuti-1163

lization during training, resulting in suboptimal1164

performance compared to BERT.1165

Keyphrase method HP LUN
Average 0.9538 0.5951
YAKE 0.8769 0.5951
PromptRank 0.9538 0.6440

Table 10: Effect of keyphrase extraction methods; Aver-
age: Average Chunk Representations

Sentence Embedding HP LUN
w/o sentence emb. 0.9538 0.6440
sentence emb. 0.9076 0.5537

Table 11: Effect of sentence embedding, adding the
sentence-level information to the chunk representations.

Backbone HP LUN
BERT (Ours) 0.9538 0.6440
RoBERTa 0.8615 0.5906
Longformer 0.8923 0.5600

Table 12: Effect of different backbone models for the
chunk attention.

A.8 Prompt Method1166

We employed zero-shot prompting with large lan-1167

guage models (LLMs), specifically Gemini 1.5 Pro1168

and GPT4o, in our experiments. The prompts used1169

for each dataset are detailed in Table 13 and 14:1170

Table 3 shows that LLMs outperform Long-1171

former in the document classification task with1172

zero-shot prompt tuning. However, their perfor-1173

mance drops significantly in the NER task in Table1174

5a and Table 5b. For instance, in Figure 11, both1175

GPT4o and Gemini1.5pro only predicted a single1176

correct label, “O”. Moreover, the models often1177

Dataset Prompt

LUN Task Definition: You are provided with a news article. Your
task is to classify the article into one of the following cate-
gories: "Satire” "Hoax” or "Propaganda” Respond only with
the appropriate category. The news is: [{input}].

HP Task Definition: You are provided with a news article. Your
task is to classify whether the article is hyperpartisan. Respond
only with "True” if the news is hyperpartisan or "False” if it is
not. The news is: [{input}].

Table 13: The prompt we used for each dataset in our
experiments.

fail to predict a sufficient number of token labels 1178

for longer inputs, or they repeatedly predict all 1179

“O” labels or redundant label sequences. These 1180

inconsistencies suggest that LLMs struggle to gen- 1181

erate outputs matching the input length in token 1182

classification, highlighting substantial room for im- 1183

provement in this area. 1184

A.9 More Case Studies 1185

In this section, we will present several prompt and 1186

output samples for the long documents from the 1187

LUN (Figures 3) and 4) and Hyperpartisan (Fig- 1188

ures 5 and 6) datasets for document classifica- 1189

tion, as well as GUM (Figures 7, 8 and 9) and 1190

CoNLL (Figures 10, 11, 12 and 13) datasets 1191

for NER task. Documents with various lengths 1192

are randomly selected to see the comparison of 1193

our model against GPT-4, Gemini1.5pro and Long- 1194

former. While there is always at least one baseline 1195

which predicts wrongly for the difficult cases pre- 1196

sented for the document classification task, we can 1197

observe that our model consistently classifies those 1198

documents well. For the token classification task, 1199

our model can also correctly classify more tokens 1200

than each baseline across the shown cases. 1201
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Dataset Prompt

CoNLL In the task of Named Entity Recognition, the B-, I-, and O- prefixes are commonly used to annotate slot types, indicating the
boundaries and types of slots. These labels typically represent: B- (Begin): Signifies the beginning of a slot, marking the
start of a new slot. I- (Inside): Represents the interior of a slot, indicating a continuation of the slot. O (Outside): Denotes
parts of the input that are not part of any slot. For instance, in a sentence where we want to label a "date" slot, words
containing date information might be tagged as "B-date" (indicating the beginning of a date slot), followed by consecutive
words carrying date information tagged as "I-date" (indicating the continuation of the date slot), while words not containing
date information would be tagged as "O" (indicating they are outside any slot).
Definition: In this task, you are given a conversation, where the words spoken by a person are shown as a list. Your job is to
classify the words in the following conversation into one of the 37 different entities. The entities are: "O", "B-PERSON",
"I-PERSON", "B-NORP", "I-NORP", "B-FAC", "I-FAC", "B-ORG", "I-ORG", "B-GPE", "I-GPE", "B-LOC", "I-LOC", "B-
PRODUCT", "I-PRODUCT", "B-DATE", "I-DATE", "B-TIME", "I-TIME", "B-PERCENT", "I-PERCENT", "B-MONEY",
"I-MONEY", "B-QUANTITY", "I-QUANTITY", "B-ORDINAL", "I-ORDINAL", "B-CARDINAL", "I-CARDINAL",
"B-EVENT", "I-EVENT", "B-WORK_OF_ART", "I-WORK_OF_ART", "B-LAW", "I-LAW", "B-LANGUAGE", "I-
LANGUAGE". Only output entities. And the entity types should be output as a list without any explanation. The input is
[{input}].

GUM In the task of Named Entity Recognition, the B-, I-, and O- prefixes are commonly used to annotate slot types, indicating the
boundaries and types of slots. These labels typically represent: B- (Begin): Signifies the beginning of a slot, marking the
start of a new slot. I- (Inside): Represents the interior of a slot, indicating a continuation of the slot. O (Outside): Denotes
parts of the input that are not part of any slot. For instance, in a sentence where we want to label a "date" slot, words
containing date information might be tagged as "B-date" (indicating the beginning of a date slot), followed by consecutive
words carrying date information tagged as "I-date" (indicating the continuation of the date slot), while words not containing
date information would be tagged as "O" (indicating they are outside any slot).
Definition: In this task, you are given a conversation, where the words spoken by a person are shown as a list. Your job
is to classify the words in the following conversation into one of the 37 different entities. The entities are: "I-abstract",
"B-object", "B-place", "I-substance", "I-time", "I-place", "B-time", "B-abstract", "I-person", "B-plant", "B-substance",
"I-animal", "B-organization", "I-event", "B-person", "B-event", "I-plant", "I-organization", "O", "I-object", "B-animal".
Only output entities. And the entity types should be output as a list without any explanation. The input is [{input}].

Table 14: The prompt we used for each dataset in our experiments.

Figure 3: Prompt and output for a sample document of
length 3928 in LUN dataset, where the correct predic-
tion is highlighted in green and wrong predictions are
highlighted in red. Compared to GPT4o, Gemini1.5pro
and Longformer, our model can correctly classify the
given document as Hoax.

Figure 4: Prompt and output for a sample document of
length 2410 in LUN dataset, where the correct predic-
tion is highlighted in green and wrong predictions are
highlighted in red. Compared to GPT4o, Gemini1.5pro
and Longformer, our model can correctly classify the
given document as Propaganda.
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Figure 5: Prompt and output for a sample document
of length 6800 in Hyperpartisan dataset, where cor-
rect predictions are highlighted in green and the wrong
prediction is highlighted in red. Compared to Gem-
ini1.5pro, our model, GPT4o and Longformer can cor-
rectly classify the given document as False.

Figure 6: Prompt and output for a sample document of
length 2445 in Hyperpartisan dataset, where correct
predictions are highlighted in green and wrong predic-
tions are highlighted in red. Compared to GPT4o and
Gemini1.5pro, our model and Longformer can correctly
classify the given document as False.

Figure 7: Prompt and output for a sample document
of length 895 in GUM dataset for NER task, where
correct predictions are highlighted in green and wrong
predictions are highlighted in red.

Figure 8: Prompt and output for a sample document
of length 1029 in GUM dataset for NER task, where
correct predictions are highlighted in green and wrong
predictions are highlighted in red.
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Figure 9: Prompt and output for a sample document
of length 1281 in GUM dataset for NER task, where
correct predictions are highlighted in green and wrong
predictions are highlighted in red.

Figure 10: Prompt and output for a sample document
of length 1798 in CoNLL dataset for NER task, where
correct predictions are highlighted in green and wrong
predictions are highlighted in red.

Figure 11: Prompt and output for a sample document
of length 3038 in CoNLL dataset for NER task, where
correct predictions are highlighted in green and wrong
predictions are highlighted in red.

Figure 12: Prompt and output for a sample document
of length 7474 in CoNLL dataset for NER task, where
correct predictions are highlighted in green and wrong
predictions are highlighted in red.
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Figure 13: Prompt and output for a sample document
of length 9778 in CoNLL dataset for NER task, where
correct predictions are highlighted in green and wrong
predictions are highlighted in red.
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