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Abstract

Transformer-based models have achieved re-
markable success in various Natural Language
Processing (NLP) tasks, yet their ability to han-
dle long documents is constrained by computa-
tional limitations. Traditional approaches, such
as truncating inputs, sparse self-attention, and
chunking, attempt to mitigate these issues, but
they often lead to information loss and hinder
the model’s ability to capture long-range de-
pendencies. In this paper, we introduce ChuLo,
a novel chunk representation method for long
document understanding that addresses these
limitations. Our ChuLo groups input tokens us-
ing unsupervised keyphrase extraction, empha-
sizing semantically important keyphrase based
chunks to retain core document content while
reducing input length. This approach mini-
mizes information loss and improves the ef-
ficiency of Transformer-based models. Preserv-
ing all tokens in long document understand-
ing, especially token classification tasks, is im-
portant to ensure that fine-grained annotations,
which depend on the entire sequence context,
are not lost. We evaluate our method on multi-
ple long document classification tasks and long
document token classification tasks, demon-
strating its effectiveness through comprehen-
sive qualitative and quantitative analysis.

1 Introduction

Transformer-based models (Vaswani et al., 2017),
including LLMs (Radford, 2018; Radford et al.,
2019; Brown et al., 2020; Ouyang et al., 2022; Tou-
vron et al., 2023a,b; Chowdhery et al., 2023; Anil
et al., 2023; Dubey et al., 2024), have achieved
remarkable success across a wide range of Natu-
ral Language Processing (NLP) tasks, including
Machine Translation, Text Summarization, Text
Generation, and Text Classification. A key fac-
tor behind their success is the self-attention mech-
anism, which allows the model to capture long-
range dependencies by computing the similarity be-
tween any two tokens and aggregating information

accordingly. However, this mechanism incurs a
quadratic computational cost in terms of both time
and space, relative to input length. This compu-
tational burden makes it difficult for Transformer-
based models to scale to long documents, limit-
ing their application to real-world data with unre-
stricted document lengths. To address this chal-
lenge, several approaches have been proposed for
applying Transformer-based models to long doc-
uments while managing computational resources.
One of them is truncating, where the model dis-
cards content exceeding a predefined input length.
For instance, BERT (Kenton and Toutanova, 2019)
processes up to 512 tokens, and LL.aMa (Touvron
et al., 2023a) handles up to 2048 tokens, with any
additional content being ignored. Another one is
sparse self-attention, which reduces computational
complexity by restricting each query token to at-
tend only to a subset of key tokens (Child et al.,
2019; Beltagy et al., 2020; Zaheer et al., 2020; Wei
et al., 2021; Li et al., 2023a). Lastly, chunking
divides long documents into smaller, manageable
segments that are processed independently by the
model (Zhao et al., 2021; Zhang et al., 2022).
While these methods enable Transformer-based
models to process long documents, they have limi-
tations. Truncation risks discarding important in-
formation that falls beyond the maximum input
length. Although more efficient, Sparse attention
reduces each token’s receptive field, leading to po-
tential information loss from the neglected tokens.
Similarly, chunking breaks the input into isolated
segments, which can disrupt long-range dependen-
cies critical for a comprehensive understanding of
the document. Preserving all tokens is particularly
important in tasks that require fine-grained token-
level understanding, such as token classification. In
such tasks, dropping tokens can severely impact the
accuracy of fine-grained annotations, which often
depend on the full context of the document. There-
fore, there is a need for methods that can handle



long documents efficiently while retaining all key
information from the input.

In this paper, we introduce ChuLo, a novel
chunk-level key information representation method
that addresses these challenges in long document
classification and token classification. Our method
reduces input length while minimizing information
loss by strategically grouping tokens using unsu-
pervised keyphrase extraction. By identifying and
emphasizing semantically important tokens, ChuLo
ensures that each chunk retains the core content of
the document. The resulting chunk representation
is used for training Transformer models, with more
weight assigned to keyphrases to make them more
salient in each chunk. We evaluate ChuLo on var-
ious long document classification tasks and long
document token classification tasks, demonstrating
its effectiveness through competitive results and
thorough analysis.

The key contributions of this paper are as fol-
lows: 1) Novel Chunk Representation Method:
We introduce Chulo, a chunk representation
method for long document understanding that lever-
ages unsupervised keyphrase extraction to priori-
tize semantically important information, effectively
reducing input length while preserving core con-
tent. 2) Enhanced Document and Token Classifi-
cation: Our proposed method is designed to handle
both document-level and token-level tasks, address-
ing the limitations of existing models in retaining
fine-grained annotations and global context in long
documents. 3) Scalable and Efficient Solution:
ChuLo offers a scalable and efficient approach for
long document understanding, making it suitable
for various NLP tasks where handling long-range
dependencies and context preservation is critical.

2 Related Work

2.1 Long Document Understanding

Document understanding involves global under-
standing (e.g., classification) and token-level tasks
(e.g., named entity recognition). Transformer-
based models face performance issues with long
inputs, addressed through input processing and ar-
chitecture optimization. Input processing methods
include truncating tokens beyond the input limit
(Park et al., 2022) and chunking, as seen in Hier-
archical Transformer (Pappagari et al., 2019) and
RoR (Zhao et al., 2021), though these often neglect
full document context. Architecture optimizations
improve efficiency using sparse attention (Beltagy

et al., 2020; Zaheer et al., 2020; Roy et al., 2021)
or approximations (Peng et al., 2021; Wang et al.,
2020; Choromanski et al., 2020). Other approaches
incorporate RNN concepts, such as cache memory
(Dai et al., 2019; Hutchins et al., 2022; Li et al.,
2023b). These methods balance performance and
efficiency, highlighting the need to reduce input
length effectively.

For document NER, text length is less stud-
ied, with recent work addressing low-resource lan-
guages (Cetindag et al., 2023; Mengliev et al.,
2024), complex domains (Park et al., 2023; Bhat-
tacharya et al., 2023), prompt-based methods
(Wang et al., 2023; Dagdelen et al., 2024; Hu et al.,
2024), and multimodal data (Yu et al., 2023; Zhang
et al., 2023). Our work tackles these challenges'
with a novel chunk representation that preserves
semantic information while reducing input length,
enhancing both classification and token-level tasks.

2.2 Unsupervised Keyphrase Extraction

Unsupervised keyphrase extraction identifies rep-
resentative phrases to summarize content without
labelled data (Hasan and Ng, 2014). Methods in-
clude statistics-based (e.g., TfIdf (El-Beltagy and
Rafea, 2009), co-occurrence (Liu et al., 2009), and
context statistics (Campos et al., 2020; Won et al.,
2019)), graph-based (e.g., TextRank (Mihalcea
and Tarau, 2004) and its variants (Wan and Xiao,
2008; Bougouin et al., 2013; Florescu and Caragea,
2017; Yu and Ng, 2018)), and embedding-based ap-
proaches (e.g., EmbedRank (Bennani-Smires et al.,
2018), SIFRank (Sun et al., 2020), and PromptRank
(Kong et al., 2023)). While effective, these meth-
ods prioritize phrase extraction and ranking over
improving downstream tasks. Our work integrates
keyphrase extraction with chunk representation to
enhance long document understanding.

3 Chulo

We propose ChuLo, a novel chunk representation
method that enhances long document understand-
ing by reducing input length while preserving se-
mantic content. Unlike existing approaches like
truncation and standard chunking, ChuLo mini-
mizes information loss and maintains contextual
dependencies. The method segments documents
into non-overlapping chunks, integrates key seman-
tic information using unsupervised keyphrase ex-

'The summary of Long Document Understanding related
works can be found in Appendix A.1
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Figure 1: The Overall ChuLo Framework proposed in this
C,, represents the chunk representation.

traction, and assigns higher weights to keyphrase
tokens in chunk representations. These enriched
chunks train a Transformer-based chunk attention
module, enabling efficient processing of long doc-
uments while retaining global and local context.
Further details are provided in subsequent subsec-
tions, with the framework illustrated in Figure 1.

3.1 Document Input Chunking

To effectively manage long document inputs, we
employ a chunking strategy that reduces input
length while preserving all relevant information.
Common approaches to long document processing,
such as truncation and sparse attention, either disre-
gard parts of the document(Lewis et al., 2020; Park
et al., 2022) or restrict the receptive field of indi-
vidual tokens (Beltagy et al., 2020; Zaheer et al.,
2020; Brown et al., 2020), resulting in potential in-
formation loss. Our approach mitigates these issues
by segmenting the document into non-overlapping
chunks before feeding them into the model. It en-
ables complete self-attention among chunks, ensur-
ing that all information is retained and enabling the
model to process larger portions of the document
context. Specifically, we first tokenize the docu-
ment D = (to,t1,...,t,,—1) and divide it into
fixed-length chunks Cp = (Cy,C4,...,Chr-1),
where [ is the number of the tokens, each chunk
C consists of n tokens, and m = [%D] is the num-
ber of chunks. The incomplete chunks will be
padded with the [PAD] tokens. The chunk size n is
a hyper-parameter controlling the degree of input
length reduction. By grouping tokens this way, we
maintain the integrity of the input content while al-
leviating the computational burden associated with
processing long sequences.
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3.2 Semantic Key Information Extraction

The fundamental reason for extracting keyphrases
from the chunks, as defined in the document chunk-
ing step, is to maintain the integrity of the doc-
ument’s semantic content while reducing input
length. During chunking, the document is divided
into smaller segments, which can inadvertently dis-
tribute important semantic information unevenly
across chunks or even cause it to be diluted. Sim-
ply treating each chunk equally may lead to over-
looking critical context essential for accurate docu-
ment classification and token-level understanding.
Identifying and highlighting critical phrases within
these chunks ensures that the most relevant infor-
mation is preserved and emphasized, allowing the
model to focus on the core content even within a
limited input space. This compensates for the in-
formation fragmentation caused by chunking and
guides the Transformer’s attention mechanism to
prioritize the most informative parts of the text,
enhancing the model’s ability to capture the doc-
ument’s overall meaning and relationships. Thus,
extracting keyphrases from chunks is crucial for
bridging the gap between document segmentation
and semantic coherence, ultimately improving the
effectiveness of the chunk-based representation for
long document understanding. To achieve this, we
extract semantically important keyphrases to iden-
tify the core content of the entire document. Since
document understanding, such as document classi-
fication or token classification, inherently involves
semantic understanding, it is crucial to highlight the
most informative parts of the text to create mean-
ingful chunk representations. By making the ex-
tracted keyphrases more salient, we can effectively



emphasize the content that contributes most to the
document’s overall meaning. Hence, we employ
unsupervised keyphrase extraction methods, ensur-
ing our approach remains adaptable across diverse
domains without requiring annotated data. Build-
ing on the principles of PromptRank (Kong et al.,
2023), we adapt and enhance its template-based
approach to prioritize keyphrases that are contex-
tually significant across the entire document. Our
modified strategy, the Semantic Keyphrase Prior-
itization (SKP) Algorithm, leverages prompts to
assess the importance of each candidate keyphrase,
ensuring that semantically crucial information is
highlighted for downstream document understand-
ing. The details of this process are provided in
Appendix A.2. In this way, our method emphasizes
keyphrases during chunk representation, making
critical semantic information more salient. Con-
sequently, our method bridges the gap between
document segmentation and semantic coherence
by ensuring that key content is preserved and high-
lighted within the entire document, despite input
length constraints.

3.3 Chunk Representation Production

After extracting the semantically significant
keyphrases, we construct a chunk representation
that preserves and highlights this key information,
ensuring that the chunk retains the core semantic
content of the document. While chunking helps
reduce the input length, it may also result in an
uneven distribution of meaningful content across
chunks. Thus, it is crucial to re-emphasize the im-
portance of these keyphrases within the chunk to
maintain semantic integrity. Our approach dynam-
ically adjusts the representation of each chunk by
assigning greater importance to keyphrase tokens,
enabling the model to focus on the most relevant
content during downstream processing. To achieve
this, we label the tokens corresponding to the ex-
tracted keyphrases in the original text as keyphrase
tokens Tj., while other tokens are labelled as non-
keyphrase tokens 7,,;. Then, we feed these chun-
ked tokens ¢ into the embedding layer to obtain
their embeddings. The chunk embedding c is then
computed using a weighted average of these token
embeddings, as defined in Formula 1:
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Here, w; represents the weight assigned to each
token ¢ in the chunk, where a and b are hyperpa-
rameters with @ > b. t denotes the embedding
of token ¢, and c is the resulting chunk embedding
that captures the weighted importance of keyphrase
and non-keyphrase tokens. By assigning a higher
weight a to keyphrase tokens, we ensure that the re-
sulting chunk representation emphasizes the most
critical information while maintaining a compact
input length. Finally, the chunk embeddings are
fed into the Transformer-based model, allowing it
to effectively leverage the enhanced chunk repre-
sentations during long document classification or
token-level classification tasks. This method not
only preserves the semantic coherence of the docu-
ment but also allows the model to retain meaningful
context and relationships, ultimately enhancing its
performance on long document tasks.

3.4 Chunk Representation Training

In this final step, we train a Transformer-based
model using our keyphrase-enhanced chunk repre-
sentations to effectively incorporate the core seman-
tic content of the document. We selected BERT-
base according to Table 12. By emphasizing key in-
formation in the chunk embeddings, we ensure that
the model can focus on the most relevant aspects
of the text, thereby improving its ability to handle
long document inputs without losing critical con-
text. We leverage a Transformer-based backbone
model, which is used to initialize the weights of the
chunk attention module, as illustrated in Figure 1.
This chunk attention module is designed to capture
the intricate contextual relationships among chunks
while retaining the influence of keyphrases. By do-
ing so, the module can better understand local and
global semantic patterns, enabling the model to per-
form robustly across various long document tasks.
The chunk embeddings are processed through the
chunk attention module to produce refined con-
textual representations, which are then fed into
a classification head to generate the final predic-
tions. Our framework, ChuLo, is adaptable to any
transformer-based architecture, from pretrained to
large language models, making it versatile for tasks
involving long document understanding. Through
integrating keyphrase-enhanced chunk representa-
tions, the model achieves superior performance in
both document classification and token-level tasks,
highlighting the effectiveness of our approach in
leveraging semantic information to tackle the chal-
lenges associated with long document processing.



4 Experiments Set-up

We evaluate Chul.o on document and token clas-
sification tasks to highlight our motivation. While
document classification primarily requires global
contextual understanding, token classification tasks
test the model’s ability to retain and utilize detailed
token-level information within long documents.
We compare it with BERT (Kenton and Toutanova,
2019) and BERT variants (Park et al., 2022), Long-
former (Beltagy et al., 2020), ToBERT (Pappa-
gari et al., 2019), CogLTX (Ding et al., 2020),
ChunkBERT (Jaiswal and Milios, 2023), and in-
structions with LLMs, GPT40? and Geminil.5pro’.
Baselines Details are listed in Appendix A.3.
Datasets:  We conduct experiments using
three(3) datasets for long document classification
and two(2) for long document token classification.
For document classification, we use HP(Kiesel
et al., 2019), LUN (Rashkin et al., 2017), and Eu-
rlex57k (Chalkidis et al., 2019). These datasets
vary in average document length from 707 to
1147 tokens, enabling us to assess performance
on documents of different lengths and complexi-
ties. Further details on dataset statistics and splits
are available in Appendix A.5. 1) HP (Hyperpar-
tisan News Detection) evaluates the classification
of news articles based on hyperpartisan argumen-
tation (Kiesel et al., 2019). We use the ‘byarticle’
version, which contains 238 hyperpartisan and 407
non-hyperpartisan articles. The same train-test split
as in (Beltagy et al., 2020) is adopted. 2) LUN
uses for unreliable news source classification, this
dataset includes 17,250 articles from satire, propa-
ganda, and hoaxes (Rashkin et al., 2017). Our goal
is to predict the source type for each article. 3) Eu-
rlex57k consists of 47,000 English EU legislative
documents with 4,271 EUROVOC concepts. We
also include a simulated Inverted-Eurlex57k ver-
sion, where the header and recitals are moved to the
end, compelling the model to read the entire docu-
ment for key information. For token classification,
we use GUM and CoNLL-2012 for Named Entity
Recognition (NER) tasks: 1) GUM (Georgetown
University Multilayer) is a richly annotated collec-
tion of 235 documents across various genres such
as academic texts, news, fiction, and interviews
(Lin and Zeldes, 2021). GUM’s various linguistic
styles and structures make it an excellent bench-

2https://openai.com/index/hello—gpt—4o/
3https://deepmind.google/technologies/gemini/
pro/

mark for assessing token-level understanding in
lengthy documents, ensuring that the model cap-
tures complex entity relationships over extended
contexts. 2) CoNLL-2012 originally designed for
coreference resolution, and is adapted for NER in
our work (Pradhan et al., 2013). We convert the
data to a document-level format and select the top-
k longest documents in each split, emphasizing the
model’s ability to process extended text sequences
for token classification tasks.

Metrics and Implementation: For the HP
and LUN datasets, we use accuracy as the eval-
uation metric, while for Eurlex57k, Inverted Eu-
rlex57k, GUM, and CoNLL-2012, we adopt micro
F1. These metrics are chosen to maintain consis-
tency with prior work and facilitate direct compar-
ison. Regarding implementation, we provide key
details here, with the complete setup in Appendix
A.6. We use CrossEntropy loss for training on the
Hyperpartisan, LUN, CoNLL and GUM datasets,
and Binary CrossEntropy loss for the Eurlex57k
and Inverted Eurlex57k datasets. All models are
optimized using the AdamW optimizer, and train-
ing employs early stopping based on the respective
validation metric, with a patience threshold set to
10 epochs. A learning rate search is conducted for
each experiment to ensure optimal model perfor-
mance for comparison. Top-n value is set to 154

5 Results

5.1 Document Classification

We evaluate the effectiveness of our ChulLo by
comparing it with fine-tuned PLMs and previously
published baselines (Park et al., 2022; Jaiswal and
Milios, 2023) on several benchmark datasets: HP,
LUN, EURLEXS57K, and Inverted EURLEX57K.
The comparative results are summarized in Table
1, with input configurations provided in Table 2
and detailed descriptions available in Appendix
A.4. Our method demonstrates clear superiority
on three of the four datasets, achieving a signifi-
cant improvement of 6.43% accuracy on the LUN
dataset compared to the second-best model, BERT.
This marked improvement presents Chul.o’s abil-
ity to capture comprehensive document context
through its keyphrase-based chunk representation,
despite using only 512 input embeddings. The
results suggest that our method effectively miti-
gates the limitations of traditional truncation and

*We tested with different n values, but 15 was generally
better in most datasets
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Model HP LUN EUR I-EUR
BERT 0.9200 0.5797 0.7309 0.7053
ToBERT 0.8954 0.3697 0.6757 0.6731
CogLTX 0.9477 - 0.7013 0.7080
Longformer 0.9569 0.5552 0.5453 0.5647
BERT+TextRank 0.9115 0.4880 0.7287 0.7130
BERT+Random 0.8923 0.3015 0.7322 0.7147
ChunkBERT 0.9300 - 0.6494 0.6294
Ours 0.9538 0.6440 0.7332 0.7244

Table 1: Document classification Result. Following
previous work, we use accuracy for HP and LUN, and
micro F1 for other datasets. Results for LUN are ob-
tained by our own experiment based on provided base-
line codes and methods, while baseline results for the
other datasets are from previous work(Park et al., 2022;
Jaiswal and Milios, 2023). T are the BERT variants pro-
posed by (Park et al., 2022). The best performance for
each dataset is bolded while the second best is under-
scored, and we can see that our final model, a BERT-
based backbone, generally outperforms other baselines
across all datasets by achieving the best or second-best.

chunking strategies by preserving critical semantic
information, which contributes to higher classifica-
tion accuracy. On the EURLEXS57K and Inverted
EURLEXS57K datasets, ChuLo achieves consistent
performance gains over baselines, further validat-
ing its capability to handle long documents effi-
ciently. In these datasets, which have hierarchical
labels and require understanding complex seman-
tic structures, our model benefits from enhanced
chunk representations that emphasize key content.
This allows ChuLo to capture document semantics
better, even when compared to models that can pro-
cess larger input lengths. While our model delivers
competitive results on the HP dataset, it trails be-
hind Longformer by a slight margin of 0.0031 in
accuracy. This marginal difference corresponds to
only one additional correctly classified instance out
of a total of 65 test samples.

Model The Usage of Input
BERT F-512 tokens
ToBERT All

CogLTX S-512 tokens
Longformer F-4096 tokens
BERT+TextRank F-512 + S-512 tokens
BERT+Random F-512 + S-512 tokens
ChunkBERT All

Ours All (512*Chunk Size)

Table 2: The usage of the input content in the
experiments.“F-512% and “F-4096‘ means the first 512
tokens and the first 4096 tokens, “S-512° means the
selected 512 tokens.

Interestingly, for the other datasets, Longformer
underperforms compared to models like BERT vari-
ants or CogL.TX, which use the first 512 tokens and
focus on selecting key sentences. This observation
indicates that unfiltered additional content can in-

troduce noise, negatively impacting classification
accuracy. In contrast, Chul.o expands the input con-
tent and strategically emphasizes key semantic ele-
ments during chunk representation. This approach
mitigates noise interference, ensuring that only the
most relevant information is retained and high-
lighted. Overall, the results confirm that ChuLo
consistently outperforms standard PLM baselines
and existing chunking methods in long document
classification tasks. Its ability to retain and empha-
size key semantic content, while efficiently han-
dling long inputs, makes it a robust solution for
various document classification challenges.

5.2 Longer Document Classification

To further validate the robustness of our model, we
evaluate its classification performance across vari-
ous document length ranges, with a particular focus
on longer documents. For this analysis, we con-
sider the documents with more than 1024 tokens
and more than 2048 tokens in the test set. We use
Longformer and off-the-shelf LLMs, GPT40 and
Geminil.5 pro for comparison. As shown in Table
3, our model consistently outperforms others on
longer documents in the LUN dataset. Specifically,
for documents exceeding 2,048 tokens, ChuLo
maintains a higher accuracy compared to all base-
lines, demonstrating its capacity to handle lengthy
inputs effectively. This performance gain can be at-
tributed to our chunk representation’s emphasis on
keyphrases, which preserves crucial semantic con-
tent even when document length increases. On the
HP dataset, ChuLo and Longformer achieve perfect
accuracy (1.0) for documents longer than 2,048 to-
kens. However, for shorter documents (more than
1,024 tokens), ChuLo surpasses Longformer. This
improvement is likely due to our chunk represen-
tation strategy, which selectively highlights key
content rather than averaging information across
the entire document. As a result, ChuLo maintains
high semantic fidelity, leading to better overall per-
formance even with condensed text inputs.

We also benchmarked against newly released
LLMs, GPT-40 and Gemini 1.5 Pro, using longer
document inputs for both the LUN and HP datasets.
On LUN, GPT-40 achieved an accuracy of 0.7143
and Gemini 1.5 Pro scored 0.6531, both surpassing
Longformer. However, Chulo achieved the highest
accuracy of 0.7959, showcasing its superiority in
handling long documents with diverse content. On
the HP dataset, GPT-40 (0.8889) and Gemini 1.5
Pro (0.7778) performed worse than Longformer



LUN All(2250) 1024(243) 2048(49)
Longformer 0.5552 0.4062 0.5306
GPT4o - - 0.7143
Geminil.5pro - - 0.6531
Ours 0.6741 0.5911 0.7959
(a) LUN dataset
HP All(65) 1024(28) 2048(9)
Longformer 0.9538 0.8929 1.000
GPT4o - - 0.8889
Geminil.5pro - - 0.7778
Ours 0.9538 0.9286 1.000
(b) HP dataset

Table 3: Document classification results for comparison
on documents of different lengths: all documents in
the test set, the subset of documents longer than 1024
tokens, and longer than 2048 tokens respectively. Values
in brackets indicate the number of documents for each
specific document set. The best performance (Accuracy)
for each document set is bolded.

and ChuLo, both of which achieved a perfect ac-
curacy of 1.0 on the longer documents. This high-
lights ChuLo’s robustness and consistency in clas-
sifying documents with varying length, even com-
pared to advanced language models. The prompt
and response samples are in Appendix A.8 and
A.9. Overall, these results demonstrate that ChuLo
not only outperforms standard PLM baselines and
chunking methods on long documents but also re-
mains competitive against the latest large language
models. By prioritizing key semantic elements and
managing document length, ChuL.o maintains sta-
ble performance across varying input lengths.

Model CoNLL GUM
Longformer (4096) 0.5560 0.9427
BigBird (4096) 0.5553 0.9418
GPT40 0.2290 0.3231
Geminil.5 0.3036 0.3262
Ours (All) 0.9334 0.9555

Table 4: Results on token classification tasks. The best
performance for each dataset is bolded, and our model
achieves the best on both datasets.

5.3 Token Classification

To further demonstrate the effectiveness of our
chunk representation method, we evaluated it
on a token-level classification task—specifically,
Named Entity Recognition (NER) using long doc-
uments. We compared our model against two
state-of-the-art long-document pre-trained models,
Longformer (Beltagy et al., 2020) and BigBird (Za-
heer et al., 2020), as well as newly released large
language models, GPT-40 and Gemini 1.5 Pro. As
shown in Table 4, our model consistently outper-
forms Longformer, BigBird and LLM models on
the NER tasks, particularly on the CoNLL, where
document lengths often exceed the input limitations

of these baseline models. To leverage the broader
context captured by our chunk representation, we
integrate a BERT-decoder module that utilizes the
enhanced chunk embeddings to predict token la-
bels more accurately. This configuration allows the
model to maintain a global understanding of the
document while focusing on the local dependencies
necessary for precise token classification. All base-
lines struggle with these longer inputs due to their
limited capacity for handling extensive sequences.
In contrast, our method’s ability to encode the en-
tire document’s context through keyphrase-based
chunk representations enables it to achieve higher
accuracy in recognizing and classifying named en-
tities. This is particularly evident in cases where
long-distance dependencies and contextual nuances
play a critical role in determining the correct labels.
Opverall, the results indicate that our model’s chunk
representation not only enhances performance on
document-level classification tasks but also proves
highly effective for token-level tasks such as NER,
validating its application in downstream tasks that
require a detailed and comprehensive understand-
ing of long document tokens.

CoNLL ALL (20) >2048(17)  >4096(6) > 8192 (2)
Longformer 0.5560 0.5268 0.3156 0.3116
BigBird 0.5553 0.5261 0.3145 0.3106
GPT4o 0.2290 0.2217 0.1252 0.0282
Gemini 1.5 0.3036 0.2633 0.1652 0.0584
Ours 0.9334 0.9325 0.9287 0.9206
(a) Results on CoNLL dataset.
GUM ALL (26) - > 512 > 1000(8) > 1042(6)
Longformer 0.9427 0.9427 0.9439
BigBird 0.9418 0.9417 0.9426
GPT4o0 0.3231 0.3018 0.2808
Gemini 1.5 0.3262 0.3093 0.3215
Ours 0.9555 0.9558 0.9574

(b) Results on GUM dataset.

Table 5: NER results for comparison on documents of
different lengths. >number represents the documents
longer than the number, with the values in brackets
indicating the corresponding counts for the documents.
The best performance (Micro F1) is bolded and the
second best is underscored, and our model consistently
outperforms all the baselines for each document set.

5.4 Token Classification in Longer Documents

We further analyze the NER performance across
different document length ranges. As presented in
Table 5a and Table 5b, we report the number of doc-
uments exceeding specific length thresholds and
their corresponding performance metrics. On the
CoNLL, as document lengths exceed the maximum
input capacities of Longformer and BigBird, both
models exhibit significant performance drops to
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Figure 2: Comparison of performance in different length ranges for CONLL and GUM datasets. Values of brackets

includes the min and max length of each dataset.

31.56% and 31.45%, respectively. In contrast, our
model experiences a minimal decrease of 1.28%,
showcasing its resilience and effectiveness in han-
dling long sequences. For the GUM, where all doc-
ument lengths are within the acceptable range for
these models, performance remains stable across
all models, with our approach consistently achiev-
ing the best results. Figures 2a and 2b visualize
the performance breakdown across varying length
ranges. For the CoNLL, our model maintains high
performance in all length intervals, while Long-
former and BigBird exhibit comparable perfor-
mance within the [1k-2k) range but degrade sig-
nificantly for longer texts, even for documents that
do not exceed their maximum input length. This
discrepancy suggests that the uneven distribution
of document lengths in their pretraining corpora
may lead to inconsistent performance on longer
sequences. In contrast, our model’s ability to com-
press the entire document into 512-length chunks
for the decoder enables it to leverage complete
contextual information, resulting in better stability
and accuracy even on longer documents. For the
GUM, where document lengths are shorter (up to
1.3k tokens), our model consistently outperforms
Longformer and BigBird in all intervals. The stable
performance of all models on GUM aligns with the
results on CoNLL, further confirming that our ap-
proach’s chunk representation is particularly effec-
tive when documents reach lengths that exceed the
standard input capacities of the baselines. These
results underscore the effectiveness of our chunk
representation, which emphasizes keyphrase infor-
mation, for coarse-grained document classification
and fine-grained token-level classification tasks like
NER. The ability to maintain performance across
varying document lengths highlights the impor-
tance of incorporating global contextual informa-
tion in NER tasks—a largely underexplored aspect.

Additionally, off-the-shelf LLMs such as GPT-4o0
and Gemini 1.5 Pro show suboptimal performance
on NER tasks without fine-tuning, and their per-
formance deteriorates further as document length
increases. This indicates that, despite their advance-
ments, LLMs still require substantial optimization
for effective long document understanding.

5.5 Ablation Studies

We conducted more ablation studies, including 1)
keyphrase extraction methods, 2) sentence embed-
ding approaches, and 3)backbone model analysis,
shown in Appendix A.7.

5.6 Qualitative Analysis

We performed a qualitative analysis by visualiz-
ing each sample document from different datasets,
comparing the outputs of Longformer, GPT-40,
Gemini 1.5 Pro, and our ChuLo. ChuLo captures
the context and semantic patterns of the document,
providing accurate predictions, whereas the other
models struggle to maintain coherence and consis-
tency. We have more examples in Appendix A.9.

6 Conclusion

We introduced Chul.o, a novel chunk represen-
tation method that enhances the performance
of Transformer-based models on long document
classification and token-level classification tasks.
By utilizing unsupervised keyphrase extraction,
ChuLo effectively reduces input length while pre-
serving critical information, addressing the limita-
tions of truncation and sparse attention. Extensive
experiments demonstrate that ChuL.o outperforms
existing methods by maintaining both global con-
text and high accuracy, even for lengthy inputs.
Our research results highlight the effectiveness of
ChuLo as a robust solution for long document un-
derstanding, enabling processing of complex texts
in NLP applications.



7 Limitation

There are several opportunities for future work, in-
cluding extending the chunk representation to gen-
erative tasks such as long text generation, where
chunk representation may extend the LLM’s con-
text range limitation and enhance generation qual-
ity. However, the performance of the keyphrase
extraction method poses a potential risk, as its qual-
ity directly affects the overall effectiveness of the
approach. We believe this work offers valuable
insights into long text understanding and lays a
foundation for advancements in related tasks.
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A Appendix
A.1 Related Works

As shown in Table 6, most of the previous works
addressing the problem of processing long docu-
ments cannot fully utilize all the content. Those
methods either reduce input length via truncation
or focus on local context learning to improve effi-
ciency by applying sparse attention, approximated
attention or RNN integration. Such approaches will
lead to a certain level of information loss, unlike
our chunking approach which can take all the con-
tent into consideration. Hierarchical Transformer
(Pappagari et al., 2019) splits documents into non-
overlapping chunks and computes chunk represen-
tations. RoR (Zhao et al., 2021) generates regional
answers from chunks, which are combined for the
final answer. However, neither considers the en-
tire document context when chunking. In addition,
previous works applying the chunking method for
processing long document context only focus on a
single task, either document classification or token
classification, while our framework can be applied
to both tasks to guarantee both document-level and
token-level understanding.

A.2 Keyphrase Extraction

We employ the Semantic Keyphrase Prioritiza-
tion (SKP) algorithm to extract keyphrases that
encapsulate the key semantic information of the
entire document. The detailed are shown in Algo-
rithm 1. While PromptRank uses prompts to rank
keyphrases across the first segment of the docu-
ment determined by its encoder model, our SKP
applies this concept at the entire document level
to ensure that each chunk can preserve the most
informative content for the entire document. Af-
ter obtaining the sorted phrases set K, we select
top-n phrases as the keyphrases of the document,
which can be regarded as ranked phrases according
to their contextual significance within the entire
document.

A.3 Baselines

We use BERT (Kenton and Toutanova, 2019) as
our backbone model, comparing it with TOBERT
(Pappagari et al., 2019), CogLTX (Ding et al.,
2020), Longformer (Beltagy et al., 2020), various
BERT variants (Park et al., 2022) and ChunkBERT
(Jaiswal and Milios, 2023) for the document clas-
sification task. For the NER task, we compare
against Longformer, BigBird (Zaheer et al., 2020),
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and two large language models, GPT40 and Gem-
inil.5pro. Below are brief descriptions of the base-
line models:

* BERT: A transformer model pre-trained on
masked language modeling (MLM) and next-
sentence prediction (NSP). We fine-tuned the
BERT-base variant on each dataset.

* ToBERT: A BERT variant designed for long
document classification, utilizing an addi-
tional transformer layer to learn inter-chunk
relationships.

* CogLTX: A framework for applying BERT
to long documents by training a key sentence
identification model to assist in document un-
derstanding

* Longformer: Optimized for long sequences
using sparse attention, combining dilated slid-
ing window and global attention patterns

* BigBird: Utilizes block sparse attention, in-
tegrating sliding window, global, and random
attention patterns across token blocks.

* BERT+TextRank and BERT+Random: Pro-
posed to select other tokens randomly or with
the help of TextRank(Mihalcea and Tarau,
2004) to feed into the BERT model as the
supplementation for long document classifica-
tion.

* ChunkBERT: A BERT variant for long
document classification that processes self-
attention within document chunks and adds a
TextCNN module for classification using the
chunk representation.

* GPT-40: A transformer-based multi-modal
large language model developed by OpenAl,
which leverages large-scale pretraining data to
process diverse language tasks via instruction
prompts.

e Gemini 1.5 Pro: an advanced multi-modal
Al model from Google, leveraging a Sparse
Mixture-of-Experts (MoE) Transformer archi-
tecture, with a context window of up to 2 mil-
lion tokens. This architecture allows for the
efficient handling of long documents.



Algorithm 1 Semantic Keyphrase Prioritization (SKP) Algorithm

Input: A tokenized document D, an encoder-decoder pretrained model
represented by Fr and Fp, a POS tagger Fpog, a regular expression
Frec = (NN [JJ) % (NN.x)

Parameter: Experimentally determined o,

Output: Sorted keyphrases set K s

LetS=0,K, =0,i=0,5=0.
Get the candidate phrases set:
K = Freca(Fros(D)) = {ko, k1, ..
Split D into segments S = {Dg, D1, ..
requirement of F g
for i < ndo

Calculate the position penalty r; =

sy kn—1}
.y Dyp—1} to meet the input

1:
2:
3:
4.
5:

Lc Y

la g3

where L. is the first occurrence position of k; in the document, {4 is
the length of the document

Construct the prompt P “The * mainly discusses k;” and tokenize, * is
the category of the document.

7: for 7 < mdo
8: Calculate the probability p;; of the phrase k;:
htlg—1
Pij = qpye gen  logp(ty [ 1<),
p(ty | t<g) = Fp(Fr(Dj), t<y)
where [ p is the length of the tokenized P, h is the start index of k;
in the prompt, I}, is the length of k;, ¢ is the token of the prompt.
9: end for )
10: Calculate the final score of k;: s; = r; X Z;igl Pij
11: end for

12: return K, = Sort(K, s)

Model Year Task Lengthy Document Solution Core Architecture
Efficient Classification (Park et al., 2022) 2022 D Truncating Transformer
Hierarchical transformer (Pappagari et al., 2019) 2019 D Chunking (Partial, Phrase) Transformer
RoR (Zhao et al., 2021) 2021 T Chunking (Partial, Voting) Transformer
Longformer (Beltagy et al., 2020) 2020 D, T Sparse Attention Transformer
BigBird (Zaheer et al., 2020) 2020 D, T Sparse Attention Transformer
Routing Transformer (Roy et al., 2021) 2021 D, T,G Sparse Attention Transformer
Macformer (Peng et al., 2021) 2021 D, Approximated Attention Transformer
Linformer (Wang et al., 2020) 2020 D, T.G Approximated Attention Transformer
Performer (Choromanski et al., 2020) 2020 D, T,G Approximated Attention Transformer
Transformer-x1 (Dai et al., 2019) 2019 G RNN Integration Transformer
Block-Recurrent Transformer (Hutchins et al., 2022) 2022 G RNN Integration Transformer
RAN (Li et al., 2023b) 2023 D, T RNN Integration Attention
(Cetindag et al., 2023) 2023 T N/A LSTM
(Mengliev et al., 2024) 2024 T N/A Neural Network
(Park et al., 2023) 2023 T N/A Transformer
(Bhattacharya et al., 2023) 2023 T N/A LSTM
Gpt-NER (Wang et al., 2023) 2023 T N/A Transformer
(Dagdelen et al., 2024) 2024 T N/A Transformer
(Hu et al., 2024) 2024 T N/A Transformer
(Yu et al., 2023) 2023 T N/A Transformer
(Zhang et al., 2023) 2023 T N/A Transformer
Ours 2024 D, T Chunking (Entire) Transformer

Table 6: Summary of Related Works. D, T, G represent tasks of document classification, token classification, and

text generation, respectively.

A.4 Baseline Input

We selected these baseline models because they
represent diverse methods for processing long doc-
uments. As summarized in Table 7, BERT trun-
cates the input to 512 tokens. Longformer and Big-
Bird utilize sparse attention mechanisms, allowing
them to process up to 4096 tokens while conserv-
ing computational resources. TOBERT divides the
input into 200-token chunks, feeds them to BERT
for chunk representations, and uses a transformer
layer for downstream tasks. However, it cannot
capture dependencies across the entire input se-
quence. CogLTX selects key sentences to form
a 512-token input, limiting its input size to that
constraint. BERT variants like BERT+TextRank
and BERT+Random select up to 512 tokens us-
ing TextRank or random selection. They concate-
nate the [CLS] representation of the initial 512
tokens with the selected tokens, creating an aug-
mented input for a fully connected classification
layer, with a maximum input length of 1024 to-
kens. ChunkBERT splits the input into chunks,
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computes self-attention, and feeds chunk represen-
tations into a TextCNN module for classification.
The original implementation processes up to 4096
tokens per document. It has the same limitation
as the ToBERT. For GPT40 and Geminil.5pro, we
input all tokens together with our instruction in the
prompt due to the large input size supported by
these large language model. In contrast to these
baseline models, our approach flexibly segments
the entire input into chunks of varying sizes, using
semantic keyphrases to minimize information loss.
Additionally, we compute chunk-level attention to
capture long-range dependencies more effectively.



Model

Input

BERT (Kenton and Toutanova, 2019)
ToBERT (Pappagari et al., 2019)
CogLTX (Ding et al., 2020)
Longformer (Beltagy et al., 2020)
BigBird (Zaheer et al., 2020)
BERT+TextRank (Park et al., 2022)
BERT+Random (Park et al., 2022)
ChunkBERT (Jaiswal and Milios, 2023)
GPT40

Geminil.5pro

The first 512 tokens
Segmented all input tokens
Selected 512 tokens
The first 4096 tokens
The first 4096 tokens

The first 512 tokens with the selected 512 tokens
The first 512 tokens with the selected 512 tokens

The first 4096 tokens
All input tokens with instruction
All input tokens with instruction

Table 7: The input of the baseline models

A.5 Details of datasets

Datasets Train/Dev/Test #Classes Avg. Length

HP

LUN
EURLEX57k
-INVERTED

516/64/65
12003/2992/2250
45000/6000/6000
45000/6000/6000

2

3
4271
4271

705
480
707
707

GUM
CoNLL

179/26/26
120/20/20

21
37

972
5065

Table 8: The split and statistics of the datasets, including
document classification task (HP, LUN, EURLEX57K,
and Inverted EURLEX57K) and token classification
task (GUM, CoNLL)

We analyzed the data distribution across the
datasets used in this paper. Of these, the CoNLL
dataset has the highest average number of tokens
per document at 5,065. In contrast, LUN has the
shortest average length, with 480 tokens per doc-
ument. Both HP and EURLEXS57K have similar
average document lengths, measuring 705 and 707
tokens respectively. GUM presents a relatively
higher token count, averaging 972 tokens per docu-
ment.

Regarding the number of classes, EURLEX57K
is the most complex dataset, containing 4,271
unique labels. In comparison, HP and LUN are
more limited, with only 2 and 3 classes respec-
tively. GUM and CoNLL are more diverse, with
21 and 37 different classes. Beyond label diver-
sity, EURLEXS57K also has the largest sample size,
comprising 45,000 training samples, 6,000 devel-
opment samples, and 6,000 test samples. LUN
is the second-largest dataset, with 12,003 training
samples, 2,992 development samples, and 2,250
test samples. Due to our selection strategy, CoONLL
has the longest average document length, with the
fewest samples. It has a total of 160 documents
split into 120/20/20 for training, development, and
test sets. GUM follows a similar distribution with
179/26/26 samples. The HP dataset includes 516
training samples, 64 development samples, and 65
test samples.
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A.6 Implementation details
A.6.1 Experiment hyperparameters

We performed extensive experiments to select
the hyperparameters, including chunk size, token
weights, learning rates, and warm-up strategies
and steps. The optimal hyperparameters for each
dataset for our proposed ChuLo model are pre-
sented in Table 9.

A.6.2 Hardware Information

Our experiments are run on the Linux platform
with an A6000 Nvidia graphic card and an AMD
Ryzen Threadripper PRO 5955WX 16-core CPU,
and the RAM is 128G.

A.7 Ablation Studies

We performed a few ablation studies on the HP
and LUN to assess the impact of various com-
ponents within our model. First, we analyzed
the effectiveness of different keyphrase extrac-
tion methods and the effect of using average
chunk representations. As shown in Table 10, the
PromptRank-based method yields the highest per-
formance across both datasets, outperforming al-
ternatives like YAKE-based. This improvement
can be attributed to PromptRank’s ability to ex-
tract higher-quality keyphrases by considering se-
mantic relationships within the document, whereas
YAKE relies primarily on statistical features such
as phrase frequency, resulting in less semantically
rich keyphrases. Then, we explored the effect of
incorporating sentence embeddings into the chunk
representations to introduce global sentence-level
context. Surprisingly, as shown in Table 11, the
results indicate a performance drop when sentence
embeddings are included. We hypothesize that
adding sentence-level information at the initial rep-
resentation stage may cause chunk embeddings
within the same sentence to become too similar,
hindering the model’s ability to learn distinctive
patterns and reducing overall classification perfor-
mance. Then, we evaluated the performance of



Hyperparameter HP LUN EURLEXS7K I-EURLEXS7K CoNLL GUM
Number of top-n phrases 15 15 15 15 15 15
Chunk size n 10 50 5 5 20 50
Weight for T, 0.8 0.5 0.8 0.8 0.8 0.8
Weight for T, . 0.1 0.1 0.1 0.1 0.1 0.1
Learning Rate Se-5 Se-5 Se-5 Se-5 Se-5 Se-5
Batch Size 16 32 16 16 2 8
Warm-up Strategy Linear Linear Cosine Cosine Linear Linear
Warm-up Steps 10% 10% 5% 5% 10% 10%
Mex epoch 100 100 100 100 100 100
Stop Patience 10 10 10 10 10 10
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Optimizer Weight Decay le-2 le-2 le-2 le-2 le-2 le-2
Optimizer Betas 0.9,0.999 0.9, 0.999 0.9, 0.999 0.9,0.999 0.9, 0.999 0.9, 0.999
Table 9: The optimal hyperparameters used in our experiments.
different backbone models for the chunk attention Dataset Prompt
module while keeping the keyphrase extraction and LUN Task'Deﬁnition': You are‘proyided with a news artic}e. Your
3 3 . task is to classify the article into one of the following cate-
chunk representation settings consistent. Table 12 gories: "Satire” "Hoax” or "Propaganda” Respond only with
shows that BERT outperforms Longformer as the the appropriate category. The news is: [{input)).
. HP Task Definition: You are provided with a news article. Your
backbone. This result suggests that, after docu- task is to classify whether the article is hyperpartisan. Respond
: : only with "True” if the news is hyperpartisan or "False” if it is
ment chunking, the input sequences become rela- not. The news is: [{input} .
tively short, making it difficult for Longformer to
leverage its long-range attention capabilities fully. ~ Table 13: The prompt we used for each dataset in our
Consequently, Longformer may suffer underuti- ~ €Xperiments.

lization during training, resulting in suboptimal
performance compared to BERT.

Keyphrase method HP LUN

Average 0.9538 0.5951
YAKE 0.8769 0.5951
PromptRank 0.9538 0.6440

Table 10: Effect of keyphrase extraction methods; Aver-
age: Average Chunk Representations

Sentence Embedding HP LUN
w/o sentence emb. 0.9538 0.6440
sentence emb. 0.9076 0.5537

Table 11: Effect of sentence embedding, adding the
sentence-level information to the chunk representations.

Backbone HP LUN

BERT (Ours) 0.9538 0.6440
RoBERTa 0.8615 0.5906
Longformer 0.8923 0.5600

Table 12: Effect of different backbone models for the
chunk attention.

A.8 Prompt Method

We employed zero-shot prompting with large lan-
guage models (LLMs), specifically Gemini 1.5 Pro
and GPT4o, in our experiments. The prompts used
for each dataset are detailed in Table 13 and 14:
Table 3 shows that LLMs outperform Long-
former in the document classification task with
zero-shot prompt tuning. However, their perfor-
mance drops significantly in the NER task in Table
5a and Table 5b. For instance, in Figure 11, both
GPT40 and Geminil.5pro only predicted a single
correct label, “O”. Moreover, the models often
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fail to predict a sufficient number of token labels
for longer inputs, or they repeatedly predict all
“0O” labels or redundant label sequences. These
inconsistencies suggest that LLMs struggle to gen-
erate outputs matching the input length in token
classification, highlighting substantial room for im-
provement in this area.

A.9 More Case Studies

In this section, we will present several prompt and
output samples for the long documents from the
LUN (Figures 3) and 4) and Hyperpartisan (Fig-
ures 5 and 6) datasets for document classifica-
tion, as well as GUM (Figures 7, 8 and 9) and
CoNLL (Figures 10, 11, 12 and 13) datasets
for NER task. Documents with various lengths
are randomly selected to see the comparison of
our model against GPT-4, Geminil.5pro and Long-
former. While there is always at least one baseline
which predicts wrongly for the difficult cases pre-
sented for the document classification task, we can
observe that our model consistently classifies those
documents well. For the token classification task,
our model can also correctly classify more tokens
than each baseline across the shown cases.



Dataset

Prompt

CoNLL

In the task of Named Entity Recognition, the B-, I-, and O- prefixes are commonly used to annotate slot types, indicating the
boundaries and types of slots. These labels typically represent: B- (Begin): Signifies the beginning of a slot, marking the
start of a new slot. I- (Inside): Represents the interior of a slot, indicating a continuation of the slot. O (Outside): Denotes
parts of the input that are not part of any slot. For instance, in a sentence where we want to label a "date" slot, words
containing date information might be tagged as "B-date" (indicating the beginning of a date slot), followed by consecutive
words carrying date information tagged as "I-date" (indicating the continuation of the date slot), while words not containing
date information would be tagged as "O" (indicating they are outside any slot).

Definition: In this task, you are given a conversation, where the words spoken by a person are shown as a list. Your job is to
classify the words in the following conversation into one of the 37 different entities. The entities are: "O", "B-PERSON",
"I-PERSON", "B-NORP", "I-NORP", "B-FAC", "I-FAC", "B-ORG", "[-ORG", "B-GPE", "I-GPE", "B-LOC", "I-.LOC", "B-
PRODUCT", "I-PRODUCT", "B-DATE", "I-DATE", "B-TIME", "[-TIME", "B-PERCENT", "[-PERCENT", "B-MONEY",
"[-MONEY", "B-QUANTITY", "I-QUANTITY", "B-ORDINAL", "I-ORDINAL", "B-CARDINAL", "I-.CARDINAL",
"B-EVENT", "I.EVENT", "B-WORK_OF_ART", "I- WORK_OF_ART", "B-LAW", "I-.LAW", "B-LANGUAGE", "I-
LANGUAGE". Only output entities. And the entity types should be output as a list without any explanation. The input is
[{input}].

GUM

In the task of Named Entity Recognition, the B-, I-, and O- prefixes are commonly used to annotate slot types, indicating the
boundaries and types of slots. These labels typically represent: B- (Begin): Signifies the beginning of a slot, marking the
start of a new slot. I- (Inside): Represents the interior of a slot, indicating a continuation of the slot. O (Outside): Denotes
parts of the input that are not part of any slot. For instance, in a sentence where we want to label a "date" slot, words
containing date information might be tagged as "B-date" (indicating the beginning of a date slot), followed by consecutive
words carrying date information tagged as "I-date" (indicating the continuation of the date slot), while words not containing
date information would be tagged as "O" (indicating they are outside any slot).

Definition: In this task, you are given a conversation, where the words spoken by a person are shown as a list. Your job
is to classify the words in the following conversation into one of the 37 different entities. The entities are: "I-abstract”,
"B-object", "B-place", "I-substance", "I-time", "I-place", "B-time", "B-abstract", "I-person”, "B-plant", "B-substance",
"I-animal”, "B-organization", "I-event", "B-person", "B-event", "I-plant", "I-organization", "O", "I-object", "B-animal".
Only output entities. And the entity types should be output as a list without any explanation. The input is [{input}].

Table 14: The prompt we used for each dataset in our experiments.

Case 1, length: 3928 - Document and Prompt

Task Definition: You are provided with a news article. Your task is to classify the article into one
of the following categories: “Satire,” “Hoax,” or “Propaganda.” Respond only with the
appropriate category. The news is: [is obama a liar? or just loyal to his faith! the holy quran
instructs its followers to lie to strengthen islam. quran 3:26, 3:54, 9:3, 40:28, and 16:106 are
where you can find these instructions. obama has been a loyal follower and i am sure satan
must be proud. any book or prophet that instructs its followers to chop the heads off non
believers is a prophet of satan. ... ]

Case 2, length: 2410 - Document and Prompt

Task Definition: You are provided with a news article. Your task is to classify the article into one

of the following categories: “Satire,” “Hoax,” or “Propaganda.” Respond only with the

appropriate category. The news is: [the irony is inescapable: in reaction to the historic drought

that has transformed the california dream into california dust, the state is now embarking on the

construction of a wave of desalination plants that will turn ocean water into fresh water.

tragically, these power-hungry desalination plants will be running primarily on fossil fuel-
icity , ing that california residents will have to commiit ... ]

Case 1-Our Model
Hoax

Case 1 - GPT-40 Response

Case 1-Gemini1.5pro Response

|

Case 1 - Longformer Output

Figure 3: Prompt and output for a sample document of
length 3928 in LUN dataset, where the correct predic-
tion is highlighted in green and wrong predictions are
highlighted in red. Compared to GPT40, Geminil.5pro
and Longformer, our model can correctly classify the
given document as Hoax.

16

Case 2 - Our Model

Case 2 - GPT-40 Response

Case 2 - Gemini1.5pro Response

Case 2 - Longformer Output

Figure 4: Prompt and output for a sample document of
length 2410 in LUN dataset, where the correct predic-
tion is highlighted in green and wrong predictions are
highlighted in red. Compared to GPT40, Geminil.Spro
and Longformer, our model can correctly classify the
given document as Propaganda.



Case 3, length: 6800 - Document and Prompt

Task Deﬁnl(!on: Noulareipiovided w ith a "?sz article. Y'our taskis to classlty whe}r!e.r t.he article part of any slot. For instance, in a sentence where we want to label a """"date"""" slot, words
s hyperpa!'tl'san. Reslzond ey w“h .Tn‘.'e f the lews :? hy!:e:pamsan or “False” if it is not. containing date information might be tagged as """"B-date"""" (indicating the beginning of a date slot),
jhe n_e LR [fp><a b N 17799862/ followed by consecutive words carrying date information tagged as """"I-date’ (indicating the
ypesjextamalizcouldifumpeimissing signatiiejiorcelnimiinibe) ?7</a><a conti ion of the date slot), while words not containing date information would be tagged as

Case 5, length: 895 - Document and Prompt

"In the task of Named Entity Recognition, the B-, I-, and O- prefixes are commonly used to annotate slot
types, indicating the boundaries and types of slots. These labels typically represent: B- (Begin):
Signifies the beginning of a slot, marking the start of a new slot. I- (Inside): Represents the interior
of a slot, indicating a continuation of the slot. O (Outside): Denotes parts of the input that are not

deal-shows-value-of-cfo-in-prosecution-1535448600" type="external">immunity deal shows
value of cfo in prosecution.</a> <a /donald- -s-farewell-message-n904171"
type="external">mccain's long goodbye.</a> ... ]

Case 3 -Our Model

Case 3 - GPT-40 Response

|

(indicating they are outside any slot). Definition: In this task, you are given a conversation,
where the words spoken by a person are shown as a list. Your job is to classify the words in the
following conversation into one of the 37 different entities. The entities are: 'l-abstract’, 'B-object’, 'B-
place', 'I-substance', 'I-time', 'I-place’, 'B-time', 'B-abstract’, 'I-person', 'B-plant’, 'B-substance’, 'l-animal’,
'B-organization', 'l-event', 'B-person’, 'B-event', 'I-plant’, 'l-organization’, '0', 'l-object’, 'B-animal'. Only
output entities. And the entity types should be output as a list without any explanation. The input is
['Sam’, 'has', 'been’, ', 'has', 'taken’, 'such’, 'an’, 'interest’, 'in', 'this’, 'retirement’, 'bit’, 'that', 'it', '—",

'it', 'really’, 'surprises’, 'me’, '.", 'Well', ""she's"", 'she’, ""'s"", 'begun’, 'to’, 'listen’, ", 'Yes', 'she’, 'has’, '.",
'You', 'know', ', 'She', 'has’,

!, 'Uh', '), 'she’, 'used', 'to', 'go', 'over', 'and', 'read', 'a', 'book', 'or',
', ', 'Yeah', "', 'or', 'turn’, 'a', 'deaf', 'ear’, '.!, 'That', 'was', 'for', 'sure’, '.", 'But', 'some’, 'basil',

Case 3-Gemini1.5pro Response

Case 3 - Longformer Output

|

Figure 5: Prompt and output for a sample document
of length 6800 in Hyperpartisan dataset, where cor-
rect predictions are highlighted in green and the wrong
prediction is highlighted in red. Compared to Gem-
inil.5pro, our model, GPT40 and Longformer can cor-
rectly classify the given document as False.

Case 4, length: 2445 - Document and Prompt

Task Definition: You are provided with a news article. Your task is to classify whether the article is
hyperpartisan. Respond only with “True” if the news is hyperpartisan or “False” if it is not. The news is:
[<p>alt-left refers to a loosely defined term to describe left-wing principles, organizations, politicians
and activists, encompassing almost everything outside the norm of mainstream democratic liberal
politics. used as both a pejorative and an affirmative, alike, alt-left has been used as a catchall term for
far-left political ideologit such as iali i i as well as <a
type="internal">antifa</a> groups. however, because this term remains so undefined .. ]

Case 4 - Our Model

Case 4 - GPT-40 Response

Case 4 - Gemini1.5pro Response

Case 4 - Longformer Output

|

Figure 6: Prompt and output for a sample document of
length 2445 in Hyperpartisan dataset, where correct
predictions are highlighted in green and wrong predic-
tions are highlighted in red. Compared to GPT40 and
Geminil.5Spro, our model and Longformer can correctly
classify the given document as False.
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1 yes', ', Yeah!, ', T, ™don't™, 'do’, ""n't™, 'have', ‘any’, 'this', 'year’, ", T", ‘forgot’,

Case 5-Our Model

Case 5 - GPT-40 Response

Case 5-Gemini1.5pro Response

Case 5 - Longformer Output

Figure 7: Prompt and output for a sample document
of length 895 in GUM dataset for NER task, where
correct predictions are highlighted in green and wrong
predictions are highlighted in red.

Case 6, length: 1029 - Document and Prompt

"In the task of Named Entity Recognition, the B-, |-, and O- prefixes are commonly used to annotate slot
types, indicating the boundaries and types of slots. These labels typically represent: B- (Begin):
Signifies the beginning of a slot, marking the start of a new slot. I- (Inside): Represents the interior
of a slot, indicating a continuation of the slot. 0 (Outside): Denotes parts of the input that are not
part of any slot. For instance, in a sentence where we want to label a """"date"""" slot, words
containing date information might be tagged as """"B-date"""" (indicating the beginning of a date slot),
followed by consecutive words carrying date information tagged as """"I-date"""" (indicating the
continuation of the date slot), while words not containing date information would be tagged as
"ot (indicating they are outside any slot). Definition: In this task, you are given a conversation,
where the words spoken by a person are shown as a list. Your job is to classify the words in the
following conversation into one of the 37 different entities. The entities are: 'l-abstract', 'B-object, 'B-
place', 'I-substance', 'I-time', 'I-place’, 'B-time', 'B-abstract’, 'I-person', 'B-plant’, 'B-substance', 'l-animal’,
'B-organization', 'l-event', 'B-person’, 'B-event', 'I-plant’, 'l-organization’, '0', 'l-object', 'B-animal'. Only
output entities. And the entity types should be output as a list without any explanation. The input is
['Sir', 'de’, ers', 'Graaff', ',', 'Leader’, 'of', 'the', 'Opposition’, ',', 'House', 'of', 'Assembly’, ',', 'CAPE',
‘TOWN', 'Sir', ', 'In’, 'one’, ""week's"", 'week', ""'s"", 'time', ', 'the', 'Verwoerd', 'Government',
'intends’, 'to', 'inaugurate’, 'its', 'Republic’, ", 'It", 'is', 'unnecessary', 'to’, 'state’, 'that', 'this', 'intention’,
'has', 'never', 'been’, 'endorsed’, 'by', 'the', 'non-white', 'majority’, 'of', 'this', 'country’, 'The',
'decision’, 'has', 'been’, 'taken’, 'by', 'little', 'over', 'half', 'of', 'the', 'White', 'community’, ';',

| ————————.—————————————

Case 6 - Our Model

Case 6 - GPT-40 Response
['-person, -person -person, I8 B-person;, [OHEGHION.|

Case 6 - Gemini1.5pro Response

I'B-person; [B:person; 0}, 0} ‘0 ‘B-organization’, 0 '03)...

Case 6 - Longformer Output

Figure 8: Prompt and output for a sample document
of length 1029 in GUM dataset for NER task, where
correct predictions are highlighted in green and wrong
predictions are highlighted in red.




Case 7, length: 1281 - Document and Prompt

In the task of Named Entity Recognition, the B-, |-, and O- prefixes are commonly used to
annotate slot types, indicating the boundaries and types of slots. These labels typically
represent:

B- (Begin): Signifies the beginning of a slot, marking the start of a new slot.

I- (Inside): Represents the interior of a slot, indicating a continuation of the slot.

O (Outside): Denotes parts of the input that are not part of any slot.

For instance, in a sentence where we want to label a "'date™ slot, words containing date
information might be tagged as ""B-date™ (indicating the beginning of a date slot), followed by
consecutive words carrying date information tagged as "'I-date™ (indicating the continuation of
the date slot), while words not containing date information would be tagged as ""O"™ (indicating
they are outside any slot).

Definition: In this task, you are given a conversation, where the words spoken by a person are
shown as a list. Your job is to classify the words in the following conversation into one of the 37
different entities. The entities are: 'I-abstract’, 'B-object’, 'B-place’, 'l-substance’, 'I-time', 'l-place’,
'B-time', 'B-abstract', 'l-person’, 'B-plant', 'B-substance', 'l-animal’, 'B-organization’, 'l-event', 'B-
person', 'B-event', 'I-plant’, 'l-organization’, 'O, 'l-object', 'B-animal'. Only output entities. And
the entity types should be output as a list without any explanation. The input is [NASA',
'celebrates’, '30th’, 'anniversary', 'of, 'first', 'shuttle’, 'launch’, *;', 'announces', 'new', 'homes', ‘for’,
'retired, 'shuttles’, 'Wednesday', *,', 'April’, "13', ", 2011, 'NASA', '‘Administrator’, ‘Charles",...].

Case 7 - Our Model

Case 7 - GPT-40 Response

Case 7 - Gemini1.5pro Response

I

Case 7 - Longformer Output

H

Figure 9: Prompt and output for a sample document
of length 1281 in GUM dataset for NER task, where
correct predictions are highlighted in green and wrong
predictions are highlighted in red.

Case 8, length: 1798 - Document and Prompt

In the task of Named Entity Recognition, the B-, I-, and O- prefixes are commonly used to
annotate slot types, indicating the boundaries and types of slots. These labels typically
represent: B- (Begin): Signifies the beginning of a slot, marking the start of a new slot.
I- (Inside): Represents the interior of a slot, indicating a continuation of the slot.
O (Outside): Denotes parts of the input that are not part of any slot. For instance, in a sentence
where we want to label a "date™ slot, words containing date information might be tagged as
""B-date™ (indicating the beginning of a date slot), followed by consecutive words carrying date
information tagged as ""I-date™ (indicating the continuation of the date slot), while words not
containing date information would be tagged as ""O"" (indicating they are outside any slot).
Definition: In this task, you are given a conversation, where the words spoken by a person are
shown as a list. Your job is to classify the words in the following conversation into one of the 37
different entities. The entities are: "O", "B-PERSON", "I-PERSON", "B-NORP", "I-NORP", "B-
FAC", "I-FAC", "B-ORG", "I-ORG", "B-GPE", "I-GPE", "B-LOC", "I-LOC", "B-PRODUCT",
PRODUCT", "B-DATE", "I-DATE", "B-TIME", "I-TIME", "B-PERCENT", "I-PERCENT", "B-
MONEY", "I-MONEY", "B-QUANTITY", "I-QUANTITY", "B-ORDINAL", "I-ORDINAL", "B-
CARDINAL", "I-CARDINAL", "B-EVENT", "I-EVENT", "B-WORK_OF_ART", "I-
WORK_OF_ART", "B-LAW", "I-LAW", "B-LANGUAGE", "I-LANGUAGE". Only output entities.
And the entity types should be output as a list without any explanation. The input is [None
[The', 'Senate’, "'s", 'd ¢ ‘reduction’, 'bill’,
\without', 'a", ‘capital’, ‘of, ...]].

‘leaves', ‘open’, 'the', 'possibi

, 'gains’, 'tax’, 'cut’,

7

Case 9, length: 3038 - Document and Prompt

In the task of Named Entity Recognition, the B-, |-, and O- prefixes are commonly used to
annotate slot types, indicating the boundaries and types of slots. These labels typically
represent:B- (Begin): Signifies the beginning of a slot, marking the start of a new slot.

I- (Inside): Represents the interior of a slot, indicating a continuation of the slot.

O (Outside): Denotes parts of the input that are not part of any slot.

For instance, in a sentence where we want to label a "date™ slot, words containing date
information might be tagged as ""B-date™ (indicating the beginning of a date slot), followed by
consecutive words carrying date information tagged as ""I-date™ (indicating the continuation of
the date slot), while words not containing date information would be tagged as "'O™ (indicating
they are outside any slot). Definition: In this task, you are given a conversation, where the
words spoken by a person are shown as a list. Your job is to classify the words in the following
conversation into one of the 37 different entities. The entities are: "O", "
PERSON", "B-NORP", "I-NORP", "B-FAC", "I-FAC", "B-ORG", "I-OR
LOC", "I-LOC", "B-PRODUCT", "I-PRODUCT", "B-DATE", "I-DATE",
PERCENT", "I-PERCENT", "B-MONEY", "I-MONEY", "B-QUANTITY", "I-QUANTITY",
ORDINAL", "I-ORDINAL", "B-CARDINAL", "I-CARDINAL", "B-EVENT", "I-EVENT", "B-
WORK_OF_ART", "I-WORK_OF_ART", "B-LAW", "I-LAW", "B-LANGUAGE", "I-LANGUAGE".
Only output entities. And the entity types should be output as a list without any explanation.
The input is [None: [Powerful', "Tools', ‘for', 'Biotechnology', -, '‘Biochips', -LRB-', 'Chang’,

\'Chiung', -, fang', '/", ‘photos’, 'by", ‘Hsueh’, ‘Chi', -, 'kuang’, /", 'tr.", 'by", ‘Robert’, ‘Taylor", ...]]

Case 9 - Our Model

Case 9 - GPT-40 Response

Case 9 - Longformer Output

10,'0,'0,'0','0,'0','0. 10,0, 0’0} . |

Figure 11: Prompt and output for a sample document
of length 3038 in CoNLL dataset for NER task, where
correct predictions are highlighted in green and wrong
predictions are highlighted in red.

Case 10, length: 7474 - Document and Prompt

In the task of Named Entity Recognition, the B-, I-, and O- prefixes are commonly used to
annotate slot types, indicating the boundaries and types of slots. These labels typically
represent: B- (Begin): Signifies the beginning of a slot, marking the start of a new slot. I-
(Inside): Represents the interior of a slot, indicating a continuation of the slot. O (Outside):
Denotes parts of the input that are not part of any slot. For instance, in a sentence where we
want to label a “"date*” slot, words containing date information might be tagged as “’B-date*”
(indicating the beginning of a date slot), followed by consecutive words carrying date
information tagged as “’I-date™” (indicating the continuation of the date slot), while words not
containing date information would be tagged as “’O*" (indicating they are outside any slot).
Definition: In this task, you are given a conversation, where the words spoken by a person are
shown as a list. Your job is to classify the words in the following conversation into one of the 37
different entities. The entities are: “O”, “B-PERSON”, “I-PERSON”, “B-NORP”, “I-NORP”, “B-
FAC”, “I-FAC”, “B-ORG”, “I-ORG", “B-GPE”, “I-GPE”, “B-LOC", “I-LOC", “B-PRODUCT", “I-
PRODUCT", “B-DATE”, “I-DATE”, “B-TIME”, “I-TIME”, “B-PERCENT", “I-PERCENT", “B-
MONEY”, “I-MONEY”, “B-QUANTITY”, “I-QUANTITY", “B-ORDINAL", “I-ORDINAL", “B-
CARDINAL", “I-CARDINAL", “B-EVENT", “IEVENT", “B-WORK_OF_ART", “I-
WORK_OF_ART", “B-LAW”, “I-LAW”, “B-LANGUAGE”, “I LANGUAGE". Only output entities.
And the entity types should be output as a list without any explanation. The input is [speaker#1:
[, ‘basically’, ", ‘it’, ‘was’, ‘unanimously’, ‘agreed’, ‘upon’, ‘by’, ‘the’, ‘various’, ‘relevant’,
\_'parties’, ", ‘To’, ‘express’, ‘its’, ‘determination’, *,", ‘the’, ‘Chinese’, ‘securities’, ...]

J

Case 8 - Our Model

Case 8 - GPT-40 Response

Case 8- Gemini1.5pro Response

e

Case 8 - Longformer Output

Figure 10: Prompt and output for a sample document
of length 1798 in CoNLL dataset for NER task, where
correct predictions are highlighted in green and wrong
predictions are highlighted in red.
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Case 10 -Our Model
[..,'0,'0,'0,'0; "0, ‘0, '0} 0} '0; 'B-NORP, ..]

Case 10 - GPT-40 Response

10,0} "0, [EOBIECTIIBSIMEY O, [STIMESNIETINES O, IETIME] - |

Case 10 -Gemini1.5pro Response

Case 10 - Longformer Output

Figure 12: Prompt and output for a sample document
of length 7474 in CoNLL dataset for NER task, where
correct predictions are highlighted in green and wrong
predictions are highlighted in red.



Case 11, length: 9778 - Document and Prompt

In the task of Named Entity Recognition, the B-, I-, and O- prefixes are commonly used to
annotate slot types, indicating the boundaries and types of slots. These labels typically
represent:B- (Begin): Signifies the beginning of a slot, marking the start of a new slot.
I- (Inside): Represents the interior of a slot, indicating a continuation of the slot.
O (Outside): Denotes parts of the input that are not part of any slot.
For instance, in a sentence where we want to label a ""date™ slot, words containing date
information might be tagged as ""B-date™ (indicating the beginning of a date slot), followed by
consecutive words carrying date information tagged as ""I-date™ (indicating the continuation of
the date slot), while words not containing date information would be tagged as ""O™ (indicating
they are outside any slot). Definition: In this task, you are given a conversation, where the
words spoken by a person are shown as a list. Your job is to classify the words in the following
conversation into one of the 37 different entities. The entities are: "O", "B-PERSON", "I-
PERSON", "B-NORP", "I-NORP", "B-FAC", "I-FAC", "B-ORG", "I-ORG", "B-GPE", "I-GPE", "B-
LOC", "I-LOC", "B-PRODUCT", "I-PRODUCT", "B-DATE", "I-DATE", "B-TIME", "I-TIME", "B-
PERCENT", "I-PERCENT", "B-MONEY", "I-MONEY", "B-QUANTITY", "I-QUANTITY", "B-
ORDINAL", "I-ORDINAL", "B-CARDINAL", "I-CARDINAL", "B-EVENT", "I-EVENT", "B-
WORK_OF_ART", "I-WORK_OF_ART", "B-LAW", "I-LAW", "B-LANGUAGE", "I-LANGUAGE".
Only output entities. And the entity types should be output as a list without any explanation.
The input is [ Announcer: [Iraq’, 'in’, 'the', 'shadows', '/, 'As', 'Iraqgis’, 'vote', ‘'on’, ‘a’, 'new’,

\, ‘constitution’, 'have', 'the', ‘'media’, ‘dropped", ‘the', ‘ball’, ‘on’, ‘this', 'long’, ‘and", ‘bloody", ‘war’, ...] /

Case 11 -0Our Model

[B-GPE', ‘0,0, '0', '0', ‘0, 'B-NORP', "0, '0', '0', '0', ‘0, ]

Case 11 - GPT-40 Response

Case 11 - Longformer Output

@0, 0,0, '0, 0, @0, 0,0, 0,0, .|

Figure 13: Prompt and output for a sample document
of length 9778 in CoNLL dataset for NER task, where
correct predictions are highlighted in green and wrong
predictions are highlighted in red.
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