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Abstract

Accurate anomaly detection in medical imaging is criti-
cal for clinical decision-making, yet many methods rely
on disease-specific models and extensive labels. We present
TGUMIAD, a unified vision–language framework that com-
bines a frozen CLIP image encoder and CLIP text encoder
with explicit cross-modal fusion and a denoising Trans-
former decoder to deliver robust, interpretable anomaly de-
tection across retina, brain tumor, and liver tumor bench-
marks. Our design emphasizes human-in-the-loop use, ex-
plainability (prompt-guided heatmaps), and clinical usability
(compact model size and fast inference). Experiments show
strong image- and pixel-level AUROC, especially in few-shot
settings, indicating practical value when annotated data are
scarce. We discuss deployment constraints, fairness/robust-
ness under shifts, and how our interface supports clinician
oversight in real workflows.

Introduction
Anomaly detection (AD) in medical imaging is critical for
early disease diagnosis and trustworthy clinical decision-
making. However, widespread deployment of AD models
in practice remains challenging due to their reliance on
category-specific architectures and the need for large, an-
notated datasets. These constraints hinder adaptability and
scalability, especially in domains where abnormal cases are
rare and expert labeling is costly.

Traditional supervised approaches often require dense,
pixel-level annotations and may generalize poorly to unseen
pathologies or new imaging modalities. In contrast, unsuper-
vised anomaly detection (UAD) methods, such as memory-
based or reconstruction-based models, reduce annotation re-
quirements but frequently suffer from limited semantic in-
terpretability, suboptimal localization, and vulnerability to
domain shifts (Bao et al. 2024; Roth et al. 2022; Zavrtanik,
Kristan, and Skočaj 2021).

Recently, advances in multimodal vision-language mod-
els (VLMs) (Radford et al. 2021) have opened new av-
enues for cross-modal medical AI by bridging image and
text semantics. This enables more interpretable, open-
vocabulary, and data-efficient learning. However, directly
applying vision-language models to clinical anomaly detec-
tion is non-trivial due to domain gaps, insufficient localiza-
tion ability, and the lack of robust integration with clinical

language data (Zhang et al. 2024; Jeong et al. 2023). More-
over, many VLM-based systems are not designed to oper-
ate across multiple diseases or imaging modalities, limiting
their clinical applicability and scalability.

A central and underexplored challenge in medical
anomaly detection is achieving unified and multi-class
anomaly detection. Unlike traditional single-disease or
single-modality approaches, a unified model aims to iden-
tify diverse types of abnormalities across various anatomical
regions, disease categories, or imaging techniques within a
single, generalizable framework. Such a paradigm is essen-
tial for modern healthcare systems, where large-scale multi-
modal data (e.g., MRI, CT, OCT) is routinely acquired, and
operational efficiency precludes deploying and maintaining
multiple specialized models.

Despite progress, there remains a clear gap: existing so-
lutions rarely combine efficient cross-modal feature align-
ment, interpretability, parameter efficiency, and real-world
deployability in a single model. Furthermore, for clinical
translation, it is crucial that models can adapt to limited an-
notated data, operate under domain shifts, and provide trust-
worthy, explainable predictions, especially as AI becomes
more deeply integrated into diagnostic workflows.

To address these challenges, we propose TGUMIAD, a
unified, multimodal vision-language framework for robust
and explainable medical anomaly detection. TGUMIAD
fuses multi-scale Vision Transformer (ViT) visual features
with CLIP-guided text embeddings, enabling adaptive cross-
modal reasoning, robust anomaly localization, and gener-
alization across diverse medical domains with minimal re-
liance on category-specific tuning or large-scale annota-
tions. By explicitly aligning visual and semantic features,
TGUMIAD supports scalable, modality-agnostic, and inter-
pretable anomaly detection suitable for dynamic, real-world
clinical scenarios.

We extensively validate TGUMIAD on three heteroge-
neous benchmarks: retina, brain tumor, and liver tumor
datasets, demonstrating consistent improvements over state-
of-the-art baselines in both standard and few-shot settings.
In addition, we show strong performance in resource-limited
and real-world clinical environments, with rapid inference,
low computational requirements, and explainable outputs
that align with expert annotations.

Beyond technical gains, TGUMIAD addresses key as-



pects valued in clinical AI:
• Multimodal and multiclass scalability: One model can

be seamlessly applied to multiple diseases and modali-
ties, supporting hospital-wide deployments and reducing
maintenance overhead.

• Data efficiency and practicality: TGUMIAD performs
strongly with limited or few-shot labeled data, enhancing
utility in rare disease or emerging epidemic scenarios.

• Explainability and trustworthiness: Vision–language
alignment and interpretable feature fusion enable clini-
cians to understand, trust, and validate AI predictions.

• Ethical and robust design: We consider model robust-
ness under distribution shift, fairness, and bias, sup-
porting safe, transparent, and ethical deployment in real
healthcare systems.

Our main contributions are summarized as follows:
• We propose TGUMIAD, a unified, multimodal vision–

language framework that integrates multi-scale Vision
Transformer features and CLIP-guided semantic fusion,
enabling robust, interpretable, and modality-agnostic
anomaly detection and localization across multiple dis-
ease categories and imaging modalities.

• We introduce a cross-modal feature alignment module
and a frequency–spatial feature perturbation strategy, sig-
nificantly improving model robustness, fine-grained lo-
calization, and generalization under domain shifts and
limited supervision.

• We achieve new state-of-the-art performance on three
challenging medical datasets (retina, brain tumor, liver
tumor), with superior image-level and pixel-level AU-
ROC and a highly compact model size of 3.5M parame-
ters, which is substantially smaller than prior transformer
and diffusion-based competitors.

• We provide extensive quantitative and qualitative analy-
ses, including ablation and efficiency studies, validating
the benefit of vision–language fusion and the adaptability
of TGUMIAD to few-shot and one-shot detection scenar-
ios.

• We discuss clinical and societal impact, ethical consider-
ations, and the path toward integrating TGUMIAD with
large foundation models and digital twin systems, sup-
porting future explainable, scalable, and human-centric
AI in healthcare.

In summary, TGUMIAD bridges key gaps in medical
anomaly detection, offering a unified, explainable, and ef-
ficient solution with immediate clinical relevance and a
foundation for next-generation, trustworthy AI systems in
medicine.

Related Work
Unsupervised Anomaly Detection in Medical Imaging.
Unsupervised anomaly detection (UAD) in medical imaging
has evolved from traditional reconstruction- and embedding-
based paradigms to recent unified and cross-modal frame-
works. Early UAD methods leveraged pre-trained CNNs
to extract feature embeddings and identified anomalies by

measuring deviations from the distribution of normal sam-
ples (Roth et al. 2022; Rudolph, Wandt, and Rosenhahn
2021). Memory-based methods such as PatchCore (Roth
et al. 2022) use nearest-neighbor matching in latent space,
while statistical approaches fit explicit distributions to detect
outliers. However, these designs often struggle with domain
adaptation and fine-grained localization, particularly in the
heterogeneous context of medical imaging.

Synthesis- and Reconstruction-Based Approaches.
Synthesis-based methods, including DRAEM (Zavrtanik,
Kristan, and Skočaj 2021), improve robustness by gener-
ating pseudo-anomalies via noise or texture augmentation.
Reconstruction-based models aim to restore input images,
flagging anomalies through high reconstruction errors (Liu
et al. 2022; Deng and Li 2022). Multi-scale and edge-aware
architectures enhance spatial sensitivity, but scalability is
limited by category-specific designs and the need for dense
annotations.

Vision–Language Models and Cross-Modal AD. Re-
cent advances in vision–language models (VLMs), notably
CLIP (Radford et al. 2021), have introduced cross-modal
reasoning to anomaly detection, enabling zero-shot and
open-vocabulary capabilities. By aligning image and text
embeddings, models such as WinCLIP (Jeong et al. 2023)
and CLIP Surgery (Li et al. 2023) facilitate semantically-
aware anomaly localization. Nevertheless, directly applying
VLMs to medical domains often faces challenges due to
modality-specific gaps and insufficiently tailored integration
strategies (Zhang et al. 2024).

Unified and Transformer-Based Anomaly Detection.
To improve scalability and generalization, unified frame-
works such as UniAD (You et al. 2022), HVQ-Trans (Lu
et al. 2023), and DiAD (He et al. 2024) adopt transformer
decoders and quantization-based reconstruction for multi-
class and cross-domain anomaly detection. While these ap-
proaches advance accuracy and flexibility, many require
complex inference or are computationally intensive.

Summary. Despite substantial progress, prior art is still
constrained by category-specific tuning, lack of cross-modal
flexibility, or insufficient scalability. Our TGUMIAD frame-
work addresses these gaps by unifying Vision Transformer
and CLIP-guided embeddings, enabling robust, adaptive,
and generalizable anomaly detection across diverse medical
imaging domains.

Proposed Framework: TGUMIAD
Architecture Overview
TGUMIAD (Multi-Class Model for Medical Image
Anomaly Detection) is a unified vision–language frame-
work for robust and generalizable anomaly detection
in medical imaging. As shown in Fig. 1, TGUMIAD
integrates a CLIP image encoder (ViT-B/16, frozen),
a CLIP text encoder (frozen), an explicit cross-modal
alignment module, and a denoising Transformer decoder.
This unified pipeline enables adaptive anomaly detection
and precise localization across heterogeneous modalities,
while minimizing reliance on large labeled datasets or
category-specific model designs.



Figure 1: Overall architecture of the proposed TGUMIAD framework.

1. CLIP Image Encoder (frozen): extracts patch-level vi-
sual tokens from the medical image.

2. CLIP Text Encoder (frozen): embeds clinical prompt-
s/descriptions into semantic text tokens.

3. Cross-Modal Fusion Module: explicitly aligns image/-
text tokens and outputs a fused feature embedding.

4. Feature Jittering Module: applies spatial/frequency
perturbations to encourage robust, denoised representa-
tions.

5. Denoising Transformer Decoder (trainable): recon-
structs normal feature tokens; a feature-space reconstruc-
tion loss is computed between the fused and recon-
structed embeddings.

6. Upsample to Heatmap: bilinear up-sampling converts
reconstruction residuals into a pixel-wise heatmap.

7. Anomaly Localization & Scoring: produces pixel-
level anomaly maps and stable image-level scores (e.g.,
max/mean/Top-K), enabling modality-agnostic AD with
minimal labels.

Frozen CLIP Encoders and Feature Extraction

During training, the CLIP image and text encoders are kept
frozen. Given an input image I, the CLIP image encoder
(ViT-B/16, frozen) outputs a patch-level feature map Fin ∈
RCorg×H×W . For each case, a clinically informative text
prompt is processed by the CLIP text encoder to yield a se-
mantic embedding. This embedding is fused with the visual
feature map to guide the downstream reconstruction. After
spatial flattening and linear projection, we obtain the final
token sequence:

X ∈ RH·W×D. (1)

Embedding-Level Fusion
Given visual embeddings Xvis ∈ RN×D and textual em-
beddings Xtext ∈ RC×D, we adopt a cross-attention fu-
sion strategy. Specifically, the visual tokens serve as queries,
while the text embeddings act as keys and values:

Z = CrossAttn(Q = Xvis, K = Xtext, V = Xtext) ,
(2)

where Z denotes the cross-modally attended visual represen-
tation. The fused features are then refined through layer nor-
malization, self-attention, and an MLP to enhance semantic
consistency across modalities. This embedding-level fusion
enables adaptive alignment between visual and textual in-
formation, supporting robust and generalizable cross-modal
anomaly reasoning.

Feature Jittering Module
To enhance robustness against distribution shifts, scanner
variability, and acquisition noise, we introduce a dual-
domain feature perturbation module that randomly ap-
plies perturbations in either the spatial or frequency domain
during training. In the spatial domain, additive Gaussian
noise is injected into the fused tokens. In the frequency do-
main, the top q% high-frequency Fourier coefficients (em-
pirically q = 30%) are selectively perturbed using a binary
mask:

Xjitter =

{
Xfused + ϵ, (spatial)

F−1
(
F(Xfused) + ϵ Ihigh

)
, (frequency)

(3)
where ϵ is zero-mean Gaussian noise and Ihigh denotes the
high-frequency mask in the Fourier spectrum. This dual aug-
mentation encourages the model to learn invariance to both
spatial-level artifacts and frequency-specific textural shifts.



Denoising Transformer Decoder
The perturbed tokens Xjitter are passed through a multi-
layer denoising Transformer decoder (with self-attention
and feed-forward networks (Vaswani et al. 2017)) to recon-
struct the expected normal feature distribution:

Fout ∈ RCorg×H×W . (4)

Each decoder block comprises Multi-Head Self-Attention
(MHA) and FFN modules, supporting both global con-
text and fine-grained local structure. We also employ lo-
cal neighborhood-masked attention (following UniAD (You
et al. 2022)) to balance fine localization with tractable com-
pute.

Anomaly Localization and Scoring
Anomaly scores are computed by combining pixel-wise re-
construction error and perceptual similarity:

S = ∥Fin − Fout∥22 + λ · (1− SSIM(Fin,Fout)) , (5)

where λ weights structural and intensity differences. Image-
level anomaly scores are then aggregated (define K = 5
unless specified) by:

Simage = w1·max(S)+w2·mean(S)+w3·TopKMeanK(S),
(6)

with w1, w2, w3 as fixed or learnable coefficients.

Summary
TGUMIAD integrates CLIP-based visual and textual en-
coders with explicit cross-modal alignment, lightweight fea-
ture perturbations, and a Transformer-based denoising de-
coder to reconstruct normal patterns and reveal anoma-
lies. This unified framework delivers robust, interpretable,
and generalizable anomaly detection across diverse med-
ical imaging modalities, while reducing dependence on
category-specific labels or hand-crafted architectures. We
additionally report trainable parameters and FLOPs to reflect
deployability in clinical environments, and the design natu-
rally supports user-friendly clinician interaction (e.g., simple
editable text prompts and adjustable anomaly masks).

Experiments
Benchmark and Dataset
To comprehensively evaluate the proposed TGUMIAD
framework, we adopt the BMAD benchmark (Bao et al.
2024), which provides clinically curated, pixel-annotated
datasets for Brain MRI, Liver CT, and Retina OCT. We focus
on these three modalities because they include pixel-level
ground truth for precise anomaly localization. Each dataset
is divided into normal and anomalous subsets following the
BMAD protocol. See Table 1 for the main comparison.

We report AUROC as the primary evaluation metric at
both the image level (detecting whether an image is anoma-
lous) and the pixel level (localizing anomalous regions). This
dual-level evaluation enables a comprehensive assessment
of both overall detection and spatial localization accuracy.

Figure 2: Denoising decoder of the proposed TGUMIAD
framework.

Implementation Details
All experiments are conducted on a single NVIDIA RTX
4090 GPU. Input images are resized to 224 × 224 and nor-
malized using ImageNet statistics. We adopt the CLIP im-
age encoder (ViT-B/16) as the frozen visual backbone
and extract patch-level embeddings with the classification
head removed. The CLIP text encoder (Transformer-based)
is also kept frozen to provide semantic guidance through text
prompts.

Cross-Modal Feature Fusion. Visual embeddings from
the CLIP image encoder are fused with the corresponding
CLIP text embeddings via a cross-attention module, where
image tokens serve as queries and text tokens act as keys and
values, yielding a unified representation Ffused.

Feature Jittering. During training, a dual-domain fea-
ture perturbation module randomly applies spatial-domain
Gaussian noise or frequency-domain perturbation to the
fused tokens. For frequency perturbation, the top q =
30% high-frequency Fourier coefficients are modified
and inverse-transformed, promoting robustness against
modality-specific artifacts and scanner variations.

Denoising Transformer Decoder. The fused tokens are
reconstructed using a Transformer-based denoising decoder
consisting of four layers, eight attention heads, and hid-
den dimension 128. Each block includes multi-head self-
attention and local neighborhood-masked attention, follow-
ing UniAD (You et al. 2022), with a fixed 7× 7 spatial win-
dow for efficient local reasoning.

Reconstruction and Scoring. The decoder reconstructs
the expected normal feature distribution Fout, and pixel-
level anomaly maps are computed as a weighted combina-



Table 1: Image-AUROC (%) and Pixel-AUROC (%) on the BMAD benchmark. Best results in bold.

Image-AUROC (%)
Category DRAEM UniAD SimpleNet DiAD TGUMIAD (Ours)
Liver Tumor 59.1 61.0 55.8 59.2 75.0
Brain Tumor 69.2 89.9 82.3 93.7 89.1
Retina 51.7 84.6 88.8 88.3 82.8
Average 60.0 78.5 75.6 80.4 82.3

Pixel-AUROC (%)
Category DRAEM UniAD SimpleNet DiAD TGUMIAD (Ours)
Liver Tumor 52.9 97.1 97.4 97.1 95.8
Brain Tumor 52.0 97.4 94.8 95.4 96.6
Retina 57.4 94.8 95.5 95.3 95.5
Average 54.1 96.4 95.9 95.9 96.1

tion of MSE and SSIM:

S = λ · ∥Fin −Fout∥22 + (1− λ) [1− SSIM(Fin,Fout)].
(7)

Image-level anomaly scores are aggregated using a weighted
combination of maximum, mean, and Top-K mean pixel
values (default K = 5). AdamW is used with learning rate
2× 10−4, weight decay 1× 10−4, StepLR scheduler, gradi-
ent clipping (max norm 0.1), and we report mean±std over
3 random seeds.

CLIP Text Prompt Details
Brain MRI
Normal: This is a normal brain MRI scan. No mass, lesion,
or abnormal enhancement is seen.
Abnormal: This MRI shows a hyperintense lesion in the
right frontal lobe with surrounding edema and midline shift.

Retina OCT
Normal: Healthy retina with continuous and well-organized
layers.
Abnormal: Intraretinal cysts and fluid accumulation in the
macular region, with disrupted retinal architecture.

Liver CT
Normal: Homogeneous hepatic parenchyma with smooth
contours and no visible lesion.
Abnormal: Hypodense mass in segment VI showing irregu-
lar borders and capsular retraction.

Experimental Results
Quantitative Comparison with State of the Art
Table 1 presents a comprehensive comparison between
TGUMIAD and representative UAD baselines, includ-
ing DRAEM (Zavrtanik, Kristan, and Skočaj 2021),
UniAD (You et al. 2022), SimpleNet (Liu et al. 2023),
and DiAD (He et al. 2024). Across Retina OCT, Brain Tu-
mor MRI, and Liver Tumor CT, TGUMIAD achieves the
highest average Image-AUROC (82.3%) and Pixel-AUROC
(96.1%). The largest image-level gain appears on Liver CT,
where TGUMIAD surpasses the strongest baseline by +14%
Image-AUROC while maintaining precise pixel-level local-
ization.

Qualitative Visualization
Few-Shot and One-Shot Performance
We evaluate the one-shot setting in Table 3. TGUMIAD
achieves notable gains for both image- and pixel-level AU-
ROC, especially in Liver Tumor with a +42.4% Image-
AUROC improvement over UniAD, highlighting strong
sample efficiency.

Ablation Study: Effectiveness of Cross-Modal
Fusion

We ablate the CLIP-guided fusion by removing the CLIP
text encoder and fusion module. Results in Table 4 show
consistent improvements with CLIP, confirming the impor-
tance of semantic alignment.

Ethics, Data, and Reproducibility
We use only public, de-identified datasets; no protected
health information is accessed. Code, prompts, and config-
uration files will be released to support reproducibility. We
report seeds, one-/few-shot protocols, and metrics, and ana-
lyze typical failure cases and potential biases (e.g., modali-
ty/site shifts).

Conclusion and Future Work
We introduced TGUMIAD, a unified and efficient vision–
language framework for medical anomaly detection. TGU-
MIAD integrates a frozen CLIP image encoder, a CLIP
text encoder, explicit cross-modal alignment, and a denois-
ing Transformer decoder to deliver robust and interpretable
detection across Retina OCT, Brain MRI, and Liver CT.
With only 3.5M trainable parameters and low FLOPs, the
model is practical for clinical deployment; we also report
parameters and FLOPs to quantify deployability. The de-
sign supports clinician-friendly interaction (simple prompts,
editable masks) and shows strong one-/few-shot generaliza-
tion with state-of-the-art Image-/Pixel-level AUROC. Future
work will extend TGUMIAD to temporal inputs and inte-
grate retrieval-augmented reasoning and federated training
to address privacy and cross-center domain shifts.



Table 2: Model size vs. AUROC. “Avg.” denotes the mean of Image- and Pixel-level AUROC (in %).

Model Parameters (Millions) Avg. Image-/Pixel AUROC (%)
TGUMIAD (Ours) 3.5 89.2
DiAD (He et al. 2024) 1300 88.2
UniAD (You et al. 2022) 7.7 87.5

Figure 3: Qualitative visualization across Retina (OCT), Brain Tumor (MRI), and Liver Tumor (CT). TGUMIAD accurately
localizes anomalies while minimizing false positives (see also Fig. 2).
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