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Abstract

In natural language processing and biology,
large language models (LLMs) and protein lan-
guage models (PLMs) have advanced signifi-
cantly. Despite similarities in their organiza-
tional form, protein sequences and natural lan-
guage lack direct semantic association due to
domain differences. Thus, efficiently connect-
ing LLMs and PLMs to leverage cross-field
benefits and promote large model toolization
remains a challenge. To bridge this gap, we
propose a lightweight cross-modal adapter that
aligns protein sequences with natural language
representations through contrastive learning, ef-
fectively reducing modality difference, thereby
bridging PLMs and LLMs and enhancing the
performance of both. In the experiments, we
first evaluated the performance of the PLM in-
tegrated with the adapter across multiple tasks.
The experimental results show that the adapter
achieved better results in many cases compared
to using the PLM alone. Additionally, given the
significant progress in protein-related LLMs,
we further explored how the adapter can en-
hance this paradigm. In this experiment, we not
only demonstrated that the adapter can enhance
the LLM’s ability to analyze protein sequences,
outperforming other baseline models, but also
proved the adapter’s applicability in different
base models.

1 Introduction

In recent years, significant breakthroughs in natural
language processing, exemplified by models like
ChatGPT series (OpenAl, 2023), Deepseek series
(DeepSeek-Al et al., 2025) and the open-source
Llama series (Al@Meta, 2024), have led to the
development of powerful large language models
(LLMs). These models have demonstrated impres-
sive abilities across a wide range of fields, includ-
ing natural language understanding, generation as
well as tasks that go beyond traditional language
processing(Zhao et al., 2023; Zhou et al., 2023;

Liu et al., 2023; Dong et al., 2022; Zhang et al.,
2024). Currently, large models are evolving to-
wards multi-modal capabilities (Yin et al., 2024),
typically using language models as a foundation to
process different types of data, such as ChatGPT-
4(OpenAl, 2023), Geminil.5 (Reid et al., 2024),
Blip-2(Li et al., 2023), Qwen-VL(Bai et al., 2023)
and LLaVA(Liu et al., 2024). These multi-modal
models can comprehensively handle various data
types, including text, images, and audio, thereby
extending the application range and capabilities of
the models (Zhang et al., 2024).

At the same time, significant advancements
have been made with protein language models
(PLMs), exemplified by ProtBert (Brandes et al.,
2022), OntoProtein (Zhang et al., 2022a), ESM1b
(Rives et al., 2021) and ESM2 (Lin et al., 2022).
These models have demonstrated exceptional per-
formance in tasks such as protein structure predic-
tion, functional analysis, and various other protein
related research applications, thereby significantly
advancing the field of biological sciences.(Bi et al.,
2024; Al4Science and Quantum, 2023).

These foundational works demonstrate the im-
mense potential of protein text generation, image
understanding, and sequence representation, but
there remains a significant opportunity to com-
bine these models to leverage their complementary
strengths for protein-related tasks. Some works
both for PLM and LLM have illustrated this po-
tential. One of the notable efforts is ProtST(Xu
et al., 2023), which first fine-tunes PLMs by incor-
porating the knowledge from pre-trained biomedi-
cal models. Besides PLM which focus on protein
sequence representation learning, there have been
concurrent advancements in LLMs tailored to pro-
tein research. Protein2Text(Abdine et al., 2024)
proposes a fused multi-modal encoder-decoder
based protein textual description generation train-
ing framework. In this work, a protein structure
encoder based on Relational Graph Convolutional
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Figure 1: The framework of the cross-modal adapter

Neural Network (RGCN) and a protein sequence
encoder based on ESM2 are both used for modality
fusion and then generating protein’s natural lan-
guage function description using GPT2. Instruct-
Protein(Wang et al., 2024) treats protein sequences
as part of the natural language vocabulary and di-
rectly integrates them with natural language in the
training of large language models on established
knowledge graph datasets.

Although some methods have attempted to
bridge PLMs and LLMs, challenges remain in de-
veloping more efficient and generalized integration
strategies due to the lack of direct semantic as-
sociation between protein sequences and natural
language. Therefore, we propose a lightweight
cross-modal adapter to bridge the PLM and LLM.
Specifically, we construct the adapter using a linear
projection layer and leverage contrastive learning
to map the embeddings of the protein sequence en-
coder and the text encoder into a shared semantic
space. It effectively mitigates the modality differ-
ences when integrating PLMs and LLMs. Addi-
tionally, the modular design of the adapter ensures
its compatibility with various large models, enhanc-
ing the flexibility and applicability of our approach
in different scenarios. Based on this, we evaluate
the performance of the adapter when integrated
with PLMs and explore its role in improving per-
formance when bridging PLMs and LLMs. The
experimental results show that the adapter not only
improves the performance of PLMs in traditional
representation tasks related to protein sequence
analysis, but also enhances the performance of
LLMs in the protein description generation down-

stream task. The contributions of this study can be
summarized as follows:

* We propose a lightweight cross-modal adapter,
which aligns the representation of protein se-
quences and text to bridge the LLMs and
PLMs. This adapter can be directly applied to
PLMs without fine-tuning the original model.

* The proposed lightweight cross-modal adapter
enhances the original protein representation
of the models on protein function prediction
downstream tasks.

* The proposed lightweight cross-modal adapter
enhances the performance of LLMs in the pro-
tein description generation downstream task.

2 Method

This section introduces the proposed lightweight
cross-modal adapter. It aligns the feature repre-
sentations of protein sequences and the semantic
embedding space of texts, functioning as a bridge
module between large language models (LLMs)
and protein language models (PLMs). The frame-
work is shown in Figure 1.

2.1 Adapter Module

In this paper, a protein data entry consists of a pair
of protein sequences and text descriptions, repre-
sented as P = (S,7). S is a protein sequence
composed of n amino acids, S = {s1, 2, ..., Sn},
and the 7' is a description of the protein, T =
{t1,ta, ...t}



We use ESM2 as the sequence encoder to con-
vert protein sequences into high-dimensional em-
beddings. ESM2, a powerful protein language
model, captures the intricate patterns and relation-
ships within protein sequences, transforming them
into meaningful vector representations.

z" Z ESM2(s;;) (1)
] 1
where s;; denotes the j-th amino acid of the i-th
protein sequence and z? is the corresponding high-
dimensional embedding.
We use Llama3 as the text encoder to generate
embeddings for text descriptions, encoding their
semantic information into vector representations.

1
7! = 3 - mean(Llamag (¢;) + Llamay,g(t;)) (2)

(2

where ¢; denotes the ¢-th text description,
Llamagyg (¢;) and Llamajag (¢;) represent the first
and last hidden layer states of the Llama3 model
for t;, respectively, and z! is the corresponding
high-dimensional embedding.

We introduce the linear projection layer as the
core component of the adapter module. This layer
is tasked with aligning the embeddings of protein
sequences with those of the text. The objective is to
effectively map both into a unified representation
space.

2 =W,z + b,
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where W), and W; are linear projection matrices,
and b, and by are bias terms.

2.2 Contrastive Sequence-text Pre-training

To achieve semantic consistency between pro-
tein sequences and textual descriptions, we intro-
duced contrastive learning. By mapping protein se-
quences and textual descriptions into a shared rep-
resentation space during training, the model learns
how to express both modalities in this space. Al-
though protein sequences and textual descriptions
differ in form, they are represented as embeddings
with similar meanings in the shared semantic space.

Contrastive learning enhances semantic consis-
tency by minimizing the distance between positive
pairs (e.g., a protein sequence and its corresponding
textual description) and maximizing the distance
between negative pairs (e.g., a protein sequence and

an unrelated textual description). This approach
reinforces the semantic similarity of positive pairs
while weakening the relationship between negative
pairs.

To implement contrastive learning effectively,
we use the InfoNCE loss, which can be mathemati-
cally expressed as:
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where 2! and z!' represent the embeddings of the
positive pair for the i-th sample, and z? represents
the embeddings of all other pairs (both positive
and negative) in the batch except the ¢-th positive
pair. 7 is a temperature parameter that controls the
sensitivity of the similarity measure.

Through iterative minimization of the InfoNCE
loss during training, the adapter module effectively
optimizes the parameters of the linear projection
layer, resulting in the alignment of protein and text
embeddings within a unified latent space. This
process enhances the model’s ability to compre-
hend and process cross-modal information by rig-
orously maximizing the semantic coherence of pos-
itive pairs while systematically minimizing the sim-
ilarity of negative pairs.
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2.3 Sampling Strategy

To ensure training stability, we integrate a fast
sampling strategy, where each batch is formed
by randomly selecting keys from groups and sam-
pling one index for each key. Let the dataset be
D = {di,ds,...,dn}, where N is the total num-
ber of samples, and each sample d; has an embed-
ding e;.

We compute the mean of each sample embed-
ding and convert it to a string, extracting the first
10 characters to create a key for each sample.
Based on these mean strings, we create a dictionary
mean_keys , where each key key, corresponds to a
list of sample indices{i1, iz, . . ., 4%} that share the
same mean. During batch sampling, we randomly
select keys from mean_keys and pick one sample
index for each key. The total number of batches is
computed as:

{mJ if drop_last=True
total_batches =

[ﬁ_me-‘ if drop_last=False
)



3 Experiments

In the experiments, we aimed to assess the cross-
modal adapter’s ability to bridge protein language
model (PLM) and large language model (LLM),
focusing on three key aspects: (1) measuring the
correlation between aligned protein sequences and
their textual descriptions; (2) Evaluate the perfor-
mance of the PLM combined with adapters. (3)
Evaluate whether adapters can effectively bridge
PLM and LLM.

3.1 Alignment Effectiveness Analysis

We employed the ProtDescribe dataset to train the
cross-modal adapter, constructed by (Xu et al.,
2023), which contains 546,026 pairs of protein
sequences and property descriptions. The data
comes from the Swiss-Prot database (Bairoch and
Apweiler, 2000), which provides annotations for
various protein properties. In order to show the
pretraining perfermance, we split this Dataset into
Train-Valid-Test part: 436,822 pairs for the training
set, 54,602 pairs for the validation set, and 54,602
pairs for the test set.

In this experiment, we evaluate the alignment
performance by calculating the inner product corre-
lation between protein sequences and their textual
descriptions on ProtDescribe test dataset. The in-
tensity of the heatmap colors reflects the strength
of the correlation. As shown in Figure 2(a), the
inner product heatmap of ESM?2 and Llama3 em-
beddings displays a scattered pattern with many
bright spots, indicating poor alignment and high
noise. In contrast, Figure 2(b) shows a clear diago-
nal line after using the cross-modal adapter, indicat-
ing strong alignment and reduced noise. This result
validates that the cross-modal adapter successfully
maps protein sequences and their corresponding
textual descriptions into the same semantic space.
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Figure 2: (a) Heatmap of sequence and text embed-
dings generated by ESM2 and Llama3. (b) Heatmap
of aligned sequence and text embeddings using cross-
modal adapter

3.2 Adapter Integration with PLM for
Protein Representation Learning

In this experiment, we use ESM2 as the PLM, in-
tegrating it with the adapter (Adapter-ESM2) to
validate its performance on protein representation
learning tasks, including protein localization pre-
diction, fitness landscape prediction, and protein
function annotation.

3.2.1 Task Settings

* Protein Localization Prediction aims to
determine the subcellular locations of pro-
teins. In this context, we address two specific
tasks from the DeepLoc dataset (Almagro Ar-
menteros et al., 2017): subcellular localiza-
tion prediction (Sub) with 10 distinct location
categories, and binary localization prediction
(abbreviated as Bin) with 2 location categories.
We adhere to the official dataset splits for
these tasks. This task involves both binary
and multi-class classification, with accuracy
being the metric for measuring outcomes.

Fitness Landscape Prediction aims to pre-
dict the effect of residue mutations on pro-
tein fitness. We use several datasets for this
purpose: the 8-lactamase (abbreviated as (-
lac) landscape from PEER (Xu et al., 2022),
the AAV and Thermostability (Thermo) land-
scapes from FLIP (Dallago et al., 2021), and
the Fluorescence (Flu) and Stability (Sta) land-
scapes from TAPE (Rao et al., 2019). For the
AAV dataset, we use the “two vs many” splits,
for the Thermostability dataset, we adopt the
“human cell” splits, and for other tasks, we
follow the default splits. This is a regression
task where Spearman’s p (Spearman’s rank
correlation coefficient) is used to assess the
outcomes.

Protein Function Annotation aims to as-
sign multiple functional labels to a protein.
We utilize two standard benchmarks proposed
by DeepFRI (Gligorijevic¢ et al., 2021): En-
zyme Commission (EC) number prediction
and Gene Ontology (GO) term prediction.
The GO benchmark is further divided into
three branches: molecular function (abbrevi-
ated as GO-MF), biological process (abbre-
viated as GO-BP), and cellular component
(abbreviated as GO-CC). Following (Zhang
et al., 2022b), we use dataset splits with a 95%



Model Loc. pred. (Acc%) Fitness pred. (Spearman’s p)
Bin Sub B-lac  AAV  Thermo Flu Sta  Mean-p

ResNet 78.99 52.30 0.152  0.739 0.528 0.636  0.126 0.436
LSTM 88.11 62.98 0.139  0.125 0.564 0.494 0.533 0.371
Transformer 75.74 56.02 0.261 0.681 0.545 0.643 0.649 0.556
ProtBert 81.54 59.44 0.616  0.209 0.562 0.339  0.697 0.485
OntoProtein 84.87 68.34 0471 0.217 0.605 0.432  0.688 0.483
ESM1b 91.61 79.82 0.528 0.454 0.674 0.430 0.750 0.567
ESM2 91.32 80.84 0.559 0.374 0.677 0.456  0.746 0.562
ProtST-ESM2  92.52 83.39 0.586  0.398 0.681 0.499 0.776 0.584
Adapter-ESM2  92.82 82.10 0.715 0.426 0.711 0.570  0.786 0.642

Table 1: Results on protein localization and fitness landscape prediction.

Model EC GO-BP GO-MF GO-CC
AUPR  Fhxx  AUPR  Fhnae AUPR  Fhae  AUPR Fhux
ResNet 0.137 0.145 0.166 0.280 0.267 0.266 0.261  0.403
LSTM 0.032 0.082 0.130 0.248 0.100 0.166 0.150 0.320
Transformer 0.187 0.219 0.135 0257 0.172 0.240 0.170 0.380
ProtBert 0.859 0.838 0.188 0.279 0464 0456 0.234 0.408
OntoProtein 0.854 0.841 0.284 0436 0.603 0.631 0300 0.441
ESM1b 0.884 0.869 0332 0452 0.630 0.659 0324 0477
ESM2 0.888 0.874 0340 0472 0.643 0.662 0.350 0472
ProtST-ESM2 0.898 0.878 0342 0482 0.647 0.668 0364 0.487
Adapter-ESM2 0901 0.866 0.367 0.490 0.676 0.669 0.386 0.503

Table 2: Results on protein function annotation.

sequence identity cutoff for both EC and GO
tasks. This is a multi-label classification task
measured by Area Under the Precision-Recall
Curve (AUPR) and F},, 4.

3.2.2 Baselines

We compare three categories of models: Protein
sequence encoders trained from scratch: ResNet,
LSTM and Transformer.(Rao et al., 2019). Four ad-
vanced protein language models (PLMs): ProtBert
(Brandes et al., 2022), OntoProtein (Zhang et al.,
2022a), ESM1b (Rives et al., 2021) and ESM2 (Lin
etal., 2022). PLMs enhanced with biomedical texts
through the ProtST framework (Xu et al., 2023),
specifically using ProtST-ESM2 for comparison.

3.2.3 Results

The results for localization and fitness prediction
are shown in Table 1, and those for function anno-
tation are in Table 2. As illustrated in these tables,
we observe the following:

Protein Localization Prediction (Loc. pred.):
as shown in Table 1, Adapter-ESM2 (ESM2 with
the cross-modal adapter) achieves accuracy of
92.82% and 82.10% in localization prediction task.
Although it does not surpass ProtST-ESM?2 in the
subcellular localization task, it still outperforms
traditional methods and other pre-trained language

models (PLMs), especially with improvements of
1.5% and 1.26% over the base model ESM2.

Fitness Landscape Prediction (Fitness pred.):
as shown in Table 1, we can find that Adapter-
ESM2 achieves Spearman’s correlation coefficients
of 0.715, 0.426, 0.711, 0.570 and 0.786 on the
five subtasks. Compared to the base model ESM2,
Adapter-ESM2 achieved improvements of 0.156,
0.052, 0.034, 0.114 and 0.040. Additionally,
compared to ProtST-ESM2, Adapter-ESM?2 still
achieved better performance in the Fitness Land-
scape Prediction task.

Protein Function Annotation (AUPR and
Finaz): as shown in Table 2, Adapter-ESM2 ex-
cels in four functional annotation tasks, achieving
the highest AUPR (0.367, 0.676, and 0.386) and
Foraz (0.490, 0.669, and 0.503) scores in three of
the tasks (GO-BP, GO-MF, and GO-CC), surpass-
ing other models. The only exception is the EC
task, where the F},,,. scores of ESM2 and ProST-
ESM2 are 0.874 and 0.878, respectively, slightly
higher than Adapter-ESM2’s 0.866.

Based on the results of the downstream tasks
experiments, we can observe that the cross-modal
adapter not only successfully preserves the key bi-
ological characteristics of protein sequences but
also significantly enhances these characteristics



through alignment with text. This indicates that the
cross-modal adapter can retain the intrinsic proper-
ties of protein sequences while further improving
their predictive capabilities across various bioin-
formatics tasks. Considering the low computation
requirement of Cross-modal adapter training, this
experiment highlight the efficiency of the Adapter
approach in integrating textual semantics and pro-
tein representations.

3.3 Adapter-based Bridging of PLM and
LLM for Protein Description Generation

In this experiment, we employ the adapter as the
bridging module of ESM2 and a large language
model (LLM) and investigate the potential bene-
fits of the cross-modal adapter in protein descrip-
tion generation tasks. Our motivation is twofold:
First, as introduced in previous sections, recent
studies have demonstrated the feasibility of using
auto-regressive natural language models to tackle
protein-related tasks. We aim to explore whether
the cross-modal adapter, which integrates protein
sequences with textual descriptions, can further
enhance this learning paradigm. Second, several
works in visual multi-modal language models sug-
gest that an encoder with superior generalization ca-
pability often serves as a catalyst for improved gen-
erative performance. Hence, we hypothesize that
evaluating the generalization ability of the cross-
modal adapter should include assessing its contri-
butions to auto-regressive language model-based
text generation.

3.3.1 Dataset

Instruction: Can you provide the functional description of the
following protein sequence?
Input:MVKILKPGKVALITRGRFAGKKVVILQAIDQGSKSHPFGHAVV

AGVERYPLKVTKSMGAKRIARRSRVKPFIKVVNYNHLMPTRYALEL
DNLKGLITADTFKEPTQRSAARKTVKKTFEEKYQSGKSAWFFTPLRF

Ground Truth: Component of the ribosome, a large ribonucleo-
protein complex responsible for the synthesis of proteins in the cell.
The small ribosomal subunit binds messenger RNAs and translates

the encoded message by selecting cognate aminoacyl transfer RNA
molecules. The large subunit contains the ribosomal catalytic site
termed the peptidyl transferase center, which catalyzes the
formation of peptide bonds, thereby polymerizing the amino acids
delivered by tRNAs into a polypeptide chain.

Figure 3: One entry of Protein description downstream
dataset.

Protein Description Generation is a text-
generation task aiming to generate protein’s func-
tion generation based protein’s information such
as sequence and structure. In this task, our dataset

is constructed based on the SwissProt (UniProtKB
2022-04 release), a high-quality curated protein
knowledge base containing 256,690 different pro-
tein sequences. We set same dataset split ensuring
a maximum sequence identity of 40% across splits
with Prot2Text(Abdine et al., 2024), ensuring a
maximum sequence identity of 40% across splits.
Although SwissProt provides high-quality textual
descriptions, we still need employ instruction ex-
pansion techniques to generate diverse rephrasings
of prompts that has the same meaning with "Can
you provide a detailed summary of this protein’s
function?". This process facilitates the construction
of a supervised fine tuning(SFT) dataset by form-
ing structured triples of protein sequences, protein
descriptions, and the constructed instructions. (A
data entry case is provided in Figure 3)

3.3.2 Downstream Task Settings

Experiment Setup: As shown in Figure 1, in order
to let the adapter bridge the PLM and LLM, we
use Adapter-ESM?2 to connect multi-modal large
language model and fine-tune the MLLM based
on the SwissProt database to evaluate the impact
of adapter integration on the model’s ability to un-
derstand and process protein sequences. This fine-
tuning employed Low-Rank Adaptation (LoRA)
technology(Hu et al., 2021), by concatenating the
input as [< protein >] so that the model’s re-
sponse is grounded on both textual instructions
and protein sequence inputs. For training pipeline,
We employ a 2-stage training framework, which
includes a pretraining-stage for a projection layer
and a supervised finetuning stage using lora. On
the first stage the parameters of language model
are frozen, only the projection layer that converts
adapter’s output into language model’s embedding
space is trained. On the second stage, both the pro-
jection layer and the language model’s parameters
are trainable.

The experiment was conducted on 4 NVIDIA
V100 GPUs. In order to show the applicability of
the cross-modal adapter, we selected the different
large language model including Llama3 and Galac-
tica(Taylor et al., 2022) as the base model. For
more training details and hyperparameter settings
of the 2-stage pipeline, please refer to Appendix A.

3.3.3 Baselines and Evaluation Metrics

Since the same protein sequence split setting is
applied, two models introduced by Prot2Text, in-
cluding ESM2Text and Prot2Text, are considered



Model Required Evaluation Metrics

Sequence Structure ROUGE-1T ROUGE-21 ROUGE-L1 BERTSCORET BLEU?T
Prot2Textgase (Abdine et al., 2024) v v 0.5059 0.4217 0.4849 0.8430 0.3511
Prot2Textpepium (Abdine et al., 2024) v v 0.5213 0.4417 0.5004 0.8483 0.3651
ESM2Text (Abdine et al., 2024) v X 0.4746 0.3918 0.4531 0.8321 0.3211
Llama3-8B Finetuning v X 0.1907 0.0876 0.1693 0.7182 0.0637
BioMedGPT (Luo et al., 2023) v X 0.3518 0.2355 0.3283 0.7961 0.1062
Adapter-ESM2-Galactica-125M v X 0.5308 0.4498 0.5100 0.8535 0.3429

Table 3: Evaluation results of protein description generation task

Protein
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5'-3' DNA helicase involved in DNA damage
response by acting as an inhibitor of DNA end
resection. Recruitment to single-stranded DNA
(ssDNA) following DNA damage leads to
inhibit the nucleases catalyzing resection, such
as EXO1, BLM and DNA2, possibly via the 5'-
3' ssDNA translocase activity of HELB. As
cells approach S phase, DNA end resection is
promoted by the nuclear export of HELB
following phosphorylation. Acts independently
of TP53BP1. Unwinds duplex DNA with 5'-3'
polarity. Has single-strand DNA dependent
ATPase and DNA helicase activities. Prefers
ATP and dATP as substrates. During S phase,
‘may facilitate cellular recovery from replication
stress.

5'-3' DNA helicase involved in DNA damage
response by acting as an inhibitor of DNA end
resection. Recruitment to single-stranded DNA
(ssDNA) following DNA damage leads to
inhibit the nucleases catalyzing resection, such
as EXO1, BLM and DNAZ2, possibly via the 5'-
3' ssDNA translocase activity of HELB. As
cells approach S phase, DNA end resection is
promoted by the nuclear export of HELB
following phosphorylation. Acts independentl

DNA-dependent ATPase and 5'-3' DNA  ATP-dependent helicase involved in DNA
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such as transcription-coupled nucleotide
excision repair, mitotic spindle assembly, DNA
damage response and DNA repair. During
DNA double-strand break (DSB) repair,
involved in limiting the number of single-
stranded DSBs through DNA end resection by

the of RADSI to sites of

of TP53BP1. Unwinds double-stranded DNA
(dsDNA) with 5'-3' polarity. Has single-strand
DNA (ssDNA)-dependent ATPase and DNA
helicase activities. Prefers ATP and dATP as
substrates. During S phase, may facilitate
cellular recovery from replication stress

DNA damage. In addition to DNA end
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DNA synthesis from the new 3'-tail end of the
existing DNA ends. Acts as a regulator of
by inhibiting telomeric si :
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Figure 4: Case Study: A comparision of Adapter-ESM2-Llama3’s generation with Ground Truth and other models.
Sentences marked in green in the description represent generated content part that has a perfect match with the
ground truth. Blue indicates a rough match, meaning the predicted results may have ambiguities or conceptual
generalizations compared with the ground truth. Red represents that the predicted results have no relation to the

ground truth or even contain some fatucal errors.

as baselines. Additionally, BioMedGPT(Luo et al.,
2023), another protein MLLM, is included in the
comparison. BioMedGPT directly employs ESM2-
3B as its encoder and utilizes BioMedGPT-LM
as its base model. For evaluation metrics, we
choose ROUGE(Lin, 2004), BERT-Score(Zhang
et al., 2020) and BLEU(Papineni et al., 2002) to
evaluate the generation performance of our models.
ROUGE measures the overlap of n-grams, word
sequences, and longest common subsequences be-
tween the generated and reference texts. BLEU
quantifies n-gram precision by comparing gen-
erated outputs to reference texts. BERT-Score,
which computes similarity using contextual em-
beddings, provides a more nuanced evaluation of
semantic alignment; in our experiments, we em-
ploy BioBERTLARGE-cased v1.1 (Chakraborty
et al., 2020) to calculate BERT-Score, leveraging

its domain-specific understanding for protein func-
tion text.

3.3.4 Results

To validate the enhancement ability of adapter
serving as language model’s modality module and
evaluate the protein sequence understanding abil-
ity, we train three sequence based models based
on Llama3-8B, Galactica-125M, Adapter-ESM2-
Galactica-1.6B. We call them Adapter-ESM2-
Llama3-8B, Adapter-ESM2-Galactica-125M and
Adapter-ESM2-Galactica-1.6B. Indeed, Prot2Texts
need structure information as additional input so
we use protein AlphaFoldDB ID as input. For se-
quence based models relatively, we uniformly use
same system prompts(if required) and instruction
"What is the functional description of this protein?’.
This instruction and protein sequence are provided
as model inputs.



ROUGE-11 ROUGE-2? ROUGE-L{ BERTSCORE{ BLEU1"

Model

Gala-125M w.o Adapter 0.4896
Gala-125M with ProtST (Xu et al., 2023) 0.5078
Gala-125M with Adapter 0.5308

0.4086 0.4711 0.8430 0.3099
0.4296 0.4896 0.8490 0.3283
0.4498 0.5100 0.8535 0.3429

Table 4: Ablation Study of Adapter Module. Gala-125M w.o Adapter refers that we directly use ESM2-650M’s
embedding without adapter and keep the training strategy and other settings same. Gala-125M with ProtST refers

we load the finetuned ESM2 from ProtST.

As shown in Figure 3, it is easy to find that sim-
ply considering sequence as a part of natural lan-
guage model and directly tuning Llama3 fails to
achieve generalization ability under the condition
of strictly controlling protein sequence similarity
split. The results show that the most lightweight
Adapter-ESM2-Galactica-125M achieves compet-
itive results compared with Prot2Textygprum and
Prot2Text; orge. Without structure information,
Adapter-ESM2-Llama3-8B outperforms all se-
quence baselines and sequence&structure base-
lines. Furthermore, Adapter-ESM2-Galactica-1.6B
achieved even better performance than the base
model Llama3-8B, maybe benefiting from its rich
pretraining knowledge in the biomedical field.
These results demonstrate the outperforming per-
formance of the proposed adapter in bridging PLM
and LLM.

We also provides two cases shown on Figure
4 from test dataset and compared Adapter-ESM2-
Llama3-8B’s generation with both ground truth
from Swiss-prot and compared models’ genera-
tion including Prot2Text and BioMedGPT. In the
first case we select protein Q8NGOS8, a DNA he-
licase B which sequence consists of 1087 Amino
acids. Adapter-ESM?2-Llama3 excellently gener-
ate all function entries compared with the ground
truth. While we also employed Prot2Text and
BioMedGPT, they failed to give more exact an-
swers even though Prot2Text generates a related
topic like "’DNA double-strand break repair’ and
BioMedGPT predicts a vague answer involved with
DNA replication and repair. Similar situation for
case 2 of protein Q9W3KS5, a Glutamate—cysteine
ligase, Prot2Text provides exactly wrong function
prediction even provided with structure informa-
tion and BioMedGPT generates a relevant descrip-
tion but lack of comprehensiveness and exactitude
compared with Adapter-ESM2-Llama3-8B.

To further validate the effectiveness of the pro-
posed cross-modal adapter, we conduct an ablation

study by removing the adapter and directly using
ESM2 to process the protein sequences, or by re-
placing the adapter with ProtST’s ESM2 module.
The results in Table 4 show a noticeable decline in
performance across all metrics when either ESM2
or ProtST’s ESM2 is used. This indicates that di-
rectly using ESM2, without the adapter, results
in lower performance. Additionally, fine-tuning
ESM?2 with textual information truly improves the
performance of the bridged multi-modal large lan-
guage model (MLLM), but not as efficiently as
using the lightweight cross-modal adapter.

4 Conclusions and Future Work

In this paper, we present a lightweight cross-modal
adapter that effectively bridges the gap between
protein language models (PLMs) and large lan-
guage models (LLMs). By embedding protein se-
quences and their corresponding textual descrip-
tions into a unified semantic space, the adapter
facilitates seamless integration between these two
distinct modalities. The modular design of the
adapter ensures compatibility with various large
models, enhancing its applicability across different
scenarios. This study highlights the potential of
cross-modal adapters in both protein sequence rep-
resentation learning and advancing the toolization
of large models, enabling more effective utiliza-
tion of both biological and natural language data.
Future work will explore the integration of addi-
tional protein data modalities, such as structural
information, with large models. This integration
aims to further improve the generalization ability
and applicability for large models, thereby advanc-
ing their use in both biology and natural language
processing.



5 Limitations

In this paper, we focus on an efficient method that
could bridge the gap between LLM and PLM, while
only considering protein sequence-level representa-
tion. It remains unclear whether fine-grained amino
acid or residue-level representations can be effec-
tively enhanced using the adapter approach with
text-labeled information. Another limitation is that
we evaluate the adapter’s performance only in pro-
tein description generation tasks. In future work,
we plan to investigate whether the adapter can ben-
efit multi-modal large language models in other
protein-related tasks, particularly for complex an-
notation scenarios.
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A Appendix

A.1 Training and Experiment Details

In training the cross-modal adapter, we used an
Adam optimizer with a constant learning rate of
1.0 %10~ and a weight decay of 0.001. The model
was trained for 100 epochs on a single NVIDIA
A100 GPU, with a batch size of 128. Total training
costs 1.5 GPU hours on a single NVIDIA A100
GPU.

In the training stage of protein description gen-
eration, we employ a 2-stage training pipeline. All
experiments are constructed on 4 NVIDIA V100
GPU. For all models equipped with cross-modal
adapter, we select a *'mlp2x_gelu’ network as the
projection layer that needs to convert cross-modal
adpater’s output into LLMs’ token representation.
We use a multi-head mlp layers which refers the
final layer of the projector needs to convert cross-
modal adapter’s output vector into n tokens. We
set n = § for all models including Adapter-ESM2
based models and ESM2/ProtST-ESM2-based mod-
els. In order to reduce the GPU memory cost
and improve computational efficiency, we prepare
ESM2 embedding before training stage by storag-
ing them into jsonl file. Our practice shows that
it can avoid esm uses up all GPU memory when
facing long protein sequences. To minimize the
impact of other factors and ensure a fair compari-
son, all models using same scale base 1lm model
will only differ from encoders or adapter removal,
while keeping all other parameters consistent. De-
tails training hyperparameters of four different base
models of protein description generation down-
stream task are shown on Table 5, Table 6 and
Table 7.

In the LLM inference phase, to ensure perfor-
mance consistency with the baseline model as de-
scribed in the original paper, all our inference
results are based on the parameter settings from
the original paper. For the models of different
scales and architectures that we trained, we use
a consistent set of inference parameters to en-
sure a fair comparison: temperature = 0.7, top_p
= 0.8, and num_beams = 3. For the 125M model,
max_new_tokens is set to 512, while for the 1.6B,
8B models, max_new_tokens is set to 256.
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Hyperparameter Stage 1 Stage 2
Batch Size 256 256
Base LLM LR X le-3
Switch Projector LR le-3 le-5
Weight Decay 0.0 0.0
Epochs 3 30
LR_Schedule Constant Warming Up
Warming Up Ratio X 0.006
Lora_r X 64
Lora_alpha X 16
Lora_dropout X 0.05
Lora_bias X none
Model Max Length 512 512

Table 5: Galactica-125M’s hyperparameter settings
serving as Base Model

Hyperparameter Stage 1 Stage 2
Batch Size 192 96
Base LLM LR X le-3
Switch Projector LR le-3 le-5
Weight Decay 0.0 0.0
Epochs 3 15
LR_Schedule Constant Warming Up
Warming Up Ratio X 0.006
Lora_r X 64
Lora_alpha X 16
Lora_dropout X 0.05
Lora_bias X none
Model Max Length 256 256

Table 6: Galactica-1.6B’s hyperparameter settings
serving as Base Model

Hyperparameter Stage 1 Stage 2
Batch Size 32 24
Base LLM LR X le-3
Switch Projector LR le-3 le-5
Weight Decay 0.0 0.0
Epochs 3 10
LR_Schedule Constant  Warming Up
Warming Up Ratio X 0.006
Lora_r X 64
Lora_alpha X 16
Lora_dropout X 0.05
Lora_bias X none
Model Max Length 256 256

Table 7: Llama3-8B hyperparameter settings serving
as Base Model
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