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ABSTRACT

The task of multimodal learning has seen a growing interest recently as it allows
for training neural architectures based on different modalities such as vision, text,
and audio. One challenge in training such models is that they need to jointly learn
semantic concepts and their relationships across different input representations.
Capsule networks have been shown to perform well in context of capturing the
relation between low-level input features and higher-level concepts. However,
capsules have so far mainly been used only in small-scale fully supervised settings
due to the resource demand of conventional routing algorithms. We present a new
multimodal capsule network that allows us to leverage the strength of capsules in
the context of a multimodal learning framework on large amounts of video data.
To adapt the capsules to large-scale input data, we propose a novel routing by self-
attention mechanism that selects relevant capsules which are then used to generate
a final joint multimodal feature representation. This allows not only for robust
training with noisy video data, but also to scale up the size of the capsule network
compared to traditional routing methods while still being computationally efficient.
We evaluate the proposed architecture by pretraining it on a large-scale multimodal
video dataset and applying it on four datasets in two challenging downstream tasks.
Results show that the proposed multimodal capsule network is not only able to
improve results compared to other routing techniques, but also achieves competitive
performance on the task of multimodal learning.

1 INTRODUCTION

With the proliferation of video sharing websites and affordable recording devices, the amount of
video data available today has dramatically increased. Given that hand annotating this continuously
growing stream of data is infeasible, recent research has turned to training networks on such large-
scale multimodal data without manual annotation (Miech et al., 2019; Alwassel et al., 2019; Miech
et al., 2020). These works make use of the fact that large amounts of data are available across multiple
modalities such as vision, text, and audio, especially like in case of videos. This data has been used
in two ways: first to learn feature representations from video data by pretraining on large datasets
(Alwassel et al., 2019), and second to train networks that are able to relate cross-modal inputs based
on the similarity of their internal neural representations (Miech et al., 2020; Alayrac et al., 2020),
which can be applied to zero-shot tasks like classification or text-to-video retrieval. Especially for
the latter case, it becomes necessary to capture similar semantic relationships across very different
and low level feature representations, as e.g. video features extracted by a ResNet architecture (He
et al., 2016) have to be related to bag of words representations of sentences (Miech et al., 2020),
or even sound representations extracted from audio waveforms (Rouditchenko et al., 2021). These
relationships can be captured by training a network that takes pairs of modalities as inputs and predicts
a similarity score, or by projecting both representations into a joint embedding space. In the second
case, for example, the encoding for a sentence like “Cut the chicken.” would be close to the encoding
of the visual representation of frames showing this activity and further away from the encoding of
frames showing other objects like vegetables or unrelated topics like outdoor activities. The semantic
closeness can then be measured based on distance metrics.

Learning such a joint embedding space involves the grouping of similar concepts across different
modalities. Here, it can be helpful to identify which low-level features show activation in certain
contexts, which can serve as a form of filtering to focus on relevant inputs and thus learn a good joint
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embedding space. Capsule networks (Sabour et al., 2017) have been proposed as a technique to capture
activations of a specific type of entity and to model higher-level objectness from groups of low-level
feature activations. To this end, capsule networks find familiar concepts by performing “high-
dimensional coincidence filtering” (Hinton et al., 2018) through a routing-by-agreement algorithm.
They have shown their ability in modeling these relationships in images (Sabour et al., 2017; Hinton
et al., 2018; Kosiorek et al., 2019) and videos (Duarte et al., 2018), and have also performed well in
multimodal applications (Urooj Khan et al., 2021; McIntosh et al., 2020). However, these applications
have mainly been used for learning in a fully supervised setting with clean data.

In this work, we leverage the qualities of capsule architectures in the context of multimodal learning
to learn a joint embedding space across different input modalities. To allow the capsules to learn
from large-scale noisy input data, we propose an efficient routing by self-attention mechanism that
finds similarity between these lower-level capsule representations to produce higher-level capsules
and activations. To this end, we build upon the standard capsule network setup and generate a set of
capsules for the input features. From these capsules, we obtain votes for higher-level capsules, in
the form of key-query-value tuples, and perform a self attention operation to obtain the higher-level
capsule pose representations. These are then passed through a linear layer and a softmax layer to
obtain the final activations. These activations are used to select relevant capsules, increasing the
impact of those feature groups belonging to certain object representations while reducing the impact
for irrelevant ones. We find that this self-attention based routing mechanism is more scalable than
standard dynamic (Sabour et al., 2017) and EM Hinton et al. (2018) routing methods: this is vital for
applying capsule networks to large-scale video datasets.

The proposed multimodal capsule network is trained by mapping the selected capsules to a joint
multimodal embedding space which is enforced by the use of a contrastive loss. For evaluation,
we train the system on the HowTo100M multimodal dataset, consisting of 1.2 million YouTube
instruction videos and evaluate the resulting method on the two zero-shot down-stream tasks of
video retrieval on the YouCook2 (Zhou et al., 2018) and MSR-VTT (Xu et al., 2016) dataset and
action localization on the CrossTask (Zhukov et al., 2019) and the MiningYouTube (Kuehne et al.,
2019) dataset. Our experiments show that the proposed architecture is able to improve performance
compared to existing routing mechanisms and to provide competitive performance on all evaluated
downstream tasks.

The contributions of the paper are as follows:

• We propose a novel routing by self-attention mechanism for capsule architectures.

• We show that the proposed mechanism is more efficient and scalable compared to other
routing techniques.

• To the best of our knowledge, we are the first to evaluate different capsule architectures on
large-scale multimodal data without human annotation.

2 RELATED WORK

Capsule Networks The concept of capsule networks was first introduced in (Hinton et al., 2011),
where view-equivariant vector representations were learned from images. Sabour et al. (Sabour et al.,
2017) extended this idea and proposed an iterative routing-by-agreement algorithm which was able
to classify and segment overlapping digits. Capsule network have been widely applied to various
domains and problems. including text classification (Yang et al., 2018), video action detection (Duarte
et al., 2018), point cloud processing (Zhao et al., 2019), and medical image segmentation (LaLonde
et al., 2021). One key aspect of capsules networks is their ability to route, and in a hierarchical
fashion activate higher-level capsules based on agreement of multiple lower-level capsules. However,
this ability comes with the increased computational cost of the routing-by-agreement algorithm. First
capsule architectures (Sabour et al., 2017) used dynamic routing which can be computationally slow
and results in high memory consumption, especially on higher dimensional input data and for a
larger number of capsules. Hinton et al. (2018) reduced the number of parameters in their capsule
network by learning matrix capsules with an iterative Expectation-Maximization (EM) based routing
algorithm. Several other works have attempted to make more efficient and scalable routing algorithms
including self-routing capsule networks (Hahn et al., 2019), KDE-based routing (Zhang et al., 2018),
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STAR-Caps (Ahmed & Torresani, 2019), spectral capsule networks (Bahadori, 2018), and subspace
capsule networks (Edraki et al., 2020).

Recently, Efficient-CapsNet (Mazzia et al., 2021) and stacked capsule autoencoders (SCAEs) (Ko-
siorek et al., 2019) have proposed routing mechanisms based on attention. Efficient-CapsNet uses
vector capsules similar to those found in Sabour et al. (2017), and computes self-attention across
votes of the lower-level capsule layers to find the routing/coupling coefficients. Then, the resulting
higher-level capsules are a weighted sum across these same votes based on the coefficients. On
the other hand, our proposed self-attention routing method generates separate key, query, and value
representations. This allows us to separate the computation of the votes and the routing coefficients:
the key and query generate the routing coefficients, which are used to weight the votes to obtain the
higher-level capsules. SCAEs adapt the Set Transformer (Lee et al., 2019) to perform routing between
the set of part capsules to the object capsules. They generate capsule activations by maximising the
part pose likelihood from a mixture of predictions from lower-level capsules. To adapt the concept
of attention-based routing to the problem of multimodal learning from large-scale noisy data, we
propose to use self-attention instead of Set Transformer and generate the query by linear projection
from the input capsules. Additionally, different from stacked capsule autoencoders, we solely rely
on the self-attention mechanism for routing and compute activation by the linear transformation
of the higher level features followed by a softmax. We found this setting is computationally more
efficient and allows us to train without the need for tuning of sparsity constraints, while showing
higher performance compared in the targeted setup (see Sec. 4.4).

Multimodal Learning As annotating large datasets (Deng et al., 2009; Carreira & Zisserman,
2017) is extremely costly, recent approaches take advantage of the vast amount of video data on
websites and social media platforms. By leveraging readily available tools like automatic speech
recognition systems, narrated video datasets can be constructed (Miech et al., 2019; Sanabria et al.,
2018) on which proxy tasks can be used to learn meaningful representations. Different methods have
been proposed to learn from these video/text pairs (Amrani et al., 2020; Gabeur et al., 2020; Luo
et al., 2020; Zhu & Yang, 2020; Patrick et al., 2020; Lei et al., 2021; Sun et al., 2019; Dong et al.,
2019) as well as from video/audio pairs (Alwassel et al., 2020; Asano et al., 2019; Boggust et al.,
2019; Rouditchenko et al., 2021), and from all three modalities (video, audio, and text) (Alayrac et al.,
2020). These self-superivsed multimodal approaches tend to rely on convolutional or transformer
architectures; to the best of our knowledge, this is the first work which employs capsule networks
in this problem. Most methods use the large-scale data for pretraining the network followed by a
fine-tuning on a downstream dataset, which is usually done with less noisy curated or hand-annotated
data (Luo et al., 2020; Patrick et al., 2020; Lei et al., 2021; Alwassel et al., 2020; Rouditchenko et al.,
2021; Dong et al., 2019). However, some approaches show that the training on large-scale noisy
data alone can also be sufficient and directly apply the resulting model without fine-tuning to the
downstream datasets (Amrani et al., 2020; Gabeur et al., 2020; Patrick et al., 2020; Sun et al., 2019;
Boggust et al., 2019).

3 MULTIMODAL LEARNING WITH CAPSULE NETWORKS

In the following, we first describe the proposed multimodal capsule architecture (Figure 1) at high
level, and then follow with a detailed description of the proposed routing by self-attention mechanism
depicted in Figure 2. We close with a description of the training procedure.

3.1 SYSTEM SETUP

Given n video clips, each with a corresponding video, audio, and text representations we attempt to
learn a joint multimodal representation space. We denote the video as v ∈ V , the audio as a ∈ A,
and the text narration generated by an automated speech recognition (ASR) system as t ∈ T . Thus,
the training set of n video clips is representated by tuples {(vi, ai, ti)}ni=1. The goal of contrastive
multimodal learning is to learn a set of functions to generate embeddings for each modality such that
embeddings for semantically similar inputs are closer together than semantically dissimilar inputs.
Formally, we learn functions, fv : V → RD, fa : A → RD, and ft : T → RD which create D
dimensional embeddings (i.e. fv (v) ∈ RD). The input representations take the form of pre-extracted
2D and 3D features from a video clip, log-mel spectrograms extracted from an audio segment, and a
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Figure 1: Overview of our proposed approach. Given a video, audio, and text triplet, the network
extracts modality specific features and converts them into a set of primary capsules. Then, these
capsules are routed using self-attention to obtain a higher-level activations, which are used to weight
capsule features. The weighted capsule features are projected into a final joint multimodal feature
representation. This joint representation space is enforced by a pair-wise contrastive loss.

text embedding extracted by sentence-based neural network. The goal is to find mapping functions
fv, fa, and ft, so that the distance of all possible pairs from the same tuple (vi, ai), (ti, ai), and
(vi, ti) is minimized in the embedding space and the distance to all other tuple pairs is maximized.
An overview of the overall system is shown in Figure 1.

3.2 MULTIMODAL CAPSULE ARCHITECTURE

Primary Capsules To learn the mapping of each input feature to the joint embedding space, i.e.
functions fv , fa, and ft, we propose a novel capsule network architecture. From each input modality
feature, a learned linear layer extracts a set of C primary capsules. A capsule is composed of a
d-dimensional pose vector x, which represents an entity’s properties and an activation p, which
represents an existence probability (i.e. the probability that the given entity/object exists within the
input). The i-th capsule for modality m has the pose vector xmi ∈ Rd1 and activation pmi ∈ [0, 1].
We use these capsules in a self-attention based routing-by-agreement algorithm, depicted in Figure 2,
to learn the relationships between the different entities they model.

Routing by Self-Attention We first multiply capsule pose vectors xmi by their respective activations
pi to ensure entities which are not present (i.e. pmi → 0) are not used in the routing process. We then
learn a set of functions to extract the respective key, query, and value representations from capsules
K = hK(pmi x

m
i ), Q = hQ(p

m
i x

m
i ), V = hV (p

m
i x

m
i ), using two linear layers for all functions h.

These learned functions, hK , hQ, hV : Rd1 → Rd2 , map the primary capsules pose vectors to the
secondary capsules’ pose feature space and are used in a multi-head self-attention mechanism:

x̂mi = Attention (Q,K, V ) = g

(
softmax

(
QKT

√
d2

)
V

)
, (1)

where g is a two-layer nonlinear MLP1. In the context of capsule routing, the query and key produce
the routing coefficients which determine the amount of information a lower-level capsule sends
a specific higher level capsule, whereas the value can be considered a vote, or prediction, for the
properties of the higher level capsule.

From the secondary capsule layer’s poses, x̂mi , we generate their existence probabilities, through a
softmax operation:

p̂mi =
exp (xmi Wp + bp)∑C
j=1 exp (x

m
i Wp + bp)

, (2)

where Wp ∈ Rd2×1 and bp ∈ R are learned parameters.

1See Appendix B for additional details
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Figure 2: Proposed Routing by Self-Attention. The input is a set of C capsules. The activation-
weighted capsule features are projected into query, key, and value matrices which are used in a
multi-head self-attention block to generate higher-level capsule poses. A linear transformation with
softmax activation then generates the activations for these higher-level capsules.

Mapping to Joint Embedding Space These existence probabilities are used to select relevant
capsules. This is done by passing the activation-weighted capsules through a linear transformation,
fout to obtain the final feature representations that are used in the final loss:

fv = fout (p̂
v
i x

v
i ) , fa = fout (p̂

a
i x

a
i ) , and ft = fout

(
p̂tix

t
i

)
. (3)

Note that all learned weights used after the generation of the primary capsule layer, namely
hK , hQ, hV and fout, are shared across modalities.

3.3 CONTRASTIVE MULTIMODAL LEARNING

To train the described architecture and learn the joint representation space, we use a contrastive loss
on each pair of modalities (v, a), (t, a), and (v, t). For different modalities from the same video
clip, the contrastive loss maximizes the similarity of their embeddings; conversely, it minimizes
the similarity for embeddings from different video clips. Following Rouditchenko et al. (2021), we
use the Masked Margin Softmax (MMS) loss (Ilharco et al., 2019), which defines the dot-product
between two vectors as the similarity measure and computes similarities across a batch of B samples.
The loss is computed between two modalities, and can be viewed as the sum of two instances of
InfoNCE (Oord et al., 2018) (with a margin δ). For example, the loss for the visual/audio pair (Lva)
consists of two components: the first where the visual input is fixed and audio samples are varied,
and the second where the audio input is fixed and visual samples are varied. We sample negatives
from both within the same video and from other videos, since this has been shown to empirically
improve performance (Miech et al., 2019). The final loss is the sum of the pairwise MMS losses
between different modalities:

Lfinal = Lva + Lta + Lvt. (4)
Since the loss is computed over all modality pairs, it ensures all features are projected into the same
space and are comparable.

4 EXPERIMENTAL EVALUATION

In this section, we assess the performance of the proposed approach in the context of multimodal
learning. For this evaluation, we focus on the zero shot capabilities of the proposed approach, namely
on the downstream tasks of zero-shot text-to-video retrieval and zero-shot temporal action localization,
as this allows us to evaluate how well high-level semantic concepts have been identified and grouped
across various modalities. We first present an overview on the implementation details of our proposed
approach. The overall system performance is then compared with various other techniques in the field.
We finally evaluate the impact of each component including the routing mechanism in comparison
with other available techniques and present qualitative results for the proposed method. The code and
related resources will be made publicly available to allow for reproducability of presented results.

4.1 IMPLEMENTATION DETAILS

Following Miech et al. (2019), the input visual features for our method are 2D features extracted at 1
fps using a ResNet-152 model (He et al., 2016) pretrained on ImageNet (Deng et al., 2009), as well
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Table 1: Evaluation of zero-shot text-to-video retrieval. MIL-NCE* uses the same training procedure
as (Miech et al., 2020) with different backbone features, † indicates trainable backbone. Modality
indicates the modalities used during inference, where V: video, T: text, A: audio.

YouCook2 MSR-VTT

Method Modality Visual Backbone R@1↑ R@5↑ R@10↑ MedR↓ R@1↑ R@5↑ R@10↑ MedR↓

MMT (Gabeur et al., 2020) VT 7 experts - - - - - 14.4 - 66
ActBERT (Zhu & Yang, 2020) VT R101+Res3D 9.6 26.7 38.0 19 8.6 23.4 33.1 36
Support Set (Patrick et al., 2020) VT R152+R(2+1)D-34 - - - - 8.7 23.0 31.1 31
MIL-NCE (Miech et al., 2020)† VT I3D-G 11.4 30.6 42.0 16 9.4 22.0 30.0 35
MMV FAC (Alayrac et al., 2020)† VAT TSM-50x2 11.7 33.4 45.4 13 9.3 23.0 31.1 38

HT100M (Miech et al., 2019) VT R152+RX101 6.1 17.3 24.8 46 7.2 19.2 28.0 38
NoiseEstimation (Amrani et al., 2020) VT R152+RX101 - - - - 8.0 21.3 29.3 33
MIL-NCE* (Miech et al., 2020) VT R152+RX101 8.0 22.9 32.1 29 8.6 23.1 30.8 33
Ours VT R152+RX101 9.0 23.2 32.5 30 9.7 23.2 30.7 32

AVLNet (Rouditchenko et al., 2021) VAT R152+RX101 19.9 36.1 44.3 16 8.3 19.2 27.4 47
Ours VAT R152+RX101 19.3 37.8 47.3 13 9.3 21.4 30.9 37

as 3D features extracted at 1.5 fps using a ResNext-101 (Hara et al., 2018) pretrained on Kinetics
(Carreira & Zisserman, 2017). These features are max-pooled over time and concatenated to form a
4096 dimension feature vector for a given video clip. The audio input to our network are features
extracted from the log-mel spectrograms by a pre-trained DAVEnet model (Harwath et al., 2018). For
textual features, we follow Miech et al. (2019), and use a GoogleNews pretrained Word2vec model
(Mikolov et al., 2013) to extract word embeddings. Then a max-pooling operation over all word
embeddings in a sentence produces a single vector representation. All feature extraction backbones
are fixed (i.e. not fine-tuned) during training and evaluation. To train our network we use an Adam
optimizer (Kingma & Ba, 2014) with a learning rate of 0.001 and cosine learning rate scheduler
(Misra & Maaten, 2020). The model is trained on 4 V100 GPUs for 20 epochs, using a batch size of
4096. In the MMS loss, we set δ = 0.001. Unless otherwise stated, we set the number of capsules to
C = 128, the dimension of each capsule’s pose vector to d1 = 32 and d2 = 256, and the final joint
representation dimension is D = 4096. Our method is trained using the HowTo100M (Miech et al.,
2019) instructional video dataset, which consists of 1.2 million videos with corresponding audio and
text transcripts extracted using an off-the-shelf ASR system. The video-audio-text tuples are defined
by the transcription timestamps provided with the dataset.

4.2 TEXT-TO-VIDEO RETRIEVAL

Datasets and Metrics The problem of text-to-video retrieval involves searching a pool of videos for
a single video that corresponds to a given ground-truth text query. We evaluate zero-shot text-to-video
retrieval on the YouCook2 (Zhou et al., 2018) and MSR-VTT (Xu et al., 2016) datasets, which are
common benchmark datasets for zero-shot video retrieval. The YouCook2 dataset consists of cooking
instructional video clips with human-annotated text descriptions, and we use the validation set of
3.5k clips following prior work (Miech et al., 2019; 2020). The MSR-VTT dataset contains 10K
video clips with human-annotated captions on various topics, and we use the test set of 1K video
clips from (Miech et al., 2019). For the retrieval task, we compute the euclidean distance between the
text and video representations through the pretrained network to find e.g. the top video candidates for
a given text sample. For both datasets, we evaluate using the recall metrics: R@1, R@5, R@10, and
Median Recall (MedR).

Comparison with the state-of-the-art We report the results on the text-to-video retrieval task
for YouCook2 and MSR-VTT in Table 1 for two cases, zero-shot text-to-video retrieval (VT) and
zero-shot text-to-video+audio retrieval (VAT). We find that our method outperforms prior approaches
which use the same video backbone in both cases and on both downstream datasets. Interestingly,
the addition of the audio modality leads to a large performance boost on YouCook2, but seems to
decrease performance on MSR-VTT. This can be attributed to the domain shift between the ASR
generated text and its correlation to audio in HowTo100M, and the less correlated audio and text in
MSR-VTT, where captions are hand-generated without instructional focus or alignment to the sound.
On the other hand, the audio and text present in YouCook2 more closely resemble the training data,
leading to improved performance.
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Table 2: Evaluation of zero-shot temporal action localization. MIL-NCE* uses the same training
procedure as (Miech et al., 2020) with different backbone features, † indicates trainable backbone.
Modality indicates the modalities used during inference, where V: video, T: text, A: audio.

CrossTask MYT

Method Visual Backbone Recall↑ IOD↑ IOU↑ Recall↑ IOD↑ IOU↑
Cross-task (superv.) (Zhukov et al., 2019) R152+I3D 31.6 - - - - -
Cross-task (weakly superv.) (Zhukov et al., 2019) R152+I3D 22.4 - - - - -
ActBERT (Zhu & Yang, 2020) R101+Res3D 37.1 - - - - -
ActBERT (Zhu & Yang, 2020) + Faster R-CNN 41.4 - - - - -
MIL-NCE (Miech et al., 2020)† I3D-G 36.4 - - - - -
Mining: MLP (weakly superv.) (Kuehne et al., 2019) TSN - - - - 19.2 9.8

HT100M (Miech et al., 2019) R152+RX101 33.6 26.6 17.5 15.0 17.2 11.4
MIL-NCE* (Miech et al., 2020) R152+RX101 33.2 30.2 16.3 14.9 26.4 17.8
Ours R152+RX101 35.2 32.6 21.4 18.0 31.6 22.9

Table 3: Evaluation of different types of routing functions as well as without routing for C = 64
number of capsules and a dimensionality of d1 = d2 = 16 including runtime and memory usage.

YouCook2 MSRVTT

Method R@1 R@10 R@1 R@10 Memory Usage (GB) Run-time (sec/batch)

No Routing 15.3 41.9 7.6 30.1 9.12 0.687

Dynamic Routing (Sabour et al., 2017) 17.0 44.3 8.2 31.1 20.50 1.534
EM Routing (Hinton et al., 2018) 5.8 24.2 5.7 21.8 19.13 1.272
Set Transformer (Lee et al., 2019) 16.5 40.0 8.4 30.0 9.11 0.707
Self-Attention (ours) 18.6 44.0 8.7 31.6 9.11 0.722

4.3 TEMPORAL ACTION LOCALIZATION

Datasets and Metrics Given a set of action classes, the goal of temporal action localization is
to predict the actions present at each time-step of the video. In this task, we compute the distance
between the video representation and each action’s text representation to obtain a class prediction for
each time-step of the video. We evaluate on the CrossTask (Zhukov et al., 2019) and Mining YouTube
(Kuehne et al., 2019) datasets. CrossTask contains 2.7k instructional videos; each video frame is
manually annotated using action steps/ordering for each task collected from wikiHow. The recall is
calculated using the same inference procedure of (Zhukov et al., 2019). The Mining YouTube dataset
contains videos from five simple cooking recipes - “eggroll”, “fried egg”, “pancake”, “omelet”,
and “scrambled egg”. The test set contains 50 videos from each task (250 in total) that are densely
annotated with 512 classes comprised of verb-object pairs (94 unique verbs and 171 unique objects).
For evaluation, we report the recall metric as well as the intersection over detection (IoD) (Bojanowski
et al., 2014) and intersection over union (IoU) metrics as outlined in (Kuehne et al., 2019). The IoD
metric is defined as G∩D

D and the IoU metric is defined as G∩D
G∪D , where G is the ground-truth action

and D is the prediction.

Comparison with the state-of-the-art We present the results for the temporal action localization
task in Table 2. When compared to methods with the R152+RX101 backbone feature extractor,
(Miech et al., 2019; 2020), we show improved performance across both datasets and all metrics. On
CrossTask, MIL-NCE (Miech et al., 2019) achieves improved recall with stronger backbone features
and ActBERT (Zhu & Yang, 2020) uses a stronger language model as well as region-based features
extracted by a Faster R-CNN. Furthermore, our method outperforms the fully supervised baseline in
(Zhukov et al., 2019) and the state-of-the-art weakly supervised approach (Kuehne et al., 2019) on
the reported metrics in CrossTask and Mining YouTube, respectively.

4.4 ABLATIONS

Here, we present ablations to evaluate our proposed self-attention based routing mechanism’s efficacy,
its ability to scale with more capsules, and compare with other architectural baselines. Appendix A
contains additional ablations.

Routing We compare the proposed self-attention routing with previous routing methods including
dynamic (Sabour et al., 2017), EM (Hinton et al., 2018), and Set Transformer (Lee et al., 2019) routing,
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Table 4: Evaluation on different number of capsules for a dimensionality of d1 = 32 and d2 = 256.
It shows that on the given dataset we reach saturation around C = 128 capsules.

YouCook2 MSRVTT

Method R@1 R@10 R@1 R@10 Memory Usage (GB) Run-time (sec/batch)

C = 32 18.5 45.0 8.0 29.2 9.15 0.730
C = 64 18.1 46.1 8.6 29.4 11.24 0.768
C = 128 19.3 47.3 9.3 30.9 15.97 0.879
C = 256 18.7 46.5 8.7 30.5 27.98 1.096

Table 5: Evaluation using fully connected and self-attention baselines.

YouCook2 MSR-VTT

Modalities R@1 R@5 R@10 Med. R R@1 R@5 R@10 Med. R

Fully Connected 15.5 31.0 40.0 22 7.8 17.8 25.2 50
Self-Attention 13.8 29.3 36.2 34 8.9 22.3 30.1 41
Ours 19.3 37.8 47.3 13 9.3 21.4 30.9 37

as well as with a setup without any routing (i.e. learning a MLP to obtain existence probabilities). As
dynamic and EM routing involve a computationally expensive iterative procedure and EM routing
requires matrix capsules, we reduce the size of the network and fix the number of capsules to C = 64
and the dimensionality of the primary and secondary capsule to d1 = d2 = 16 to allow for a training
with same batch size for all approaches. From the results shown in Table 3, we see that training
with routing tends to outperform the respective baseline architectures without routing mechanisms.
Among the evaluated methods, only the EM routing algorithm does not seem to be well suited for the
targeted setup, as it greatly suffers from instability during training. Overall, the proposed routing by
self-attention outperforms previous routing algorithms, closely followed by dynamic routing which
also achieved relatively strong performance in this experimental setup. One problem with iterative
routing procedures, including dynamic routing, is that it becomes difficult to scale, mainly because of
the larger memory footprint. Here, especially in the direct comparison with dynamic routing, the
proposed method is able to achieve better results with fewer computational resources.

Number of Capsules To show the ability of the proposed routing mechanism to scale, we also
analyse how the number of capsules effects our proposed architecture. For these experiments, we
maintain the capsule dimension of the original training setting with d1 = 32 and d2 = 256 while
varying the number of capsules, C = 32, 64, 128, 256. As shown in Table 4, increasing the number
of capsules generally leads to an improvement in performance. This can be seen as a indicator that a
larger number of capsules allows the network to capture more object representations. With the current
dataset, we find that our models saturate at C ≥ 128; when the number of capsules becomes larger,
we find that there is a diminishing return on performance. Considering computational efficiency, it
further shows that even for large numbers of capsules, the run-time is still below the run-times of the
iterative routing mechanisms on smaller sets.

Comparison with Fully Connected and Self-Attention Baselines Since our main contribution
is the proposal of a capsule-based framework for multimodal learning, we compare with other
architecture baselines in Table 5. For a standard baseline, we have run an experiment which takes the
input features and passes them through two fully connected layers (Fully Connected). It achieves
lower performance than our proposed capsule network, showing that using capsules is valuable in
learning multi-modal representations. We also compare with self-attention without capsule structures.
For this experiment, we apply a multi-head self-attention layer on the input features. We take the
input features and group the activations into N equal length vectors. Here N = 128 so that it is as
similar to the number of capsules in our main experiments. These vectors are used as the sequence
for a self-attention layer, which is followed by a fully-connected layer to obtain the final feature
representation for each modality. We find that self-attention outperforms the fully connected baseline
on MSR-VTT, but does not reach the performance of our proposed self-attention routing method.

4.5 QUALITATIVE ANALYSIS

In our final set of evaluations, we attempt to understand what the proposed architecture is able to
learn by analysing a set of qualitative retrieval examples as well as studying how individual capsule
activations effect the final feature representation.
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Ours No routing MIL NCE*

query: melt butter in the oven

query: put three rings of ketchup and two rings of mustard on the bottom bun

Figure 3: Qualitative retrieval examples: top-3 zero-shot text-to-video retrieval results on the
YouCook2 dataset for the proposed approach with self-attention based routing, the same one but
without routing mechanism, and MIL-NCE* (* indicates that we used the same backbone as in our
model). Correct video colored in green.

#28: pets/animals #81: games #110: outdoor activity #123: vegetables

Figure 4: Top-4 videos with the highest activation for the particular capsule on the MSR-VTT dataset.
Labels: #number of capsule: assumed learned “concept”.

Retrieval Results We present retrieval results for three models - our self-attention based routing
method, our approach without routing, and MIL-NCE - in Figure 3. Each column consists of the top-3
predictions for the given text query. Generally, routing achieves strong performance and retrieves
visually varied videos; on the other hand, MIL-NCE tends to focus on specific objects or low-level
visual cues leading to visually similar retrievals. In the first example, MIL-NCE retrieves videos of
“melt butter”, but the butter is melted in a pan and not an “oven”. Notably, our approach successfully
handles the extremely specific query “Put three rings of ketchup and two rings of mustard on the
bottom bun” as shown in the second row. Additional qualitative results are presented in Appendix C.

What Individual Capsules Learn To further understand the entities or objects that are modeled,
we examine the capsules’ activations p̂mi (Equation 2) and show samples that have a high activation
for a specific capsule. Ideally, if two samples have a high activation for the same capsule, then the
entity that it represents should be present within both given inputs. To demonstrate this case, we
select the videos in the downstream dataset MSR-VTT which lead to high activations for various
capsules; we observe that different capsules model semantically distinct concepts as seen in Figure
4. The capsules learn to represent a wide range of entities: from general concepts like “games”,
“cooking”, and “outdoor activities”, to specific objects like “vegetables” and “cars”. In Appendix C
we include additional examples and show that these concepts are consistent across different datasets.

5 CONCLUSION

In this work, we proposed a novel multimodal capsule network that learns to model various entities
within given modalities and maps them to a joint embedding space. To learn from a large amount of
noisy video data, we present a scalable self-attention based capsule routing mechanism, which we
show outperforms previous routing methods on this task. Furthermore, we find that the capsules are
able to learn representations of various concepts and objects within each modality. Our comprehensive
experimental evaluation demonstrates the effectiveness of our approach on two downstream zero-shot
tasks on four datasets.
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REPRODUCIBILITY STATEMENT

The source code for the experiments will be made available upon publication. We only use publicly
available dataset and backbones.
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A ADDITIONAL ABLATIONS

Shared weights For our proposed architecture, we share weights across the various modalities after
the initial capsules are extracted. Not only does this reduce the number of learned parameters for the
network, but we find that it leads to learning improved representations. We present results in Table 6.
Generally, for data more closely related to the training data (for example, evaluating on YouCook2)
the use of shared weights leads to improved performance.

Table 6: Evaluation using shared weights

YouCook2 MSR-VTT

Modalities R@1 R@5 R@10 Med. R R@1 R@5 R@10 Med. R

Not Shared 16.8 35.4 44.6 15 9.5 22.8 30.3 30.5
Shared 19.3 37.8 47.3 13 9.3 21.4 30.9 37

B SELF-ATTENTION ARCHITECTURAL DETAILS

For our self-attention routing procedure we first use linear projections to generate the query-key-value.
Given that there are C input capsules and the output capsules have dimension d2, the query, key, and
value matrices have shape Q,K, V ∈ RC×d2 . The output of the multi-head self-attention operation,

V ′ = softmax
(
QKT

√
d2

)
V, (5)

is a matrix of the same dimension. We then apply normalization across the columns (i.e. capsule
feature dimension) as well as two fully connected linear layers, and dropout, with hidden dimension
1024 and output dimension d2. A residual connection from V ′ to the output capsule features, followed
by normalization across the capsule feature dimensions.

C ADDITIONAL QUALITATIVE RESULTS

Retrieval Quality In the case of retrieval, we show three text queries together with their three
closest video representations in Figure 5. It becomes clear that all video representations show a close
match for the described scene. Additionally, one has to remark that the retrieved video examples for
each query do show sufficient variance with respect to color, view point, and other low-level cues.
This can be seen as an indicator that the learned clustering is based on some high-level common
concepts rather than on the pure co-occurrence of low-level feature representations.

Retrieval Results We present additional retrieval results for three models - our self-attention based
routing method, our approach without routing, and MIL-NCE - in Figure 6. Each column consists of
the top-3 predictions for the given text query. Generally, routing achieves strong performance and
retrieves visually varied videos; on the other hand, MIL-NCE tends to focus on specific objects or
low-level visual cues leading to visually similar retrievals. The first three rows consists of examples
where our self-attention based routing correctly retrieves videos but the other two methods do not.
For general queries, like “grill the ribs” and “flip the pancakes” in the bottom two rows, there are
many relevant videos to choose from. Only the no-routing method obtains the “correct” video in
its top-3 predictions, but these “failure cases” for our method and MIL-NCE would be considered
correct retrievals by human standards.

Capsule Activations In Figure 7, we include videos which correspond to various capsules’ highest
activations across three different datasets: HowTo100M, MSR-VTT, and YouCook2. The concepts
tend to remain consistent across the different datasets. In the final three rows, we present examples
where the concept does not exist within the target dataset: “repair”, “games”, and “pets/animals”
are not present within the cooking dataset, YouCook2. Since these capsules learn to represent these
specific concepts/entities, their highest activation corresponds to seemingly random videos.
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juice and garlic to a bowl”
“add oil vinegar lemon

and stir”
“chop and add fresh basil

and salt”
“mix flour baking powder

in a bucket overnight”
with the prepared sauce
“marinate the ribs well

Figure 5: Qualitative evaluation: examples of top-3 zero-shot text-to-video retrieval results on the
YouCook2 dataset. Correct video colored in green.
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Ours No routing MIL NCE*

query: put three rings of ketchup and two rings of mustard on the bottom bun

query: melt butter in the oven

query: pour the egg mixture over the bacon

query: spread butter and maple syrup on the pancakes

query: add lemon juice white wine and the mussels to the pot

query: put the dish in the oven

query: grill the ribs

query: flip the pancake

Figure 6: More qualitative examples: top-3 zero-shot text-to-video retrieval results on the YouCook2
dataset for the proposed approach with self-attention based routing, the same one but without routing
mechanism, and MIL-NCE* (* indicates that we used the same backbone as in our model). Correct
video colored in green.
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HowTo100M MSR-VTT YouCook2

bowls
#49: pots/

vegetables
#123:

#60: cooking

make
#70: hand

activity
#110: outdoor

#85: repair

#81: games

animals
#28: pets/

Figure 7: Extended figure with examples of capsule highest activations: top-4 videos with the highest
activation for the particular capsule for the HowTo100M, MSR-VTT, and YouCook2 datasets. Labels:
#number of capsule: assumed learned “concept”.
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