
Optimal Brain Iterative Merging: Mitigating Interference in LLM Merging

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have demon-001
strated impressive capabilities, but their high002
computational costs pose challenges for cus-003
tomization. Model merging offers a cost-004
effective alternative, yet existing methods suf-005
fer from interference among parameters, lead-006
ing to performance degradation. In this work,007
we propose Optimal Brain Iterative Merging008
(OBIM), a novel method designed to miti-009
gate both intra-model and inter-model inter-010
ference. OBIM consists of two key compo-011
nents: (1) A saliency measurement mechanism012
that evaluates parameter importance based on013
loss changes induced by individual weight al-014
terations, reducing intra-model interference by015
preserving only high-saliency parameters. (2)016
A mutually exclusive iterative merging frame-017
work, which incrementally integrates models018
using a binary mask to avoid direct parame-019
ter averaging, thereby mitigating inter-model020
interference. We validate OBIM through exper-021
iments on both Supervised Fine-Tuned (SFT)022
models and post-pretrained checkpoints. The023
results show that OBIM significantly outper-024
forms existing merging techniques. Overall,025
OBIM provides an effective and practical so-026
lution for enhancing LLM merging. We will027
publicly release our code upon the acceptance028
of this paper.029

1 Introduction030

Existing research (Akiba et al., 2025; Dekoninck031

et al., 2023; Wan et al., 2024a) has demonstrated032

that a composite LLM can be constructed by merg-033

ing the parameters of different expert LLMs. Tradi-034

tional approaches (Wortsman et al., 2022; Matena035

and Raffel, 2022; Jin et al., 2022) employ matrices036

to determine task-specific coefficients and perform037

a weighted average based on these coefficients.038

Methods grounded in task arithmetic (Ilharco et al.,039

2023) leverage task vectors, defined as the differ-040

ence between the parameter values of a fine-tuned041

model and those of its pre-trained counterpart, to 042

effectively manipulate and integrate the knowledge 043

embedded within the models. 044

State-of-the-art model merging methods (Yadav 045

et al., 2024; Wang et al., 2024; Yu et al., 2024b) 046

have shown that task performance degradation is 047

primarily caused by interference between param- 048

eter values, as aggregation operations, such as av- 049

eraging, can alter the parameter distribution (Yu 050

et al., 2024a). The interference can be categorized 051

into two types: intra-model interference and inter- 052

model interference. 053

Intra-model interference arises from redundant 054

parameters within a single model. Due to the over- 055

parameterized nature of neural networks (Choud- 056

hary et al., 2020; He and Xiao, 2023), removing a 057

significant portion of the parameters often has little 058

impact on model performance (Sun et al., 2023; 059

Kim et al., 2024). However, these redundant pa- 060

rameters introduce noise during the model merging 061

process, adversely affecting the outcome. To ad- 062

dress this, it is crucial to identify parameters that 063

are closely related to the target task. Existing ap- 064

proaches, however, primarily rely on magnitude- 065

based methods, assuming that parameter magni- 066

tude directly correlates with saliency. For instance, 067

TIES (Yadav et al., 2024) trims the parameters with 068

the smallest magnitudes, the Model Breadcrumbs 069

(Davari and Belilovsky, 2025) highlight the impor- 070

tance of removing the parameters with the largest 071

weights to further reduce noise. While these meth- 072

ods demonstrate effectiveness, they fall short of 073

fully revealing the true saliency of the parameters. 074

Interference between models arises due to varia- 075

tions in parameter distributions (Shoemake, 1985; 076

Jang et al., 2024). Directly averaging these param- 077

eters can lead to performance degradation. TIES 078

addresses this issue by resolving sign conflicts in 079

parameter values, aligning them based on the direc- 080

tion of the largest total movement across models. 081

Similarly, TALL-Mask (Wang et al., 2024) is de- 082

1

Figure 1: Illustration of inter-model interference. The
dotted box highlights cases where TIES fails to resolve
interference. Approximately 46% of parameters deviate
from the original models due to task vector averaging
in the absence of sign conflicts.

signed to exclude parameters that are relevant only083

to a subset of tasks. While these methods effec-084

tively mitigate inter-model interference under cer-085

tain conditions, their effectiveness diminishes when086

parameter distributions deviate from expected pat-087

terns, causing them to revert to simple averaging.088

As shown in Figure 1, when there is no sign conflict,089

TIES yields the same result as simple averaging,090

deviating from both input models and leading to091

suboptimal performance.092

To address the interference problem in model093

merging, we propose a novel method for LLMs094

called Optimal Brain Iterative Merging (OBIM).095

Our approach comprises two core components: a096

saliency measurement mechanism to filter intra-097

model interference and a mutually exclusive iter-098

ative merging framework to prevent inter-model099

interference.100

In detail, our approach measures the saliency101

of parameters within a single model by evaluating102

the loss change induced by altering each parame-103

ter. Inspired by layer-wise model pruning methods104

(Frantar and Alistarh, 2022; Frantar et al., 2022),105

we forgo reliance on the overall model loss dur-106

ing training and instead independently apply the107

Mean Square Error (MSE) to each linear weight.108

This enables calculation of the output distribution109

difference between the trained weight and the orig-110

inal weight, providing a more precise and efficient111

measure of parameter saliency. By retaining pa-112

rameters with high saliency, we effectively reduce113

intra-model interference in model merging.114

Subsequently, we design an iterative merging115

framework to integrate models step by step in a mu-116

tually exclusive manner, mitigating inter-model in- 117

terference. Specifically, we employ a binary mask 118

to track the positions that have already been merged. 119

At each step, parameters with the highest saliency, 120

which are not yet recorded in the mask, are selected 121

from a model and integrated into the base model. 122

This ensures that each position is occupied by only 123

one parameter, thereby eliminating the need for 124

averaging operations. 125

In summary, we propose a novel method, OBIM, 126

to mitigate both intra-model and inter-model inter- 127

ference in LLM merging. To validate the effec- 128

tiveness of our method, we conducted model merg- 129

ing experiments on Supervised Fine-Tuned (SFT) 130

models of Llama2 (Touvron et al., 2023) for multi- 131

task merging and post-pretrained checkpoints of 132

Qwen2 (Yang et al., 2024a) for catastrophic for- 133

getting recovery. The results of both experiments 134

demonstrate that OBIM significantly outperforms 135

existing approaches. In addition, extensive abla- 136

tion studies and analyses of key factors provide a 137

comprehensive understanding of OBIM. 138

2 Preliminaries 139

2.1 Model Merging Problem 140

In this paper, we focus on merging models that are 141

optimized from the same backbone. Given K mod- 142

els with parameters {θ1, θ2, . . . , θK} ∈ Rd, each 143

trained on a distinct task or setting {t1, t2, . . . , tK} 144

from a shared base model θB ∈ Rd. Model merg- 145

ing aims to fuse these parameters into a single 146

model with parameters θM ∈ Rd, and enable θM 147

to effectively handle all K tasks simultaneously. 148

2.2 Task Vector 149

A task vector δk ∈ Rd for model θk is defined 150

as the delta weights between the trained model’s 151

parameters and those of the backbone: 152

δk = θk − θB, (1) 153

which represents both the direction and magnitude 154

of parameter updates during training. 155

By merging the task vectors {δ1, δ2, . . . , δK} of 156

K models into a single task vector δM , the param- 157

eters of the merged model can be expressed as 158

θM = θB + δM . (2) 159

3 Methodology 160

The proposed merging method comprises two 161

key components: Optimal Brain Merging (OBM), 162

2

Figure 2: An overview of the proposed method. The left part depicts the iterative merging process, while the right
part details how parameters are selected at each iteration step through the cooperation of parameter saliency and the
merged mask.

a saliency-based mechanism that selects high-163

saliency parameters for merging, and Iterative164

Merging (IM), an iterative framework designed to165

mitigate interference between models. Figure 2166

illustrates the complete merging process of our167

method.168

3.1 Optimal Brain Merging169

Optimal Brain Damage (OBD) (LeCun et al., 1989)170

and its subsequent works (Hassibi et al., 1993;171

Frantar and Alistarh, 2022) aim to establish ef-172

fective criteria for pruning or quantizing specific173

weights while minimizing the impact on model174

performance. The fundamental idea is to lever-175

age the second derivative of the objective function176

with respect to the parameters to compute their177

"saliencies." Building upon the idea, we introduce178

Optimal Brain Merging (OBM) to mitigate intra-179

model interference by identifying and eliminating180

negligible delta weights in task vectors.181

Given a trained LLM with parameters θ and task182

vector δ, our goal is to identify a subset of param-183

eters in the task vector whose removal results in184

minimal increase in the objective function L. The185

change in the objective function is measured using186

a Taylor series expansion:187

∆L =
∑
i

∂L
∂θi

δi +
1

2

∑
i

∂2L
∂θ2i

δ2i

+
1

2

∑
i ̸=j

∂2L
∂θiθj

δiδj +O(||δ||3).
(3)188

Assuming that L is at a local minimum and that189

each parameter contributes to ∆L independently,190

the first derivative, the off-diagonal terms of the 191

second derivative, and the higher-order terms can 192

be discarded. Consequently, ∆L can be approxi- 193

mated as: 194

∆L ≈ 1

2

∑
i

∂2L
∂θ2i

δ2i . (4) 195

The change in ∆Lwhen removing the parameter 196

at position i indicates how much it affects perfor- 197

mance, thereby representing its saliency: 198

si =
1

2

∂2L
∂θ2i

δ2i =
1

2
hiiδ

2
i , (5) 199

where hii denotes the i-th diagonal element of the 200

Hessian matrix of the loss for the given model. Pa- 201

rameters with low saliency, which contribute mini- 202

mally to ∆L, should be removed. 203

However, computing the Hessian matrix requires 204

a back-propagation process through the LLM if the 205

objective function used during LLM training is 206

considered (Bowen et al., 2024). To avoid the high 207

computational cost comparable to model training, 208

we take inspiration from layer-wise pruning ap- 209

proaches (Frantar and Alistarh, 2022; Frantar et al., 210

2022) and employ the Mean Squared Error (MSE) 211

as the objective function for each linear layer inde- 212

pendently. 213

Formally, let Xl be the input to the l-th layer 214

with the weight matrix Wl. The objective is de- 215

fined as: 216

∆Ll =
∥∥∥WlXl −WBXl

∥∥∥2
2
=

∥∥∥∆WlXl
∥∥∥2
2
,

(6) 217

3

where WB is the corresponding layer weight of218

the base model, and ∆Wl is the task vector of219

the layer. To approximate Xl, we take the mean220

over a small set of input samples. This function221

measures the squared distance between the output222

of the trained weights and the original weights.223

The Hessian matrix under the layer-wise MSE224

loss is computed as Hl = 2XlXl⊤. Thus, we225

only need to perform forward propagation of the226

LLM to obtain the input for each layer, enabling227

the computation of parameter saliencies. Moreover,228

forward propagation does not require any labels229

or targets, only the input portion of the samples is230

needed. Beyond its simplicity, layer-wise saliency231

provides a more precise and accurate measure of232

parameter importance within each layer. For non-233

linear layers, such as bias layers, we apply random234

pruning for parameter sparsification.235

3.2 Iterative Merging236

To address inter-model interference, we propose a237

merging framework called Iterative Merging (IM).238

This method iteratively updates a unique, non-239

overlapping subset of parameters from each task240

vector, preventing weight interference among task241

vectors.242

For each task vector δk to be merged, a binary243

maskM(Pk) is constructed to satisfy the following244

constraints:245

M(Pk)i =

{
1, if i ∈ Pk,

0, otherwise.

subject to
K⋃
k=1

Pk ⊆ {1, 2, . . . , d},

Pk ∩ Pj = ∅ for k ̸= j.

(7)246

Here, Pk represents the set of indices correspond-247

ing to the parameters selected for merging from248

δk, and d denotes the total number of parameters249

in each δk. Using the binary masks, the merging250

process is then formulated as:251

θM = θB +

K∑
k=1

δk · M(Pk). (8)252

Although the formulation involves summation, no253

direct addition occurs between different task vec-254

tors, as the binary masks ensure that each parameter255

index is selected at most once.256

While there are many ways to construct non-257

overlapping binary masks for all models, we intro-258

duce a simple and easily controllable method by259

iteratively updating a merged mask to track the po- 260

sitions that have already been merged. Specifically, 261

at the beginning, the merged mask is an empty set. 262

At each step, starting with a task vector δk, we first 263

exclude the indices that are already in the merged 264

mask. Then, we sort the remaining parameter in- 265

dices of δk based on their saliencies, selecting the 266

top nk%
1 of the indices to form Pk. Finally, we 267

update the merged mask with Pk. The procedure is 268

described in Algorithm 1. 269

Algorithm 1 Iterative Merging

Input: Base model parameters θB , total parame-
ter count d, task vectors δ1:K , merging ratios
n1:K%, saliency score sets S1:K

Output: Merged model θM

1: Initialize: merged mask M ← ∅, merging
order O ← [o1, o2, . . . , oK]

2: for k in O do
3: Sk ← {si | i /∈M, si ∈ Sk}
4: Sort Sk in descending order
5: Ŝk ← Select the top nk% elements of Sk

6: Pk ← {i | si ∈ Ŝk, i ∈ {1, . . . , d}}
7: Update merged mask: M ←M ∪ Pk

8: end for
9: return θM ← θB +

∑K
k=1 δ

k · M(Pk)

In practice, we apply iterative merging to each 270

layer independently, utilizing the task vector of 271

each layer rather than the entire model. This ap- 272

proach not only improves memory efficiency but 273

also enables the integration with OBM by leverag- 274

ing its layer-wise saliency scores. 275

An important factor that significantly affects 276

the performance of the merged model is the it- 277

eration order of the merging process. Since ear- 278

lier merged models occupy parameter positions, 279

highly salient parameters from later models may 280

have limited opportunities to be incorporated. To 281

address this issue, we utilize a rotation operation 282

that dynamically shifts the merging order across 283

different layers, preventing a few models from dom- 284

inating the process. Formally, for layer l, we main- 285

tain a list to record the merging order of models: 286

Ol = [o1, o2, . . . , oK] The merging order for layer 287

l + 1 is then updated by a left rotation operation: 288

Ol+1 = LR(Ol, 1). We further conduct an experi- 289

ment to discuss how the iteration order influences 290

the performance in Section 4.5. 291

1We ensure that
∑

k nk ≤ 1.

4

3.3 Optimal Brain Iterative Merging292

OBM and IM can be combined with other exist-293

ing methods. Taking TIES as an example, when294

combining TIES with OBM, the magnitude-based295

parameter pruning is replaced by a saliency-based296

approach. Similarly, when using TIES together297

with IM, we utilize global magnitude as saliency298

scores to construct the merged mask. However, the299

combination of OBM and IM, referred to as OBIM,300

yields better results. We conduct an ablation study301

to demonstrate the effectiveness of each component302

in Section 4.3.303

4 Experiments304

We conduct experiments on both SFT models and305

post-pretrained checkpoints to demonstrate the ef-306

fectiveness of our method. To validate its robust-307

ness, we evaluate OBIM using two popular back-308

bone models, LLaMA2 (Touvron et al., 2023) and309

Qwen2 (Yang et al., 2024a), in separate exper-310

iments. We also perform an ablation study to311

analyze the contributions of specific components312

within OBIM. Furthermore, we investigate key fac-313

tors in our method to assess their influence on the314

final performance.315

4.1 Experimental Setup316

Experiment Settings for SFT Models. Follow-317

ing previous works (Yu et al., 2024b; Deep et al.,318

2024), we use Llama-2-13b as the pre-trained319

backbone and incorporate three fine-tuned models320

for cross-task merging experiments: WizardLM-321

13B-V1.2 (Xu et al., 2023) for instruction follow-322

ing, WizardMath-13B-V1.0 (Luo et al., 2023) for323

mathematical reasoning, and llama-2-13b-code-324

alpaca (Chaudhary, 2023) for code generation. To325

evaluate the capabilities of the merged models,326

we use AlpacaEval (Li et al., 2023) and MMLU327

(Hendrycks et al., 2021a) for general understand-328

ing; GSM8K (Cobbe et al., 2021) and MATH329

(Hendrycks et al., 2021b) for mathematical reason-330

ing; and HumanEval (Chen et al., 2021) and MBPP331

(Austin et al., 2021) for code generation. Perfor-332

mance is measured using the win rate for AlpacaE-333

val2, zero-shot accuracy for MMLU, GSM8K, and334

MATH, and pass@1 for HumanEval and MBPP.335

Experiment Settings for Post-pretrained Models.336

We perform post-pretraining on Qwen2-7B using337

2We calculated the win rate by comparing target model to
text-davinci-003, using GPT-4o as the evaluator.

a multilingual dataset to enhance its Japanese pro- 338

ficiency. The dataset consists of over 200 billion 339

tokens and includes publicly available pretraining 340

corpora in English, Chinese, and Japanese. De- 341

tails of the dataset are provided in Appendix A.3. 342

The three best-performing checkpoints on Japanese 343

evaluation are selected and merged with the back- 344

bone model. To assess performance across different 345

languages, we employ three benchmarks: C-Eval 346

(Huang et al., 2023) for Chinese, MMLU for En- 347

glish, and the Japanese Language Model Evalua- 348

tion Harness (JP-LMEH) 3 for Japanese. Five-shot 349

accuracy is used for evaluating C-Eval and MMLU. 350

JP-LMEH encompasses nine distinct NLP tasks4, 351

with the average score serving as an indicator of 352

overall Japanese language proficiency. 353

Baselines. We compare our method with the fol- 354

lowing state-of-the-art model merging approaches 355

applicable to LLMs: TA (Ilharco et al., 2023): Task 356

Arithmetic, a simple delta weight merging method 357

that does not explicitly address interference. TIES 358

(Yadav et al., 2024): Eliminates redundant param- 359

eters based on magnitude and resolves sign con- 360

flicts. DARE (Yu et al., 2024b): Drop And REscale, 361

Randomly drops a proportion of parameters and 362

rescales the remaining ones to reduce redundancy. 363

DELLA (Deep et al., 2024): Assigns dropout prob- 364

abilities to parameters based on their magnitudes 365

for pruning. TALL-Mask (Deep et al., 2024): Uses 366

a masking mechanism to filter out parameters rel- 367

evant to only a few tasks. PCB (DU et al., 2024): 368

Leverages parameter competition to optimize the 369

merging process. 370

Validation Set. Since OBIM requires a small 371

sample set for parameter saliency computation, we 372

hold out a validation set comprising portions of the 373

training and development sets from each bench- 374

mark. Specifically, we compute saliency using 375

data related to the model’s training task: AlpacaE- 376

val and MMLU for general models, GSM8K and 377

MATH for math models, and MBPP for code mod- 378

els. For post-pretrained models, saliency is com- 379

puted using a multilingual dataset consisting of C- 380

Eval, MMLU, and JP-LMEH. Details are provided 381

in Appendix A.4. 382

3https://github.com/Stability-AI/lm-evaluation-
harness/tree/jp-stable

4JSQuAD, JCommonsenseQA, JNLI, MARC-ja, XLSum-
ja, JCoLA, MGSM-ja, XWinograd-ja, and JAQKET

5

Model Method General Math (acc) Code (pass@1) Avg.AlpacaEval MMLU GSM8K MATH HumanEval MBPP
LM - 82.72 53.34 45.79 0.14 30.48 31.40 40.65
Math - - - 63.08 11.60 - - -
Code - - - - - 23.78 27.20 -

LM
+ Math
+ Code

TA 78.93 51.04 58.45 9.88 18.29 29.80 41.07
TIES 80.53 54.30 62.55 9.54 21.95 30.40 43.21

DARE 75.00 54.12 58.00 9.20 29.27 31.40 42.83
DELLA 83.16 53.52 61.80 7.88 19.50 31.40 42.87

TALL-Mask 80.31 54.25 62.70 10.62 20.73 30.80 43.23
PCB 81.98 53.37 63.83 8.24 26.22 26.60 43.37

OBIM 81.23 54.39 68.23 12.50 25.61 29.40 45.23

Table 1: Performance comparison of SFT model merging. The results for each individual model are presented at the
top of the table, the lower section displays the results of merging the three models using different methods.

4.2 Main Results383

Results on SFT Models. The results are summa-384

rized in Table 1. We first present the performance385

of each individual model, followed by the results386

of merging the three task-specific experts using387

different methods. As shown in Table 1, OBIM388

achieves significant improvements in mathemati-389

cal reasoning, with a 5.15% gain on GSM8K and390

a 0.9% gain on MATH compared to the original391

math model. In contrast, many other methods fail392

to surpass the source math model. For other bench-393

marks, OBIM ranks first on MMLU and remains394

competitive across other tasks. However, its perfor-395

mance on code generation is relatively lower. We396

suspect this is because the general model, rather397

than the code model, performs best on code gen-398

eration, yet its saliency is computed using general399

data, leading to suboptimal preservation of coding400

ability. Overall, OBIM achieves the highest aver-401

age performance, outperforming the second-best402

method by 1.86%, demonstrating its effectiveness403

in merging models for task fusion.404

Model Method C-Eval MMLU JP-LMEH Avg.
Qwen2-7B - 83.51 69.22 69.19 73.97
ckpt-1 - 77.71 67.01 72.13 72.28
ckpt-2 - 75.48 67.05 71.69 71.41
ckpt-3 - 74.37 66.86 71.61 70.95

Qwen2-7B
+ ckpt-1
+ ckpt-2
+ ckpt-3

TA 76.15 68.47 71.90 72.17
TIES 76.52 67.92 71.93 72.12

DARE 78.97 68.85 71.21 73.01
DELLA 77.26 68.51 72.05 72.61

TALL-Mask 77.72 68.48 71.56 72.59
PCB 77.71 68.31 72.08 72.70

OBIM 80.46 69.89 72.14 74.16

Table 2: Performance comparison of post-pretrained
model merging. ckpt-1, ckpt-2 and ckpt-3 are the check-
points that achieve the best JP-LMEH results during
post-pretraining but exhibit performance degradation in
Chinese and English.

2 3 4 5 6
Number of models

72

73

74

75

Av
g.

OBIM
DARE
Qwen2-7B

2 3 4 5 6
Number of models

70

71

72

73

JP
-L

M
EH

OBIM
DARE
ckpt-1

Figure 3: Performance comparison of merging different
numbers of models between OBIM and DARE. The
left part presents the average performance across three
languages, while the right part shows the results for
Japanese capability. The green dotted line represents
the best performance of models before merging.

Results on Post-pretrained Models. As shown 405

in Table 2, checkpoints trained from Qwen2-7B 406

exhibit enhanced Japanese proficiency but experi- 407

ence a significant decline in the Chinese and En- 408

glish capabilities of the base model. The goal of 409

model merging is to restore Chinese and English 410

performance to the base model level while preserv- 411

ing the improved Japanese ability of the continu- 412

ally trained model. Our results show that while 413

no merging method fully restores C-Eval perfor- 414

mance to the base model level, OBIM achieves 415

the highest recovery rate, surpassing other meth- 416

ods by 1.49%. For English and Japanese, OBIM is 417

the only method that surpasses the base model on 418

MMLU and JP-LMEH, achieving improvements of 419

1.04% and 0.04% over other approaches. In terms 420

of overall multilingual performance, OBIM ranks 421

first across all benchmarks, producing a model with 422

the strongest overall capabilities. 423

To further validate the robustness of our method, 424

we evaluate the performance of merging different 425

numbers of models. Specifically, we select the five 426

6

Method Intra-model Inter-model
General Math (acc) Code (pass@1)

Avg.
AlpacaEval MMLU GSM8K MATH HumanEval MBPP

TIES Magnitude
Disjoint Mean

80.53 54.30 62.55 9.54 21.95 30.40 43.21
TIES+OBM Saliency 79.03 54.44 64.29 10.52 26.83 30.80 44.32

TIES+IM Magnitude
Iterative merging

80.81 54.31 68.08 13.08 21.95 30.40 44.77
OBIM Saliency 81.23 54.39 68.23 12.50 25.61 29.40 45.23

Table 3: Ablation study on components in OBIM. Each method’s strategy for mitigating intra-model and inter-model
interference is listed in the columns Intra-model and Inter-model, respectively.

best checkpoints during post-pretraining and merge427

them with the base model. We compare our method428

with DARE, as well as the best-performing individ-429

ual models before merging, and present the results430

in Figure 35. The results indicate that performance431

declines as the number of merged models increases,432

likely due to increased interference among models.433

However, our method remains stable and achieves434

performance competitive with the best individual435

model in both the average and Japanese capability436

evaluations. In contrast, DARE underperforms by437

approximately 1%, demonstrating that our method438

more effectively mitigates interference when merg-439

ing multiple models.440

4.3 Ablation Study441

To assess the contributions of the two key compo-442

nents, OBM and IM, we conduct experiments us-443

ing SFT model merging settings. Since OBM and444

IM cannot perform merging independently, we use445

TIES as the baseline method and integrate OBM446

and IM with the weight consensus approach for447

resolving sign conflict, termed "Disjoint Mean," as448

well as the magnitude-based parameter trimming449

method in TIES, respectively. Details are provided450

in Appendix A.1.451

The results are presented in Table 3, where we452

also outline each method’s strategy for mitigating453

intra-model and inter-model interference. By com-454

paring TIES with TIES+OBM and TIES+IM with455

OBIM, where each pair employs the same method456

for reducing inter-model interference, we observe457

that methods utilizing saliency-based parameter458

selection outperform those relying on magnitude-459

based selection. This finding confirms the superior-460

ity of OBM. Furthermore, methods incorporating461

IM consistently outperform their counterparts us-462

ing the same intra-model approach. Specifically,463

TIES+IM surpasses TIES, and OBIM outperforms464

TIES+OBM, demonstrating the effectiveness of IM.465

In general, OBIM achieves the highest performance466

5Detailed results are provided in Appendix B

among all methods, proving that the combination of 467

OBM and IM can further enhance the performance. 468

4.4 Influence of the Validation Set 469

Samples in the validation set influence saliency 470

scores. To assess this impact, we replace the 471

samples used for computing the saliency of the 472

math model under the experimental settings of SFT 473

model merging and evaluate the merging perfor- 474

mance on two mathematical tasks. 475

As shown in Table 4, we compare the results 476

using task-related data from GSM8K and MATH 477

(Math), irrelevant data from MBPP (Code), and 478

a mixed dataset (Math+Code). All datasets con- 479

tain the same number of samples. Math achieves 480

the best performance, followed by Math+Code, 481

while Code performs the worst. This suggests that 482

using task-specific data for saliency computation 483

enhances task knowledge retention. We attribute 484

this to our assumption for saliency approximation, 485

which requires the first derivative to be approx- 486

imately zero. This condition implies that data 487

well learned by the model enables more accurate 488

saliency estimation. 489

Source Size Math (acc) Avg.GSM8K MATH
Math

100
68.23 12.50 40.37

Code 67.48 11.84 39.66
Math + Code 68.01 12.42 40.22

Table 4: Comparison of different validation sets used
for saliency computation. The winners and runners-up
are marked in bold font and underlined, respectively.

We also investigate the impact of sample size by 490

using different numbers of samples from the same 491

source. The results in Table 5 indicate that 100 492

samples yield the best performance, while using 493

either more or fewer samples leads to a decline. 494

However, the results with only 10 samples remain 495

competitive, suggesting that the method is effective 496

even with a limited number of samples. 497

7

Source Size Math (acc) Avg.GSM8K MATH

Math

10 68.16 12.10 40.13
50 67.40 11.88 39.64
100 68.23 12.50 40.37
200 67.70 12.28 39.99

Table 5: Performance across different sample sizes. 100
samples achieve the highest performance, followed by
10 samples.

4.5 Influence of Iterative Merging Order498

We analyze how the order of iterative merging in-499

fluences performance. We conduct experiments500

based on the SFT model merging settings with four501

different merging orders: shifting the order using a502

rotation operation across model layers (Rotation),503

prioritizing the math model (Math First), placing504

the math model last (Math Last), and prioritizing505

the general language model (LM First). We evalu-506

ate the results on mathematical tasks.507

As shown in Table 6, Math First achieves the508

best performance, whereas Math Last performs the509

worst, and LM First also yields poor results. These510

findings suggest that the earlier a model is merged,511

the better its knowledge is preserved. However,512

while Rotation performs slightly worse than Math513

First, it still surpasses the original math model,514

demonstrating its robustness. We attribute this to515

the redundancy of parameters in LLMs, where core516

capabilities can be largely retained even when only517

a subset of layers is preserved.518

Iteration Order Math (acc) Avg.GSM8K MATH
Rotation 67.10 11.96 39.53

Math First 67.48 14.38 40.93
Math Last 61.71 2.06 31.89
LM First 63.15 3.14 33.15

Table 6: Performance comparison of different merging
orders in iterative merging.

5 Related Work519

Model merging has gained popularity in LLM re-520

search (Zhou et al., 2024; Yang et al., 2024b). By521

amalgamating multiple homologous LLMs into a522

single model, this technique has been applied to523

address several challenges, such as building multi-524

task experts (Cai et al., 2023; Wan et al., 2024b),525

detoxification (Hu et al., 2024; Zhang et al., 2023),526

and preference alignment (Lin et al., 2024; Rame527

et al., 2024). Model merging methods are primarily528

based on two fundamental approaches: weight av- 529

eraging (Wortsman et al., 2022) and task arithmetic 530

(Ilharco et al., 2023). 531

Weight-based model merging methods design 532

rules or matrices to determine merging coefficients. 533

For example, RegMean (Jin et al., 2022) optimizes 534

a linear regression problem for linear weights, 535

Fisher-Merging (Matena and Raffel, 2022) uses 536

the Fisher information matrix to assess parame- 537

ter importance. Some works explore the space 538

of these coefficients using parameter searching al- 539

gorithms, such as evolutionary algorithms (Akiba 540

et al., 2025) or Bayesian optimization (Liu et al., 541

2024). Although these methods demonstrate effec- 542

tiveness, they suffer from inefficiency: parameter 543

search is time-consuming, and solving the objec- 544

tives requires substantial computation resources. 545

Subspace-based model merging methods focus 546

on eliminating insignificant parameters and merg- 547

ing sparse models within the parameter subspace to 548

reduce interference. TIES (Yadav et al., 2024) trims 549

individual models based on parameter magnitudes, 550

while Model Breadcrumbs (Davari and Belilovsky, 551

2025) refines this by removing both low-magnitude 552

and high-magnitude outliers. DARE (Yu et al., 553

2024b) emphasizes the importance of rescaling af- 554

ter sparsification, and TALL-Mask (Wang et al., 555

2024) creates task-specific mask matrices based 556

on predefined thresholds to filter out irrelevant pa- 557

rameters. However, these methods are limited to 558

specific patterns, such as sign conflicts or threshold- 559

based filtering, and magnitude-based sparsification 560

remains suboptimal. To better address the inter- 561

ference problem, we propose a solution based on 562

parameter saliency sparsification and a mutually 563

exclusive iterative merging framework. 564

6 Conclusion 565

In this work, we propose OBIM, a novel merg- 566

ing method for LLMs that selectively retains rep- 567

resentative delta weights based on saliency and 568

iteratively integrates task vectors to reduce both 569

intra-model and inter-model interference. OBIM 570

achieves state-of-the-art performance in merg- 571

ing SFT models and post-pretraining checkpoints, 572

demonstrating its effectiveness and versatility. Ex- 573

tensive ablation studies further validate its key com- 574

ponents. Additionally, OBIM is computationally 575

efficient and memory-light, making it well-suited 576

for real-world applications. 577

8

7 Limitations578

While our work provides valuable insights into579

LLM merging, several limitations should be noted:580

(1) The application of OBIM relies on models with581

identical architectures and shared initializations,582

limiting its applicability to diverse model types. (2)583

Although efficient, OBIM requires an additional584

validation set and incurs extra computational costs585

for saliency computation compared to magnitude-586

based methods. (3) Our analysis primarily focuses587

on interference from the perspective of parameter588

aggregation, with limited theoretical exploration,589

highlighting the need for further research in future590

work.591

References592

Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and593
David Ha. 2025. Evolutionary optimization of model594
merging recipes. Nature Machine Intelligence, pages595
1–10.596

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten597
Bosma, Henryk Michalewski, David Dohan, Ellen598
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.599
Program synthesis with large language models. arXiv600
preprint arXiv:2108.07732.601

Tian Bowen, Lai Songning, Wu Jiemin, Shuai Zhihao,602
Ge Shiming, and Yue Yutao. 2024. Beyond task vec-603
tors: Selective task arithmetic based on importance604
metrics. arXiv preprint arXiv:2411.16139.605

Ruisi Cai, Zhenyu Zhang, and Zhangyang Wang. 2023.606
Robust weight signatures: gaining robustness as easy607
as patching weights? In International Conference on608
Machine Learning, pages 3495–3506. PMLR.609

Sahil Chaudhary. 2023. Code alpaca: An instruction-610
following llama model for code generation. https:611
//github.com/sahil280114/codealpaca.612

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming613
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-614
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,615
Greg Brockman, et al. 2021. Evaluating large616
language models trained on code. arXiv preprint617
arXiv:2107.03374.618

Tejalal Choudhary, Vipul Mishra, Anurag Goswami,619
and Jagannathan Sarangapani. 2020. A comprehen-620
sive survey on model compression and acceleration.621
Artificial Intelligence Review, 53:5113–5155.622

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,623
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias624
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro625
Nakano, et al. 2021. Training verifiers to solve math626
word problems. arXiv preprint arXiv:2110.14168.627

MohammadReza Davari and Eugene Belilovsky. 2025. 628
Model breadcrumbs: Scaling multi-task model merg- 629
ing with sparse masks. In European Conference on 630
Computer Vision, pages 270–287. Springer. 631

Pala Tej Deep, Rishabh Bhardwaj, and Soujanya Po- 632
ria. 2024. Della-merging: Reducing interference in 633
model merging through magnitude-based sampling. 634
arXiv preprint arXiv:2406.11617. 635

Jasper Dekoninck, Marc Fischer, Luca Beurer-Kellner, 636
and Martin Vechev. 2023. Controlled text genera- 637
tion via language model arithmetic. arXiv preprint 638
arXiv:2311.14479. 639

Guodong DU, Junlin Lee, Jing Li, Runhua Jiang, Yifei 640
Guo, Shuyang Yu, Hanting Liu, Sim Kuan Goh, Ho- 641
Kin Tang, Daojing He, and Min Zhang. 2024. Pa- 642
rameter competition balancing for model merging. 643
In The Thirty-eighth Annual Conference on Neural 644
Information Processing Systems. 645

Elias Frantar and Dan Alistarh. 2022. Optimal brain 646
compression: A framework for accurate post-training 647
quantization and pruning. Advances in Neural Infor- 648
mation Processing Systems, 35:4475–4488. 649

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and 650
Dan Alistarh. 2022. Gptq: Accurate post-training 651
quantization for generative pre-trained transformers. 652
arXiv preprint arXiv:2210.17323. 653

Babak Hassibi, David G Stork, and Gregory J Wolff. 654
1993. Optimal brain surgeon and general network 655
pruning. In IEEE international conference on neural 656
networks, pages 293–299. IEEE. 657

Yang He and Lingao Xiao. 2023. Structured pruning 658
for deep convolutional neural networks: A survey. 659
IEEE transactions on pattern analysis and machine 660
intelligence. 661

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 662
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 663
2021a. Measuring massive multitask language under- 664
standing. In International Conference on Learning 665
Representations. 666

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 667
Arora, Steven Basart, Eric Tang, Dawn Song, and 668
Jacob Steinhardt. 2021b. Measuring mathematical 669
problem solving with the math dataset. NeurIPS. 670

Xinshuo Hu, Dongfang Li, Baotian Hu, Zihao Zheng, 671
Zhenyu Liu, and Min Zhang. 2024. Separate the 672
wheat from the chaff: Model deficiency unlearning 673
via parameter-efficient module operation. In Proceed- 674
ings of the AAAI Conference on Artificial Intelligence, 675
volume 38, pages 18252–18260. 676

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei 677
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu, 678
Chuancheng Lv, Yikai Zhang, Jiayi Lei, Yao Fu, 679
Maosong Sun, and Junxian He. 2023. C-eval: A 680
multi-level multi-discipline chinese evaluation suite 681
for foundation models. In Advances in Neural Infor- 682
mation Processing Systems. 683

9

https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://openreview.net/forum?id=l5SbrtvSRS
https://openreview.net/forum?id=l5SbrtvSRS
https://openreview.net/forum?id=l5SbrtvSRS
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-684
man, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali685
Farhadi. 2023. Editing models with task arithmetic.686
In The Eleventh International Conference on Learn-687
ing Representations.688

Dong-Hwan Jang, Sangdoo Yun, and Dongyoon Han.689
2024. Model stock: All we need is just a few fine-690
tuned models. In European Conference on Computer691
Vision, pages 207–223. Springer.692

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and693
Pengxiang Cheng. 2022. Dataless knowledge fu-694
sion by merging weights of language models. arXiv695
preprint arXiv:2212.09849.696

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault697
Castells, Shinkook Choi, Junho Shin, and Hyoung-698
Kyu Song. 2024. Shortened llama: A simple depth699
pruning for large language models. arXiv preprint700
arXiv:2402.02834, 11.701

Yann LeCun, John Denker, and Sara Solla. 1989. Opti-702
mal brain damage. Advances in neural information703
processing systems, 2.704

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi,705
Matt Jordan, Samir Gadre, Hritik Bansal, Etash706
Guha, Sedrick Keh, Kushal Arora, et al. 2024.707
Datacomp-lm: In search of the next generation of708
training sets for language models. arXiv preprint709
arXiv:2406.11794.710

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,711
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and712
Tatsunori B. Hashimoto. 2023. Alpacaeval: An au-713
tomatic evaluator of instruction-following models.714
https://github.com/tatsu-lab/alpaca_eval.715

Tzu-Han Lin, Chen-An Li, Hung-yi Lee, and Yun-Nung716
Chen. 2024. Dogerm: Equipping reward models with717
domain knowledge through model merging. arXiv718
preprint arXiv:2407.01470.719

Deyuan Liu, Zecheng Wang, Bingning Wang, Weipeng720
Chen, Chunshan Li, Zhiying Tu, Dianhui Chu, Bo Li,721
and Dianbo Sui. 2024. Checkpoint merging via722
bayesian optimization in llm pretraining. arXiv723
preprint arXiv:2403.19390.724

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-725
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei726
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-727
ardmath: Empowering mathematical reasoning for728
large language models via reinforced evol-instruct.729
arXiv preprint arXiv:2308.09583.730

Michael S Matena and Colin A Raffel. 2022. Merging731
models with fisher-weighted averaging. Advances in732
Neural Information Processing Systems, 35:17703–733
17716.734

Alexandre Rame, Guillaume Couairon, Corentin735
Dancette, Jean-Baptiste Gaya, Mustafa Shukor,736
Laure Soulier, and Matthieu Cord. 2024. Rewarded737

soups: towards pareto-optimal alignment by inter- 738
polating weights fine-tuned on diverse rewards. Ad- 739
vances in Neural Information Processing Systems, 740
36. 741

Ken Shoemake. 1985. Animating rotation with quater- 742
nion curves. In Proceedings of the 12th annual con- 743
ference on Computer graphics and interactive tech- 744
niques, pages 245–254. 745

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico 746
Kolter. 2023. A simple and effective pruning ap- 747
proach for large language models. arXiv preprint 748
arXiv:2306.11695. 749

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 750
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 751
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 752
Bhosale, et al. 2023. Llama 2: Open founda- 753
tion and fine-tuned chat models. arXiv preprint 754
arXiv:2307.09288. 755

Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun Quan, 756
Wei Bi, and Shuming Shi. 2024a. Knowledge fu- 757
sion of large language models. arXiv preprint 758
arXiv:2401.10491. 759

Fanqi Wan, Longguang Zhong, Ziyi Yang, Rui- 760
jun Chen, and Xiaojun Quan. 2024b. Fusechat: 761
Knowledge fusion of chat models. arXiv preprint 762
arXiv:2408.07990. 763

Ke Wang, Nikolaos Dimitriadis, Guillermo Ortiz- 764
Jiménez, François Fleuret, and Pascal Frossard. 2024. 765
Localizing task information for improved model 766
merging and compression. In International Confer- 767
ence on Machine Learning. 768

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, 769
Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Mor- 770
cos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, 771
Simon Kornblith, et al. 2022. Model soups: averag- 772
ing weights of multiple fine-tuned models improves 773
accuracy without increasing inference time. In In- 774
ternational conference on machine learning, pages 775
23965–23998. PMLR. 776

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, 777
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin 778
Jiang. 2023. Wizardlm: Empowering large lan- 779
guage models to follow complex instructions. arXiv 780
preprint arXiv:2304.12244. 781

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A 782
Raffel, and Mohit Bansal. 2024. Ties-merging: Re- 783
solving interference when merging models. Ad- 784
vances in Neural Information Processing Systems, 785
36. 786

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, 787
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan 788
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao- 789
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian 790
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin 791
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang 792
Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, 793

10

https://openreview.net/forum?id=6t0Kwf8-jrj
https://github.com/tatsu-lab/alpaca_eval

Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng794
Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,795
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu,796
Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng,797
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin798
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang799
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu800
Cui, Zhenru Zhang, and Zhihao Fan. 2024a. Qwen2801
technical report. arXiv preprint arXiv:2407.10671.802

Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang,803
Xiaochun Cao, Jie Zhang, and Dacheng Tao. 2024b.804
Model merging in llms, mllms, and beyond: Meth-805
ods, theories, applications and opportunities. arXiv806
preprint arXiv:2408.07666.807

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin808
Li. 2024a. Extend model merging from fine-tuned to809
pre-trained large language models via weight disen-810
tanglement. arXiv preprint arXiv:2408.03092.811

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yong-812
bin Li. 2024b. Language models are super mario:813
Absorbing abilities from homologous models as a814
free lunch. In Forty-first International Conference815
on Machine Learning.816

Jinghan Zhang, Junteng Liu, Junxian He, et al. 2023.817
Composing parameter-efficient modules with arith-818
metic operation. Advances in Neural Information819
Processing Systems, 36:12589–12610.820

Yuyan Zhou, Liang Song, Bingning Wang, and Weipeng821
Chen. 2024. Metagpt: Merging large language mod-822
els using model exclusive task arithmetic. arXiv823
preprint arXiv:2406.11385.824

A Experimental Details825

A.1 Details of Baselines and Ablation Study826

To provide a better understanding of the baselines,827

we outline the methods used in previous works828

for addressing intra-model and inter-model inter-829

ference. We compare these methods with our ap-830

proach in Table 7, highlighting the innovation of831

our method. At the bottom of Table 7, we also832

provide the implementation of the methods used in833

our ablation study.834

Below is a brief introduction to each component.835

• Magnitude Pruning: Retains parameters836

with the largest magnitude values.837

• Random Drop and Rescale: Filters parame-838

ters using a Bernoulli distribution and rescales839

the remaining ones according to the drop rate.840

• Stochastic Magnitude Pruning: Assigns841

magnitude values to probabilities and retains842

parameters according to these probabilities.843

• Disjoint Mean: Elects parameters at each po- 844

sition based on the direction of summation, 845

then averages the parameters along that direc- 846

tion. 847

• Consensus Mask: Selects parameters using a 848

mask constructed by measuring the l1 distance 849

to the target task vector. 850

Method Intra-Model Inter-Model
TA / /

TIES Magnitude Pruning Disjoint Mean
DARE Random Drop and Rescale Disjoint Mean

DELLA Stochastic Magnitude Pruning Disjoint Mean
TALL-Mask / Consensus Mask

OBIM Saliency-based Pruning Iterative Merging
TIES+OBM Saliency-based Pruning Disjoint Mean

TIES+IM Magnitude Pruning Iterative Merging

Table 7: Comparison of methods for addressing intra-
model and inter-model interference.

A.2 Hyperparameter Configurations 851

In the SFT model merging experiments, the hy- 852

perparameters that need to be adjusted include the 853

retention ratio of parameters in OBM (nk%) and 854

the merging order (O). The search ranges and the 855

optimal settings for each hyperparameter are pro- 856

vided in Table 8. 857

In the post-pretraining model merging scenario, 858

the retention ratio nk% for merging K checkpoints 859

is set to 1
K , and the merging order is set to Rotation. 860

A.3 Datasets for Post-Pretraining 861

We collected and processed a dataset of over 200B 862

tokens comprising Japanese, Chinese, and English 863

texts for post-pretraining. The dataset includes text 864

from websites and publications, all of which are 865

publicly available. Below are the details of the data 866

sources: 867

• Japanese: C4-ja6, CC100-ja7, OSCAR-ja8, 868

CulturaX9, Wikipedia-ja10 869

• English: FineWeb11, Tiny-Textbooks12, Au- 870

toMathText13, Wikipedia-en14 871

6https://huggingface.co/datasets/systemk/c4-ja
7https://huggingface.co/datasets/statmt/cc100
8https://huggingface.co/datasets/ohtaman/oscar_ja_clean_filtered
9https://huggingface.co/datasets/uonlp/CulturalX

10https://huggingface.co/datasets/systemk/wiki-ja
11https://huggingface.co/datasets/HuggingFaceFW/fineweb
12https://huggingface.co/datasets/nampdn-ai/tiny-

textbooks
13https://huggingface.co/datasets/math-ai/AutoMathText
14https://huggingface.co/datasets/blo05/cleaned_wiki_en

11

H-Param Searching Range Optimal Setting

nk%
[0.1, 0.15, 0.2, 0.25, 0.3,

0.35, 0.4, 0.45, 0.5]
{LM: 0.4, Math: 0.45, Code: 0.1}

O
[Rotation, LM First, Math First, Code First,

LM Last, Math last, Code Last]
Code Last

Table 8: Hyperparameter search ranges and optimal settings for the SFT model merging experiment.

• Chinese: CLUECorpus15, SkyPile16, MAP-872

CC17, Wanjuan18, Wikipedia-zh19873

• Parallel Corpus20: CCMatrix, JParaCrawl,874

WikiMatrix875

We follow the pretraining data processing ap-876

proach of DataComp-LM (Li et al., 2024). The877

data processing pipeline mainly consists of three878

steps:879

• Text Extraction: We extract clean text from880

raw content using rule-based tools such as881

HTML parsers and regular expressions.882

• Deduplication: We apply both locality-883

sensitive hashing (LSH) deduplication and884

semantic deduplication to remove redundant885

data.886

• Quality Filtering: We employ a FastText21887

binary classifier for each language to assess888

and filter data quality.889

After processing, we retain approximately 70B890

tokens for each language and 1B tokens from the891

parallel corpus as our post-pretraining dataset.892

We then trained Qwen2-7B on this dataset using893

64 A800 (80G) GPUs, with a training batch size894

of 4 million tokens per step for two weeks. Check-895

points were saved every 1,000 steps, and the total896

training duration was approximately 50,000 steps.897

We will release the trained model as open-source898

after the paper is accepted.899

A.4 Details of Validation Set900

The sample size of the validation set for each bench-901

mark is provided in Table 9.902

15https://github.com/brightmart/nlp_chinese_corpus
16https://huggingface.co/datasets/Skywork/SkyPile-150B
17https://huggingface.co/datasets/m-a-p/MAP-CC
18https://huggingface.co/datasets/facat/wanjuan
19https://huggingface.co/datasets/shaowenchen/wiki_zh
20https://opus.nlpl.eu
21https://github.com/facebookresearch/fastText

Model Benchmark Sample Size Total

LM
AlpacaEval 50

335
MMLU 285

Math
GSM8K 50

100
MATH 50

Code
HumanEval 0

50
MBPP 50

Post-pretrained
Model

MMLU 285
763C-Eval 260

JP-LMEH 218

Table 9: Validation Set Sizes. Note that HumanEval is
excluded since it only provides a test set.

A.5 Computational Resources 903

We measured the GPU usage and time cost in 904

OBIM, as shown in Table 11. GPUs used in our ex- 905

periments is NVIDIA-A800 (80G). The total time 906

is divided into three parts: the computation time 907

for Xl across all layers, which depends on the size 908

of the validation set; the time required for saliency 909

computation; and the time for iterative merging. 910

B Results on Merging Multiple Models 911

Table 10 presents the full results for merging 912

varying numbers of post-pretrained models using 913

OBIM and DARE. 914

Count Method CEVAL MMLU JP-LMEH Avg.

2
OBIM 81.87 69.41 71.85 74.38
DARE 81.20 69.16 71.92 74.09

3
OBIM 80.98 69.32 71.80 74.03
DARE 79.79 69.51 71.02 73.44

4
OBIM 80.46 69.89 72.14 74.16
DARE 78.97 68.85 71.21 73.01

5
OBIM 79.72 69.40 71.90 73.69
DARE 79.19 68.98 70.92 73.03

6
OBIM 79.72 69.66 71.90 73.76
DARE 78.90 69.05 70.99 72.98

Table 10: Detailed performance comparison of OBIM
and DARE across different numbers of merged models.

C Ethics Statement 915

This paper focuses on model merging techniques 916

for Large Language Models (LLMs) to enhance 917

their adaptability. While our work does not directly 918

12

Model Count Model Size GPUs Computing Speed of Xl Saliency Computation Time Merging Time
3 13B 2 0.40 (s/sample) 50 (s) 2’03
6 7B 1 0.36 (s/sample) 20 (s) 2’01

Table 11: Computational resources for model merging with OBIM.

introduce new risks, it inherits the broader societal919

concerns associated with LLMs, such as AI safety,920

reliability, and potential biases in generated content.921

Beyond these considerations, we do not foresee922

additional ethical concerns arising from our work.923

13

	Introduction
	Preliminaries
	Model Merging Problem
	Task Vector

	Methodology
	Optimal Brain Merging
	Iterative Merging
	Optimal Brain Iterative Merging

	Experiments
	Experimental Setup
	Main Results
	Ablation Study
	Influence of the Validation Set
	Influence of Iterative Merging Order

	Related Work
	Conclusion
	Limitations
	Experimental Details
	Details of Baselines and Ablation Study
	Hyperparameter Configurations
	Datasets for Post-Pretraining
	Details of Validation Set
	Computational Resources

	Results on Merging Multiple Models
	Ethics Statement

