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Abstract

Masked image modeling (MIM) learns visual representations by predicting the masked
patches on a pre-defined target. Inspired by MVP (Wei et al., 2022b) that displays im-
pressive gains with CLIP, in this work, we also employ the semantically rich CLIP latent as
target and further tap its potential by introducing a new MIM pipeline, CAE v2, to learn a
high-quality encoder and facilitate model convergence on the pre-training task. CAE v2 is
an improved variant of CAE (Chen et al., 2023), applying the CLIP latent on two pretraining
tasks, i.e., visible latent alignment and masked latent alignment. Visible latent alignment
directly mimics the visible latent representations from the encoder to the corresponding
CLIP latent, which is beneficial for facilitating model convergence and improving the rep-
resentative ability of the encoder. Masked latent alignment predicts the representations of
masked patches within the feature space of CLIP latent as standard MIM task does, effec-
tively aligning the representations computed from the encoder and the regressor into the
same domain. We pretrain CAE v2 on ImageNet-1K images and evaluate on various down-
stream vision tasks, including image classification, semantic segmentation, object detection
and instance segmentation. Experiments show that our CAE v2 achieves competitive per-
formance and even outperforms the CLIP vision encoder, demonstrating the effectiveness of
our method. Code is available at https://github.com/Atten4Vis/CAE.

1 Introduction

Masked image modeling (MIM) (Bao et al., 2022) task has attracted numerous attention in self-supervised
representation learning, showing strong performance on a variety of downstream tasks. Previous MIM
methods (Bao et al., 2022; He et al., 2022; Xie et al., 2022; Chen et al., 2023) usually mask out some image
patches, and then predict these masked patches conditioned on representations of visible patches according to
specific prediction targets. The architecture of these MIM methods can be unified with an encoder-decoder
format, in which the encoder is used for the representation learning and the decoder is used for the prediction
of the masked patches. When transferring to downstream tasks, MIM only maintains the learned encoder
and discards other parts.

A high-quality pre-trained encoder can greatly benefit downstream tasks. To improve the encoding quality,
previous works take efforts on two aspects, i.e., using better pretraining targets and decoupling the learning
of encoder and decoder. As for the type of target, instead of low-level signals like RGB (He et al., 2022;
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Figure 1: The pipeline of CAE v2. (a) The encoder receives the visible patches and extracts the visible
latent representations Zv, which is then put into the regressor to generate masked latent representations Zm

conditioned on the mask queries. CAE v2 consists of two loss functions: visible latent alignment - mimicking
Zv to the visible latent targets Z̄v, and masked latent alignment - regressing Zm with the masked latent
targets Z̄m. Both Z̄v and Z̄m are generated by the vision branch of CLIP model. After pretraining, the
encoder (a) is applied to downstream tasks, while (b) is replaced with the downstream task part.

Xie et al., 2022) and hand-crafted features like HOG (Wei et al., 2022a), some methods intuitively use high-
level semantically rich targets to help the encoder learn more informative semantics, e.g., discrete visual
tokens (Bao et al., 2022; Chen et al., 2023; El-Nouby et al., 2021; Peng et al., 2022a; Dong et al., 2021),
features from momentum encoders (Tao et al., 2022; Chen et al., 2022; Wu et al., 2023), and features from
pretrained models (Wei et al., 2022b;a; Fang et al., 2023b;a; Hou et al., 2022; Peng et al., 2022b). Among these
literature, MVP (Wei et al., 2022b) first utilizes CLIP latent as the masked prediction target in MIM, showing
impressive gains on various downstream tasks. Another line like MAE (He et al., 2022) and CAE (Chen
et al., 2023) attempts to partition the representation learning of the encoder and the reconstruction of
the masked patches. For example, CAE introduces a latent contextual regressor to explicitly decouple the
encoder learning and the decoder reconstruction, which effectively motivates encoder’s power.

This paper also aims to acquire a high-quality vision encoder. Specifically, we introduce a new MIM pipeline,
CAE v2, i.e., a context autoencoder with CLIP latent alignment. The pretraining target of CAE v2 is CLIP
latent following MVP (Wei et al., 2022b). The architecture of CAE v2 is built upon the CAE (Chen et al.,
2023) method, with the variation on retaining the encoder and the regressor yet discarding the decoder.
This modification results in a more lightweight model structure, enabling faster model pretraining and less
computational cost.

CAE v2 contains two concurrent pretraining tasks, i.e., visible latent alignment and masked latent alignment.
Visible latent alignment is designed for an explicit optimization on the encoder, which imposes visible latent
representations from the encoder to be close to those from the vision branch of CLIP model. It encourages
the encoder to learn semantically rich information brought by supervision signals directly, which is beneficial
for model convergence and performance improvement. Masked latent alignment is responsible for the masked
patch prediction. It directly regresses feature representations of the masked patches from the regressor to
the corresponding CLIP latents as standard MIM methods do. These two tasks are able to align the feature
representations from the encoder with those from the regressor to be close to the same feature space of
CLIP latents. In this way, both encoder and regressor can be fully learned, especially on the encoder that is
transferred for downstream tasks. The two latent alignment serve as loss functions, in which they are robust
to different loss types and the cosine distance is used by default.

We pretrain CAE v2 on ImageNet-1K images without using specific ground-truth labels. Extensive experi-
ments demonstrate that our CAE v2 achieves competitive results across all scales of models, from the tiny
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size to the large size, on various downstream tasks, including image classification, semantic segmentation,
object detection, and instance segmentation.

In summary, our contributions are:

• We develop a new MIM pipeline, CAE v2, which is an improved version of CAE with CLIP latent as
the pretraining target for learning a high-quality encoder and facilitating model convergence.

• We introduce visible latent alignment and masked latent alignment, aligning feature representations
generated from the encoder and the regressor with CLIP latents.

• Experiments show that CAE v2 effectively improves the representative ability of the encoder, achieving
competitive performance across model sizes and various downstream vision tasks.

2 CAE v2

CAE v2 is an improved variant of CAE (Chen et al., 2023). Compared with CAE, CAE v2 only maintains
the encoder and the regressor while discarding the decoder (Section 2.2). Meanwhile, CAE v2 applies two
latent alignment objectives that are supervised by CLIP latents - feature representations extracted from
the vision branch of CLIP (Section 2.3), which is different from CAE that uses one alignment loss and one
reconstruction loss.

2.1 Preliminary: CAE

The network of CAE (Chen et al., 2023) is an encoder-regressor-decoder architecture, including two pre-
training tasks: masked representation prediction and masked patch reconstruction. The key of CAE is to
decouple learning of encoder from completing the pretraining tasks, and making predictions in the encoded
representation space. We illustrate the computational graph of CAE in Figure 5 (b) in Appendix.

Let xxx ∈ D denote an input image. CAE first embeds xxx into N patches, which are then divided into two
non-overlapped sets, i.e., visible patches XXXv and masked patches XXXm. Here, N = |v| + |m|. The mask ratio
is γ = |m| /N . The encoder takes the visible patches as input and outputs visible representations ZZZv; The
regressor then predicts the latent representations of the masked patches ZZZm conditioned on the positions of
masked patches, which are expected to be aligned with the representations ZZZm computed from the encoder;
The decoder then reconstructs the masked patches YYYm from the predicted encoded representations ZZZm to
the form of target ȲYYm. CAE includes the reconstruction loss for the reconstruction of masked patches to
the expected targets (i.e., DALL-E), and the alignment loss for the alignment of features from the encoder
and the regressor.

2.2 Architecture

The overview of the pipeline of CAE v2 is shown in Figure 1, and the computational graph is illustrated in
Figure 5 (a) in Appendix. CAE v2 builds upon the foundation of CAE with two main structural modifica-
tions: i) discarding the decoder and ii) applying two alignment loss functions with CLIP latent as the target.
Specifically, CAE v2 is an encoder-regressor architecture, in which visible latent alignment loss is directly
applied on latent representations of visible patches computed from the encoder, and masked latent alignment
loss acts on latent representations of masked patches predicted from the regressor. The supervision signals
of these two losses are both CLIP latents.
Encoder. The encoder F only receives visible patches XXXv. It maps the visible patches XXXv to the latent
representations ZZZv across a stack of transformer blocks that is based on self-attention. We employ a series
of ViTs (Dosovitskiy et al., 2021) as the encoder, including ViT-Tiny, -Small, -Base and -Large.
Regressor. Following Chen et al. (2023), the latent contextual regressor H predicts the latent represen-
tations of masked patches ZZZm from ZZZv conditioned on the positions of masked patches. H performs as the
same as cross-attention, in which the queries are learnable mask tokens QQQm, and the keys and values are
both the concatenation of ZZZv and the output of previous layers (QQQm for the first layer).
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Figure 2: Analysis of the model convergence on (left) training loss and (right) top-1 accuracy of linear
probing vs. epochs. The x-axis denotes the pretraining epoch.

Decoder. The decoder is to map masked latent representations ZZZm to the format of target YYYm. The
decoder is based on a self-attention based transformer, different from the regressor based cross-attention.
Different from CAE, CAE v2 does not have the decoder, since the regressor in CAE v2 can be responsible
for predicting the latent representations of masked patches.

2.3 Objective Function

Masking. We adopt the random block-wise masking strategy as in BEiT (Bao et al., 2022). Instead of a
unique mask ratio, we apply variable mask ratios for different sizes of models. In detail, we experimentally
find that the optimal mask ratio is positively related with the model size, i.e., the larger the model, the
higher the mask ratio. More analyses are provided in Section 3.2.
Targets. We utilize the vision branch of CLIP (Radford et al., 2021) model to produce CLIP latent as the
pretraining target. Specifically, the intact image is fed into the target model T to get latent representations
of patches, which are then divided into the visible latent targets Z̄v and the masked latent targets Z̄m

according to the position of visible and masked patches, respectively.
Loss function. CAE v2 consists of two loss functions: visible latent alignment and masked latent alignment.
Visible latent alignment loss ℓv(Zv, Z̄v) is applied on the latent representations of visible patches Zv from the
encoder, ensuring that the encoded representations lies in the latent representation space of the visible latent
targets Z̄v. Masked latent alignment loss ℓz(Zm, Z̄m) allows the latent representations of masked patches
Zm predicted from the regressor to be close to the masked latent targets Z̄m.

Overall, the whole loss function is:
ℓ = ℓv(Zv, Z̄v) + ℓz(Zm, Z̄m), (1)

By default, we use the cosine distance loss for both ℓv(Zv, Z̄v) and ℓz(Zm, Z̄m), although different kinds of
loss types have negligible influences on CAE v2. In this way, the Eq. 1 can be refomulated as:

ℓ = ℓv(Zv, Z̄v) + ℓz(Zm, Z̄m) = 1
|v|

|v|∑
i=1

(1 − cos(zi
v, z̄i

v)) + 1
|m|

|m|∑
i=1

(1 − cos(zi
m, z̄i

m)), (2)

where zi
v and z̄i

v represent the latent representation from the encoder of the i-th visible patch and its
corresponding CLIP latent. Similarly, zi

m and z̄i
m represent the latent representation from the regressor of

the i-th masked patch and its corresponding CLIP latent. cos(u, v) = u·v
∥u∥∥v∥ represents the cosine similarity

of two vectors.

Differences between loss functions of CAE v2 and CAE (Chen et al., 2023). CAE v2’s loss
functions (including visible latent alignment loss and masked latent alignment loss) differ from the original
CAE’s loss function (including reconstruction loss and alignment loss) on: i) Target. CAE v2’s loss functions
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both use CLIP latent as target, while the reconstruction loss of CAE uses DALL-E and the alignment loss
uses latent representation from its encoder as target. ii) Loss type. CAE v2’s loss functions both use the
cosine distance loss by default, while CAE’s reconstruction loss uses the cross-entropy loss and alignment
loss uses the MSE loss. iii) Mode. CAE v2’s loss functions directly optimize the encoder with visible latent
alignment loss and the regressor with masked latent alignment loss, which encourages the encoder to be fully
learned and fast convergence. Differently, CAE’s reconstruction loss is applied on the decoder and alignment
loss is used to align the representations from its regressor and its encoder, thus the encoder’s learning is slow
and implicit. These three differences on loss functions help our CAE v2 learn a better encoder than CAE.
It can be verified on the linear probing downstream task that CAE v2 is superior than CAE by +10.3% (as
shown in Table 6).

Discussion on the positioning of CAE v2 with respect to CLIP (Radford et al., 2021). CAE v2
is a MIM-based pre-training method, utilizing CLIP latent as the pre-training target. The reason of using
CLIP latent is that it can provide rich semantics (Wei et al., 2022b) since CLIP is pre-trained on large-
scale image-text pairs (i.e., 400M image-pair private data). CAE v2 is dedicated to learning a high-quality
visual encoder with only pre-training on images without any ground-truth labels. In doing so, the CLIP
training data is only implicitly utilized via the pre-trained CLIP latents, while is not explicitly learned for
training. It is different from CLIP that pre-trains on image-text pairs, therefore, CAE v2 is expected to
perform better than CLIP on image-based downstream vision tasks. Experiments in Section 3.3 validate
the accuracy improvements of CAE v2 with respect to CLIP. It is note that the CLIP vision model only
extracts feature representations (i.e., CLIP latents) as the pre-training targets, which is frozen during the
pre-training of CAE v2. The encoder of CAE v2 is then transferred for the downstream task learning.
Study and discussion. Different from previous MIM works, CAE v2 directly optimizes the encoder with
visible latent alignment loss ℓv on representations of the visible patches. Since supervision signals come
from a semantically rich CLIP model, this loss can effectively facilitate the model convergence. It can
be verified by Figure 2 that with 300-epoch pretraining schedule, the model with only using ℓv already
achieves remarkable performance, which is largely superior than only using masked alignment loss ℓz. When
expending the pretraining schedule to 800 epoch, the gap between only using ℓv and only using ℓz reduces,
showing that ℓv is good for the model convergence. Besides, the superior performance of only using ℓv on
the linear probing task indicates that the representative ability of the encoder improves. The underlying
reason is that ℓv successfully encourages the encoder to focus on the representation learning, instead of
diverting some efforts to the masked patch prediction task. Consequently, the visible latent alignment plays
an essential role in MIM pretraining task. Only using ℓz also achieves comparable performance. Even on
the high performance of only using ℓv, ℓz can further improves the performance, showing that aligning the
encoder and the decoder to the same feature space is also effective for the encoder’s learning.

3 Experiments

3.1 Settings

Baseline. The baseline of CAE v2 is replacing CAE’s target to CLIP latent (as shown in No.1 in Table 1).
Model structures. We study a series of vision transformer backbones (Dosovitskiy et al., 2021), includ-
ing ViT-Tiny (12 layers with dim=192), ViT-Small (12 layers with dim=384), ViT-Base (12 layers with
dim=768), and ViT-Large (24 layers with dim=1024). Note that for ViT-Tiny, we follow Wang et al. (2022)
to increase the number of heads from 3 to 12, which gives better results on ImageNet-1K (Deng et al., 2009).
For other models, we strictly follow the model configurations as in Dosovitskiy et al. (2021).

For the target model, we adopt the vision branch CLIP-Base/16 of CLIP1 for the pretraining experiments
with ViT-Tiny/-Small/-Base and CLIP-Large/14 for ViT-Large. The size of input images is 224×224 for
CLIP-Base/16 and 196×196 for CLIP-Large/14.
Pretraining. Following most previous MIM methods (Bao et al., 2022; He et al., 2022; Chen et al., 2023;
Wei et al., 2022b; Wang et al., 2022), we use ImageNet-1K (IN-1K) dataset (Deng et al., 2009) for all
pretraining experiments. The input images are with the size of 224 × 224 and are partitioned into 14 × 14

1The official pretrained CLIP model is available at https://github.com/openai/CLIP/blob/main/clip/clip.py.
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Table 1: Individual change from CAE to CAE v2. lv and lz represent visible and masked latent alignment,
respectively. The backbone is ViT-Base. All models are pre-trained for 300 epochs.

No. Method IN-1K ADE20K Object detection & instance segmentation
LIN FT mIoU Mask R-CNN Cascade Mask R-CNN

0 CAE 64.1 83.6 48.3 48.4 & 42.6 51.6 & 44.6
1 + CLIP (baseline) 75.8 83.6 49.5 49.3 & 43.0 51.7 & 44.6
2 + lz 78.4 85.0 52.7 51.8 & 44.3 53.8 & 45.8
3 + lv (CAE v2) 80.7 85.5 53.4 52.4 & 45.3 54.2 & 46.5

Table 2: Ablation studies for visible latent align-
ment loss ℓv and masked latent alignment loss ℓz in
CAE v2. All models are pre-trained for 300 epochs.
Default settings are marked in gray .

Model Loss function IN-1K ADE20K
ℓz ℓv LIN FT mIoU

ViT-Tiny
✓ - 64.9 77.2 44.1
- ✓ 68.8 77.4 44.2
✓ ✓ 69.3 77.8 44.7

ViT-Small
✓ - 73.9 82.4 49.6
- ✓ 77.3 82.8 49.6
✓ ✓ 77.5 83.1 49.8

ViT-Base
✓ - 78.4 85.0 52.7
- ✓ 80.5 85.2 53.1
✓ ✓ 80.7 85.5 53.4

Table 3: Ablation studies for the type of loss function
in CAE v2. Both ℓv and ℓz are used and all models
are pre-trained for 300 epochs. We use the cosine
distance by default (marked in gray ).

Model Type of loss IN-1K ADE20K
LIN FT mIoU

ViT-Tiny
MSE 69.1 77.3 44.8

Smooth-l1 69.4 77.6 43.7
Cosine distance 69.3 77.8 44.7

ViT-Small
MSE 77.3 82.7 49.8

Smooth-l1 77.4 82.8 49.8
Cosine distance 77.5 83.1 49.8

ViT-Base
MSE 80.4 85.3 52.9

Smooth-l1 80.5 85.2 52.0
Cosine distance 80.7 85.5 53.4

patches with the patch size being 16 × 16 across all sizes of models. We apply random resized cropping and
horizontal flipping during pretraining.

The default mask ratios in the pretraining stage are set to 15%, 25%, 50%, and 60% on ViT-Tiny, -Small,
-Base, and -Large, respectively. Without clear specification, we use AdamW (Loshchilov & Hutter, 2019)
for optimization and train CAE v2 for 300 epochs across all scales of ViTs (Dosovitskiy et al., 2021). More
detailed settings are listed in the appendix.
Evaluation. We evaluate our CAE v2 on various downstream tasks. For image classification, we conduct
evaluations on ImageNet-1K (Deng et al., 2009) with both linear probing (LIN) and fine-tuning (FT) proto-
cols. For semantic segmentation, we follow BEiT (Bao et al., 2022) to use UperNet (Xiao et al., 2018) and
report the mIoU on ADE20K (Zhou et al., 2017) dataset. For objection detection and instance segmentation,
we use COCO (Lin et al., 2014) as the evaluation dataset. We adopt both Mask R-CNN (He et al., 2017)
and Cascade Mask R-CNN (Cai & Vasconcelos, 2018) frameworks and report APb and APm on the COCO
val split. Please refer to the appendix for more training details on various downstream tasks.

3.2 Ablation Studies

In this subsection, we first illustrate individual change from CAE to CAE v2, and then analyse the effective-
ness of visible latent alignment loss and masked latent alignment loss. After that we investigate mask ratio,
type of loss, layer number of the regressor, and masking sampling strategy. Details are provided below.
Individual change from CAE to CAE v2. We experiment on each individual change from CAE to CAE
v2 in Table 1. i) CLIP latent as target. We first change CAE’s target from Dall-E to CLIP. Compared with
CAE, this setting improves the performance, e.g., +11.5%, 1.2% and 0.9% on ImageNet-1k’s linear probing,
ADE20K and COCO object detection, showing that CLIP latent as target can improve the representation
ability of the encoder. This setting can be seen as our baseline. ii) Masked latent alignment. We then
change the loss function to the proposed masked latent alignment. The performance is further improved
by +2.6%, 1.4%, 3.2%, 2.5% on ImageNet-1k’s linear probing, ImageNet-1k’s fine-tuning, ADE20K, COCO
object detection, respectively. It verifies the effectiveness of masked latent alignment. iii) Visible latent
alignment. We further add the proposed visible latent alignment to directly optimize the encoder. The
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Figure 3: The optimal mask ratio is positive correlation with the model size in CAE v2. From top to bottom,
the table shows the linear probing (left column), fine-tuning (middle column) on ImageNet-1K, and semantic
segmentation (right column) on ADE20K with ViT-Tiny, -Small, and -Base model structure.

results are further increased by +2.3%, 0.5%, 0.7% and 0.6%, demonstrating the effectiveness of visible
latent alignment.
Visible latent alignment loss vs. masked latent alignment loss. Previous MIM methods (Bao et al.,
2022; He et al., 2022; Peng et al., 2022b; Liu et al., 2022b; Chen et al., 2023) typically apply the loss function
on the predicted masked patches, as illustrated in Figure 5. Differently, CAE v2 applies two alignment losses
on latent representations, i.e., visible latent alignment loss ℓv on the representations of visible patches from
the encoder, and masked latent alignment loss ℓz on the representations of predicted masked patches from
the regressor. These two losses are independent that can be used either both of them or any individual one.

Table 2 shows the ablation results. One can see that the proposed ℓv and ℓy can steadily improve the
performance compared to the baseline (i.e., No.1 in Table 1). Specially, CAE v2 only with ℓy outperforms
the baseline by large margins (e.g., +2.6% on linear probing), showing the important role of masked latent
alignment. Meanwhile, only using ℓv outperforms the strategy of only utilizing ℓz, which verifies that the
direct optimization on the encoder is beneficial for enhancing the encoder’s representative quality. Combining
ℓy with ℓv can achieve the best performance. Note that although the encoder is subject to the implicit
influences from the masked patch prediction task to some extent, CAE v2 can still ensure a good optimization
on the encoder, since the encoder directly receives supervision signals from the semantically rich CLIP model.
Mask ratio. We conduct experiments to analyse the influence of mask ratio, ranging from {15%, 25%, 50%,
75%, 90%}, across different scales of models. The results are listed in Figure 3. It shows that different scales of

γ=15% γ=25% γ=50% γ=75% γ=90%

Figure 4: Illustration of corrupted images with differ-
ent mask ratios γ via the random sampling strategy
(top row) and the block-wise sampling strategy (bot-
tom row). We use the block-wise sampling strategy
by default.

models prefer different values of mask ratios. The op-
timal mask ratio exhibits a positive correlation with
the model size, i.e., as the model size increases, a
higher mask ratio performs better, and conversely, a
smaller model benefits from a lower mask ratio. We
also observe that when the mask ratio exceeds a stable
value, the performances declines rapidly. The under-
lying reason might be that it is challenging for small-
sized models to predict the masked patches from a
limited subset of patches where most contextual in-
formation is missing. Therefore, using more visible
patches can reduce the difficulty of the masked pre-
diction task, benefiting for the model convergence. In
contrast, large-scale models are easily subject to over-
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Table 4: The influence of the layer number of the
regressor in CAE v2 and the decoder depth in
MAE (He et al., 2022). Models are pre-trained for
300 epochs in CAE v2 and 800 epochs in MAE.
Gray represents the default setting.

Method Model # Layer IN-1K
LIN FT

MAE ViT-Large
1 65.5 84.8
4 71.9 84.9
8 73.5 84.9

CAE v2 ViT-Base

0 80.5 85.2
1 80.6 85.3
4 80.7 85.5
8 80.5 85.4

Table 5: Ablation studies for the mask sampling
strategy in our CAE v2. All models are pre-trained
for 300 epochs. We use the block-wise sampling by
default (marked in gray ).

Model Mask strategy IN-1K ADE20K
LIN FT mIoU

ViT-Tiny Random 69.1 77.4 43.8
Blockwise 69.3 77.8 44.7

ViT-Small Random 77.4 82.7 49.0
Blockwise 77.5 83.1 49.8

ViT-Base Random 80.6 85.4 52.4
Blockwise 80.7 85.5 53.4

fitting when learning representations from overabundant visible patches, and thus a high mask ratio can make
the masked prediction task more challenging to effectively mitigate the over-fitting problem. We set a mask
ratio of 15%/25%/50%/60% for ViT-Tiny/-Small/-Base/-Large in our work unless specified.
Type of loss. We use cosine distance loss as illustrated in Eq. 2 for both visible and masked latent alignment
loss functions. Instead of the cosine distance, it is possible to use other types of loss, like smooth-ℓ1 and
mean square error (MSE), which are studied and utilized in the previous works (Peng et al., 2022a; Liu
et al., 2022b; Wei et al., 2022c). We presents the results of these three kinds of loss types when using latent
and masked alignment simultaneously in Table 3. The results show whatever the loss type is, our CAE v2
can achieve similar performance, while the cosine distance is slightly better than other types (e.g., ≤0.5%
on linear probing and fine-tuning tasks). As previous works do (e.g., MASKDISTILL (Peng et al., 2022b)),
we choose the optimal loss type for CAE v2, i.e., cosine distance by default.
# layers in the regressor. We study four choices, i.e., {0-layer, 1-layer, 4-layer, 8-layer}, for the number
of layers in the latent contextual regressor. The results in linear probing and fine-tuning in Table 4 show
that the effect of the layer number is minor. In contrast, the decoder depth in MAE (He et al., 2022) has
a large impact on downstream tasks, especially linear probing. We conjecture that our CAE v2 benefits
from the explicit visible latent alignment on the visible patches, ensuring the representative quality of the
encoder. When the regressor depth is 0, CAE v2 reduces to only using visible latent alignment loss, which
still achieves satisfactory performance, indicating the effectiveness of this loss. We empirically use 4-layer
regressor for ViT-Base/-Large and 1-layer regressor for ViT-Tiny/-Small by default.
Mask sampling strategy. We also compare different mask sampling strategies in our CAE v2, i.e., the
random sampling (He et al., 2022) and the block-wise sampling (Bao et al., 2022; Chen et al., 2023; Wei et al.,
2022b) (as illustrated in Figure 4). Table 5 shows that there are only approximately 0.1% gaps between these
two sampling strategies on linear probing and fine-tuning, but the block-wise sampling performs better than
the random sampling on semantic segmentation (e.g., 53.4% vs. 52.4% on ViT-Base). We use the block-wise
sampling strategy as the default option.

3.3 Main Results

Image classification on ImageNet-1K. Table 6 shows comparisons of different models using two evalu-
ation methods: linear probing and fine-tuning.

In linear probing on ImageNet-1K, CAE v2 demonstrates significant improvements over previous methods
with other targets, e.g., BEiT (Bao et al., 2022), MAE (He et al., 2022), CAE (Chen et al., 2023), and
MaskFeat (Wei et al., 2022a). These gains are expected, as CLIP latents contain rich semantics than other
targets. Compared to methods using CLIP latent as the target (MVP (Wei et al., 2022b) and MILAN (Hou
et al., 2022)), CAE v2 also achieves superior performance (on ViT-Base with 300 epoch pretraining, CAE
v2 vs. MVP: 80.7% vs. 75.4% and CAE v2 vs. MILAN: 80.7% vs. 78.9%).

In the fine-tuning task on ImageNet-1K, CAE v2 also achieves comparable performance across all scales
of ViTs. Specifically, CAE v2 achieves 85.5% top-1 accuracy with ViT-Base, surpassing all prior methods
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Table 6: Pretraining evaluation on the top-1 accuracy (%) on linear probing (LIN) and fine-tuning (FT) on
ImageNet-1K (Deng et al., 2009), and mIoU (%) on semantic segmentation on ADE20K (Zhou et al., 2017).
‡ means our implementation using the officially released code. § means the results from Chen et al. (2023)
and Wei et al. (2022c). All other results except for ours are from the original papers. The methods achieving
the best, second best and third place performance are denoted in bold red, green and blue respectively.

Methods #Epochs Target IN-1K ADE20K
LIN FT mIoU

Methods using ViT-Tiny:
MAE-Tiny (Wang et al., 2022) 400 RGB 23.4 76.2 -
CAE (Chen et al., 2023)‡ 300 DALL-E 28.1 75.9 38.3
Distilled MAE-lite (Wang et al., 2022) 400 RGB - 76.5 -
G2SD (Wei et al., 2023) 200 MAE-Base - 77.0 44.5
CAE v2 300 CLIP-Base 69.3 77.8 44.7
Methods using ViT-Small:
MoCo v3 (Chen et al., 2021)§ 300 Self-EMA 73.1 81.7 -
BEiT (Bao et al., 2022)§ 300 DALL-E 15.7 81.7 -
SplitMask (El-Nouby et al., 2021) 300 DALL-E - 81.5 -
CAE (Chen et al., 2023) 300 DALL-E 51.8 82.0 -
iBOT (Zhou et al., 2022a) 3200 Self-EMA 77.9 82.3 45.4
G2SD (Wei et al., 2023) 200 MAE-Base - 82.5 48.0
CAE v2 300 CLIP-Base 77.5 83.1 49.8
Methods using ViT-Base:
MoCo v3 (Chen et al., 2021) 300 Self-EMA 76.5 83.2 47.2
DINO (Caron et al., 2021)§ 400 Self-EMA 77.3 83.3 47.2
iBOT (Zhou et al., 2022a) 1600 Self-EMA 79.5 84.0 50.0
BEiT (Bao et al., 2022) 800 DALL-E 56.7 83.2 45.6
SimMIM (Xie et al., 2022) 800 RGB 56.7 83.8 -
MAE (He et al., 2022) 1600 RGB 68.0 83.6 48.1
CAE (Chen et al., 2023) 1600 DALL-E 70.4 83.9 50.2
SdAE (Chen et al., 2022) 300 Self-EMA 64.9 84.1 48.6
SIM (Tao et al., 2022) 1600 Self-EMA 76.4 83.8 -
MaskFeat (Wei et al., 2022a) 1600 HOG - 84.0 -
SplitMask (El-Nouby et al., 2021) 300 DALL-E - 83.6 45.7
PeCo (Dong et al., 2021) 800 VQGAN - 84.5 48.5
data2vec (Baevski et al., 2022) 800 Self-EMA - 84.2 -
CMAE (Huang et al., 2022b) 1600 RGB - 84.7 50.1
ExtreMA (Wu et al., 2023) 300 Self-EMA 73.3 83.7 47.9
CLIP (Radford et al., 2021) - Text 80.2 84.9 51.1
MaskCLIP (Dong et al., 2023) 1600 Text 72.9 84.1 50.8
MVP (Wei et al., 2022b) 300 CLIP-Base 75.4 84.4 52.4
FD-CLIP (Wei et al., 2022c) 300 CLIP-Base 80.3 84.9 52.8
MILAN (Hou et al., 2022) 400 CLIP-Base 78.9 85.4 52.7
BEIT V2 (Peng et al., 2022a) 1600 VQ-CLIP-Base - 85.5 53.1
dBOT (Liu et al., 2022b) 1600 CLIP-Base – 85.7 52.9
MASKDISTILL (Peng et al., 2022b) 300 CLIP-Base – 85.0 53.8
CAE v2 300 CLIP-Base 80.7 85.5 53.4
Methods using ViT-Large:
MoCo v3 (Chen et al., 2021)§ 300 Self-EMA - 84.1 49.1
BEiT (Bao et al., 2022)§ 1600 DALL-E - 85.2 53.3
iBOT (Zhou et al., 2022a) 1200 Self-EMA 81.0 84.8 -
MAE (He et al., 2022) 1600 RGB 75.8 85.9 53.6
CAE (Chen et al., 2023) 1600 DALL-E 78.1 86.3 54.7
data2vec (Baevski et al., 2022) 1600 Self-EMA - 86.6 -
CLIP (Radford et al., 2021)§ - Text 83.5 86.1 53.5
MVP (Wei et al., 2022b) 300 CLIP-Base - 86.3 54.3
BEIT V2 (Peng et al., 2022a) 1600 VQ-CLIP-Base - 87.3 56.7
FD-CLIP (Wei et al., 2022c) 300 CLIP-Large 84.8 87.7 55.7
MILAN (Hou et al., 2022) 400 CLIP-Large 84.3 87.8 57.9
dBOT (Liu et al., 2022b) 1600 CLIP-Large – 87.8 56.2
MASKDISTILL (Peng et al., 2022b) 300 CLIP-Large – 87.6 57.9
CAE v2 300 CLIP-Large 84.4 87.6 57.9
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Table 7: Pretraining evaluation on object detection (DET) and instance segmentation (INS) on COCO (Lin
et al., 2014) with Mask R-CNN (He et al., 2017) (left) and Cascade Mask R-CNN (Cai & Vasconcelos, 2018)
(right). All experiments are trained with the 1× schedule (12 epoch). Results except for CAE v2 are from
Chen et al. (2023) and Liu et al. (2022b). #Epochs refers to the pretraining epochs on ImageNet-1K. ∗

denotes multi-crop pretraining augmentation. The methods achieving the best and second best performance
are denoted in bold red and green respectively.

Method #Epochs
Mask R-CNN Cascade Mask R-CNN

DET INS DET INS
APb APm APb APm

Methods using ViT-Small:
DeiT (Touvron et al., 2021) 300 43.1 38.4 - -
MoCo v3∗ (Chen et al., 2021) 300 43.3 38.8 - -
BEiT (Bao et al., 2022) 300 35.6 32.6 - -
CAE (Chen et al., 2023) 300 44.1 39.2 - -
iBOT∗ (Zhou et al., 2022a) 3200 - - 49.4 42.6
CAE v2 300 49.0 42.2 51.5 43.9
Methods using ViT-Base:
DeiT (Touvron et al., 2021) 300 46.9 41.5 - -
MoCo v3∗ (Chen et al., 2021) 300 45.5 40.5 - -
DINO∗ (Caron et al., 2021) 400 46.8 41.5 - -
BEiT (Bao et al., 2022) 800 42.1 37.8 - -
MAE (He et al., 2022) 1600 48.4 42.6 51.3 44.3
data2vec (Baevski et al., 2022) 800 41.1 37.0 - -
iBoT (Zhou et al., 2022a) 1600 48.6 43.1 51.2 44.2
CAE (Chen et al., 2023) 1600 50.0 44.0 52.9 45.5
dBoT (Liu et al., 2022b) 1600 - - 53.6 -
CAE v2 300 52.4 45.3 54.2 46.5
Methods using ViT-Large:
MAE (He et al., 2022) 1600 54.0 47.1 - -
data2vec (Baevski et al., 2022) 1600 46.1 41.0 - -
iBoT (Zhou et al., 2022a) 1600 50.6 44.7 - -
CAE (Chen et al., 2023) 1600 54.5 47.6 - -
dBoT (Liu et al., 2022b) 1600 - - 56.8 -
CAE v2 300 55.2 47.3 56.9 48.6

except for dBOT (Liu et al., 2022b). Note that dBOT only outperforms CAE v2 by 0.2% while requiring
1600 epochs for pretraining, demonstrating CAE v2’s higher efficiency.
Semantic segmentation on ADE20K. Semantic segmentation is a challenging task that needs to classify
every pixel in an image according to various semantic labels. CLIP (Radford et al., 2021) latent serves
as a powerful target for this task, showing clear advantages. As shown in Table 6, CAE v2 significantly
outperforms methods pre-trained with other targets, e.g., 3.2% mIoU improvement over CAE (Chen et al.,
2023) when using ViT-Base. In comparison to MVP (Wei et al., 2022b) and BEIT V2 (Peng et al., 2022a),
CAE v2 surpasses them with the same or less pretraining epochs. The superior performance persists when
transitioning to ViT-Large, with which CAE v2 achieves 57.9% mIoU on ADE20K (Zhou et al., 2017),
outperforming previous methods.
Object detection and instance segmentation on COCO. We evaluate the pre-trained models on
COCO (Lin et al., 2014) with Mask R-CNN (He et al., 2017) and Cascade Mask R-CNN (Cai & Vasconcelos,
2018; He et al., 2017) in Table 7. We report the results for 1× (12 epochs) training schedule. Compared
with other pretraining methods, CAE v2 excels at both two configurations. With Mask R-CNN, CAE v2
achieves a 4.9% increase with ViT-Small and 2.4% increase with ViT-Base on APb compared to previous
best method Chen et al. (2023). The superior performance is maintained when employing Cascade Mask
R-CNN as the fine-tuned model. For example, CAE v2 achieves a 0.6% increase with ViT-Base and 0.1%
increase with ViT-Large on APb compared to Liu et al. (2022b).
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Compared with related works (e.g., MASKDISTILL (Peng et al., 2022b) and MVP (Wei et al., 2022b)) that
also utilize CLIP latent as target, the performance gap may be caused by: i) architecture choices. CAE v2 is
built upon CAE (Chen et al., 2023) with structural modifications, while MASKDISTILL and MVP are based
on BEiT Bao et al. (2022). ii) method. CAE v2 introduces visible and masked latent alignment to directly
optimize the encoder and the regressor, respectively. Differently, MASKDISTILL and MVP supervise the
overall model without separation. iii) loss type. Based on differences of the overall pipeline, different loss
types perform inconsistent for achieving the best results. In detail, CAE v2 and MVP employ the cosine
distance, while MASKDISTILL uses Smooth-ℓ1.

4 Related Work

Masked image modeling (MIM) aims to learn transferable vision representations for various downstream
tasks. It is inspired by the successful large-scale pretraining for transformers (Vaswani et al., 2017) with
masked language modeling (MLM) (Devlin et al., 2019; Chen et al., 2020a; Brown et al., 2020; Dong et al.,
2019) in NLP and can serve as a pretext task in self-supervised vision pretraining (Caron et al., 2018; Doersch
et al., 2015; Oord et al., 2018; Ermolov et al., 2021; Goyal et al., 2021; Li et al., 2021; Zbontar et al., 2021;
He et al., 2020; Chen et al., 2020c;b; Grill et al., 2020; Liu et al., 2022a; Dong et al., 2022; Zhang et al.,
2023; Huang et al., 2022a; Zhou et al., 2022b; Assran et al., 2022; Yi et al., 2023; Li et al., 2022). MIM
methods (Bao et al., 2022; He et al., 2022; Xie et al., 2022; Chen et al., 2023; Baevski et al., 2022; Singh
et al., 2022; Peng et al., 2022a; Fang et al., 2023b;a; Peng et al., 2022b; Liu et al., 2022b; Singh et al., 2023)
follow a mask-then-predict pipeline of (i) corrupting an image by masking several image patches based on
a pre-defined mask ratio and then (ii) learning to predict the missing content under specific targets as a
reconstruction task. Our CAE v2 follows this pipeline while using more semantic targets and incorporating
two alignment losses to effectively facilitate model convergence and improve the encoder’s representative
ability. In the following, we will discuss the related works.
Targets. Existing MIM methods explore different kinds of targets within their frameworks, including RGB
pixels (He et al., 2022; Gao et al., 2022), hand-crafted features like HOG descriptors (Wei et al., 2022a),
discrete visual tokens (Bao et al., 2022; Chen et al., 2023; El-Nouby et al., 2021; Peng et al., 2022a; Dong
et al., 2021), and feature representations from momentum models (Tao et al., 2022; Chen et al., 2022;
Wu et al., 2023) or from external pre-trained models (Wei et al., 2022a;b; Liu et al., 2022b; Peng et al.,
2022b; Fang et al., 2023b;a; Gao et al., 2023; Ren et al., 2023). Among these methods, the features from
the vision branch of CLIP model play a significant role as supervision signals, substantially improving the
following downstream task performance (Wei et al., 2022b; Liu et al., 2022b; Peng et al., 2022b; Fang et al.,
2023b;a; Gao et al., 2023; Ren et al., 2023; Hou et al., 2022; Ren et al., 2023). The underlying reason is that
CLIP latents can provide multi-modality knowledge to aid vision-only MIM learning, which is beneficial for
improving the ability of the encoder that is used for downstream tasks. In our CAE v2, we also use CLIP
latents as the target for the model pretraining. Meanwhile, we go further one step to tap the potential of
CLIP latent to further improve the quality of the encoder via the following introduced alignment losses.
Loss function. Most literature (Wei et al., 2022a; He et al., 2022; Chen et al., 2023; Bao et al., 2022;
Peng et al., 2022a;b; Fang et al., 2023b;a; Ren et al., 2023; Liu et al., 2022b) apply the optimization to
the predicted masked patches for the the masked patch prediction task. Following these methods, we also
utilize a loss function for masked patch prediction task, which is called masked latent alignment since the
optimization is applied to the representations of masked patches from the regressor. Furthermore, we find
that directly applying supervision on the latent representations of visible patches from the encoder can
constantly improve the model convergence and downstream transferring performance. We refer to this loss
as visible latent alignment. Both visible and masked latent alignment use CLIP latent as the supervision
target. In this way, the encoder can directly learn the semantic information from the powerful CLIP model,
showing fast model convergence and high-quality encoder.

The most similar work to our approach is CAE (Chen et al., 2023). Our CAE v2 is an improved variant of
CAE, yet there is no decoder. Meanwhile, both visible latent alignment and masked latent alignment are
conducted on the latent representations that need to be similar to those from the feature space of CLIP
model. Instead, CAE contains a decoder to recover the predicted masked representations to the discrete
tokens, and align the predicted representations of the masked patches to the encoded representation space.
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In addition, several concurrent works also attempt to explore the potential of CLIP latents (Wei et al., 2022b;
Peng et al., 2022a;b; Fang et al., 2023b;a; Ren et al., 2023; Liu et al., 2022b). For example, MILAN (Hou
et al., 2022) focuses on the architecture design, dBOT (Liu et al., 2022b) proposes a training strategy, and
MASKDISTILL (Peng et al., 2022b) carefully studies optimization methods. FD-CLIP (Wei et al., 2022c)
aims to improve the CLIP model with CLIP latent using feature distillation on intact image patches, which is
not a MIM-based method. It is worth noting that our CAE v2 is orthogonal to these works. Specifically, we
concentrate on tapping the potential of CLIP latent, and present CAE v2 with visible latent alignment and
masked latent alignment that both use CLIP latent as the pretraining target, which is beneficial for learning
a high-quality encoder and facilitating model convergence. The proposed CAE v2 demonstrates that the
explicit visible latent alignment is beneficial for the representation learning of the encoder. Moreover, we
experimentally explore the relationship between the mask ratio and the model size. We hope our findings
can provide valuable guidelines for the future MIM pretraining.

5 Conclusion and Limitation

This paper introduces CAE v2, a context autoencoder with CLIP latent alignment, using the latent features
from the vision branch of CLIP as the supervision target. CAE v2 consists of two alignment losses, i.e.,
visible latent alignment loss - on the representations of visible patches from the encoder, and masked latent
alignment loss - on the predicted representations of masked patches from the regressor. Extensive analyses
and experiments show that our CAE v2 effectively facilities model convergence and achieves high performance
on various downstream vision tasks. CAE v2 also outperforms the CLIP vision encoder on these vision tasks,
although CAE v2 is not designed for direct comparisons with CLIP.
Limitation. Limited by resources, we do not examine larger models, such as ViT-Huge and ViT-Giant. We
plan to explore this in the future and hope that the findings in CAE v2 will provide valuable guidance.
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A Appendix

B Implementation Details

B.1 Model structures

Encoder. For ViT-Tiny, we follow Wang et al. (2022) to increase the number of heads from 3 to 12. All
others remain the same as the standard ViT architecture (Dosovitskiy et al., 2021). The end of encoder is
a fully-connected layer (FC) followed by a layer normalization layer (LN) to map the target dimension to
512 for CLIP-Base and 768 for CLIP-Large. Note that FC and LN are discarded during the fine-tuning on
downstream tasks.
Regressor. The regressor in CAE v2 is a stack of cross-attention based transformer blocks. For ViT-
Tiny/-Small/-Base/-Large, we set the depth of regressor to 1/1/4/4, and the width to 96/384/768/1024.
We also add a FC-LN after the regressor to map the target dimension, and these two layers share the same
parameters to those in the encoder.
Targets. The targets in CAE v2 are derived from the last layer of the vision branch of CLIP model (Radford
et al., 2021)2, i.e., the output of the projection head in the CLIP model with the dimension being 512 for
CLIP-Base and 768 for CLIP-Large.

B.2 Pipeline Comparison

We compare the computational graphs for (a) our CAE v2, (b) CAE (Chen et al., 2023), (c) BEiT (Bao et al.,
2022), and (d) MAE (He et al., 2022) in Figure 5. The key novelty of CAE v2 is visible latent alignment
and masked latent alignment, which are directly optimize the feature space of the encoder and regressor to
be close to CLIP latents.
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Figure 5: The computational graphs for (a) our CAE v2, (b) CAE (Chen et al., 2023), (c) BEiT (Bao et al.,
2022), and (d) MAE (He et al., 2022). The parts in cornflower blue are for loss function. The encoder
in (a) and (b) receives the visible patches and outputs their latent representations. The regressor predicts
masked latent representations. (a) Visible latent alignment is applied on the representation learning of the
encoder, and masked latent alignment loss is for predicting representations of masked patches. (b) The
decoder reconstructs the masked patches from masked latent representations to discrete tokens. (c) The
input includes both visible patches and mask queries, and the representations for both of them are updated
within the function R. (d) The encoder F ′ only processes the visible patches Xv, and the decoder R inputs
both latent representations and mask queries. For simplicity, the positional embeddings are not included in
computational graphs.

B.3 Training Details

pretraining. We present the default pretraining settings in Table 8. The pretraining epoch for all exper-
iments is 300. For the CLIP model, we use base-size model for ViT-Tiny/-Small/-Base and the large-size
model for ViT-Large. The input size is 224×224 for CLIP-Base and 196×196 for CLIP-Large. The input
images are the same as those in the backbone model. We only use ImageNet-1K (Deng et al., 2009) for
pretraining.
Linear Probing on ImageNet-1K (Deng et al., 2009). Following He et al. (2022); Doersch et al.
(2015), we adopt an extra batch normalization layer (Ioffe & Szegedy, 2015) without affine transformation
after the encoder. The default training details are shown in Table 9.

2The official pretrained CLIP model is available at https://github.com/openai/CLIP/blob/main/clip/clip.py.
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Table 8: Pretraining setting for CAE v2 on ImageNet-1K.

Config Value
ViT-Tiny/Small/Base/Large

Optimizer AdamW (Loshchilov & Hutter, 2019)
Peak learning rate 1.5e-3
Minimal learning rate 1e-5
Optimizer momentum β1, β2=0.9, 0.98 (Chen et al., 2020a)
Batch size 2048
Learning rate schedule Cosine decay (Loshchilov & Hutter, 2017)
Warmup epochs (Goyal et al., 2017) 10
Max training epochs 300
Gradient Clipping 3.0
Weight decay 0.05
Drop path 0.1/0.1/0.1/0.2
Mask ratio 0.15/0.25/0.5/0.6
Mask strategy Random block-wise sampling
Input scale min=0.4, max=1.0
Data Augmentation Random resized crop & horizontal flip
Color jitter 0.4
Input size 224×224

Table 9: Linear probing setting for CAE v2 on ImageNet-1K.

Config Value
ViT-Tiny/Small/Base/Large

Optimizer LARS (You et al., 2017)
Base learning rate 0.1
Weight decay 0
Optimizer momentum 0.9
Batch size 16384
Warmup epochs 10
Max training epochs 90
Data augmentation Random resized crop & horizontal flip

Fine-tuning on ImageNet-1K (Deng et al., 2009). The default settings for ImageNet-1K fine-tuning
are in Table 10. The fine-tuning epoch for ViT-Tiny/-Small/-Base/-Large is 100/200/100/50 for fair com-
parison. The input size of all scales of models is 224×224. For ViT-Tiny, we sweep the learning rate
ranging from 1e-3 to 4e-3. For ViT-Small/Base/Large, we select the learning rate from 1e-4 to 5e-4. By
default, the learning rates and the layer-wise lr decay are 2e-3/5e-4/2e-4/4e-4 and 0.75/0.8/0.75/0.8 for
ViT-Tiny/Small/Base/Large, respectively.
Semantic segmentation in ADE20K (Zhou et al., 2017). We follow the common setting in BEiT (Bao
et al., 2022) to use UperNet (Xiao et al., 2018) as the task head and report the mIoU on ADE20K (Zhou
et al., 2017). We add relative position bias (Raffel et al., 2020) during fine-tuning. For different scales of
models in CAE v2, we search for the optimal learning rate and layer-wise learning rate decay in Table 11 for
Table 6 in the main paper. Specifically, we select the optimal learning rate from {8e-5, 1e-4, 1.5e-4, 2e-4}
for ViT-Tiny/Small/Base and from {1e-5, 2e-5, 3e-5, 4e-5} for ViT-Large.
Object detection and instance segmentation in COCO (Lin et al., 2014). We use COCO (Lin et al.,
2014) for the evaluation on object detection and instance segmentation. We adopt both Mask R-CNN (He
et al., 2017) and Cascade Mask R-CNN (Cai & Vasconcelos, 2018) frameworks and report APb and APm on
the COCO val split. The input image is resized with the size of the short side between 480 and 800, while the
size of the long side is no larger than 1333. Meanwhile, we use the relative position embedding and rotary
position embedding (Su et al., 2021) during pretraining. Other training details are shown in Table 12.
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Table 10: Fine-tuning setting for CAE v2 on ImageNet-1K.

Config Value
ViT-Tiny/Small/Base/Large

Optimizer AdamW (Loshchilov & Hutter, 2019)
Peak learning rate {1, 2, 3, 4}e-3/ {1, 2, 3, 4, 5}e-4
Minimal learning rate 1e-6
Weight decay 0.05
Optimizer momentum β1, β2=0.9, 0.999 (Chen et al., 2020a)
Layer-wise lr decay (Bao et al., 2022; Clark et al., 2020) {0.75, 0.8}
Batch size 1024
Learning rate schedule Cosine decay (Loshchilov & Hutter, 2017)
Warmup epochs (Goyal et al., 2017) 5
Max training epochs 100/100/100/50
Data Augmentation RandAug(10/9/9/9,0.5)
Label smoothing (Szegedy et al., 2016) 0.0/0.1/0.1/0.1
Mixup (Zhang et al., 2018) 0.2/0.8/0.8/0.8
Cutmix (Yun et al., 2019) 0.0/1.0/1.0/1.0
Color jitter 0.3/0.4/0.4/0.4
Drop path (Huang et al., 2016) 0.0/0.1/0.1/0.2
Input size 224×224

Table 11: Semantic segmentation setting for CAE v2 on ADE20K.

Config Value
ViT-Tiny/Small/Base/Large

Optimizer AdamW (Loshchilov & Hutter, 2019)
Peak learning rate {0.8, 1, 1.5, 2}e-4/{1, 2, 3, 4}e-5
Minimal learning rate 1e-6
Weight decay 0.05
Optimizer momentum β1, β2=0.9, 0.999 (Chen et al., 2020a)
Layer-wise lr decay (Bao et al., 2022; Clark et al., 2020) {0.65, 0.75, 0.8, 0.85, 0.95}
Batch size 16
Learning rate schedule Polynomial decay
Warmup steps 1500
Max training steps 160000
Drop path (Huang et al., 2016) 0.1/0.1/0.1/0.15
Input size 512×512

Table 12: Object detection and instance segmentation setting for CAE v2 on COCO.

Config Value
ViT-Small/Base/Large

Optimizer AdamW (Loshchilov & Hutter, 2019)
Peak learning rate {1, 1.5, 2, 3, 4}e-4
Minimal learning rate 1e-6
Weight decay 0.05
Optimizer momentum β1, β2=0.9, 0.999 (Chen et al., 2020a)
Layer-wise lr decay (Bao et al., 2022; Clark et al., 2020) {0.8, 0.85, 0.95}
Batch size 16
Learning rate schedule Step
Step epochs 8, 11
Max training epochs 12
Drop path (Huang et al., 2016) 0.2
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