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Abstract

Protein backbone generation plays a central role
in de novo protein design and is significant for
many biological and medical applications. Al-
though diffusion and flow-based generative mod-
els provide potential solutions to this challeng-
ing task, they often generate proteins with un-
desired designability and suffer computational
inefficiency. In this study, we propose a novel
rectified quaternion flow (ReQFlow) matching
method for fast and high-quality protein back-
bone generation. In particular, our method gen-
erates a local translation and a 3D rotation from
random noise for each residue in a protein chain,
which represents each 3D rotation as a unit quater-
nion and constructs its flow by spherical linear
interpolation (SLERP) in an exponential format.
We train the model by quaternion flow (QFlow)
matching with guaranteed numerical stability and
rectify the QFlow model to accelerate its in-
ference and improve the designability of gener-
ated protein backbones, leading to the proposed
ReQFlow model. Experiments show that Re-
QFlow achieves on-par performance in protein
backbone generation while requiring much fewer
sampling steps and significantly less inference
time (e.g., being 37× faster than RFDiffusion and
63× faster than Genie2 when generating a back-
bone of length 300), demonstrating its effective-
ness and efficiency. Code is available at https:
//github.com/AngxiaoYue/ReQFlow.
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1. Introduction
De novo protein design (Ingraham et al., 2023; Lin &
Alquraishi, 2023) aims to design rational proteins from
scratch with specific properties or functions, which has
many biological and medical applications, such as devel-
oping novel enzymes for biocatalysis (Kelly et al., 2020)
and discovering new drugs for diseases (Teague, 2003; Silva
et al., 2019). This task is challenging due to the extremely
huge design space of proteins. For simplifying the task, the
mainstream de novo protein design strategy takes protein
backbone generation (i.e., generating 3D protein structures
without side chains) as the key step that largely determines
the rationality and basic properties of designed proteins.

Focusing on protein backbone generation, many deep gen-
erative models, especially those diffusion and flow-based
models (Ho et al., 2020; Watson et al., 2023; Lin et al., 2024;
Yim et al., 2023b;a; Bose et al., 2024; Huguet et al., 2024;
Lipman et al., 2023), have been proposed as potential solu-
tions. However, these models often generate protein back-
bones with poor designability (the key metric indicating the
quality of generated protein backbones), especially for pro-
teins with long residue chains. In addition, diffusion or flow
models often require many sampling steps to generate pro-
tein backbones, resulting in high computational complexity
and long inference time. As a result, the above drawbacks
on generation quality and computational efficiency limit
these models in practical large-scale applications.

To overcome the above challenges, we propose a novel rec-
tified quaternion flow (ReQFlow) matching method, achiev-
ing fast and high-quality protein backbone generation. As
illustrated in Figure 1a, our method learns a model to gener-
ate a local 3D translation and a 3D rotation respectively from
random noise for each residue in a protein chain. Different
from existing models, the proposed model represents each
rotation as a unit quaternion and constructs its quaternion
flow in SO(3) by spherical linear interpolation (SLERP) in
an exponential format (Sola, 2017), which can be learned
by our quaternion flow (QFlow) matching strategy. Fur-
thermore, given a trained QFlow model, we leverage the
rectified flow technique in (Liu, 2022), re-training the model
based on the paired noise and protein backbones generated
by the model itself. The rectified QFlow (i.e., ReQFlow)
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Figure 1. (a) An illustration of our rectified quaternion flow matching method, in which each residue is represented as a frame associated
with a local transformation. (b) For each method, the size of its circle indicates the model size, and the location of the circle’s centroid
indicates the logarithm of the average inference time when generating a protein backbone with length N = 300 and the Fraction score of
designable protein backbones. For QFlow and ReQFlow, we set the sampling step L ∈ {20, 50, 500}, respectively.

model leads to straightened sampling paths in R3 and SO(3),
respectively, when generating translations and rotations. As
a result, we can apply fewer sampling steps to accelerate the
generation process significantly.

We demonstrate the rationality and effectiveness of Re-
QFlow compared to existing diffusion and flow-based meth-
ods. In particular, thanks to the exponential format SLERP,
ReQFlow is learned and implemented with guaranteed nu-
merical stability and computational efficiency, especially
when the rotation angle is close to 0 or π. Experimen-
tal results demonstrate that ReQFlow achieves competitive
performance, generating high-quality protein backbones
with significantly reduced inference time. Furthermore, Re-
QFlow consistently maintains effectiveness and efficiency
in generating long-chain protein backbones (e.g., the pro-
tein backbones with over 500 residues), where all baseline
models suffer severe performance degradation. As shown in
Figure 1b, ReQFlow outperforms existing methods and gen-
erates high-quality protein backbones, whose designability
Fraction score is 0.972 when sampling 500 steps and 0.912
when merely sampling 50 steps.

2. Related Work and Preliminaries
2.1. Protein Backbone Generation

Many diffusion and flow-based methods have been proposed
to generate protein backbones. These methods often param-
eterize protein backbones like AlphaFold2 (Jumper et al.,
2021) does, representing each protein’s residues as a set of
SE(3) frames (Yim et al., 2023b;a; Wang et al., 2025). Ac-
cordingly, FrameDiff (Yim et al., 2023b) generates protein
backbones by two independent diffusion processes, gener-
ating the corresponding frames’ local translations and ro-

tations, respectively. Following the same framework, flow-
based methods like FrameFlow (Yim et al., 2023a) and
FoldFlow (Bose et al., 2024) replace the stochastic diffusion
processes with deterministic flows.

For the above methods, many efforts have been made to
modify their model architectures and improve data rep-
resentations, e.g., the Clifford frame attention module in
GAFL (Wagner et al., 2024) and the asymmetric protein
representation module in Genie (Lin & Alquraishi, 2023)
and Genie2 (Lin et al., 2024). In addition, some methods
leverage large-scale pre-trained models to improve gener-
ation quality. For example, RFDiffusion (Watson et al.,
2023) utilizes the pre-trained RoseTTAFold (Baek et al.,
2021) as the backbone model. FoldFlow2 (Huguet et al.,
2024) improves FoldFlow by using a protein large lan-
guage model for residue sequence encoding. Taking scal-
ing further and adopting a different architectural approach,
Proteı́na (Geffner et al., 2025) developed a large-scale, flow-
based generative model using a non-equivariant transformer
operating directly on C-alpha coordinates.

Currently, the above methods often suffer the conflict on
computational efficiency and generation quality. The state-
of-the-art methods like RFDiffusion (Watson et al., 2023)
and Genie2 (Lin et al., 2024) need long inference time to
generate protein backbones with reasonable quality. Frame-
Flow (Yim et al., 2023a) and GAFL (Wagner et al., 2024)
significantly improve inference speed while lag behind RFD-
iffusion and Genie2 in protein backbone quality. Moreover,
these methods suffer severe performance degradation when
generating long-chain protein backbones. These limitations
motivate us to develop the proposed ReQFlow, improving
the current flow-based methods and generating protein back-
bones efficiently with satisfactory designability.

2



ReQFlow: Rectified Quaternion Flow for Efficient and High-Quality Protein Backbone Generation

2.2. Quaternion Algebra and Its Applications

The proposed ReQFlow is designed based on quaternion
algebra (Dam et al., 1998; Zhu et al., 2018). Mathematically,
quaternion is an extension of complex numbers into four-
dimensional space, consists of one real component and three
orthogonal imaginary components. A quaternion is formally
expressed as q = s+ xi+ yj+ zk ∈ H, where H denotes
the quaternion domain, and s, x, y, z ∈ R. The imaginary
components {i,j,k} satisfy i2 = j2 = k2 = ijk =
−1. Each q ∈ H can be equivalently represented as a
vector q = [s,u⊤]⊤ ∈ R4, where u⊤ = [x, y, z]⊤. Given
q1 = [s1,u

⊤
1 ]

⊤ and q2 = [s2,u
⊤
2 ]

⊤, their multiplication is
achieved by Hamilton product, i.e.,

q1 ⊗ q2 =

[
s1s2 − u⊤

1 u2

s1u2 + s2u1 + u1 × u2

]
, (1)

where × denotes the cross product.

Quaternion is a powerful tool to describe 3D rotations. For
a 3D rotation in the axis-angle formulation, i.e., ω = ϕu ∈
R3, where the unit vector u and the scalar ϕ denote the
rotation axis and angle, respectively, we can convert it to a
unit quaternion by an exponential map (Sola, 2017):

q = exp
(1
2
ω
)
=

[
cos

ϕ

2
, sin

ϕ

2
u⊤

]⊤
∈ S3, (2)

where S3 = {q ∈ R4 | ∥q∥2 = 1} is the 4D hypersphere.
The conversion from a unit quaternion to an angle-axis
representation is achieved by a logarithmic map:

ω = 2 log(q). (3)

Suppose that we rotate a point v1 ∈ R3 to v2 by ω, we can
equivalently implement the operation by

v2 = Im(q ⊗ [0,v⊤
1 ]

⊤ ⊗ q−1), (4)

where q−1 = [cos ϕ
2 ,− sin ϕ

2u
⊤]⊤ is the inverse of q and

“Im(·)” denotes the imaginary components of a quaternion
(i.e., the last three elements of the corresponding 4D vec-
tor). The quaternion-based rotation representation in Eq. (4)
offers several advantages, including compactness, computa-
tional efficiency, and avoidance of gimbal lock (Hemingway
& O’Reilly, 2018), which has been widely used in skele-
tal animation (Shoemake, 1985), robotics (Pervin & Webb,
1982), and virtual reality (Kuipers, 1999).

Besides computer graphics, some quaternion-based ma-
chine learning models have been proposed for other tasks,
e.g., image processing (Xu et al., 2015; Zhu et al., 2018)
and structured data (e.g., graphs and point clouds) analy-
sis (Zhang et al., 2020; Zhao et al., 2020). Recently, some
quaternion-based models have been developed for scientific
problems, e.g., the quaternion message passing (Yue et al.,
2024) for molecular conformation representation (Gasteiger

et al., 2020; Wang et al., 2023) and the quaternion gener-
ative models for molecule generation (Köhler et al., 2023;
Guo et al., 2025). However, the computational quaternion
techniques are seldom considered in protein-related tasks.
Our work fill this blank, demonstrating the usefulness of
quaternion algebra in protein backbone generation.

3. Proposed Method
3.1. Protein Backbone Parameterization

We parameterize the protein backbone following (Jumper
et al., 2021; Yim et al., 2023b;a; Bose et al., 2024). As
illustrated in Figure 1a, each residue is represented as a
frame, where the frame encodes a rigid transformation start-
ing from the idealized coordinates of four heavy atoms:
[N∗,C∗

α,C
∗,O∗] ∈ R3×4. In this representation, C∗

α =
[0, 0, 0]⊤ is placed at the origin, and the transformation in-
corporates experimental bond angles and lengths (Engh &
Huber, 2012). We can derive each residue’s frame by

[Ni,Ci
α,C

i,Oi] = Ti ◦ [N∗,C∗
α,C

∗,O∗], (5)

where Ti ∈ SE(3) is the local orientation-preserving rigid
transformation mapping the idealized frame to the frame of
the i-th residue. In this study, we represent Ti = (xi, qi),
where xi ∈ R3 represents the 3D translation and a unit
quaternion qi ∈ S3, which double-covers SO(3), represents
a 3D rotation. According to Eq. (4), the action of Ti on a
coordinate v ∈ R3 can be implemented as

Ti ◦ v = xi + Im(q ⊗ [0,v⊤]⊤ ⊗ q−1). (6)

Note that, for protein backbone generation, we can use the
planar geometry of backbone to impute the coordinate of
the oxygen atom Oi (Yim et al., 2023a; Watson et al., 2023),
so we do not need to parameterize the rotation angle of the
bond “Cα − C”. As a result, for a protein backbone with
N residues, we have a collection of N frames, resulting
in the parametrization set Θ = {Ti}Ni=1. Therefore, we
can formulate the protein backbone generation problem as
modeling and generating {Ti}Ni=1 automatically.

3.2. Quaternion Flow Matching

We decouple the translation and rotation of each frame,
establishing two independent flows in R3 and SO(3), re-
spectively. Without the loss of generality, we define these
two flows in the time interval [0, 1]. When t = 0, we sam-
ple the starting points of the flows as random noise, i.e.,
T0 = (x0, q0) ∼ T0 × Q0, where T0 = N (0, I3) is the
Gaussian distribution for translations, and Q0 = IGSO(3)

is the isotropic Gaussian distribution on SO(3) for rota-
tions (Leach et al., 2022), corresponding to uniformly sam-
pling rotation axis u ∈ S2 and rotation angle ϕ ∈ [0, π]
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with the density:

f(ϕ) =
1− cosϕ

π

∞∑
l=0

(2l + 1)e−l(l+1)ϵ2 sin((l +
1
2 )ϕ)

sin(ϕ/2)
.

Based on Eq. (2), we convert the sampled axis and angle
to q0. When t = 1, the ending points of these two flows,
denoted as T1 = (x1, q1), should be the transformation of
a frame. We denote the data distribution of T1 as T1 ×Q1.

Linear Interpolation of Translation. For x0 ∼ T0 and
x1 ∼ T1, we can interpolate the trajectory between them
linearly: for t ∈ [0, 1],

xt = (1− t)x0 + tx1,

with constant translation velocity: v = x1 − x0.
(7)

SLERP of Rotation in Exponential Format. For unit
quaternions q0 ∼ Q0 and q1 ∼ Q1, we interpolate the
trajectory between them via SLERP in an exponential for-
mat (Sola, 2017):

qt = q0 ⊗ exp(t log(q−1
0 ⊗ q1)),

with constant angular velocity: ω = ϕu.
(8)

Here, q−1
0 ⊗ q1 = [cos (ϕ/2) , sin (ϕ/2)u⊤]⊤ and ω =

2 log(q−1
0 ⊗ q1). exp(·) and log(·) are exponential and log-

arithmic maps defined in Eq. (2) and Eq. (3), respectively.

Training QFlow Model. In this study, we adopt the
SE(3)-equivariant neural network in FrameFlow (Yim et al.,
2023a), denoted as Mθ, to model the flows. Given the
transformation at time t, i.e., Tt, the model predicts the
transformation at t = 1:

Tθ,1 = (xθ,1, qθ,1) =Mθ(Tt, t). (9)

We train this model by the proposed quaternion flow
(QFlow) matching method. In particular, given the frame
T1 = (x1, q1), we first sample a timestamp t ∼
Uniform([0, 1]) and random initial points T0 = (x0, q0) ∼
T0×Q0. Then, we derive (xt,v) and (qt,ω) via Eq. (7) and
Eq. (8), respectively. Passing (xt, qt, t) through the model
Mθ, we obtain xθ,1 and qθ,1, and derive the translation and
angular velocities at time t by

vθ,t =
xθ,1 − xt

1− t
, ωθ,t =

2 log(q−1
t ⊗ qθ,1)

1− t
. (10)

Based on the constancy of the velocities, we train the model
Mθ by minimizing the following two objectives:

LR3 = Et,T0,T1
[∥v − vθ,t∥2],

LSO(3) = Et,Q0,Q1
[∥ω − ωθ,t∥2].

(11)

Besides the above MSE losses, we further consider the
auxiliary loss proposed in (Yim et al., 2023b), which dis-
courages physical violations, e.g., chain breaks or steric
clashes. Therefore, we train the model by

minθ LR3 + LSO(3) + α · 1{t < ζ} · Laux, (12)

where α ≥ 0 is the weight of the auxiliary loss, 1 is an
indicator, signifying that the auxiliary loss is applied only
when t is sampled below a predefined threshold ζ.

Inference Based on QFlow. Given a trained model, we can
generate frames of residues from noise with the predicted
velocities. In particular, given initial (x0, q0) ∼ T0 ×Q0,
the translation is generated by an Euler solver with L steps:

xt+∆t = xt + vθ,t ·∆t, (13)

where the step size ∆t = 1
L . The quaternion of rotation

is generated with an exponential step size scheduler: We
modify Eq. (8), interpolating qt with an acceleration as

qt = q0 ⊗ exp((1− e−γt) log(q−1
0 ⊗ q1)), (14)

where γ controls the rotation accelerating, and we empiri-
cally set γ = 10. Then, the Euler solver becomes:

qt+∆t = qt ⊗ exp
(1
2
∆t · γe−γtωθ,t

)
, (15)

where γe−γtωθ,t is the adjusted angular velocity. Previous
works (Bose et al., 2024; Yim et al., 2023a) have demon-
strated that the exponential step size scheduler helps reduce
sampling steps and enhance model performance.

3.3. Rectified Quaternion Flow

Given the trained QFlow model Mθ, we can rectify the
flows in R3 and SO(3), respectively, by applying the flow
rectification method (Liu, 2022). In particular, we gen-
erate noisy T′

0 = {x′
0, q

′
0} ∼ T0 × Q0 and transfer to

T′
1 = {x′

1, q
′
1} ∼ T1 × Q1 by Mθ. Taking Mθ as the

initialization, we use the noise-sample pairs, i.e., {T′
0,T

′
1},

to train the model further by the same loss in Eq. (12) and
derive the rectified QFlow (ReQFlow) model.

The work in (Liu, 2022) has demonstrated that the rectified
flow of translation in R3 preserves the marginal law of the
original translation flow and reduces the transport cost from
the noise to the samples. We find that these theoretical
properties are also held by the rectified quaternion flow
under mild assumptions. Let (q0, q1) ∼ Q0 × Q1 be the
pair used to train QFlow, and (q′

0, q
′
1) be the pair induced

from (q0, q1) by flow rectification. Then, we have

Theorem 3.1. (Marginal preserving property). The pair
(q′

0, q
′
1) is a coupling ofQ0 andQ1. The marginal law of q′

t

equals that of qt at everytime, that is Law(q′
t) = Law(qt).
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Figure 2. (a) Mean round-trip errors from π − 10−1 to π − 10−7. (b) The frequency of suffering large rotation angles per protein when
training on the two datasets. (c) The average number of small rotation angles per protein when generating ten backbones for each length.

Table 1. Comparisons for various rotation interpolation methods.
Method Matrix Geodesic SLERP (Add. Format) SLERP (Exp. Format)

Interpolation Formula R0 expM

(
t logM (R⊤

0 R1)
) sin((1−t)ϕ

2
)

sin ϕ
2

q0+
sin(tϕ

2
)

sin ϕ
2

q1 q0 ⊗ exp(t log(q−1
0 ⊗q1))

Velocity Ω = logM (R⊤
0 R1) ηt =

ϕ(cos( tϕ
2

)q1−cos((1−t)ϕ
2
)q0)

2 sin ϕ
2

ω = 2 log(q−1
0 ⊗q1)

Euler
Solver

Update Rt+∆t = Rt expM (∆t ·Ω) qt+∆t = qt +∆t · ηt qt+∆t = qt ⊗ exp( 1
2
∆t · ω)

No Renomalization ✓ ✗ ✓

Numerical
Stability

ϕ ≥ π − 10−2 ✗ ✓ ✓

ϕ ≤ 10−6 ✓ ✗ ✓

Application Scenarios FrameFlow (Yim et al., 2023a),
FoldFlow (Bose et al., 2024)

AssembleFlow
(Guo et al., 2025)

QFlow (Ours),
ReQFlow (Ours)

Theorem 3.2. (Reducing transport costs). The pair (q′
0, q

′
1)

yields lower or equal convex transport costs than the in-
put (q0, q1). For any convex c: R3 → R, define the
cost as C(q0, q1) = c

(
log(q−1

0 ⊗ q1)
)
. Then, we have

E[C(q′
0, q

′
1)] ≤ E[C(q0, q1)].

Theorem 3.2 shows that the coupling (q′
0, q

′
1) either

achieves a strictly lower or the same convex transport cost
compared to the original one, highlighting the advantage of
the quaternion flow rectification in reducing the overall rota-
tion displacement cost without compromising the marginal
distribution constraints (Theorem 3.1). In addition, we have

Corollary 3.3. (Cost Reduction with Nonconstant Speed).
Suppose the geodesic interpolation qt between q0 and q1
has a constant axis u, but its speed is nonconstant in time,
i.e, ωt = a(t)u. The quaternion flow rectification still
reduces or preserves the transport cost.

This corollary means that when applying the exponential
step size scheduler (i.e., Eq. (15)), the rectification still
reduces or preserves the transport cost.

3.4. Rationality Analysis

Most existing methods, like FrameFlow (Yim et al., 2023a)
and FoldFlow (Bose et al., 2024), represent rotations as 3×3
matrices. Given two rotation matrices R0 and R1, they con-
struct a flow in SO(3) with matrix geodesic interpolation:

Rt = R0 expM
(
t logM (R⊤

0 R1)
)
, (16)

where expM (·) and logM (·) denote the matrix exponen-
tial and logarithmic maps, respectively. The corresponding
angular velocity Ω = logM (R⊤

0 R1). Different from exist-
ing methods (Yim et al., 2023a;b; Bose et al., 2024), our
method applies quaternion-based rotation representation and
achieves rotation interpolation by SLERP in an exponential
format, which achieves superior numerical stability and thus
benefits protein backbone generation.

To verify this claim, we conduct a round-trip error exper-
iment: given an rotation ω in the axis-angle format, we
convert it to a rotation matrix R and a quaternion q, re-
spectively, and convert it back to the axis-angle format,
denoted as ω̂R and ω̂q, respectively. Figure 2a shows the
round-trip errors in L2 norm for large rotation angles (e.g.,
ϕ ∈ [π−10−2, π)). Our quaternion-based method is numer-
ically stable while the matrix-based representation suffers
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severe numerical errors. When training a protein back-
bone generation model, the numerical stability for large
rotation angles is important. Given the frames in the Pro-
tein Data Bank (PDB) (Burley et al., 2023) dataset and the
SCOPe (Chandonia et al., 2022) dataset, we sample a ran-
dom noise for each frame and calculate the rotation angle
between them. The histogram in Figure 2b shows that when
training an arbitrary flow-based model, the probability of
suffering at least one large angle per protein is 0.59 for PDB
and 0.34 for SCOPe, respectively. It means that the matrix-
based representation may introduce undesired numerical
errors that aggregate and propagate during training.

In addition, a very recent work, AssembleFlow (Guo et al.,
2025), also applies quaternion-based rotation representation
and SLERP when modeling 3D molecules. In particular, it
applies SLERP in an additive format:

qt =
sin((1− t)ϕ2 )

sin(ϕ2 )
q0 +

sin(tϕ2 )

sin(ϕ2 )
q1, (17)

and updates rotations linearly by the following Euler solver:

qt+∆t = qt +∆t · ηt. (18)

Here, ηt is the instantaneous velocity in the tangent space of
qt, which is derived by the first-order derivative of Eq. (17).
However, this modeling strategy also suffers numerical is-
sues. Firstly, although the additive format SLERP can gen-
erate the same interpolation path as ours in theory, when
rotation angle ϕ is small (e.g., ϕ ∈ [0, 10−6)), Eq. (17) of-
ten outputs “NaN” because the denominator sin(ϕ2 ) tends
to zero. The exponential step size scheduler leads to rapid
convergence when generating protein backbones, which fre-
quently generates rotation angles below the threshold 10−6

(as shown in Figure 2c) and thus makes the additive format
SLERP questionable in our task. Secondly, the Euler step
in Eq. (18) makes ∥qt+∆t∥2 ̸= 1, so that renormalization is
required after each update. Table 1 provides a comprehen-
sive comparison for the three rotation interpolation methods,
highlighting the advantages of our method.

4. Experiment
To demonstrate the effectiveness and efficiency of our meth-
ods (QFlow and ReQFlow), we conduct comprehensive
experiments to compare them with state-of-the-art protein
backbone generation methods. In addition, we conduct abla-
tion studies to verify the usefulness of the flow rectification
strategy and the impact of sampling steps on model per-
formance. All the experiments are implemented on four
NVIDIA A100 80G GPUs. Implementation details and ex-
perimental results are shown in this section and Appendix C.

Table 2. Comparisons for various models on PDB. For each des-
ignability metric, we bold the best result and show the top-3 results
with a blue background. In the same way, we indicate the best and
top-3 diversity and novelty results among the rows with Fraction
> 0.8. The inference time corresponds to generating a protein
backbone with length N = 300.

Method Efficiency Designability Diversity Novelty

Step Time(s) Fraction↑ scRMSD↓ TM↓ TM↓
RFDiffusion 50 66.23 0.904 1.102±1.617 0.382 0.527

Genie2 1000 112.93 0.908 1.132±1.389 0.370 0.475
500 55.86 0.000 18.169±5.963 - -

FrameDiff 500 48.12 0.564 2.936±3.093 0.441 0.591

FoldFlowBase 500 43.52 0.624 3.080±3.449 0.469 0.645
FoldFlowSFM 500 43.63 0.636 3.031±3.589 0.411 0.604
FoldFlowOT 500 43.35 0.852 1.760±2.593 0.434 0.617

FoldFlow2 50 6.35 0.952 1.083±1.308 0.373 0.527
20 2.63 0.644 3.060±3.210 0.339 0.492

FrameFlow 500 17.05 0.872 1.380±1.392 0.346 0.562
200 6.77 0.864 1.542±1.889 0.348 0.564
100 3.46 0.708 2.167±2.373 0.332 0.560
50 1.73 0.704 2.639±3.079 0.334 0.536
20 0.71 0.436 4.652±4.390 0.319 0.501
10 0.37 0.180 7.343±5.125 0.317 0.482

QFlow 500 17.37 0.936 1.163±0.938 0.356 0.635
200 7.10 0.864 1.400±1.259 0.344 0.620
100 3.48 0.916 1.342±1.364 0.348 0.614
50 1.77 0.812 1.785±2.151 0.344 0.571
20 0.73 0.604 3.090±3.374 0.325 0.537
10 0.38 0.332 5.032±4.303 0.313 0.528

ReQFlow 500 17.42 0.972 1.071±0.482 0.377 0.645
200 6.94 0.932 1.160±0.782 0.384 0.648
100 3.58 0.928 1.245±1.059 0.369 0.629
50 1.78 0.912 1.254±0.915 0.369 0.608
20 0.72 0.872 1.418±0.998 0.355 0.581
10 0.38 0.676 2.443±2.382 0.337 0.540

4.1. Experimental Setup

Datasets. We apply two commonly used datasets in our
experiments. The first is the 23,366 protein backbones
collected from Protein Data Bank (PDB) (Burley et al.,
2023), whose lengths range from 60 to 512. The second is
the SCOPe dataset (Chandonia et al., 2022) pre-processed
by FrameFlow (Yim et al., 2023a), which contains 3,673
protein backbones with lengths ranging from 60 to 128.

Baselines. The baselines of our methods include diffusion-
based methods (FrameDiff (Yim et al., 2023b), RFDiffu-
sion (Watson et al., 2023), and Genie2 (Lin et al., 2024))
and flow-based methods (FrameFlow (Yim et al., 2023a),
FoldFlow (Bose et al., 2024), and FoldFlow2 (Huguet et al.,
2024)). In addition, we rectify FrameFlow by our method
(i.e., re-training FrameFlow based on the paired data gen-
erated by itself) and consider the rectified FrameFlow (Re-
FrameFlow) as a baseline as well.
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Figure 3. The distribution of protein backbones with respect to the percentages of their secondary structure.
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Figure 4. The comparison for various methods on the designability of generated long-chain protein backbones.

Implementation Details. For the PDB dataset, we uti-
lize the checkpoints of baselines and reproduce the re-
sults shown in their papers. Given the QFlow trained on
PDB, we generate 7,653 protein backbones with lengths
in [60, 512] from noise and then train ReQFlow based on
these noise-backbone pairs. For the SCOPe dataset, we train
all the models from scratch. Given the QFlow trained on
SCOPe, we generate 3,167 protein backbones with lengths
in [60, 128] from noise and then train ReQFlow based on
these noise-backbone pairs. When training ReQFlow, we
apply structural data filtering, selecting training samples
based on scRMSD (≤2Å) and TM-score (≥0.9 for long-
chain proteins) and removing proteins with excessive loops
(>50%) or abnormally large radius of gyration (top 4%).
ReFrameFlow is trained in the same way.

Evaluation Metrics. Following previous works (Yim et al.,
2023a; Bose et al., 2024; Geffner et al., 2025), we evaluate
each method in the following four aspects:

1) Designability: As the most critical metric, designability
reflects the possibility that a generated protein backbone
can be realized by folding the corresponding amino acid
sequence. It is assessed by the scRMSD between the gen-
erated protein backbone and the backbone predicted by
ESMFold (Lin et al., 2023). Given a set of generated back-
bones, we calculate the proportion of the backbones whose
scRMSD ≤ 2Å (denoted as Fraction).

2) Diversity: Given designable protein backbones, whose
scRMSD ≤ 2Å, we quantify structural diversity by av-
eraging the mean pairwise TM-scores computed for each
backbone length.

3) Novelty: For each designable protein backbone, we com-
pute its maximum TM-score to the data in PDB using Fold-
seek (van Kempen et al., 2022). The average of the scores
reflect the novelty of the generated protein backbones.

4) Efficiency: We assess the computational efficiency of
each method by the number of sampling steps and the aver-
age inference time for generating 50 proteins at two lengths:
300 residues for PDB and 128 residues for SCOPe.

4.2. Comparison Experiments on PDB

Generation Quality. Given the models trained on PDB, we
set the length of backbone N ∈ {100, 150, 200, 250, 300},
and generate 50 protein backbones for each length. Table 2
shows that ReQFlow achieves state-of-the-art performance
in designability, achieving the highest Fraction (0.972)
among all models, significantly outperforming strong com-
petitors such as Genie2 (0.908) and RFDiffusion (0.904).
Additionally, it achieves the lowest scRMSD (1.071±0.482),
with a notably smaller variance compared to the other meth-
ods, highlighting the model’s consistency and reliability in
generating high-quality protein backbones. Meanwhile, Re-
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QFlow maintains competitive performance in diversity and
novelty.

Computational Efficiency. Moreover, ReQFlow achieves
ultra-fast protein backbone generation. Typically, ReQFlow
achieves a high Fraction score (0.912) with merely 50 steps
and 1.78s, outperforming RFDiffusion and Genie2 with
37× and 63× acceleration, respectively. The state-of-the-
art methods like Genie2 and FoldFlow2 suffer severe per-
formance degradation in designability when the number of
steps is halved, while ReQFlow performs stably even re-
ducing the number of steps from 500 to 20. In addition,
although the main speed bottleneck is model prediction,
ReQFlow’s rotation update can be ∼20% faster than Frame-
Flow’s update because of utilizing the quaternion-based
computation (Appendix C.3).

Fitness of Data Distribution. Given generated protein
backbones, we record the percentages of helix and strand,
respectively, for each backbone, and visualize the distribu-
tion of the backbones with respect to the percentages in
Figure 3. The protein backbones generated by ReQFlow
have a reasonable distribution, which is similar to those of
RFDiffusion and FrameFlow and comparable to that of the
PDB dataset. However, the distribution of FoldFlow is sig-
nificantly different from the data distribution and indicates
a mode collapse risk — the protein backbones generated by
FoldFlow are always dominated by helix structures.

Effectiveness on Long Chain Generation. Notably, Re-
QFlow demonstrates exceptional performance in generating
long-chain protein backbones (e.g., N > 300). As shown in
Figures 4a and 4b, ReQFlow outperforms all baselines on
generating long protein backbones and shows remarkable
robustness. Especially, when the length N > 500, which is
out of the length range of PDB data, all the baselines fail to
maintain high designability while ReQFlow still achieves
promising performance in Fraction score and scRMSD and
generates reasonable protein backbones. This generaliza-
tion ability beyond the training data distribution underscores
ReQFlow’s potential for real-world applications requiring
robust long-chain protein design.

Ablation Study. We conduct an ablation study to evaluate
the impact of different components in the ReQFlow model.
The results in Table 3 reveal that similar to existing meth-
ods (Yim et al., 2023a; Bose et al., 2024; Huguet et al.,
2024), the exponential step size scheduler is important for
ReQFlow, helping generate designable protein backbones
with relatively few steps. Additionally, the data filter is
necessary for making flow rectification work. In particu-
lar, rectifying QFlow based on low-quality data leads to a
substantial degradation in model performance. In contrast,
after filtering out noisy and irrelevant data, rectifying QFlow
based on the high-quality data boosts the model performance
significantly.

Table 3. The Fraction scores of ReQFlow under different settings
when generating backbones with 300 residues by 500 and 50 steps.
For each method, we evaluate the results on five checkpoints.
Exponential Flow Data Sampling Steps
Scheduler Rectification Filtering 500 50

✗ ✗ ✗ 0.143±0.079 0.047±0.030
✓ ✗ ✗ 0.910±0.029 0.795±0.051
✓ ✓ ✗ 0.612±0.084 0.519±0.154
✓ ✓ ✓ 0.969±0.027 0.932±0.022
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Figure 5. A comparison for various methods on their designability
with the reduction of sampling steps. Original data is in Table 8.

4.3. Analytic Experiments on SCOPe

Universality of Flow Rectification. Note that, the flow rec-
tification method used in our work is universal for various
models. As shown in Table 4 and Figure 5, applying flow
rectification, we can improve the efficiency and effective-
ness of FrameFlow as well. This result highlights the broad
utility of flow rectification as an operation that can enhance
the performance of flow models on SO(3) spaces.

Superiority of Exponential-Format SLERP. The results
in Table 4 and Figure 5 indicate that QFlow and ReQFlow
outperform their corresponding counterparts (FrameFlow
and ReFrameFlow) in terms of designability across all sam-
pling steps. As we analyzed in Section 3.4, the superiority
of our models can be attributed to the better numerical sta-
bility of quaternion calculations compared to the traditional
matrix geodesic method.

5. Conclusion and Future Work
In this study, we propose a rectified quaternion flow match-
ing method for efficient and high-quality protein backbone
generation. Leveraging quaternion-based representation
and flow rectification, our method achieves encouraging
performance and significantly reduces inference time. In
the near future, we plan to improve our method for gen-
erating high-quality long-chain protein backbones. This
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Table 4. Comparisons for various models on SCOPe. Five checkpoints per model are evaluated to show statistical significance. We
indicate the best and top-3 results in the same way as Table 2 does.

Step Epoch Designability Diversity Novelty

Fraction↑ scRMSD↓ TM↓ TM↓
FrameFlow 500 187 0.880 1.418±1.155 0.399 0.711

189 0.849 1.448±1.114 0.397 0.713
193 0.851 1.396±1.167 0.390 0.720
195 0.845 1.427±1.011 0.397 0.713
199 0.830 1.498±1.075 0.379 0.712

50 187 0.797 1.603±1.138 0.382 0.686
189 0.820 1.546±1.316 0.379 0.685
193 0.836 1.504±1.158 0.375 0.680
195 0.817 1.528±1.019 0.390 0.682
199 0.787 1.650±1.295 0.366 0.676

20 187 0.739 1.888±1.452 0.373 0.656
189 0.713 1.918±1.495 0.362 0.656
193 0.723 1.882±1.488 0.371 0.645
195 0.687 2.035±1.574 0.377 0.650
199 0.677 2.106±1.770 0.369 0.636

ReFrameFlow 500 2 0.912 1.205±0.675 0.406 0.713
3 0.933 1.211±0.631 0.410 0.713
4 0.923 1.201±0.600 0.411 0.709
5 0.923 1.270±0.721 0.399 0.701
6 0.930 1.178±0.628 0.407 0.709

50 2 0.903 1.267±0.704 0.407 0.691
3 0.897 1.262±0.739 0.408 0.692
4 0.909 1.271±0.674 0.408 0.690
5 0.906 1.270±0.717 0.406 0.690
6 0.914 1.272±0.868 0.406 0.684

20 2 0.877 1.432±1.043 0.400 0.669
3 0.878 1.378±0.794 0.410 0.673
4 0.899 1.354±0.810 0.405 0.679
5 0.877 1.440±0.936 0.400 0.672
6 0.888 1.393±1.023 0.409 0.675

Step Epoch Designability Diversity Novelty

Fraction↑ scRMSD↓ TM↓ TM↓
QFlow 500 181 0.899 1.240±0.781 0.392 0.695

185 0.913 1.210±0.792 0.393 0.719
195 0.907 1.263±1.334 0.389 0.712
197 0.893 1.285±0.929 0.401 0.716
199 0.852 1.444±0.991 0.385 0.693

50 181 0.849 1.447±1.148 0.379 0.648
185 0.875 1.389±1.169 0.386 0.687
195 0.872 1.389±1.314 0.371 0.674
197 0.823 1.517±1.196 0.384 0.682
199 0.849 1.461±0.970 0.378 0.682

20 181 0.778 1.746±1.462 0.369 0.620
185 0.778 1.683±1.359 0.377 0.655
195 0.764 1.764±1.529 0.367 0.646
197 0.746 1.834±1.511 0.374 0.652
199 0.742 1.802±1.256 0.373 0.648

ReQFlow 500 2 0.939 1.120±0.647 0.411 0.704
3 0.952 1.088±0.523 0.404 0.703
4 0.939 1.149±0.595 0.405 0.693
5 0.949 1.155±0.565 0.402 0.690
6 0.955 1.143±0.819 0.407 0.688

50 2 0.928 1.157±0.747 0.411 0.687
3 0.919 1.179±0.762 0.410 0.688
4 0.916 1.194±0.850 0.413 0.676
5 0.933 1.184±0.691 0.407 0.670
6 0.914 1.229±0.768 0.414 0.681

20 2 0.929 1.267±0.844 0.407 0.678
3 0.913 1.256±0.760 0.404 0.674
4 0.913 1.232±0.725 0.406 0.671
5 0.893 1.322±0.719 0.404 0.670
6 0.900 1.331±0.885 0.405 0.663

will involve constructing a larger training dataset, build-
ing on approaches such as Genie2 (Lin et al., 2024) and
Proteı́na (Geffner et al., 2025). Additionally, we plan to
refine our model architecture through two key strategies: in-
creasing model capacity via parameter scaling and exploring
non-equivariant design, drawing inspiration from the archi-
tecture of Proteı́na (Geffner et al., 2025). Furthermore, we
intend to leverage the knowledge embedded in large-scale
pre-training models (Li et al., 2025; Huguet et al., 2024),
such as FoldFlow2 (Huguet et al., 2024), which incorporated
sequence information using ESM2 (Lin et al., 2023). As
long-term goals, we will extend our method to conditional
protein backbone generation and explore its applications in
side-chain generation and full-atom protein generation.
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A. Proofs of Key Theoretical Results
A.1. The Angular Velocity under Exponential Scheduler

Proposition A.1. For spherical linear interpolation (SLERP) with angular velocity ω, when applying an exponential
scheduler during inference:

qt = q0 ⊗ exp
(
(1− e−γt) log(q−1

0 ⊗ q1)
)
, (19)

the resulting angular velocity evolves as ω̂t = γe−γtω.

Proof. The standard SLERP formulation in exponential form is:

qt = q0 ⊗ exp
(
t log(q−1

0 ⊗ q1)
)
, (20)

where the relative rotation qrel = q−1
0 ⊗ q1 has logarithm map log(qrel) =

1
2ϕu. The angular velocity is:

ω = 2 · log(qrel) = ϕu. (21)

Introducing an exponential scheduler κ(t) = 1− e−γt with derivative κ′(t) = γe−γt, the modified SLERP becomes:

qt = q0 ⊗ exp (κ(t) log(qrel)) . (22)

Differentiating with respect to time using the chain rule:

q̇t = q0 ⊗
d

dt
exp (κ(t) log(qrel))

= γe−γt log(qrel)⊗ q0 ⊗ exp (κ(t) log(qrel))

= γe−γt log(qrel)⊗ qt.

(23)

Applying the quaternion kinematics equation q̇ = 1
2 [0,ω

⊤]⊤ ⊗ q (Sola, 2017), we solve for the effective angular velocity:

[0, ω̂⊤
t ]

⊤ = 2q̇t ⊗ q−1
t

= 2γe−γt log(qrel)⊗ qt ⊗ q−1
t

= 2γe−γt log(qrel).

(24)

Substituting the angular velocity from Eq. (21) yields:

ω̂t = γe−γtω. (25)

A.2. Proofs of The Theorems in Section 3.3

Our proofs yield the same pipeline used in (Liu, 2022). The proofs are inspired by that work and derived based on the same
techniques. What we did is extending and specifying the theoretical results in (Liu, 2022) for S3. The original rotation
process is {qt}t∈[0,1], where each qt is a unit quaternion representating a rotation in SO(3), ωt ∈ R3 is the angular velocity
at time t. The quaternion dynamics are given by

q̇t =
1

2
[0,ω⊤

t ]
⊤ ⊗ qt ∈ Tqt

(S3), (26)

where Tqt(S3) is the tangent space at qt. We write q0 ∼ Q0, q1 ∼ Q1 for the initial and target distributions. For a given
input coupling (q0, q1), the exact minimum of LSO(3) in Eq. (11) is achieved if

ω̃θ,t = ω̃t(q, t) = E[ωt|qt = q] ∈ R3, (27)

which is the expected angular velocity at point q, time t. We now define the rectified process {q′
t}t∈[0,1] by

q̇′
t =

1

2
[0, ω̃t(q

′
t, t)

⊤]⊤ ⊗ q′
t, q′

0 ∼ Q0, (28)
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A.2.1. PROOF OF THEOREMS 3.1

Proof. Consider any smooth test function h : S3 → R. By chain rule:

d

dt
E[h(qt)] = E

[
∇S3h(qt) · q̇t

]
, (29)

where ∇S3h is the gradient on the manifold. From the definition in Eq. (26), since ωt is random, we rewrite inside the
expectation by conditioning on qt:

E
[
∇S3h(qt) · q̇t

]
= E

[
∇S3h(qt) · 12

[
0,E(ωt|qt)⊤

]⊤ ⊗ qt

]
, (30)

because ωt|(qt = q) has conditional mean ω̃t(q, t),

d

dt
E[h(qt)] = E

[
∇S3h(qt) · 12 [0, ω̃t(qt, t)

⊤]⊤ ⊗ qt
]
. (31)

This evolution is exactly the weak (distributional) form of the continuity equation:

∂t µt +∇ ·
(
1
2 [0, ω̃t(q, t)

⊤]⊤ ⊗ q · µt

)
= 0, (32)

where µt = Law(qt). According to Eq. (28), That is exactly the same weak-form evolution equation satisfied by the q′
t

process, where ω is simply replaced by ω̃t. If we let νt := Law(q′
t), it solves the same continuity equation with the same

initial data ν0 = µ0. On a compact manifold like SO(3), the continuity equation has a unique solution given an initial
distribution. Hence µt = νt at all times t. That is,

Law(q′
t) = Law(qt), for all t ∈ [0, 1]. (33)

A.2.2. PROOF OF THEOREMS 3.2

Proof. The net rotation from q0 to q1 can be given by integrating the angular velocity ωt ∈ R3.

log
(
q−1
0 ⊗ q1

)
=

1

2

∫ 1

0

ωt dt, (34)

and similarly,

log
(
q′−1
0 ⊗ q′

1

)
=

1

2

∫ 1

0

ω̃t(q
′
t, t) dt, (35)

Strictly speaking, one must keep track of the axis direction to ensure consistency, but the geodesic assumption here handles
that. The rectified angular velocity ω̃t = E[ωt|qt] implies that the total rotation in the rectified process is a conditional
expectation of the original rotation:

log
(
q′−1
0 ⊗ q′

1

)
=

1

2

∫ 1

0

ω̃t dt =
1

2
E
[∫ 1

0

ωt dt

∣∣∣∣ {q′
t}
]
. (36)

Applying Jensen’s inequality to the convex cost c over this conditional expectation:

c
(
log

(
q′−1
0 ⊗ q′

1

))
= c

(
1

2
E
[∫ 1

0

ωt dt

∣∣∣∣ {q′
t}
])
≤ E

[
1

2
c

(∫ 1

0

ωt dt

) ∣∣∣∣ {q′
t}
]
. (37)

Taking the total expectation on both sides:

E [C(q′
0, q

′
1)] ≤ E

[
1

2
c

(∫ 1

0

ωt dt

)]
= E [C(q0, q1)] . (38)

This final inequality establishes that the rectified coupling (q′
0, q

′
1) achieves equal or lower expected transport cost than the

original coupling (q0, q1).
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A.2.3. PROOF OF COROLLARY 3.3

Proof. Suppose the original process has the nonconstant angular velocity ωt = a(t)u (fixed axis), with τ = 1
2

∫ 1

0
a(t)dt.

log
(
q−1
0 ⊗ q1

)
=

1

2

∫ 1

0

ωt dt =
1

2
u

∫ 1

0

a(t) dt = τu (39)

Recall that the rectified angular velocity is:
ω̃t(q, t) = E[ωt|qt] (40)

Since ωt = a(t)u, we simply get:
ω̃t(q, t) = E[a(t)|qt]u (41)

The total rotation from q′
0 to the q′

1 in the rectified process satisfies:

log(q′−1
0 ⊗ q′

1) =
1

2

∫ 1

0

ω̃t(q
′
t, t)dt =

1

2

(∫ 1

0

E[a(t) | q′
t]dt

)
u. (42)

Let τ ′ = 1
2

∫ 1

0
E[a(t) | q′

t]dt. Thus,
log(q′−1

0 ⊗ q′
1) = τ ′u (43)

Because τ = 1
2

∫ 1

0
a(t)dt, τ ′ = 1

2

∫ 1

0
E[a(t) | qt]dt, and Eq. (36) in Theorem 3.2, we note

τ ′u =
1

2
u

(∫ 1

0

E[a(t) | q′
t]dt

)
=

1

2
E
[∫ 1

0

a(t)u dt

∣∣∣∣ {q′
t}
]
= E[τu|{q′

t}] (44)

For the coupling (q′
0, q

′
1), the cost is:

C(q′
0, q

′
1) = c(τ ′u). (45)

Since τ ′u = E[τu|{q′
t}], convexity of c implies Jensen’s inequality in conditional form:

c(τ ′u) = c(E[τu|{q′
t}]) ≤ E[c(τu)|{q′

t}] (46)

Next, take unconditional expectation on both sides. By the law of total expectation (tower property),

E[c(τ ′u)] ≤ E[c(τu)]. (47)

Since c(τu) = c(log
(
q−1
0 ⊗ q1

)
) = C(q0, q1) and c(τ ′u) = C(q′

0, q
′
1). Therefore,

E[C(q′
0, q

′
1)] ≤ E[C(q0, q1)]. (48)

B. Implementation Details
B.1. Ensuring The Shortest Geodesic Path on SO(3)

When we interpolate two quaternions by using SLERP in an exponential format (Eq. (8)), due to the double-cover property
of quaternions (where every 3D rotation is represented by two antipodal unit quaternions), it is possible that the inner
product ⟨q0, q1⟩ < 0, which means that q0 and q1 lie in opposite hemispheres. In such a situation, we apply −q1 in Eq. (8),
ensuring the shortest geodesic path on SO(3).

B.2. Auxiliary Loss

We adopt the auxiliary loss from (Yim et al., 2023b) to discourage physical violations such as chain breaks or steric
clashes. Let A = [N,Cα,C,O] be the collection of backbone atoms. The first term penalizes deviations in backbone atom
coordinates:

Lbb =
1

4N

N∑
n=1

∑
a∈A
∥an − ân∥2 , (49)
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where an is the ground-truth atom position, ân is our predicted position, N represents the number of residues. The second
loss is a local neighborhood loss on pairwise atomic distances,

Ldis =
1

Z

N∑
n,m=1

∑
a,b∈A

1{dnmab < 0.6}∥dnmab − d̂nmab ∥2, (50)

Z =

 N∑
n,m=1

∑
a,b∈A

1{dnmab < 0.6}

−N, (51)

where dnmab = ∥an−bm∥ and d̂nmab = ∥ân− b̂m∥ represent true and predicted inter-atomic distances between atoms a, b ∈ A
for residue n and m. 1 is an indicator, signifying that only penalize atoms within 0.6nm(6Å). The full auxiliary loss can be
written as

Laux = Lbb + Ldis. (52)

B.3. The Schemes of Training and Inference Algorithms

The schemes of our training and inference algorithms are shown below.

Algorithm 1 Training Procedure of QFlow

Require: Training dataset TD
1 =

{
{Tj

1 = (xj1, q
j
1)}Ni

j=1

}D

i=1
, modelMθ, number of epochs N

1: Initialize model parameters θ
2: for epoch = 1 to N do
3: for each mini-batch TB

1 ⊂ TD
1 do

4: Sample tB ∼ U [0, 1] , TB
0 ∼ T0 ×Q0

5: Interpolate translations: xB
t = Linear(xB

0 ,x
B
1 , t

B) Eq. (7)
6: Interpolate rotations: qB

t = SLERP-Exp(qB
0 , q

B
1 , t

B) Eq. (8)
7: Predict targets: xB

θ,1, q
B
θ,1 =Mθ(T

B
t , t

B)

8: Compute loss L(θ;xB
t , q

B
t ,x

B
θ,1, q

B
θ,1, t

B) Eq. (12)
9: Compute gradient∇θL

10: Update parameters: θ ← θ − η∇θL
11: end for
12: end for
13: Return: Trained model parameters θ∗

Algorithm 2 Inference

Require: Trained modelMθ, noise T0 ∼ T0 ×Q0, number of steps L, rotation acceleration constant γ
1: Initialize t = 0, ∆t = 1

L

2: for step = 1 to L do
3: Predict targets: xθ,1, qθ,1 =Mθ(Tt, t)

4: Compute velocity: vθ,t, ωθ,t Eq. (10)
5: Update translations: xt+∆t ← xt + vθ,t ·∆t Eq. (13)

6: Update rotations: qt+∆t ← qt ⊗ exp
(

1
2∆t · γe−γtωθ,t

)
Eq. (15)

7: Update states: t← t+∆t, Tt ← Tt+∆t

8: end for
9: Return: Generated backbone frame T1

B.4. Data Statistics and Hyperparameter Settings

We follow (Yim et al., 2023b) to construct PDB dataset. The dataset was downloaded on December 17, 2024. We then
applied a length filter (60–512 residues) and a resolution filter (< 5 Å) to select high-quality structures. To further refine the
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Algorithm 3 Training Procedure of ReQFlow

Require: Trained QFlow modelMθ, number of epochs N
1: Sample noise T′D

0 ∼ T0 ×Q0

2: Create flow rectification pairs: (T′
0,T

′
1)

D Alg. 2
3: for epoch = 1 to N do
4: for each mini-batch (T′

0,T
′
1)

B ⊂ (T′
0,T

′
1)

D do
5: Sample tB ∼ U [0, 1]
6: Interpolate translations: x′B

t = Linear(x′B
0 ,x′B

1 , tB) Eq. (7)
7: Interpolate rotations: q′B

t = SLERP-Exp(q′B
0 , q′B

1 , tB) Eq. (8)
8: Predict targets: x′B

θ,1, q
′B
θ,1 =Mθ(T

′B
t , tB)

9: Compute loss L(θ;x′B
t , q′B

t ,x′B
θ,1, q

′B
θ,1) Eq. (12)

10: Compute gradient∇θL
11: Update parameters: θ ← θ − η∇θL
12: end for
13: end for
14: Return: Trained model parameters θ∗
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Figure 6. The length distribution of PDB and SCOPe dataset we use for training.

dataset, we processed each monomer using DSSP (Kabsch & Sander, 1983), removing those with more than 50% loops to
ensure high secondary structure content. After filtering, 23,366 proteins remained for training. We directly use the SCOPe
dataset preprocessed by (Yim et al., 2023a) for training, which consists of 3,673 proteins after filtering. The distribution of
dataset length is shown on Figure 6.

When conducting reflow, we first generated a large amount of data to create the training dataset and then applied filtering to
refine it. The filtering criteria were as follows: for proteins with lengths ≤ 400, we selected samples with scRMSD ≤ 2;
for proteins with lengths ≥ 400, we included samples with either scRMSD ≤ 2 or TM-score ≥ 0.9. We also remove those
with more than 50% loop and those with max 4% radius gyration. For the PDB dataset, we generated 20 proteins for each
length in {60, 61, . . . , 512}, resulting in a reflow dataset containing 7,653 sample-noise pairs. For the SCOPe dataset, we
generated 50 proteins for each length in {60, 61, . . . , 128}, producing a reflow dataset with 3,167 sample-noise pairs.

B.5. Metrics

Following existing work(Geffner et al., 2025; Yim et al., 2023b;a; Bose et al., 2024; Huguet et al., 2024), we apply the
metrics below to evaluate various methods.
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Table 5. Training Hyperparameters
Hyperparameters Value

aux loss t pass (time threshold) PDB=0.5, SCOPe=0.25
aux loss weight 1.0
batch size 128
max num res squared PDB=1000000, SCOPe=500000
max epochs 1000
learning rate 0.0001
interpolant min t 0.01

Designability.We use this metric to evaluate whether a protein backbone can be formed by folding an amino acid chain. As
shown in Figure 7, for each backbone, we generate 8 sequences with ProteinMPNN(Dauparas et al., 2022) at temperature
0.1, and predict their corresponding structures using ESMFold(Lin et al., 2023). Then we compute the minimum RMSD
(known as scRMSD) between the predicted structures and the backbone sampled by the model. The designability score
(denoted as “fraction” in this work) is the percentage of samples satisfying scRMSD < 2Å.

Diversity. This metric quantifies the diversity of the generated backbones. This involves calculating the average pairwise
structural similarity among designable samples, broken down by protein length. Specifically, for each length L under
consideration, let SL be the set of designable structures. We compute TM(bi, bj) for all distinct pairs (bi, bj) within SL.
The mean of these TM-scores represents the diversity for length L. The final diversity score is the average of these means
across all tested lengths L. Since TM-scores closer to 1 indicate higher similarity, superior diversity is reflected by lower
values of this aggregated score.

Novelty. We evaluate the structural novelty by finding the maximum TM-score between a generated structure and any
structure in the Protein Data Bank (PDB), using Foldseek(van Kempen et al., 2022). A lower resulting maximum TM-score
signifies a more novel structure. The command(Geffner et al., 2025) utilized for this Foldseek search is configured as
follows:

foldseek easy-search <pdb_path> <database> <aln_file> <tmp_folder>
--alignment-type 1 \
--exhaustive-search \
--max-seqs 10000000000 \
--tmscore-threshold 0.0 \
--format-output query,target,alntmscore,lddt,evalue

According to the issue of FoldSeek mentioned in https://github.com/steineggerlab/foldseek/issues/
323, we use the E-value column to report the TM-score.

Efficiency. To ensure fairness, we measure inference time on idle GPU and CPU systems. For PDB-based models, we
sampled 50 proteins of length 300 and reported the mean sampling time. Similarly, for SCOPe-based models, we sampled
50 proteins of length 128 and reported the mean sampling time. File saving and self-consistency calculations were excluded
from the timing.

B.6. Baselines

We compare our work with state-of-the-art methods in the community, including Genie2, RFdiffusion, FoldFlow/FoldFlow2,
FrameFlow, and FrameDiff. We use the default checkpoints and parameters provided in these methods’ repositories for our
comparisons.

C. More Experimental Details
C.1. Hyperparameter Settings

We adopt the the same hyperparameter settings as FrameFlow for a fair comparison, and the key parameters are shown in
Table 5.
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Table 6. Computation time breakdown (in seconds) for different methods, datasets, and sampling steps. The time corresponds to generating
a backbone with length N = 128 for SCOPe and N = 300 for PDB.

Datasets Methods Steps Model Prediction Rotation Update Translation Update Total Time

PDB

FrameFlow 500 16.308±0.093 0.608±0.005 0.033±0.000 17.053±0.099
50 1.609±0.013 0.059±0.001 0.003±0.000 1.727±0.014
20 0.635±0.008 0.024±0.001 0.001±0.000 0.713±0.010

QFlow 500 16.732±0.089 0.492±0.004 0.036±0.000 17.370±0.111
50 1.670±0.003 0.048±0.000 0.003±0.000 1.776±0.004
20 0.653±0.001 0.019±0.000 0.001±0.000 0.726±0.002

SCOPe

FrameFlow 500 11.947±0.125 0.601±0.003 0.033±0.000 12.688±0.124
50 1.166±0.013 0.059±0.001 0.003±0.000 1.275±0.016
20 0.471±0.002 0.025±0.000 0.001±0.000 0.539±0.003

QFlow 500 11.994±0.037 0.483±0.003 0.034±0.000 12.602±0.040
50 1.166±0.015 0.048±0.001 0.003±0.000 1.262±0.021
20 0.466±0.002 0.019±0.000 0.001±0.000 0.528±0.002

QFlow
ReQFlow

Inverse Folding
(ProteinMPNN) ENTIL…

Structure 
Prediction
(ESMFold)

Noise Backbone Sequence Backbone

Compute Self-Consistency (TM-Score, scRMSD)

Figure 7. Illustration of the designability computation pipeline.

C.2. Checkpoint selection strategy

For each method, after observing loss convergence, we select checkpoints based on the metrics of the generated protein
validation set. We choose the checkpoint where the ca ca valid percent > 0.99 and the proportions of secondary structures
are closest to the dataset’s average values.

C.3. Detailed Speed Comparison

As shown in Table 6, we record the runtime (second) on generating a protein of length 300 in the PDB experiment and length
128 in the SCOPe experiment for a detailed speed comparison. The neural network feedforward computation is the main
computational bottleneck. However, the quaternion operations are 15∼20% faster than rotation matrix-based operations (see
the Rotation Update column).

C.4. Detailed Comparisons Based on SCOPe

Table 7 reports the mean and standard deviation of the results corresponding to Table 4. The checkpoints of ReFrameFlow
and ReQFlow used here are selected from epochs 2 to 6 of rectification training for fair comparison. The checkpoints of
FrameFlow and QFlow used for rectification are from epoch 189 and epoch 195, respectively.

Table 8 presents comprehensive results from the SCOPe experiment using a fine-grained step size corresponding to Figure 5.
Note that the chekponts of ReFrameFlow and ReQFlow here are different from Table 4. We select checkpoints following the
criteria in Appendix C.2. Even with a generation process as concise as 10 steps, ReQFlow achieves a designable fraction of
0.848. This highlights the efficiency and effectiveness of ReQFlow in generating feasible protein structures. Additionally,
both QFlow and ReQFlow models produce proteins with reasonable secondary structure distributions, indicating their
capability to generate structurally plausible proteins. These findings underscore the potential of these models to significantly
advance the field of protein design by balancing computational efficiency with structural accuracy.
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Table 7. Comparisons for various models on SCOPe. For each metric of generation quality, we indicate the best and top-3 results in the
same way as Table 2 does. The inference time corresponds to generating a backbone with length N = 128. For each method, we evaluate
the results on five checkpoints and compute their mean and standard deviation.

Method Efficiency Designability Diversity Novelty

Step Time(s) Fraction↑ TM↓ TM↓
FrameFlow 500 12.69 0.851±0.016 0.392±0.007 0.714±0.003

50 1.28 0.811±0.017 0.378±0.008 0.682±0.004
20 0.54 0.708±0.023 0.370±0.005 0.649±0.008

ReFrameFlow 500 12.77 0.924±0.007 0.407±0.004 0.709±0.004
50 1.26 0.906±0.006 0.407±0.001 0.689±0.003
20 0.52 0.884±0.009 0.405±0.004 0.714±0.003

QFlow 500 12.60 0.893±0.022 0.392±0.005 0.707±0.011
50 1.26 0.854±0.019 0.380±0.005 0.675±0.014
20 0.53 0.762±0.015 0.372±0.004 0.644±0.013

ReQFlow 500 12.52 0.947±0.007 0.406±0.003 0.696±0.003
50 1.30 0.922±0.007 0.411±0.002 0.680±0.007
20 0.53 0.910±0.012 0.405±0.001 0.671±0.005

C.5. Comparisons on Model Size and Training Data Size

The comparison of model size and training dataset size is listed in Table 9. Model sizes in the table refer to the number of
total parameter. FoldFlow2 utilizes a pre-trained model, thus having 672M parameters in total. The number of trainable
parameters is 21M.

C.6. Visualization Results

We use Mol Viewer (Sehnal et al., 2021) to visualize protein structures generated by different models, as shown in Figure 8
and Figure 9. In Figure 8, all proteins originate from the same noise initialization generated by QFlow, whereas in Figure 9,
the initialization is generated by FoldFlow. Each method follows its own denoising trajectory, leading to distinct structural
outputs. FoldFlow2 adopts a default sampling step of 50, while all other methods use 500 steps. Due to architectural
differences, the final structures vary across models, but within the same model, different sampling steps generally yield
similar structures.

Among all models, ReQFlow exhibits the most stable and robust performance, maintaining low RMSD and variance across
different sampling steps while demonstrating resilience to varying noise inputs. In contrast, other methods show significant
limitations. FoldFlow-OT is highly sensitive to initial noise, displaying drastically different performance in Figure 8 and
Figure 9—evidenced by substantial variance across sampling steps when using QFlow noise.

Moreover, FoldFlow-OT tends to overproduce α-helices—coiled, spiral-like structures—resulting in high designability
scores but deviating from realistic protein distributions. This pattern suggests a high risk of mode collapse, where the
model predominantly learns a specific subset of protein structures, thereby lacking diversity and novelty in its predictions.
Conversely, ReQFlow and QFlow generate a higher proportion of β-strands, which appear as extended, ribbon-like structures,
indicating a closer alignment with natural protein distributions.

Furthermore, as sampling steps decrease, most baseline models experience a sharp deterioration in quality: RMSD
values increase, rendering the structures non-designable. In extreme cases, some samples exhibit severe fragmentation or
disconnected backbones (e.g., the dashed regions in FoldFlow2 at 20 steps, Figure 8), highlighting instabilities in their
sampling dynamics.
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Table 8. Unconditional protein backbone generation performance for 10 samples each length in {60, 61, · · · , 128}. We report the metrics
from Section 4.1 and we indicate the best and top-3 results in the same way as Table 2 does.

Step Designability Diversity Novelty Sec. Struct.

Fraction (↑) scRMSD (↓) TM (↓) TM (↓) Helix Strand

Scope Dataset - - - - - 0.330 0.260

FrameFlow 500 0.849 1.448±1.114 0.397 0.713 0.439 0.236
400 0.864 1.353±0.890 0.390 0.713 0.452 0.229
300 0.861 1.422±1.178 0.389 0.715 0.449 0.230
200 0.842 1.496±1.411 0.387 0.704 0.437 0.237
100 0.823 1.517±1.228 0.388 0.697 0.426 0.238
50 0.820 1.546±1.316 0.379 0.685 0.441 0.228
20 0.713 1.918±1.495 0.362 0.656 0.416 0.219
10 0.504 2.924±2.362 0.381 0.626 0.363 0.213

ReFrameFlow 500 0.897 1.368±1.412 0.403 0.700 0.501 0.187
400 0.893 1.328±0.763 0.405 0.698 0.489 0.202
300 0.888 1.313±0.686 0.405 0.697 0.485 0.199
200 0.907 1.326±0.761 0.408 0.689 0.482 0.206
100 0.886 1.322±0.804 0.410 0.690 0.499 0.201
50 0.903 1.291±0.763 0.404 0.685 0.504 0.202
20 0.871 1.416±0.880 0.406 0.675 0.528 0.190
10 0.806 1.696±1.093 0.390 0.650 0.496 0.192

QFlow 500 0.907 1.263±1.334 0.389 0.712 0.498 0.214
400 0.907 1.199±0.847 0.394 0.711 0.476 0.223
300 0.910 1.243±1.027 0.393 0.710 0.503 0.209
200 0.877 1.309±1.208 0.389 0.714 0.481 0.224
100 0.903 1.283±1.027 0.390 0.702 0.476 0.225
50 0.872 1.389±1.314 0.371 0.674 0.491 0.206
20 0.764 1.764±1.529 0.367 0.646 0.492 0.192
10 0.565 2.589±2.216 0.374 0.614 0.467 0.167

ReQFlow 500 0.972 1.043±0.416 0.418 0.703 0.507 0.228
400 0.962 1.050±0.445 0.417 0.697 0.523 0.212
300 0.962 1.076±0.518 0.421 0.702 0.498 0.233
200 0.948 1.084±0.509 0.407 0.696 0.513 0.218
100 0.933 1.123±0.669 0.425 0.695 0.514 0.310
50 0.932 1.162±0.812 0.422 0.693 0.491 0.237
20 0.929 1.214±0.633 0.409 0.670 0.514 0.307
10 0.848 1.546±0.944 0.416 0.662 0.518 0.195

Table 9. Model Sizes and Training Dataset Sizes
Model Training Dataset Size Model Size (M)

RFDiffusion >208K 59.8
Genie2 590K 15.7
FrameDiff 23K 16.7
FoldFlow(Base,OT,SFM) 23K 17.5
FoldFlow2 ∼160K 672
FrameFlow 23K 16.7

QFlow 23K 16.7
ReQFlow 23K+7K 16.7
1 When training ReQFlow, we first apply the 23K samples of PDB to train

QFlow, and then we use additional 7K samples generated by QFlow in
the flow rectification phase.
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ReQFlow

RMSD=0.91

500 Steps

RMSD=1.02

300 Steps

RMSD=1.09

100 Steps

RMSD=1.02

50 Steps

RMSD=1.06

20 Steps

QFlow

FrameFlow

RMSD=4.17 RMSD=1.57 RMSD=2.16 RMSD=1.14 RMSD=1.39

RMSD=1.12RMSD=1.25RMSD=2.65RMSD=5.01RMSD=7.06

FoldFlow2

RMSD=0.65RMSD=2.18

FoldFlow-OT

RMSD=9.19 RMSD=4.39RMSD=5.81RMSD=10.42RMSD=1.61

FrameDiff

RMSD=12.71 RMSD=15.53

RMSD=0.60

RMSD=9.95

RMSD=2.94 RMSD=3.41

RMSD=9.11RMSD=7.16

Figure 8. Visualization of different methods on length 300. Sampling start with a same noise generated by QFlow.
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ReQFlow

RMSD=0.87

500 Steps

RMSD=0.79

300 Steps

RMSD=0.87
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RMSD=1.56
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RMSD=1.32
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RMSD=3.94 RMSD=1.66 RMSD=2.49 RMSD=4.16 RMSD=1.55
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FoldFlow2
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FrameDiff

RMSD=5.80 RMSD=3.08RMSD=4.01RMSD=4.66RMSD=6.03

RMSD=0.64 RMSD=1.15 RMSD=3.59

Figure 9. Visualization of different methods on length 300. Sampling start with a same noise generated by FoldFlow.
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Table 10. Comparisions for various methods on their performance (Fraction Score) in long backbone generation. The lengths of the
generated backbones range from 300 to 600. We generate 50 samples for each length. We bold the best result and show the top-3 results
with a blue background.

Length N 300 350 400 450 500 550 600

RFDiffusion 0.76 0.70 0.46 0.36 0.20 0.20 0.10
Genie2 0.86 0.90 0.74 0.58 0.28 0.12 0.10
FoldFlow2 0.96 0.88 0.70 0.56 0.60 0.26 0.16
FrameDiff 0.24 0.18 0.00 0.00 0.00 0.00 0.00
FoldFlow-OT 0.62 0.48 0.30 0.10 0.04 0.00 0.00
FrameFlow 0.72 0.74 0.48 0.28 0.24 0.10 0.00

QFlow 0.88 0.78 0.54 0.50 0.30 0.02 0.00
ReQFlow 0.98 0.96 0.78 0.76 0.70 0.56 0.10
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