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ABSTRACT

Multistep returns such as n-step returns are commonly used to improve the sam-
ple efficiency of deep reinforcement learning (RL). Variance becomes the limiting
factor in the length of the returns; looking too far into the future increases un-
certainty and reverses the benefit of multistep learning. In our work, we study
the ability of compound returns—weighted averages of n-step returns—to reduce
variance. The λ-return, used by TD(λ), is the most well-known compound return.
We prove for the first time that any compound return with the same contraction
rate as a given n-step return has strictly lower variance when experiences are not
perfectly correlated. Because the λ-return is expensive to implement in deep RL,
we also introduce an approximation called Piecewise λ-Return (PiLaR), formed
by averaging two n-step returns, that offers similar variance reduction while being
efficient to implement with minibatched experience replay. We conduct experi-
ments showing PiLaRs can train Deep Q-Networks faster than n-step returns with
little additional computational cost.

1 INTRODUCTION

Efficiently learning value functions is critical for reinforcement learning (RL) algorithms. Value-
based RL methods (e.g., Watkins, 1989; Rummery & Niranjan, 1994; Mnih et al., 2015) encode
policies implicitly in a value function, and therefore policy evaluation is the principal mechanism
of learning. Even when RL methods instead learn parametric policies, accurate value functions are
needed to guide policy improvement (e.g., Silver et al., 2014; Lillicrap et al., 2016; Fujimoto et al.,
2018; Haarnoja et al., 2018) or to serve as a baseline (e.g., Barto et al., 1983; Sutton, 1984; Williams,
1992; Schulman et al., 2015a). Quicker policy evaluation is therefore useful to many RL algorithms.

One way to achieve faster value-function learning is through multistep returns, in which more than
one reward following an action is used for reinforcement. Multistep returns have been extensively
used in deep RL (e.g. Schulman et al., 2015b; Mnih et al., 2016; Munos et al., 2016; Schulman
et al., 2017; Hessel et al., 2018; Schrittwieser et al., 2020; Chebotar et al., 2023; Schwarzer et al.,
2023), where the value function is approximated by a neural network. In theory, multistep returns
incorporate additional information regarding future outcomes, leading to faster credit assignment
and, in turn, faster learning. However, faster learning is not guaranteed in practice because looking
farther into the future increases uncertainty and can end up requiring more samples. These two
opposing factors must be balanced to achieve fast and stable learning. The most common multistep
returns are n-step returns and λ-returns, both of which span between standard temporal-difference
(TD; Sutton, 1988) and Monte Carlo (MC) learning through the choice of value of n or λ.

The main consideration in choosing which of these return estimators to use has generally been
implementation. In classic RL, the value function is a lookup table or a linear parametric function, so
the λ-return is preferred for its efficient implementation using TD(λ) with eligibility traces (Sutton,
1988). However, in deep RL, the value function is a neural network trained with an experience
replay buffer (Lin, 1992), so the extra bootstrapping performed by the λ-return becomes costly and
n-step returns are more common. Although recent work has explored ways to efficiently train neural
networks using replayed λ-returns (e.g., Munos et al., 2016; Harb & Precup, 2016; Daley & Amato,
2019), λ-returns generally remain more expensive or complex to implement than n-step returns.

Despite its challenging implementation in deep RL, the λ-return is interesting because it averages
many n-step returns together. This averaging might reduce variance and therefore lead to faster
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learning than n-step returns, but this has never been shown. More generally, the λ-return is an
example of a compound return, or a weighted average of two or more n-step returns (Sutton & Barto,
2018, sec. 12.1). While compound returns are understood to be theoretically sound, they have not
been extensively analyzed. These averages are ideally suited for deep RL because experiences are
already stored in a replay memory, making it easy to compute several n-step returns cheaply and
then average them together in any desired way.

In this paper, we formally investigate the variance of compound returns. We derive the first variance
model for arbitrary compound returns. Our assumptions are a significant relaxation of previous work
that modeled n-step variance (Konidaris et al., 2011). We further prove that all compound returns
have a variance-reduction property; any compound return that achieves the same contraction rate
as an n-step return has strictly lower variance if the TD errors are not perfectly correlated, which is
almost always the case in practice. As a corollary, there exists a λ-return for every n-step return that
achieves the same contraction rate but lower variance, implying a better bias-variance trade-off.

Because the λ-return remains expensive to implement for deep RL, we propose an efficient approx-
imation called Piecewise λ-Returns (PiLaRs). A PiLaR is computed by averaging just two n-step
returns together—the most efficient compound return possible. The lengths of the n-step returns are
chosen to put weights on the TD errors that are close to those assigned by TD(λ), thereby achieving
similar variance reduction as the λ-return. We show that PiLaRs improve sample efficiency com-
pared to n-step returns when used to train Deep Q-Network (DQN; Mnih et al., 2015), and we expect
to see similar improvements for other value-based deep RL methods.

2 BACKGROUND

Value-based RL agents interact with their environments to iteratively improve estimates of their
expected cumulative reward. By convention, the agent-environment interaction is modeled as a
Markov decision process (MDP) described by the tuple (S,A, P,R). At each time step t of the
process, the agent observes the environment state, St ∈ S, and selects an action, At ∈ A, accord-
ingly. The environment then transitions to a new state, St+1 ∈ S, with probability P (St+1 | St, At),
and returns a scalar reward, Rt

def
= R(St, At, St+1). We assume the agent samples each action with

probability π(At|St), where π is a stochastic policy.

In the standard prediction problem, the agent’s goal is to learn a value function V : S → R that esti-
mates the expected discounted return vπ(s) attainable in each state s. Letting Gt

def
=
∑∞

i=0 γ
iRt+i be

the observed Monte Carlo (MC) return at time t, where γ ∈ [0, 1] is a discount factor and actions are
implicitly sampled from π, then vπ(s)

def
= E[Gt | St = s]. The basic learning operation is a backup,

which has the general form

V (St)← V (St) + αt

(
Ĝt − V (St)

)
, (1)

where Ĝt is a return estimate (the target) and αt ∈ (0, 1] is a step-size hyperparameter. Substituting
various estimators for Ĝt leads to different learning properties. For instance, the MC return could
be used, but it suffers from high variance, and delays learning until the end of an episode. To reduce
the variance and delay, return estimates can bootstrap from the value function. Bootstrapping is the
fundamental mechanism underlying TD learning (Sutton, 1988). The most basic multistep version
of TD learning uses the n-step return as its target in Eq. (1):

Gn
t

def
= Rt + γRt+1 + · · ·+ γn−1Rt+n−1 + γnV (St+n) . (2)

Bootstrapping introduces significant bias in the update, since generally E [V (St+n) | St] ̸=
vπ(St+n) due to estimation error, but it greatly reduces variance. The case of n = 1 corresponds
to the classic TD(0) algorithm, V (St) ← V (St) + αtδt, where δt

def
= Rt + γV (St+1)− V (St) is

the TD error. However, bootstrapping after just one reward is slow because long-term reward infor-
mation must propagate indirectly through the value function, requiring many behavioral repetitions
before V approximates vπ well. Larger values of n consider more rewards per update and assign
credit faster, but at the price of increased variance, with n → ∞ reverting to the MC return. The
choice of n thus faces a bias-variance trade-off (Kearns & Singh, 2000), with intermediate values
typically performing best in practice (Sutton & Barto, 2018, ch. 7). Another type of multistep return
is the λ-return, used by TD(λ) algorithms (Sutton, 1988), which is equivalent to an exponentially
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weighted average of n-step returns:

Gλ
t

def
= (1− λ)

∞∑
n=1

λn−1Gn
t , (3)

where λ ∈ [0, 1]. This form of the λ-return looks difficult to compute, but it has a recursive structure
that enables efficient sequential computation (see Section 4). The λ-return is just one way to average
n-step returns together, but any weighted average is possible. Such averages are known as compound
returns (Sutton & Barto, 2018, ch. 12). Formally, a compound return is expressed as

Gw
t

def
=

∞∑
n=1

wnG
n
t , (4)

where w is an infinite sequence of nonnegative weights with the constraint
∑∞

n=1 wn = 1. Eq. (4) is
a strict generalization of all of the aforementioned return estimators; however, it technically consti-
tutes a compound return if and only if at least two of the weights are nonzero—otherwise, it reduces
to an n-step return. All choices of weights that sum to 1 are equally valid in the sense that using their
compound returns as the target in Eq. (1) will converge to vπ under the standard step-size criteria
(Robbins & Monro, 1951). However, in practice, this choice greatly affects the bias and variance of
the estimator and, as a consequence, the empirical rate of convergence to vπ . Furthermore, different
choices of weights will vary in the amount of computation needed; sparse weights require less boot-
strapping, and therefore less computation when the value function is expensive. A principal goal
of this paper is to shed light on the trade-offs between these factors and to develop new compound
returns that favorably balance all of these considerations (see Section 4).

Most deep RL agents are control agents, meaning they do not just predict vπ for a fixed policy,
but also use these estimates to update the behavior policy during training. One way to do this
is Q-Learning (Watkins, 1989). Rather than learning a state-value function V , the agent learns
an action-value function Q : S × A → R that estimates the expected return q∗(s, a) earned by
following an optimal policy after taking action a in state s. The estimated value of a state is therefore
V (s) = maxa∈A Q(s, a), and all of the previously discussed return estimators apply after making
this substitution. Backups are conducted as before, but now operate on Q(St, At) instead of V (St).

Learning is off-policy in this setting, since the agent now predicts returns for a greedy policy that
differs from the agent’s behavior. Any multistep return is therefore biased unless the expectation is
explicitly corrected, e.g., by importance sampling (Kahn & Harris, 1951). However, it is common
practice to ignore this bias in deep RL, and recent research has even suggested that doing so is
more effective with both n-step returns (Hernandez-Garcia & Sutton, 2019) and λ-returns (Daley
& Amato, 2019; Kozuno et al., 2021), the latter of which become Peng’s Q(λ) (Peng & Williams,
1994). For these reasons, we also forego off-policy corrections in our work.

3 VARIANCE ANALYSIS

Our main goal of this section is to derive conditions for when a compound return reduces variance
compared to a given n-step return. We call this the variance-reduction property of compound returns
(see Theorem 1). An important consequence of this property is that when these conditions are met
and both returns are chosen to have the same contraction rate, the compound return needs fewer
samples than the n-step return to converge (see Theorem 2).

Before we start, we note that our real quantity of interest in this section is the variance of the backup
error Ĝt − V (St) conditioned on the state St. The degree of this quantity’s deviation from its ex-
pected value is what ultimately impacts the performance of value-based RL methods in Eq. (1). Nev-
ertheless, this turns out to be the same as the variance of the return Ĝt, since V (St) contributes no
randomness when conditioned on the state St, and therefore Var[Ĝt − V (St) | St] = Var[Ĝt | St].
This equivalence allows us to interchange between the variances of a return and its error, depending
on which is more computationally convenient. For brevity, we omit the condition on St throughout
our analysis, but it should be assumed for all variances and covariances.

Modeling the variance of a compound return is challenging because it typically requires making
assumptions about how the variances of n-step returns increase as a function of n, as well as how

3



strongly correlated different n-step returns are. If these assumptions are too strong, the derived
variances will fail to reflect reality and lead to poorly informed algorithmic choices. For instance,
consider the following simple example of a compound return: (1− w)G1

t + wG2
t , where w ∈ (0, 1).

Let σ2
n

def
= Var[Gn

t ]. The variance of this compound return is

(1− w)2σ2
1 + w2σ2

2 + 2w(1− w)σ1σ2 Corr[G
1
t , G

2
t ] .

To evaluate this expression, it would be tempting to assume either Corr[G1
t , G

2
t ] = 0 to remove

the covariance term, or Corr[G1
t , G

2
t ] = 1 because both returns are generated from the same tra-

jectory. However, neither assumption captures the underlying complexity of the average, since
(1− w)G1

t + wG2
t = (1− w)G1

t + w
(
G1

t + γδt+1

)
= G1

t + wγδt+1. Thus, averaging these re-
turns by choosing w can mitigate only the variance due to δt+1, but the randomness of G1

t can never
be averaged out. Two different n-step returns are therefore neither uncorrelated nor perfectly corre-
lated; they consist of various random elements, some of which are shared and cannot be averaged,
and others which are not shared and can be averaged. Any model that fails to account for this partial
averaging will lead to poor variance predictions. To be accurate, our variance assumptions must start
from the most fundamental unit of randomness within a return: the TD error. We therefore propose
the following uniformity assumptions on the TD errors.
Assumption 1. TD errors have uniform variance: Var[δi] = κ, ∀ i.
Assumption 2. Pairs of distinct TD errors are uniformly correlated: Corr[δi, δj ] = ρ, ∀ i, j ̸= i.

These assumptions are reasonable, as they would be difficult to improve without invoking specific
information about the MDP’s transition function or reward function. We note that Konidaris et al.
(2011) similarly made Assumption 1 for their n-step return variance model. However, in compari-
son, Assumption 2 is a significant relaxation and generalization of the other assumptions made by
their model, which we show later in this section.

Note that Assumption 2 implies ρ ≥ 0, because three or more TD errors cannot be negatively
correlated simultaneously. Furthermore, the assumption is equivalent to Cov[δi, δj ] = ρκ for all i
and j ̸= i. Since Var[δi] = Cov[δi, δi], we can combine Assumptions 1 and 2 into one statement:

Cov[δi, δj ] = ((1− ρ)1i=j + ρ)κ , (5)

where 1i=j is 1 when i = j and is 0 otherwise. In the proposition below, we derive a variance model
for the n-step return by decomposing the return into a sum of discounted TD errors and then adding
up the pairwise covariances given by Eq. (5). For brevity, we define a function Γc(n) to represent
the sum of the first n terms of a geometric series with common ratio γc, where c > 0:

Γc(n)
def
=

{
(1− γcn) / (1− γc) , for 0 ≤ γ < 1 ,

n , for γ = 1 .
(6)

Proposition 1 (n-step variance). Under Assumptions 1 and 2, the variance of an n-step return is

Var [Gn
t ] = (1− ρ) Γ2(n)κ+ ρΓ1(n)

2
κ .

We include all proofs in Appendix B. Our n-step variance model linearly interpolates between an
optimistic case where TD errors are uncorrelated (ρ = 0) and a pessimistic case where TD errors
are maximally correlated (ρ = 1). In the maximum-variance scenario of γ = 1, we have Γ1(n) =
Γ2(n) = n, so the model becomes (1− ρ)nκ+ ρn2κ. We further note that the optimistic case with
ρ = 0 recovers the n-step variance model from Konidaris et al. (2011, sec. 3), showing that the
assumptions made in their model are equivalent to assuming that all TD errors are uncorrelated. In
this case, the n-step variance increases (sub)linearly with n when γ is equal to (less than) 1.

Another advantage of our assumptions is that they allow us to go beyond n-step returns and calculate
variances for arbitrary compound returns. We accomplish this by again decomposing the return into
a weighted sum of TD errors (see the next lemma) and then applying Assumptions 1 and 2 to derive
a compound variance model in the following proposition.
Lemma 1. A compound error can be written as a weighted summation of TD errors:

Gw
t − V (St) =

∞∑
i=0

γiWiδt+i , where Wi
def
=

∞∑
n=i+1

wn .
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Proposition 2 (Compound variance). Under Assumptions 1 and 2, the variance of a compound
return is

Var [Gw
t ] = (1− ρ)

∞∑
i=0

γ2iW 2
i κ+ ρ

∞∑
i=0

∞∑
j=0

γi+jWiWjκ . (7)

The cumulative weights {Wi}∞i=0 fully specify the variance of a compound return. For instance,
the λ-return assigns a cumulative weight of Wi =

∑∞
n=i+1(1− λ)λn−1 = λi to the TD error δt+i,

which matches the TD(λ) algorithm (Sutton, 1988). Substituting this weight into Eq. (7) and solving
the geometric series yields the variance for the λ-return (see Appendix C).

3.1 THE VARIANCE-REDUCTION PROPERTY OF COMPOUND RETURNS

Proposition 2 provides a method of calculating variance, but we would still like to show that com-
pound returns reduce variance relative to n-step returns. To do this, we first need a way to relate
them in terms of their expected learning performance. This is because low variance by itself is not
sufficient for fast learning; for example, the 1-step return has very low variance, but learns slowly.

In the discounted setting, a good candidate for learning speed is the contraction rate of the expected
update. The contraction rate is a constant factor by which the maximum value-function error be-
tween V and vπ is guaranteed to be reduced. When the contraction rate is less than 1, the return
estimator exhibits an error-reduction property: i.e., the maximum error decreases on average with
every backup iteration of Eq. (1). This property is commonly used in conjunction with the Banach
fixed-point theorem to prove that V eventually converges to vπ (see, e.g., Bertsekas & Tsitsiklis,
1996, sec. 4.3). The error-reduction property of n-step returns was first identified by Watkins (1989)
and is expressed formally as

max
s∈S
|E [Gn

t | St = s]− V (s)| ≤ γn max
s∈S
|V (s)− vπ(s)| . (8)

The contraction rate is the coefficient on the right hand side of the inequality—in this case, γn.
Increasing n reduces the contraction rate, increasing the expected convergence rate. The error-
reduction property of n-step returns implies a similar property for compound returns, since a convex
combination of n-step returns cannot have a higher contraction rate than that of its shortest n-step
return. Although Sutton & Barto (2018, sec. 12.1) mentions that compound returns can be shown
to have this error-reduction property, it has never been made explicit to our knowledge, and so we
formalize it in the following proposition.
Proposition 3 (Compound error-reduction property). Any compound return satisfies the inequality

max
s∈S
|E [Gw

t | St = s]− V (s)| ≤

( ∞∑
n=1

wnγ
n

)
max
s∈S
|V (s)− vπ(s)| . (9)

Proposition 3 shows the contraction rate of a compound return is the weighted average of the indi-
vidual n-step returns’ contraction rates. We can therefore find an n-step return that has the same
error-reduction property as a given compound return by solving the equation

γn =

∞∑
n′=1

wn′γn′
(10)

for n. We call this the effective n-step of the compound return, since the compound return reduces
the worst-case value-function error as though it were an n-step return whose length is the solution
to Eq. (10). Note that the effective n-step assumes the weights w are chosen such that this solution
is an integer—otherwise rounding is necessary and the contraction rates will not be exactly equal.

In undiscounted settings, we cannot directly equate contraction rates like this. When γ = 1, the
contraction rate of any return becomes

∑∞
n′=1 wn′ = 1. Fortunately, even though contraction rates

cannot be directly compared in undiscounted problems, we can still solve the limit of Eq. (10) as
γ → 1 to define the effective n-step in this setting. We show this in the following proposition.
Proposition 4 (Effective n-step of compound return). Let Gw

t be any compound return and let

n =

{
logγ

(∑∞
n′=1 wn′γn′

)
, if 0 < γ < 1 ,∑∞

n′=1 wn′n′ , if γ = 1 .
(11)

5



Gw
t shares the same bound in Eq. (9) as the n-step return Gn

t if n is an integer.

We refer to the quantity
∑∞

n′=1 wn′n′ as the center of mass (COM) of the return, since it is the first
moment of the weight distribution over n-step returns. Intuitively, this represents the average length
into the future considered by the return. With this definition, we are now ready to formalize the
variance-reduction property of compound returns in the next theorem.
Theorem 1 (Variance-reduction property of compound returns). Consider a compound return Gw

t
and an n-step return Gn

t with n defined by Eq. (11). Under Assumptions 1 and 2, the inequality
Var[Gw

t ] ≤ Var[Gn
t ] always holds. Furthermore, the inequality is strict whenever ρ < 1.

Theorem 1 shows that whenever a compound return has the same contraction rate (γ < 1) or COM
(γ = 1) as an n-step return, it has lower variance as long as the TD errors are not perfectly cor-
related. Perfect correlation between all TD errors would be unlikely to occur except for contrived,
maximum-variance MDPs; thus, compound returns reduce variance in virtually all practical cases.
Crucially, variance reduction is achieved for any type of weighted average—although the magnitude
of reduction does depend on the specific choice of weights. The exact amount, in terms of κ, could
be calculated by subtracting the compound variance from the n-step variance for a given contraction
rate or COM. An interesting avenue for future work is to derive weights that maximize the variance
reduction magnitude under Assumptions 1 and 2.

3.2 FINITE-TIME ANALYSIS

To prove that lower variance does lead to faster learning, we conduct a finite-time analysis of com-
pound TD learning. We consider linear function approximation, where V (s) = ϕ(s)⊤θ for features
ϕ(s) ∈ Rd and parameters θ ∈ Rd; tabular methods can be recovered using one-hot features. The
parameters are iteratively updated according to

θt+1 = θt + αgw
t (θt) , where gw

t (θ)
def
=
(
Gw

t − ϕ(St)
⊤θ
)
ϕ(St) . (12)

Our theorem generalizes recent analysis of 1-step TD learning (Bhandari et al., 2018, theorem 2).
Theorem 2 (Finite-Time Analysis of Compound TD Learning). Suppose TD learning with linear
function approximation is applied under an i.i.d. state model (see Assumption 3 in Appendix B.2)
using the compound return estimator Gw

t as its target. Let β ∈ [0, 1) be the contraction rate of
the estimator (see Proposition 3), and let σ2 ≥ 0 be the variance of the estimator under Assump-
tions 1 and 2. Assume that the features are normalized such that ∥ϕ(s)∥22 ≤ 1, ∀ s ∈ S. Define
C

def
= (∥R∥∞ + (1 + γ)∥θ∗∥∞) / (1− γ), where θ∗ is the minimizer of the projected Bellman error

for Gw
t . For any T ≥ (4 / (1− β))2 and a constant step size α = 1 /

√
T ,

E
[∥∥Vθ∗ − Vθ̄T

∥∥2
D

]
≤
∥θ∗ − θ0∥22 + 2(1− β)2C2 + 2σ2

(1− β)
√
T

, where θ̄T
def
=

1

T

T−1∑
t=0

θt .

With a constant step size, compound TD learning (and hence n-step TD learning as a special case)
reduces the value-function error at the same asymptotic rate of O(1/

√
T ) for any return estimator.

However, both the contraction rate β and the return variance σ2 greatly influence the magnitude of
the constant that multiplies this rate. Given an n-step return and a compound return with the same
contraction rate, the compound return has lower variance by Theorem 1 and therefore converges
faster to its respective TD fixed point.

3.3 CASE STUDY: λ-RETURNS

Although the λ-return is often associated with its efficient implementation using TD(λ) and eligi-
bility traces, our theory indicates that pursuing λ-returns for faster learning via variance reduction
is also promising. We empirically support our theory by demonstrating the benefit of λ-returns in
the random walk experiment from Sutton & Barto (2018, sec. 12.1). In this environment, the agent
begins in the center of a linear chain of 19 connected states and can move either left or right. The
agent receives a reward only if it reaches one of the far ends of the chain (−1 for the left, +1 for the
right), in which case the episode terminates. The agent’s policy randomly moves in either direction
with equal probability. We train the agents for 10 episodes, updating the value functions after each
episode with offline backups like Eq. (1). To pair the n-step returns and λ-returns together, we derive
the effective λ of an n-step return in the following proposition.
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Figure 1: Comparing n-step returns and λ-returns, paired by equal COMs, in a random walk.

Proposition 5 (Effective λ of n-step return). For any n ≥ 1, the λ-return with λ = (1 − γn−1) /
(1 − γn) has the same contraction rate as the n-step return when γ < 1, and the λ-return with
λ = (n− 1) / n has the COM as the n-step return when γ = 1.

Table 1: n-step re-
turns and λ-returns
with equal COMs.

n λ

1 0
2 0.5
3 0.67
4 0.75
5 0.8

10 0.9
20 0.95
25 0.96
50 0.98

100 0.99

Because this is an undiscounted task, we use the mapping n 7→ (n− 1) / n
to enumerate several (n, λ)-pairs with equal COMs in Table 1. For our ex-
periment, we choose four commonly used n-step values {2, 3, 5, 10}, which
correspond to λ ∈ {0.5, 0.67, 0.8, 0.9}. In Figure 1, we plot the average
root-mean square (RMS) value error (with respect to vπ) as a function of the
step size α over 100 trials. We also indicate 95% confidence intervals by the
shaded regions. For all of the tested (n, λ)-pairs, an interesting trend emerges.
In the left half of each plot, variance is not an issue because the step size is
small and has plenty of time to average out the randomness in the estimates.
Learning therefore progresses at a nearly identical rate for both the n-step
return and the λ-return since they have the same COM (although there is a
small discrepancy as λ → 1 due to the truncation of the episodic task, which
reduces the λ-return’s COM). However, as α → 1 in the right half of each
plot, variance becomes a significant factor as the step size becomes too large
to mitigate the noise in the updates. This causes the n-step return’s error to
diverge sharply compared to the λ-return’s as the λ-return manages variance
more effectively. Overall, the λ-return is never significantly worse than the
n-step return, and often much better. The best performance attained by the λ-return is also better
than that of the n-step return in all cases. Notably, neither Assumption 1 nor 2 holds perfectly in this
environment, demonstrating that our variance model’s predictions are useful in practical settings.

4 EFFICIENTLY APPROXIMATING THE λ-RETURN

Although the previous experiment shows that λ-returns promote faster learning, they remain expen-
sive for deep RL. This is because the λ-return at time t theoretically bootstraps on every time step
after t (until the end of an episode), with each bootstrap requiring a forward pass through the neural
network. While the λ-return can be truncated to reduce computation, it still requires N bootstraps
compared to just one for an n-step return if N is the truncation length. Previous work has amor-
tized the cost of λ-returns over long trajectories by exploiting their recursive structure (e.g., Munos
et al., 2016; Harb & Precup, 2016; Daley & Amato, 2019). This works because δλt = δt + γλδλt+1,
where δλt

def
= Gλ

t − V (St) is the TD(λ) error, so the return at time t can be computed using only
one bootstrap given that δλt+1 has already been computed. The price to pay for this efficiency is the
requirement that experiences must be temporally adjacent, and it can be seen from the ablation ex-
periment in Daley & Amato (2019, fig. 2) that the resulting sample correlations do hurt performance.
Our preliminary experiments confirmed this, indicating that the correlations within replayed trajec-
tories counteract the benefits of λ-returns when compared to minibatches of n-step returns (with the
batch size chosen to equalize computation).

We instead seek a compound return that approximates the variance-reduction property of the λ-
return while being computationally efficient for random-minibatch replay. There are many ways
we could average n-step returns together, and so we constrain our search by considering compound
returns that 1) comprise an average of only two n-step returns to minimize computational cost,
2) preserve the contraction rate or COM of the λ-return, and 3) place weights on the TD errors that
are close to those assigned by the λ-return—i.e., TD(λ).
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The first property constrains our estimator to have the form (1− w)Gn1
t + wGn2

t , where
1 ≤ n1 < n2 and w ∈ [0, 1]. Let n be our targeted effective n-step; the effective λ can be ob-
tained from Proposition 5. Let us further assume γ < 1, since deep RL methods commonly discount
rewards (see Appendix D for the case where γ = 1). To preserve the contraction rate as in the
second property, we must satisfy (1−w)γn1 +wγn2 = γn. Assuming that we have freedom in the
choice of n1 and n2, it follows that w = (γn − γn1) / (γn2 − γn1). We would thus like to find n1

and n2 such that the weights given to the TD errors optimize some notion of closeness to the TD(λ)
weights, in order to fulfill the third and final property. Although there are many ways we could
define the error, we propose to minimize the maximum absolute difference between the weights,
since this ensures that no individual weight deviates too far from the TD(λ) weight. Recall that the
weight given to TD error δt+i by n-step return Gn

t is γi if i < n and is 0 otherwise. It follows that
our average assigns a weight of γi if i < n1 (since (1 − w)γi + wγi = γi), wγi if n1 ≤ i < n2,
and 0 otherwise. In comparison, TD(λ) assigns a weight of (γλ)i. Our error function is therefore

ERROR(n1, n2)
def
= max

i≥0

∣∣Wi − (γλ)i
∣∣, where Wi =


γi , if i < n1 ,

wγi , else if i < n2 ,

0 , else.
(13)
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Figure 2: TD-error weights
for a PiLaR and a λ-return
(λ = 0.904). Both returns have
the same contraction rate as a 10-
step return when γ = 0.99.

We call our approximation Piecewise λ-Return (PiLaR) because
each weight Wi is a piecewise function whose value depends
on where i lies in relation to the interval [n1, n2). Figure 2 illus-
trates how PiLaR roughly approximates the TD(λ) decay using a
step-like shape. Although PiLaR’s TD-error weights do not form
a smooth curve, they retain important properties like contraction
rate, monotonicity, and variance reduction. Crucially, a PiLaR is
significantly cheaper to compute than a λ-return, making it more
suitable for minibatch experience replay. In Appendix D, we de-
scribe a basic search algorithm for finding the best (n1, n2)-pair
according to Eq. (13), along with a reference table of precom-
puted PiLaRs for γ = 0.99.

5 DEEP RL EXPERIMENTS

We consider a multistep generalization of the Deep Q-Network
(DQN) architecture (Mnih et al., 2015). The action-value func-
tion Q(s, a; θ) is implemented as a neural network to enable gen-
eralization over high-dimensional states, where θ ∈ Rd is the
learnable parameters. A stale copy θ− of the parameters is used
only for bootstrapping and is infrequently updated from θ in or-
der to stabilize learning. The agent interacts with its environment
and stores each MDP transition (s, a, r, s′)—where s is the state, a is the action, r is the reward, and
s′ is the next state—in a replay memory D. The network’s loss function is defined as

L(θ, θ−) def
= E

[
1

2

(
Ĝ(r, s′, . . . ; θ−)−Q(s, a; θ)

)2]
,

where Ĝ(r, s′, . . . ; θ−) is a multistep return estimator for q∗(s, a) and the expectation is taken over a
uniform distribution on D. The network is trained by minimizing this loss using stochastic gradient
descent (e.g., Adam; Kingma & Ba, 2015) on random minibatches of experiences sampled from D.

We test our agents in four MinAtar games (Young & Tian, 2019): Breakout, Freeway, Seaquest,
and Space Invaders. The states are represented by 10 × 10 multi-channel images depicting object
locations and velocity trails. The agents’ network is a two-layer convolutional architecture with
rectified linear units (ReLUs), and we add a dueling output layer (Wang et al., 2016) to improve
action-value estimation. The agents execute an ϵ-greedy policy for 5M time steps (where ϵ is linearly
annealed from 1 to 0.1 over the first 100k steps) and conduct a minibatch update of 32 samples every
4 steps. We provide more details in Appendix E. Code is included in the supplementary material.

For n ∈ {3, 5, 10}, we compare the n-step return against the corresponding PiLaR of the same
contraction rate for the given discount factor, γ = 0.99 (see Table 2 in Appendix D for specific values
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Figure 3: Step-size sensitivity curves for n-step returns and PiLaRs in four MinAtar games (n = 5).

of n1, n2, and w). We chose five Adam step sizes from a logarithmic grid search and generated
learning curves by plotting the 100-episode moving average of undiscounted return versus time
steps. We then calculated the area under each curve (AUC), normalized by training duration, and
plotted these values against the step size (α). We showcase these plots for n = 5 in Figure 3 and
include all of the plots in Appendix E, including the learning curves. The results are averaged over
32 trials, with the shaded regions showing 95% confidence intervals. The horizontal dashed lines
indicate the maximum performance achieved by each agent.

Although each pair of n-step return and PiLaR has the same contraction rate, PiLaRs are able to im-
prove performance compared to n-step returns, supporting our hypothesis that a two-return average
is able to appreciably reduce variance. The results somewhat mirror those from our earlier random
walk experiment; when the step size is very small, there is no discernible difference between the es-
timators, but their performances begin to diverge as the step size grows and variance becomes more
significant. In almost all cases (10 out of 12), PiLaR increases the agent’s maximum performance
with the best step size. Furthermore, the average performance gap across α-values appears to widen
as n increases, suggesting that PiLaR’s benefit becomes more pronounced for longer—and, hence,
higher-variance—n-step returns. These results help to corroborate our theory and show that the
variance reduction from PiLaRs can accelerate learning even for nontrivial network architectures.

6 CONCLUSION

We have shown for the first time that compound returns, including λ-returns, have a variance-
reduction property. This is the first evidence, to our knowledge, that λ-returns have a theoretical
learning advantage over n-step returns in the absence of function approximation; it was previously
believed that both were different yet equivalent ways of interpolating between TD and MC learn-
ing. Our random walk experiments confirm that an appropriately chosen λ-return performs as least
as well as—and often better than—a given n-step return across the entire range of step sizes. In
replay-based deep RL methods like DQN, where λ-returns are difficult to implement efficiently, we
demonstrated with PiLaR that a simpler average is still able to effectively reduce variance and train
neural networks faster. Since the average is formed from only two n-step returns, the increase in
computational cost is negligible compared to n-step DQN—less expensive than adding a second
target network, as is often done in recent methods (e.g., Fujimoto et al., 2018; Haarnoja et al., 2018).

A number of interesting extensions to our work are possible. For instance, we derived PiLaR under
the assumption that the λ-return is a good estimator to approximate. However, the exponential decay
of the λ-return originally arose from the need for an efficient online update rule using eligibility
traces, and is not necessarily optimal in terms of the bias-variance trade-off. With experience replay,
we are free to average n-step returns in any way we want, even if the average would not be easily
implemented online. This opens up exciting possibilities for new families of return estimators: e.g.,
those that minimize variance for a given contraction rate or COM. Based on our compound variance
model (Proposition 2), a promising direction in this regard appears to be weights that initially decay
faster than the exponential function but then slower afterwards. Minimizing variance becomes even
more important for off-policy learning, where the inclusion of importance-sampling ratios greatly
exacerbates variance. Recent works (Munos et al., 2016; Daley et al., 2023) have expressed arbitrary
off-policy corrections in terms of weighted sums of TD errors, and so our theory could be extended
to this setting with only minor modifications.
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A HOW REALISTIC IS THE PROPOSED VARIANCE MODEL?

Assumptions 1 and 2 state that all TD errors have uniform variance and are equally correlated to one
another. Since these assumptions may be violated in practice, it is informative to test how well our
n-step variance model (Proposition 1) compares to the true n-step variances in several examples.

We consider three environments: the 19-state random walk (see Section 3), a 4×3 gridworld (Russell
& Norvig, 2009, fig. 17.1), and a 10×8 gridworld (Sutton & Barto, 2018, fig. 7.4). We choose these
environments because they have known dynamics and are small enough to allow exact calculation of
vπ with dynamic programming. The two gridworlds are stochastic because each of the four moves
(up, down, left, right) succeeds with only probability 80%; otherwise, the move is rotated by 90
degrees in either direction with probability 10% each. We let the agent execute a uniform-random
behavior policy for all environments.

To make the results agnostic to any particular learning algorithm, we use vπ to compute the TD
errors. We apply a discount factor of γ = 0.99 to the 10 × 8 gridworld (otherwise vπ(s) would
be constant for all s due to the single nonzero reward) and leave the other two environments undis-
counted. We then measure the variance of the n-step returns originating from the initial state of each
environment, for n ∈ [1, 21]. Figure 4 shows these variances plotted as a function of n and averaged
over 10k episodes. The best-case (optimistic, ρ = 0) and worst-case (pessimistic, ρ = 1) variances
predicted by the n-step model, assuming that κ = Var[δ0], are also indicated by dashed lines.

For all of the environments, the measured n-step variances always remain within the lower and
upper bounds predicted by Proposition 1. These results show that our n-step variance model can still
make useful variance predictions even when Assumptions 1 and 2 do not hold. The variances also
grow roughly linearly as a function of n, corresponding more closely to the linear behavior of the
optimistic, uncorrelated case than the quadratic behavior of the pessimistic, maximally correlated
case. This further suggests that the majority of TD-error pairs are weakly correlated in practice,
which makes sense because temporally distant pairs are unlikely to be strongly related.
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Figure 4: Variances of the n-step returns originating from the initial state in three environments.
The solid green line indicates the true variance while the dashed black lines indicate the lower and
upper bounds predicted by our n-step variance model.
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B PROOFS

In this section, we include all proofs that were omitted from the main paper due to space constraints.

B.1 VARIANCE MODELING

This section contains proofs related to return-variance modeling and the variance-reduction property.

B.1.1 PROPOSITION 1

Proposition 1 (n-step variance). Under Assumptions 1 and 2, the variance of an n-step return is

Var [Gn
t ] = (1− ρ) Γ2(n)κ+ ρΓ1(n)

2
κ .

Proof. The n-step error can be expressed as a finite summation of TD errors:

Gn
t − V (St) =

n−1∑
i=0

γiδt+i . (14)

Using this, we calculate the covariance between two n-step returns with lengths n1, n2:

Cov [Gn1
t , Gn2

t ] = Cov

n1−1∑
i=0

γiδt+i,

n2−1∑
j=0

γjδt+j


=

n1−1∑
i=0

n2−1∑
j=0

Cov
[
γiδt+i, γ

jδt+j

]
=

n1−1∑
i=0

n2−1∑
j=0

γi+jCov [δt+i, δt+j ]

=

n1−1∑
i=0

n2−1∑
j=0

γi+j((1− ρ)1i=j + ρ)κ

= (1− ρ)

min(n1,n2)−1∑
i=0

γ2iκ+ ρ

n1−1∑
i=0

n2−1∑
j=0

γi+jκ

= (1− ρ)

min(n1,n2)−1∑
i=0

γ2iκ+ ρ

n1−1∑
i=0

γi
n2−1∑
j=0

γjκ

= (1− ρ) Γ2(min(n1, n2))κ+ ρΓ1(n1) Γ1(n2)κ . (15)

Because Var [Gn
t ] = Cov [Gn

t , G
n
t ], then by letting n1 = n2 = n, we obtain the n-step variance

formula and the proof is complete.

B.1.2 LEMMA 1

Lemma 1. A compound error can be written as a weighted summation of TD errors:

Gw
t − V (St) =

∞∑
i=0

γiWiδt+i , where Wi
def
=

∞∑
n=i+1

wn .

Proof. Let Wi
def
=
∑∞

n=i+1 wn. We decompose the compound error into a weighted average of n-
step errors, and then decompose those n-step errors into weighted sums of TD errors using Eq. (14):

Gw
t − V (St) =

( ∞∑
n=1

wnG
n
t

)
− V (St)
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=

∞∑
n=1

wn (G
n
t − V (St))

=

∞∑
n=1

wn

n−1∑
i=0

γiδt+i

= w1δt + w2(δt + γδt+1) + w3(δt + γδt+1 + γ2δt+2) + . . .

= (w1 + w2 + . . . )δt + γ(w2 + w3 + . . . )δt+1 + γ2(w3 + w4 + . . . )δt+2 + . . .

= W0δt + γW1δt+1 + γ2W2δt+2 + . . .

=

∞∑
i=0

γiWiδt+i ,

which completes the lemma.

B.1.3 PROPOSITION 2

Proposition 2 (Compound variance). Under Assumptions 1 and 2, the variance of a compound
return is

Var [Gw
t ] = (1− ρ)

∞∑
i=0

γ2iW 2
i κ+ ρ

∞∑
i=0

∞∑
j=0

γi+jWiWjκ . (7)

Proof. From Lemma 1, the variance of the compound return is

Var [Gw
t ] =

∞∑
i=0

∞∑
j=0

Cov
[
γiWiδt+i, γ

jWjδt+j

]
=

∞∑
i=0

∞∑
j=0

γi+jWiWjCov [δt+i, δt+j ]

=

∞∑
i=0

∞∑
j=0

γi+jWiWj((1− ρ)1i=j + ρ)κ

= (1− ρ)

∞∑
i=0

γ2iW 2
i κ+ ρ

∞∑
i=0

∞∑
j=0

γi+jWiWjκ ,

which establishes Eq. (7).

B.1.4 PROPOSITION 3

Proposition 3 (Compound error-reduction property). Any compound return satisfies the inequality

max
s∈S
|E [Gw

t | St = s]− V (s)| ≤

( ∞∑
n=1

wnγ
n

)
max
s∈S
|V (s)− vπ(s)| . (9)

Proof. We expand the definition of a compound return in the left-hand side and then simplify:

max
s∈S

∣∣∣∣∣E
[ ∞∑
n=1

wnG
n
t | St = s

]
− V (s)

∣∣∣∣∣ = max
s∈S

∣∣∣∣∣E
[ ∞∑
n=1

wnG
n
t | St = s

]
−

∞∑
n=1

wnV (s)

∣∣∣∣∣
= max

s∈S

∣∣∣∣∣
∞∑

n=1

wn (E[Gn
t | St = s]− V (s))

∣∣∣∣∣
≤

∞∑
n=1

wn max
s
|E[Gn

t | St = s]− V (s)|
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≤

( ∞∑
n=1

wnγ
n

)
max
s∈S
|V (s)− vπ(s)| ,

where the first inequality is Jensen’s inequality and the second inequality follows from the n-step
error-reduction property of Eq. (8). This concludes the proof.

B.1.5 PROPOSITION 4

Proposition 4 (Effective n-step of compound return). Let Gw
t be any compound return and let

n =

{
logγ

(∑∞
n′=1 wn′γn′

)
, if 0 < γ < 1 ,∑∞

n′=1 wn′n′ , if γ = 1 .
(11)

Gw
t shares the same bound in Eq. (9) as the n-step return Gn

t if n is an integer.

Proof. When γ < 1, we can take the logarithm of both sides of Eq. (10) to get

n = logγ

( ∞∑
n=1

wnγ
n

)
=

log (
∑∞

n=1 wnγ
n)

log γ
. (16)

For the undiscounted case, we would like to evaluate this expression at γ = 1; however, since∑∞
n=1 wn = 1 from the definition of a compound return, we arrive at an indeterminate form, 0

0 .
Instead, we can apply L’Hôpital’s rule to evaluate the limit as γ → 1:

lim
γ→1

log (
∑∞

n=1 wnγ
n)

log γ
= lim

γ→1

d
dγ log (

∑∞
n=1 wnγ

n)
d
dγ log γ

= lim
γ→1

(
∑∞

n=1 wnγ
n−1n) / (

∑∞
n=1 wnγ

n)

1 / γ

= lim
γ→1

∑∞
n=1 wnγ

nn∑∞
n=1 wnγn

=

∑∞
n=1 wnn∑∞
n=1 wn

=

∞∑
n=1

wnn ,

where the last step follows again from the fact that
∑∞

n=1 wn = 1. This establishes the case where
γ = 1 and completes the proof.

B.1.6 THEOREM 1

Theorem 1 (Variance-reduction property of compound returns). Consider a compound return Gw
t

and an n-step return Gn
t with n defined by Eq. (11). Under Assumptions 1 and 2, the inequality

Var[Gw
t ] ≤ Var[Gn

t ] always holds. Furthermore, the inequality is strict whenever ρ < 1.

Proof. Eq. (15) gives us an expression for the covariance between two n-step returns. We use this
to derive an alternative formula for the variance of a compound return:

Var [Gw
t ] =

∞∑
i=1

∞∑
j=1

Cov
[
wiG

i
t, wjG

j
t

]
=

∞∑
i=1

∞∑
j=1

wiwjCov
[
Gi

t, G
j
t

]
=

∞∑
i=1

∞∑
j=1

wiwj

(
(1− ρ) Γ2(min(i, j))) + ρΓ1(i) Γ1(j)

)
κ
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= (1− ρ)

∞∑
i=1

∞∑
j=1

wiwj Γ2(min(i, j))κ+ ρ

∞∑
i=1

∞∑
j=1

wiwj Γ1(i) Γ1(j)κ .

We analyze both sums separately, starting with the first term. If we assume γ < 1 for now, then
γn =

∑∞
i=1 wiγ

i by Proposition 4. Further note that min(i, j) ≤ (i + j) / 2, with the inequality
strict if i ̸= j. Because Γ2 is monotonically increasing, it follows that

∞∑
i=1

∞∑
j=1

wiwj Γ2(min(i, j)) <

∞∑
i=1

∞∑
j=1

wiwj Γ2

(
i+ j

2

)

=

∞∑
i=1

∞∑
j=1

wiwj

(
1− γi+j

1− γ2

)

=
1−

∑∞
i=1

∑∞
j=1 wiwjγ

i+j

1− γ2

=
1−

∑∞
i=1 wiγ

i
∑∞

j=1 wjγ
j

1− γ2

=
1− γ2n

1− γ2

= Γ2(n) .

The inequality is strict because at least two weights in w are nonzero by definition of a compound
return, guaranteeing at least one element in the sum has i ̸= j. If instead γ = 1, then n =

∑∞
i=1 wii

by Proposition 4 and also Γ2(min(i, j)) = min(i, j). Therefore, by Jensen’s inequality, we have
∞∑
i=1

∞∑
j=1

wiwj Γ2(min(i, j)) =

∞∑
i=1

∞∑
j=1

wiwj min(i, j)

< min

 ∞∑
i=1

wii,

∞∑
j=1

wjj


= min(n, n)

= Γ2(n) .

Again, the inequality is strict by definition of a compound return, so we conclude that
∞∑
i=1

∞∑
j=1

wiwj Γ2(min(i, j)) < Γ2(n), for 0 < γ ≤ 1 .

We now address the second term. We show that Γ1 is invariant under a weighted average under our
assumption that Eq. (11) holds. If γ < 1, then

∞∑
i=1

wi Γ1(i) =

∞∑
i=1

wi

(
1− γi

1− γ

)
=

1−
∑∞

i=1 wiγ
i

1− γ
=

1− γn

1− γ
= Γ1(n) . (17)

If γ = 1, then
∞∑
i=1

wi Γ1(i) =

∞∑
i=1

wii = n = Γ1(n) .

Thus, regardless of γ, the second term becomes
∞∑
i=1

∞∑
j=1

wiwj Γ1(i) Γ1(j) =

∞∑
i=1

wi Γ1(i)

∞∑
j=1

wj Γ1(j) = Γ1(n)
2
.

Putting everything together, we have so far shown that

Var [Gw
t ] ≤ (1− ρ) Γ2(n)κ+ ρΓ1(n)

2
κ ,

where the right-hand side is the n-step return variance given by Proposition 1. As we showed above,
this inequality is strict whenever the first term is active, i.e., ρ < 1, which completes the proof.
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B.1.7 PROPOSITION 5

Proposition 5 (Effective λ of n-step return). For any n ≥ 1, the λ-return with λ = (1 − γn−1) /
(1 − γn) has the same contraction rate as the n-step return when γ < 1, and the λ-return with
λ = (n− 1) / n has the COM as the n-step return when γ = 1.

Proof. Case γ < 1: We substitute wn = (1−λ)λn−1 into the weighted average in Proposition 3 to
compute the contraction rate of the λ-return:

∞∑
n=1

wnγ
n =

∞∑
n=1

(1− λ)λn−1γn = γ(1− λ)

∞∑
n=1

(γλ)n−1 =
γ(1− λ)

1− γλ
.

We therefore seek λ such that
γ(1− λ)

1− γλ
= γn

in order to equate the λ-return’s contraction rate to that of the given n-step return. We multiply both
sides of the equation by 1− γλ and isolate λ to complete the case:

γ(1− λ) = γn(1− γλ)

1− λ = γn−1(1− γλ)

1− λ = γn−1 − γnλ

γnλ− λ = γn−1 − 1

λ(γn − 1) = γn−1 − 1

λ = (1− γn−1) / (1− γn) .

Case γ = 1: We use Proposition 4 with wn = (1 − λ)λn−1 to compute the effective n-step of the
λ-return:

n =

∞∑
n′=1

(1− λ)λn′−1n′ = (1− λ)

∞∑
n′=1

λn′−1n′ = (1− λ)
1

(1− λ)2
=

1

1− λ
.

Rearranging the equation n = 1 / (1− λ) for λ gives the final result of λ = (n− 1) / n.

B.2 FINITE-TIME ANALYSIS

In this section, we prove Theorem 2 to establish a finite-time bound on the performance of multistep
TD learning. We derive the bound in terms of the return variance, allowing us to invoke Theorem 1
and show an improved convergence rate.

At each iteration, TD learning updates the current parameters θt ∈ Rd according to Eq. (12). A
value-function estimate for any state s is obtained by evaluating the dot product of the parameters
and the state’s corresponding feature vector: Vθ(s)

def
= θ⊤ϕ(s). Following Bhandari et al. (2018), we

assume that ∥ϕ(s)∥22 ≤ 1, ∀ s ∈ S. This can be guaranteed in practice by normalizing the features
and is therefore not a strong assumption.

In the prediction setting, the agent’s behavior policy is fixed such that the MDP can be cast as a
Markov reward process (MRP), where R(s, s′) denotes the expected reward earned when transition-
ing from state s to state s′. We adopt the i.i.d. state model from Bhandari et al. (2018, sec. 3) and
generalize it for multistep TD updates.
Assumption 3 (i.i.d. state model). Assume the MRP under the policy π is ergodic. Let d ∈ R|S|

represent the MRP’s unique stationary distribution. Each iteration of Eq. (12) is calculated by
first sampling a random initial state St,0 ∼ d and then sampling a trajectory of subsequent states
St,i+1 ∼ Pr(· | St,i), ∀ i ∈ N0.

That is, a state St,0 sampled from the steady-state MRP forms the root node for the following
trajectory (St,1, St,2, . . . ) that is generated according to the MRP transition function. Notably, this
setting closely models the experience-replay setting utilized by many deep RL agents.
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To facilitate our analysis, we decompose the compound TD updates into weighted averages of n-step
TD updates, where each n-step update has the form

gnt (θ)
def
=
(
Gn

t − ϕ(St)
⊤θ
)
ϕ(St) .

This allows us to conveniently express a compound TD update as

gw
t (θ)

def
=

∞∑
n=1

wng
n
t (θ) .

Our proofs also make use of the expected n-step TD update:

ḡn(θ)
def
=
∑
s0∈S

∑
τ∈Sn−1

d(s0) Pr(τ | s0)
(
Gn(s0, τ, θ)− ϕ(s0)

⊤θ
)
ϕ(s0)

where (s1, s2, . . . ) = τ and Gn(s0, τ, θ)
def
= R(s0, s1)+ · · ·+ γn−1R(sn−1, sn)+ γnϕ(sn)

⊤θ is the
n-step return generated from (s0, τ).

For brevity, let Ri
def
= R(St,i, St,i+1) and ϕi

def
= ϕ(St,i) be random variables sampled according to

Assumption 3. We conveniently write the expected n-step TD update as

ḡn(θ) = E
[
ϕ0(R0 + γR1 + · · ·+ γn−1Rn−1)

]
+ E

[
ϕ0(γ

nϕn − ϕ0)
⊤] θ . (18)

The expected compound TD update easily follows as the weighted average

ḡw(θ)
def
=

∞∑
n=1

wnḡ
n(θ) .

Finally, let θ∗ be the fixed point of the compound TD update: i.e., ḡw(θ∗) = 0. This fixed point
always exists and is unique because the projected Bellman operator is a contraction mapping (Tsit-
siklis & Van Roy, 1996), and therefore so is any weighted average of the n-iterated operators.

Before we prove Theorem 2, we must introduce two lemmas. The first establishes a lower bound on
the angle between the expected TD update and the true direction toward the fixed point.
Lemma 2. Define the diagonal matrix D

def
= diag(d). For any θ ∈ Rd,

(θ∗ − θ)⊤ḡw(θ) ≥ (1− β)∥Vθ∗ − Vθ∥2D . (19)

Proof. Let ξi
def
= Vθ∗(St,i) − Vθ(St,i) = (θ∗ − θ)⊤ϕi for i ∈ N0. By stationarity, each ξi is a

correlated random variable with the same marginal distribution. Because St,0 is drawn from the
stationary distribution, we have E

[
ξ2i
]
= ∥Vθ∗ − Vθ∥2D.

From Eq. (18), we show

ḡw(θ) = ḡw(θ)− ḡw(θ∗) =

∞∑
n=1

wnE
[
ϕ0(γ

nϕn − ϕ0)
⊤(θ − θ∗)

]
=

∞∑
n=1

wnE[ϕ0(ξ0 − γnξn)] .

It follows that

(θ∗ − θ)⊤ḡw(θ) =

∞∑
n=1

wnE[ξ0(ξ0 − γnξn)]

= E
[
ξ20
]
−

∞∑
n=1

wnγ
nE[ξ0ξn]

≥

(
1−

∞∑
n=1

wnγ
n

)
E
[
ξ20
]

= (1− β)∥Vθ∗ − Vθ∥2D .

The inequality uses the Cauchy-Schwartz inequality along with the fact that every ξi has the same
marginal distribution: thus, E[ξ0ξi] ≤

√
E[ξ20 ]

√
E[ξ2i ] = E

[
ξ20
]
.
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The next lemma establishes a bound on the second moment of the squared norm of the TD update
in terms of the contraction rate β and the variance σ2 of the compound return.

Lemma 3. Define ∆∗ def
= ∥R∥∞ + (1 + γ)∥θ∗∥∞ and C

def
= ∆∗ / (1− γ). For any θ ∈ Rd,

E[∥gt(θ)∥22] ≤ 2(1− β)2C2 + 2σ2 + 4(1 + β)∥Vθ∗ − Vθ∥2D .

Proof. Let δ∗t,i
def
= Ri + γϕ⊤i+1θ

∗ − ϕ⊤iθ
∗ and note that

∣∣δ∗t,i∣∣ ≤ ∆∗ for all i ∈ N0 by the triangle
inequality and the bounded-feature assumption. Denote the n-step and compound errors constructed
from θ∗ by δ

(n)
t

def
=
∑n−1

i=0 γiδ∗t,i and δw
t

def
=
∑∞

n=1 wnδ
(n)
t , respectively. We have

E
[
∥gt(θ∗)∥22

]
= E

[
∥δw

t ϕ0∥
2
2

]
≤ E

[
(δw

t )
2
]
= E[δw

t ]
2
+ σ2 , (20)

where the inequality follows from the assumption that ∥ϕ0∥22 ≤ 1. The absolute value of the expec-
tation can be bounded using the triangle inequality:

|E[δw
t ]| =

∣∣∣∣∣E
[ ∞∑
n=1

wnδ
(n)
t

]∣∣∣∣∣ ≤
∞∑

n=1

wn Γ1(n)∆
∗ =

1− β

1− γ
∆∗ = (1− β)C . (21)

The identity
∑∞

n=1 wnΓ1(n) = (1− β) / (1− γ) comes from Eq. (17). Eqs. (20) and (21) imply

E
[
∥gt(θ∗)∥22

]
≤ (1− β)2C2 + σ2 . (22)

Recall that E
[
ξ2i
]
= ∥Vθ∗ − Vθ∥2D for all i ∈ N0. Next, we show

E
[
∥gt(θ)− gt(θ

∗)∥22
]
= E

∥∥∥∥∥
∞∑

n=1

wnϕ0(γ
nϕn − ϕ0)

⊤(θ − θ∗)

∥∥∥∥∥
2

2


= E

∥∥∥∥∥
∞∑

n=1

wnϕ0(ξ0 − γnξn)

∥∥∥∥∥
2

2


≤

∞∑
n=1

wnE
[
∥ϕ0(ξ0 − γnξn)∥22

]
≤

∞∑
n=1

wnE
[
(ξ0 − γnξn)

2
]

≤ 2

∞∑
n=1

wn

(
E
[
ξ20
]
+ γ2nE

[
ξ2n
])

= 2

∞∑
n=1

wn(1 + γ2n)∥Vθ∗ − Vθ∥2D

≤ 2

∞∑
n=1

wn(1 + γn)∥Vθ∗ − Vθ∥2D

= 2(1 + β)∥Vθ∗ − Vθ∥2D . (23)

The four inequalities respectively follow from Jensen’s inequality, the bounded-feature assumption
∥ϕ∥22 ≤ 1, the triangle inequality, and the fact that γ2n ≤ γn. The final equality comes from the
definition of the contraction rate (Proposition 3). Combining Eqs. (22) and (23) gives the final result:

E
[
∥gt(θ)∥22

]
≤ E

[
(∥gt(θ∗)∥2 + ∥gt(θ)− gt(θ

∗)∥2)
2
]

≤ 2E
[
∥gt(θ∗)∥22

]
+ 2E

[
∥gt(θ)− gt(θ

∗)∥22
]

≤ 2(1− β)2C2 + 2σ2 + 4(1 + β)∥Vθ∗ − Vθ∥2D ,

where the second inequality uses the algebraic identity (x+ y)2 ≤ 2x2 + 2y2.
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We are now ready to derive the finite-time bound. We restate Theorem 2 and then provide the proof.
Theorem 2 (Finite-Time Analysis of Compound TD Learning). Suppose TD learning with linear
function approximation is applied under an i.i.d. state model (see Assumption 3 in Appendix B.2)
using the compound return estimator Gw

t as its target. Let β ∈ [0, 1) be the contraction rate of
the estimator (see Proposition 3), and let σ2 ≥ 0 be the variance of the estimator under Assump-
tions 1 and 2. Assume that the features are normalized such that ∥ϕ(s)∥22 ≤ 1, ∀ s ∈ S. Define
C

def
= (∥R∥∞ + (1 + γ)∥θ∗∥∞) / (1− γ), where θ∗ is the minimizer of the projected Bellman error

for Gw
t . For any T ≥ (4 / (1− β))2 and a constant step size α = 1 /

√
T ,

E
[∥∥Vθ∗ − Vθ̄T

∥∥2
D

]
≤
∥θ∗ − θ0∥22 + 2(1− β)2C2 + 2σ2

(1− β)
√
T

, where θ̄T
def
=

1

T

T−1∑
t=0

θt .

Proof. TD learning updates the parameters according to Eq. (12). Therefore,

∥θ∗ − θt+1∥22 = ∥θ∗ − θt − α gt(θt)∥22
= ∥θ∗ − θt∥22 − 2α gt(θt)

⊤(θ∗ − θt) + α2∥gt(θ)∥22 .

Taking the expectation and then applying Lemmas 2 and 3 gives

E
[
∥θ∗ − θt+1∥22

]
= E

[
∥θ∗ − θt∥22

]
− 2αE

[
gt(θt)

⊤(θ∗ − θt)
]
+ α2E

[
∥gt(θ)∥22

]
= E

[
∥θ∗ − θt∥22

]
− 2αE

[
E
[
gt(θt)

⊤(θ∗ − θt)
]
| θt
]
+ α2E

[
E
[
∥gt(θ)∥22

]
| θt
]

≤ E
[
∥θ∗ − θt∥22

]
−
(
2α(1− β)− 4α2(1 + β)

)
∥Vθ∗ − Vθ∥2D + 2α2

(
(1− β)2C2 + σ2

)
≤ E

[
∥θ∗ − θt∥22

]
− α(1− β)∥Vθ∗ − Vθ∥2D + 2α2

(
(1− β)2C2 + σ2

)
.

The first inequality is due to Lemmas 2 and 3, which are applicable due to the i.i.d. setting (be-
cause the trajectory influencing gt is independent of θt). The second inequality follows from the
assumption that α ≤ (1− β) / 4. Rearranging the above inequality gives us

E
[
∥Vθ∗ − Vθt∥

2
D

]
≤
∥θ∗ − θt∥22 − ∥θ∗ − θt+1∥22 + 2α2

(
(1− β)2C2 + σ2

)
α(1− β)

.

Summing over T iterations and then invoking the assumption that α = 1 /
√
T :

T−1∑
t=0

E
[
∥Vθ∗ − Vθt∥

2
D

]
≤
∥θ∗ − θ0∥22 − ∥θ∗ − θT ∥22 + 2α2

(
(1− β)2C2 + σ2

)
T

α(1− β)

≤
∥θ∗ − θ0∥22 + 2α2

(
(1− β)2C2 + σ2

)
T

α(1− β)

=
∥θ∗ − θ0∥22

√
T + 2

(
(1− β)2C2 + σ2

)√
T

1− β
.

We therefore conclude that

E
[∥∥Vθ∗ − Vθ̄T

∥∥2
D

]
≤ 1

T

T−1∑
t=0

E
[
∥Vθ∗ − Vθt∥

2
D

]
≤
∥θ∗ − θ0∥22 + 2(1− β)2C2 + 2σ2

(1− β)
√
T

,

which completes the bound.
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C λ-RETURN VARIANCE

We calculate the variance of the λ-return under Assumptions 1 and 2. In the main text, we showed
that the λ-return assigns a cumulative weight of Wi = λi to the TD error at time t + i, which is
also known from the TD(λ) algorithm. We can therefore apply Proposition 2 to obtain the following
variance expression:

Var[Gλ
t ] = (1− ρ)

∞∑
i=0

(γλ)2iκ+ ρ

∞∑
i=0

∞∑
j=0

(γλ)i+jκ

= (1− ρ)

∞∑
i=0

(γλ)2iκ+ ρ

∞∑
i=0

(γλ)i
∞∑
j=0

(γλ)jκ

=
(1− ρ)κ

1− (γλ)2
+

ρκ

(1− γλ)2
. (24)
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D PILAR: PIECEWISE λ-RETURN

Table 2: n-step returns and PiLaRs with
equal contraction rates when γ = 0.99.

effective
n-step n1 n2 w

2 1 4 0.337
3 1 6 0.406
4 2 7 0.406
5 2 9 0.437
10 4 16 0.515
20 6 35 0.519
25 8 43 0.530
50 13 79 0.640
100 22 147 0.760

We present a basic search algorithm for finding the best
PiLaR for a given n-step return when rewards are dis-
counted (see Algorithm 1). The algorithm accepts the
desired effective n-step (which does not need to be an
integer necessarily) as its only argument and returns
the values (n1, n2, w) such that the compound return
(1− w)Gn1

t + wGn2
t minimizes the maximum absolute

difference between its cumulative weights and those of
the λ-return with the same effective n-step. The algo-
rithm proceeds as follows. For each n1 ∈ {1, . . . , ⌊n⌋},
scan through n2 ∈ {n1 + 1, n1 + 2, . . . , } until the er-
ror stops decreasing. Every time a better (n1, n2)-pair is
found, record the values, and return the last recorded val-
ues upon termination. The resulting PiLaR has the same
contraction rate as the targeted n-step return; thus, their
error-reduction properties are the same, but the compound return’s variance is lower by Theorem 1.

We populate Table 2 with corresponding PiLaR values for several common n-step returns when
γ = 0.99. A discount factor of γ = 0.99 is extremely common in deep RL, and so it is hoped that
this table serves as a convenient reference that helps practitioners avoid redundant searches.

To modify the search algorithm for undiscounted rewards, we just need to change the weight w such
that it equates the COMs—rather than the contraction rates—of the two returns. That is, our choice
of w must instead satisfy (1− w)n1 + wn2 = n, and so it follows that w = (n− n1) / (n2 − n1).
We make this change on line 9 and then just substitute γ = 1 elsewhere in the pseudocode to
complete the search algorithm, which we include in Algorithm 2 for a side-by-side comparison with
the discounted setting.

Algorithm 1 PiLaR(n) (0 < γ < 1)

1: require n ≥ 1
2: λ = (1− γn−1) / (1− γn)
3: best error←∞
4: for n1 = 1, . . . , ⌊n⌋ do
5: n2 ← ⌊n⌋
6: error←∞
7: repeat
8: n2 ← n2 + 1
9: w ← (γn − γn1) / (γn2 − γn1)

10: prev error← error
11: error← ERROR(λ, n1, n2, w)
12: if error < best error then
13: values← (n1, n2, w)
14: best error← error
15: end if
16: until error ≥ prev error
17: end for
18: return values

19: function ERROR(λ, n1, n2, w)

20: Let Wi =


γi if i < n1

wγi else if i < n2

0 else
21: return maxi≥0

∣∣Wi − (γλ)i
∣∣

22: end function

Algorithm 2 PiLaR(n) (γ = 1)

1: require n ≥ 1
2: λ = (n− 1) / n
3: best error←∞
4: for n1 = 1, . . . , ⌊n⌋ do
5: n2 ← ⌊n⌋
6: error←∞
7: repeat
8: n2 ← n2 + 1
9: w ← (n− n1) / (n2 − n1)

10: prev error← error
11: error← ERROR(λ, n1, n2, w)
12: if error < best error then
13: values← (n1, n2, w)
14: best error← error
15: end if
16: until error ≥ prev error
17: end for
18: return values

19: function ERROR(λ, n1, n2, w)

20: Let Wi =


1 if i < n1

w else if i < n2

0 else
21: return maxi≥0

∣∣Wi − λi
∣∣

22: end function
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E EXPERIMENT SETUP AND ADDITIONAL RESULTS

Our experiment procedure closely matches that of Young & Tian (2019) for DQN. The only differ-
ences in our methodology are the following: dueling network architecture, Adam optimizer, mini-
batch updates every 4 steps (instead of 1), and multistep returns.

MinAtar represents states as 10× 10× 7 binary images. The agent processes these with a convolu-
tional network; the first layer is a 16-filter 3× 3 convolutional layer, the output of which is flattened
and then followed by a dense layer with 128 units. Both layers use ReLU activations.

We further adopt the dueling network architecture from Wang et al. (2016), which we found to help
value estimation significantly. Rather than directly mapping the 128 extracted features to a vector
of action-values with a linear layer, as is normally done by DQN, the dueling network splits the
output into two linear heads: a scalar value estimate V (s; θV ) and a vector of advantage estimates
A(s, ·; θA), where θV , θA ⊂ θ. The action-value Q(s, a) is then obtained by

Q(s, a; θ) = V (s; θV ) +A(s, a; θA)−max
a′∈A

A(s, a′; θA) . (25)

With automatic differentiation software, this change is transparent to the agent. Note that here we
are subtracting maxa′∈A A(s, a′; θA) for the Bellman identifiability term, which is the less common
but more principled formulation for predicting q∗ (Wang et al., 2016, eq. 8). We found this to work
better than the typical subtraction by (1 / |A|)

∑
a′∈A A(s, a′; θA).

The agents trained for 5 million time steps each. They executed a random policy for the first 5k time
steps to prepopulate the replay buffer (capacity: 100k transitions), and then switched to an ϵ-greedy
policy for the remainder of training, with ϵ annealed linearly from 1 to 0.1 over the next 100k steps.
Every 4 steps, the main network was updated with a minibatch of 32 return estimates to minimize
the loss from Section 5. The target network’s parameters were copied from the main network every
1k time steps.

To obtain the n-step returns, the replay buffer is modified to return a minibatch of sequences of
n+ 1 experiences for each return estimate (instead of the usual 2 experiences for DQN). The return
is computed by summing the first n rewards and then adding the value-function bootstrap from
the final experience, with discounting if γ < 1. If the episode terminates at any point within this
trajectory, then the return is truncated and no bootstrapping is necessary, since the value of a terminal
state is defined to be zero. For PiLaRs, the idea is the same, but the trajectories must have length
n2 + 1 to accommodate the lengths of both n-step returns. The two returns are computed as above,
and then combined by averaging them: (1− w)Gn1 + wGn2 .

We show the learning curves for the best step size found for each return estimator in Figure 6,
which correspond to the horizontal dashed lines in the α-sweep plots in Figure 3 in the main paper.
We observe that PiLaRs always perform better than n-step returns in this environment. The n-step
return becomes noticeably unstable when n = 10 due to the higher variance, which widens the
relative improvement of PiLaR as it tolerates the variance better.
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Figure 5: Step-size sensitivity curves for n-step returns and PiLaRs in four MinAtar games.
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Figure 6: The best learning curves for each return estimator tested in four MinAtar games.
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