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Abstract

We propose a scheme for auditing differentially private machine learning systems
with a single training run. This exploits the parallelism of being able to add or
remove multiple training examples independently. We analyze this using the con-
nection between differential privacy and statistical generalization, which avoids
the cost of group privacy. Our auditing scheme requires minimal assumptions
about the algorithm and can be applied in the black-box or white-box setting. We
demonstrate the effectiveness of our framework by applying it to DP-SGD, where
we can achieve meaningful empirical privacy lower bounds by training only one
model. In contrast, standard methods would require training hundreds of models.

1 Introduction

Differential privacy (DP) [DMNS06] provides a quantifiable privacy guarantee by ensuring that no
person’s data significantly affects the probability of any outcome. Formally, a randomized algorithm
M satisfies (ε, δ)-DP if, for any pair of inputs x, x′ differing only by the addition or removal of one
person’s data and any measurable S, we have

P [M(x) ∈ S] ≤ eε · P [M(x′) ∈ S] + δ. (1)

A DP algorithm is accompanied by a mathematical proof giving an upper bound on the privacy
parameters ε and δ. In contrast, a privacy audit provides an empirical lower bound on the privacy
parameters. Privacy audits allow us to assess the tightness of the mathematical analysis [JUO20;
NHSBTJCT23] or, if the lower and upper bounds are contradictory, to detect errors in the analysis
or in the algorithm’s implementation [DWWZK18; BGDCTV18; TTSSJC22].

Typically, privacy audits obtain a lower bound on the privacy parameters directly from the DP def-
inition (1). That is, we construct a pair of inputs x, x′ and a set of outcomes S and we estimate the
probabilities P [M(x) ∈ S] and P [M(x′) ∈ S]. However, estimating these probabilities requires
running M hundreds of times. This approach to privacy auditing is computationally expensive,
which raises the question Can we perform privacy auditing using a single run of the algorithm M?

1.1 Our Contributions

Our approach: The DP definition (1) considers adding or removing a single person’s data to or from
the dataset. We consider multiple people’s data and the dataset independently includes or excludes
each person’s data point. Our analysis exploits the parallelism of multiple independent data points
in a single run of the algorithm in lieu of multiple independent runs. This approach is commonly
used as an unproven heuristic in prior work [MEMPST21; ZBWTSRPNK22].

Our auditing procedure operates as follows. We identify m data points (i.e., training examples or
“canaries”) to either include or exclude and we flip m independent unbiased coins to decide which
of them to include or exclude. We then run the algorithm on the randomly selected dataset. Based
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on the output of the algorithm, the auditor “guesses” whether or not each data point was included
or excluded (or it can abstain from guessing for some data points). We obtain a lower bound on the
privacy parameters from the fraction of guesses that were correct.

Intuitively, if the algorithm is (ε, 0)-DP, then the auditor can correctly guess each inclusion/exclusion
coin flip with probability ≤ eε

eε+1 . That is, the highest possible accuracy is attained by random-
ized response [War65]. Thus DP implies a high-probability upper bound on the fraction of correct
guesses and, conversely, the fraction of correct guesses implies a high-probability lower bound on
the privacy parameters.

Our analysis: Naı̈vely, analyzing the addition or removal of multiple data elements would rely
on group privacy; but this does not exploit the fact that the data items were included or excluded
independently. Instead, we leverage the connection between DP and generalization [DFHPRR15b;
DFHPRR15a; BNSSSU16; RRST16; JLNRSMS19; SZ20]. Our main theoretical contribution is an
improved analysis of this connection that is tailored to yield nearly tight bounds in our setting.

Informally, if we run a DP algorithm on i.i.d. samples from some distribution, then, conditioned on
the output of the algorithm, the samples are still “close” to being i.i.d. samples from that distribution.
There is some technicality in making this precise, but, roughly speaking, we show that including or
excluding m data points independently for one run is essentially as good as having m independent
runs (as long as δ is small).

Our results: As an application of our new auditing framework, we audit DP-SGD training on a
WideResNet model, trained on the CIFAR10 dataset across multiple configurations. Our approach
successfully achieves an empirical lower bound of ε ≥ 1.8, compared to a theoretical upper bound
of ε ≤ 4 in the white-box setting. The m examples we insert for auditing (known in the literature
as “canaries”) do not significantly impact the accuracy of the final model (less than a 5% decrease
in accuracy) and our procedure only requires a single end-to-end training run. Such results were
previously unattainable in the setting where only one model could be trained.

2 Our Auditing Procedure

Algorithm 1 Auditor with One Training Run
1: Data: x ∈ Xn consisting of m auditing examples (a.k.a. canaries) x1, · · · , xm and n − m

non-auditing examples xm+1, · · · , xn.
2: Parameters: Algorithm to audit A, number of examples to randomize m, number of positive
k+ and negative k− guesses.

3: For i ∈ [m], sample Si ∈ {−1,+1} uniformly and independently. Set Si = 1 for all i ∈
[n] \ [m].

4: Partition x into xIN ∈ XnIN and xOUT ∈ XnOUT according to S, where nIN +nOUT = n. Namely,
if Si = 1, then xi is in xIN; and, if Si = −1, then xi is in xOUT.

5: Run A on input xIN with appropriate parameters, outputting w.
6: Compute the vector of scores Y = (SCORE(xi, w) : i ∈ [m]) ∈ Rm.
7: Sort the scores Y . Let T ∈ {−1, 0,+1}m be +1 for the largest k+ scores and −1 for the

smallest k− scores. (I.e., T ∈ {−1, 0,+1}m maximizes
∑m
i Ti · Yi subject to

∑m
i |Ti| =

k+ + k− and
∑m
i Ti = k+ − k−.)

8: Return: S ∈ {−1,+1}m indicating the true selection and the guesses T ∈ {−1, 0,+1}m.

We present our auditing procedure in Algorithm 1. We independently include each of the first m
examples with 50% probability and exclude it otherwise.2 When applied to DP-SGD, our approach
is applicable to both “white-box” auditing, where the adversary can access to all intermediate values
of the model weights (as in the federated learning setting), and “black-box” auditing, where the
adversary only sees the final model weights (or can only query the final model, as in the centralized
setting). In both cases we simply compute a “score” for each example and “guess” whether the
example is included or excluded based on these scores. Specifically, we guess that the examples
with the k+ highest scores are included and the examples with the k− lowest scores are excluded,

2We consider the add/remove notion of DP, so changing one Si results in neighbouring inputs xIN. Our
methods readily extend to the replacement notion of DP; see the full version.
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and we abstain from guessing for the remainingm−k+−k− auditing examples; the setting of these
parameters will depend on the application.

Note that we only randomize the first m examples x1, · · · , xm (which we refer to as “auditing
examples” or “canaries”); the last n − m examples xm+1, · · · , xn are always included and, thus,
we do not make any guesses about them. To get the strongest auditing results we would set m = n,
but we usually want to set m < n. For example, computing the score of all n examples may
be computationally prohibitive, so we only compute the scores of m examples. We may wish to
artificially construct m examples to be easy to identify (i.e., canaries), but also include n − m
“real” examples to ensure that A still produces a useful model. (I.e., having more training examples
improves the performance of the model.)

The score function is arbitrary and will depend on the application. For black-box auditing, we use
the loss of the final model w on the example xi – i.e., SCORE(xi, w) = −loss(w, xi). For white-box
auditing, SCORE(xi, w) =

∑`
t

〈
wt−1 − wt,∇wt−1 loss(wt−1, xi)

〉
is the sum of the inner products

of updates with the (clipped) gradients of the loss on the example.

Intuitively, the vector of scores Y should be correlated with the true selection S, but too strong a
correlation would violate DP. This is the basis of our audit. Specifically, the auditor computes T from
Y which is a “guess” at S. By the postprocessing property of DP, the guesses T are a differentially
private function of the true S, which means that they cannot be too accurate.

Why abstain from guessing? The guesses are binary (Ti = 1 for IN, Ti = −1 for OUT). Abstain-
ing (Ti = 0) allows us to capture uncertainty. That is, on some examples we will not be sure whether
they are IN or OUT. By abstaining on these uncertain examples, we can ensure higher accuracy for
the remaining guesses. This yields better auditing results in practice.

3 Theoretical Analysis

To obtain a lower bound on the DP parameters we show that DP implies a high-probability upper
bound on the number of correct guesses W :=

∑m
i max{0, Ti · Si} of our auditing procedure

(Algorithm 1). Note that max{0, Ti · Si} is simply 1 if the guess was correct – i.e., Ti = Si –
and 0 otherwise. The observed value of W then yields a high-probability lower bound on the DP
parameters. To be more precise, we have the following guarantee.
Theorem 3.1 (Main Result). Let (S, T ) ∈ {−1,+1}m × {−1, 0,+1}m be the output of Algorithm
1. Assume the algorithm to audit A satisfies (ε, δ)-DP. Let r := k+ + k− = ‖T‖1 be the number of
guesses. Then, for all v ∈ R,

P

[
m∑
i

max{0, Ti · Si} ≥ v

]
≤ P
W̌←Binomial(r, eε

eε+1 )

[
W̌ ≥ v

]
+ δ ·m · α, (2)

where
α = max

i∈[m]

2

i
· P
W̌←Binomial(r, eε

eε+1 )

[
v > W̌ ≥ v − i

]
. (3)

If we ignore δ for the moment, Theorem 3.1 says that the number of correct guesses is stochasti-
cally dominated by Binomial

(
r, eε

eε+1

)
, where r = k+ + k− is the total number of guesses. This

binomial distribution is precisely the distribution of correct guesses we would get if T was obtained
by independently performing (ε, 0)-DP randomized response on r bits of S. In other words, the
theorem says that (ε, 0)-DP randomized response is exactly the worst-case algorithm in terms of the
number of correct guesses. In particular, this means the theorem is tight (when δ = 0).

The binomial distribution is well-concentrated. In particular, for all β ∈ (0, 1), we have

P
W̌←Binomial(r, eε

eε+1 )

W̌ ≥ r · eε

eε + 1
+

√
1

2
· r · log(1/β)︸ ︷︷ ︸

=v

 ≤ β. (4)

There is an additionalO(δ) term in the guarantee (2). The exact expression (3) is somewhat complex.
It is always ≤ 2mδ, since α ≤ 2, but it is much smaller than this for reasonable parameter values.
In particular, for v as in Equation 4 with β ≤ 1/r4, we have α ≤ O(1/r).
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Theorem 3.1 gives us a hypothesis test: If A is (ε, δ)-DP, then the number of correct guesses W is
≤ r·eε

eε+1 +O(
√
r) with high probability. Thus, if the observed number of correct guesses v is larger

than this, we can reject the hypothesis that A satisfies (ε, δ)-DP. We can convert this hypothesis test
into a confidence interval (i.e., a lower bound on ε) by finding the largest ε that we can reject at a
desired level of confidence.

Proof of Theorem 3.1: Due to space limitations, the proof is deferred to the full version. But we
outline the main ideas: First note that S ∈ {−1,+1}m is uniform and T is a DP function of S. Con-
sider the distribution of S conditioned on T = t. If A is pure (ε, 0)-DP, then we can easily analyze
the conditional distribution using Bayes’ law [DFHPRR15a; RRST16; JLNRSMS19] to conclude
that each guess has probability ≤ eε

eε+1 of being correct. Furthermore, this holds even if we condi-
tion on the other guesses, which allows us to inductively prove that the number of correct guesses
is stochastically dominated by Binomial

(
r, eε

eε+1

)
. Handling approximate DP (δ > 0) introduces

additional complexity – some outputs T are “bad” in the sense that the conditional distribution of Si
could be arbitrary. Fortunately, such bad outputs are rare [KS14]. What we can show is that the num-
ber of correct guesses is stochastically dominated by W̌ + F (T ), where W̌ ← Binomial

(
r, eε

eε+1

)
is as before and F (T ) ∈ {0, 1, · · · ,m} indicates how many of these bad events happened. We do
not know the exact distribution of F (T ), but we do know E [F (T )] ≤ 2mδ, which suffices to prove
our result. Equation 3 comes from looking for the worst-case F (T ); essentially the worst case is
P [F (T ) = i] = 2mδ/i and P [F (T ) = 0] = 1− 2mδ/i for some i ∈ [m].
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Figure 1: Lower bound on the privacy pa-
rameter ε given by Theorem 3.1 with 95%
confidence as the number of correct guesses
changes. The total number of examples and
guesses is 100. For comparison, we plot the
ideal ε that gives 100 · eε

eε+1 correct guesses.
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Figure 2: Lower bound on the privacy pa-
rameter ε given by Theorem 3.1 with 95%
confidence as the number of correct guesses
changes. The total number of examples and
guesses is 1000 (with no abstentions). Here we
plot the ideal ε on the horizontal axis, so that
the number of correct guesses is 1000 · eε

eε+1 .

Our theoretical analysis also gives novel implications for generalization from DP, improving on the
results of Jung, Ligett, Neel, Roth, Sharifi-Malvajerdi, and Shenfeld [JLNRSMS19]. In addition, we
obtain bounds on the mutual information I(S;M(S)) ≤ 1

8ε
2m log e+δm log 2, where S ∈ {0, 1}m

is uniformly random and M : {0, 1}m → Y satisfies (ε, δ)-DP, which improves on the results of
Steinke and Zakynthinou [SZ20]. See the full version for more details.

4 Experiments

Experiment Setup Our contributions are focused on improved analysis of an existing privacy at-
tack, and are therefore orthogonal to the design of an attack. As a result, we rely on the experimental
setup of the recent auditing procedure of Nasr, Hayes, Steinke, Balle, Tramèr, Jagielski, Carlini, and
Terzis [NHSBTJCT23].

We run DP-SGD on the CIFAR-10 dataset with Wide ResNet (WRN-16) [ZK16], following the
experimental setup of Nasr et al. [NHSBTJCT23]. Our experiments reach 76% test accuracy at
(ε = 8, δ = 10−5)-DP, which is comparable with the state-of-the-art [DBHSB22]. Unless specified
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Figure 3: Effect of the number of auditing ex-
amples (m) in the white-box setting. By in-
creasing the number of the auditing examples
we are able to achieve tighter empirical lower
bounds.
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Figure 4: Effect of the number of additional ex-
amples (n − m) in the white-box setting. Im-
portantly, adding additional examples does not
impact the auditing results in the white-box set-
ting.

otherwise, all lower bounds are presented with 95% confidence. Following prior work, we refer to
the setting where the adversary has access to all intermediate steps as “white-box” and when the
adversary can only see the last iteration as “black-box.” We experiment with both settings.

Algorithm 1 summarizes our approach for auditing DP-SGD. The results are converted into lower
bounds on the privacy parameters using Theorem 3.1.

We also experiment with both the gradient and input attacks proposed by Nasr et al. [NHSBTJCT23].
In particular, for the gradient attack we use the strongest attack they proposed – the “Dirac canary”
approach – which sets all gradients to zero except at a single random index. In our setting where
we need to create multiple auditing examples (canaries) we make sure the indices selected in our
experiments do not have any repetitions. To compute the score for gradient space attacks, we use
the dot product between the gradient update and auditing gradient. When auditing in input space,
we leverage two different types of injected examples as:

1. Mislabeled example: We select a random subset of the test set and randomly relabel them
(ensuring the new label is not the same as the original label).

2. In-distribution example: We select a random subset of the test set.

For input space audits, we use the loss of the input example as the score. In our experiments we
report the attack with the highest lower bound.

In our experiments, we evaluate different values of k+ and k− and report the best auditing results.
Since changing the number of guesses r = k++k− versus number of abstentionsm−r is potentially
testing multiple hypothesis on the same data, we should reduce the reported confidence value of our
results. However, common practice is to simply ignore this minor issue [ZBWTSRPNK22; MSS22].
Fortunately, our main theorem can be extended to account for the dynamic choice of the number of
guesses (see Corollary 5.8 in the full version).

4.1 Gradient Space attacks

We start with the strongest attack: We assume white-box access – i.e., the auditor sees all interme-
diate iterates of DP-SGD (which is a reasonable assumption in the federated learning setting) – and
that the auditor can insert examples with arbitrary gradients into the training procedure. First, we
evaluate the effect of the number of the auditing example on the tightness. Figure 3 demonstrates
that as the number of examples increases, the auditing becomes tighter. However, the impact of the
additional examples eventually diminishes. Intriguingly, adding more non-auditing training exam-
ples (resulting in a larger n compared to m) does not seem to influence the tightness of the auditing,
as depicted in Figure 4. This can be primarily due to the fact that gradient attacks proposed in prior
studies can generate near-worst-case datasets, irrespective of the presence of other data points.
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Another parameter that might affect the auditing results is the number of iterations ` in the DP-
SGD algorithm. As shown in Figure 5 we compare the extreme setting of having one iteration to
multiple iterations and we do not observe any significant difference in the auditing when auditing
for the equivalent privacy guarantees (by increasing the noise). The results confirm the tightness
of composition and that the number of iterations does not have significant effect on auditing in
white-box setting.

Now we directly use the parameters used in the training CIFAR10 models. Figure 6 summarizes
results for the CIFAR10 models. We used m = 5000 and all of the training dataset from CIFAR10
(n = 50, 000) for the attack. We were able to achieve 76% accuracy for ε = 8 (δ = 10−5, compared
to 78% when not auditing). We are able to achieve an empirical lower bound of 0.7, 1.2, 1.8, 3.5 for
theoretical epsilon of 1, 2, 4, 8 respectively. While our results are not as tight as the prior works, we
only require a single run of training which is not possible using the existing techniques. In the era of
exponentially expanding machine learning models, the computational and financial costs of training
these colossal architectures even once are significant. Expecting any individual or entity to shoulder
the burden of training such models thousands of times for the sake of auditing or experimental
purposes is both unrealistic and economically infeasible. Our method offers a unique advantage by
facilitating the auditing of these models, allowing for an estimation of privacy leakage in a white-box
setting without significantly affecting performance.

4.2 Input Space Attacks

Now we evaluate the effect of input space attacks in the black-box setting. In this attack, the auditor
can only insert actual images into the training procedure and cannot control any of the aspects of the
training. Then, the adversary can observe the final model as mentioned in Algorithm 1. This is the
weakest attack setting.

For simplicity we start with the setting where m = n; in other words, all of the examples used to
train the model are randomly included or excluded and can be used for auditing. Figure 7 illustrates
the result of this setting. As we see from the figure, unlike the white-box attack we do not observe a
monotonic relationship between the number of auditing examples and the tightness of the auditing.
Intuitively, when the number of auditing examples are low then we do not have enough observations
to have high confidence lower bounds for epsilon. On the other hand, when the number of auditing
examples are high, the model does not have enough capacity to “memorize” all of the auditing
examples which reduces the tightness of the auditing. However, this can be improved by designing
better black-box attacks which we reiterate in the next section.

We also evaluate the effect of adding additional training data to the auditing in Figure 8. We see that
adding superfluous training data significantly reduces the effectiveness of auditing. The observed
reduction in auditing effectiveness with the addition of more training data could be attributed to
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several factors. One interpretation could be that the theoretical privacy analysis in a black-box
setting tends to be considerably more loose when the adversary is constrained to this setting. This
could potentially result in an overestimation of the privacy bounds. Conversely, it is also plausible
that the results are due to the weak black-box attacks and can be improved in the future.

5 Related Work

The goal of privacy auditing is to empirically estimate the privacy provided by an algorithm, typ-
ically to accompany a formal privacy guarantee. Early work on auditing has often been moti-
vated by trying to identify bugs in the implementations of differentially private data analysis al-
gorithms [DWWZK18; BGDCTV18].

Techniques for auditing differentially private machine learning typically rely on conducting some
form of membership inference attack [SSSS17];3 these attacks are designed to detect the presence
or absence of an individual example in the training set. Essentially, a membership inference attack
which achieves some true positive rate (TPR) and false positive rate (FPR) gives a lower bound on
the privacy parameter ε ≥ loge(TPR/FPR) (after ensuring statistical validity of the TPR and FPR
estimates).

Jayaraman and Evans [JE19] use standard membership inference attacks to evaluate different privacy
analysis algorithms. Jagielski, Ullman, and Oprea [JUO20] consider inferring membership of worst-
case “poisoning” examples to conduct stronger membership inference attacks and understand the
tightness of privacy analysis. Nasr, Song, Thakurta, Papernot, and Carlini [NSTPC21] measure the
tightness of privacy analysis under a variety of threat models, including showing that the DP-SGD
analysis is tight in the threat model assumed by the standard DP-SGD analysis.

Improvements to auditing have been made in a variety of directions. For example, Nasr, Hayes,
Steinke, Balle, Tramèr, Jagielski, Carlini, and Terzis [NHSBTJCT23] and Maddock, Sablayrolles,
and Stock [MSS22] take advantage of the iterative nature of DP-SGD, auditing individual steps to
understand privacy of the end-to-end algorithm. Improvements have also been made to the basic
statistical techniques for estimating the ε parameter, for example by using Log-Katz confidence
intervals [LMFLZWRFT22], Bayesian techniques [ZBWTSRPNK22], or auditing algorithms in
different privacy definitions [NHSBTJCT23].

Andrew, Kairouz, Oh, Oprea, McMahan, and Suriyakumar [AKOOMS23] build on the observation
that, when performing membership inference, analyzing the case where the data is not included does

3Shokri, Stronati, Song, and Shmatikov [SSSS17] coined the term “membership inference attack” and were
the first to apply such attacks to machine learning systems. However, similar attacks were developed for
applications to genetic data [HSRDTMPSNC08; SOJH09; DSSUV15] and in cryptography [BS98; Tar08].
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not require re-running the algorithm; instead we can re-sample the excluded data point; if the data
points are i.i.d. from a nice distribution, this permits closed-form analysis of the excluded case. This
gives a method for estimating the privacy parameters of an algorithm in a single run, but it does
not guarantee that the estimate is either a lower or upper bound. In a similar vein, independent and
concurrent work by Pillutla, Andrew, Kairouz, McMahan, Oprea, and Oh [PAKMOO23] provides
a rigorous privacy auditing scheme that re-uses training runs to improve efficiency. Rather than
consider a single pair of inputs differing by a single example, they consider multiple pairs of neigh-
bouring inputs, but these pairs are overlapping in the sense that a single input dataset may appear in
multiple pairs. Thus each training run can be re-used to estimate the privacy parameters of multiple
pairs simultaneously or, rather, a single lower bound on the privacy parameters is computed over a
(random) combination of the pairs. This is significantly more efficient than the naı̈ve approach, but
still requires more than one run.

A recent heuristic proposed to improve the efficiency of auditing is performing membership in-
ference on multiple examples simultaneously. This heuristic was proposed by Malek Esmaeili,
Mironov, Prasad, Shilov, and Tramer [MEMPST21], and evaluated more rigorously by Zanella-
Béguelin, Wutschitz, Tople, Salem, Rühle, Paverd, Naseri, and Köpf [ZBWTSRPNK22]. However,
this heuristic is not theoretically justified, as the TPR and FPR estimates are not based on indepen-
dent samples. In our work, we provide a proof of the validity of this heuristic. In fact, with this
proof, we show for the first time that standard membership inference attacks, which attack mul-
tiple examples per training run, can be used for auditing analysis; prior work using these attacks
must make an independence assumption. As a result, auditing can take advantage of progress in the
membership inference field [CCNSTT22; WBKBGGG22].

Our theoretical analysis builds on the connection between DP and generalization [DFHPRR15b;
DFHPRR15a; BNSSSU16; RRST16; JLNRSMS19; SZ20]. Our approach can be viewed as a con-
trapositive to “privacy implies generalization.” That is, “failure to generalize implies non-privacy.”
Our auditing scheme can also be viewed as a “reconstruction attack” [DN03; DSSU17]. That is, the
auditor’s guesses T can be viewed as a reconstruction of the private coins S. And it is known that
DP prevents reconstruction [De12]

6 Discussion

Our main contribution is showing that we can audit the differential privacy guarantees of an algo-
rithm with a single run. In contrast, prior methods require hundreds – if not thousands – of runs,
which is computationally prohibitive for all but the simplest algorithms and machine learning mod-
els. Our experimental results demonstrate that in practical settings our methods are able to give
meaningful lower bounds on the privacy parameter ε.

However, while we win on computational efficiency, we lose on tightness of our lower bounds. We
now illustrate the limitations of our approach and discuss the extent to which this is inherent, and
what lessons we can learn.

But, first, we illustrate that our method can give tight lower bounds. In Figure 9, we consider an
idealized setting where the number of guesses changes and the fraction that are correct is fixed at
eε

eε+1 for ε = 4 – i.e., 98.2% of guesses are correct.4 This is the maximum expected fraction of
correct guesses compatible with (4, 0)-DP. In this setting the lower bound on ε does indeed come
close to 4. With 10,000 guesses we get ε ≥ 3.87 with 95% confidence.

Note that the lower bound in Figure 9 improves as we increase the number of guesses. This is simply
accounting for sampling error – to get a lower bound with 95% confidence, we must underestimate
to account for the fact that the number of correct guesses may have been inflated by chance. As we
get more guesses, the relative size of chance deviations reduces.

Limitations: Next we consider a different idealized setting – one that is arguably more realistic –
where our method does not give tight lower bounds. Suppose Si ∈ {−1,+1} indicates whether
example i ∈ [n] is included or excluded. In Figure 10, we consider Gaussian noise addition. That
is, we release a sample from N (Si, 4). (In contrast, Figure 9 considers randomized response on
Si.) A tight analysis of the Gaussian mechanism [BW18, Theorem 8] gives an upper bound of

4The number of correct guesses is rounded down to an integer (which results in the lines being jagged).
There are no abstentions.
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Figure 9: Comparison of upper and lower
bounds for idealized setting with varying num-
ber of guesses. The fraction of correct guesses
is always eε

eε+1 ≈ 0.982 for ε = 4.
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Figure 10: Comparison of upper and lower
bounds for idealized setting with varying num-
ber of guesses. For each example i ∈ [m],
we release Si + ξi, where ξi ← N (0, 4) and
Si ∈ {−1,+1} is independently uniformly
random and indicates whether the sample is
included/excluded. For the upper bound, we
compute the exact (4.38, 10−5)-DP guarantee
for the Gaussian mechanism. For the lower
bound, we plot the bound of Theorem 3.1 with
95% confidence for varying numbers of guesses
r. Total of m = 100, 000 randomized exam-
ples; we guess Ti = +1 for the largest r/2
scores and Ti = −1 for the smallest r/2 scores;
we guess Ti = 0 for the remaining m − r ex-
amples. The number of correct guesses is set
to dr · P [Si = +1|Si + ξi > c]e, where c is a
threshold such that P [Si + ξi > c] = r

2m .
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Figure 11: Same setting as Figure 10
with varying δ and confidence, but number of
guesses fixed to r =1,500 of which 1,429 are
correct out of m =100,000 auditing examples.

(4.38, 10−5)-DP. Unlike for randomized response, abstentions matter here. We consider 100,000
examples, each of which has a score sampled from N (Si, 4), where Si ∈ {−1,+1} is uniformly
random. We pick the largest r/2 scores and guess Si = +1. Similarly we guess Si = −1 for the
smallest r/2 scores. We abstain for the remaining 100, 000− r examples. If we make more guesses
(i.e., increase r), then we start making guesses on examples which are less “in the tails” of each
distribution, which provide less signal for the attack, making the attack accuracy go down along
with our lower bound. We must trade off between more guesses being less accurate on average and
more guesses having smaller relative sampling error.

In Figure 10, the highest value of the lower bound is ε ≥ 2.675 for δ = 10−5, which is attained by
1439 correct guesses out of 1510. In contrast, the upper bound is ε = 4.38 for δ = 10−5. To get a
matching upper bound of ε ≤ 2.675 we would need to set δ = 0.0039334. In other words, the gap
between the upper and lower bounds is a factor of 393× in δ.

Figure 11 considers the same idealized setting as Figure 10, but we fix the number of guesses to
1,500 out of 100,000 (of which 1,429 are correct); instead we vary δ and the confidence level.

Are these limitations inherent? Figures 10 & 11 illustrate the limitations of our approach. They
also hint at the cause: The number of guesses versus abstentions, the δ parameter, and the confidence
all have a large effect on the tightness of our lower bound.

Our theoretical analysis is fairly tight; there is little room to improve Theorem 3.1. We argue that
the inherent problem is a mismatch between “realistic” DP algorithms and the “pathological” DP
algorithms for which our analysis is nearly tight. This mismatch makes our lower bound much more
sensitive to δ than it “should” be.
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Algorithm 2 Pathological Algorithm
1: Input: s ∈ {−1,+1}m
2: Parameters: r ∈ [m], ε, δ ≥ 0, β ∈ [0, 1]. As-

sume 0 < mδ ≤ rβ.
3: Select U ⊂ [m] with |U | = r uniformly random.
4: Set Ti = 0 for all i /∈ U .
5: Sample X ← Bernoulli(β).
6: if X = 1 then
7: for i ∈ U do
8: Independently sample Ti ∈ {−1,+1} with

P [Ti = si] = mδ
rβ +

(
1− mδ

rβ

)
· eε

eε+1 .

9: end for
10: else if X = 0 then
11: for i ∈ U do
12: Independently sample Ti ∈ {−1,+1} with

P [Ti = si] = eε

eε+1 .
13: end for
14: end if
15: Output: T ∈ {−1, 0,+1}m.

To be concrete about what we
consider pathological, consider
M : {−1,+1}m → {−1, 0,+1}m
defined by Algorithm 2. This algorithm
satisfies (ε, δ)-DP and makes r guesses
with m− r abstentions. In the X=1 case,
the expected fraction of correct guesses is
mδ
rβ +

(
1−mδ

rβ

)
· eε

eε+1 . This is higher than
the average fraction of correct guesses,
but if we want confidence 1− β in our
lower bound, we must consider this case,
as X=1 happens with probability β.

Intuitively, the contribution from δ to the
fraction of correct guesses should be negli-
gible. However, we see that δ is multiplied
by m/rβ. That is to say, in the settings
we consider, δ is multiplied by a factor on
the order of 100× or 1000×, which means
δ = 10−5 makes a non-negligible contri-
bution to the fraction of correct guesses.

It is tempting to try to circumvent this problem by simply setting δ to be very small. However, as
shown in Figure 11, the corresponding upper bound on ε also increases as δ → 0.

Unfortunately, there is no obvious general way to rule out algorithms that behave like Algorithm 2.
The fundamental issue is that the privacy losses of the m examples are not independent; nor should
we expect them to be, but they shouldn’t be pathologically dependent either.

Directions for further work: Our work highlights several questions for further exploration:

• Improved attacks: Our experimental evaluation uses existing attack methods. Any im-
provements to membership inference attacks could be combined with our results to yield
improved privacy auditing.
One limitation of our attacks is that some examples may be “harder” than others and the
scores we compute do not account for this. When we have many runs, we can account for
the hardness of individual examples [CCNSTT22], but in our setting it is not obvious how
to do this.

• Algorithm-specific analyses: Our methods are generic – they can be applied to essentially
any DP algorithm. This is a strength, but there is also the possibility that we could obtain
stronger results by exploiting the structure of specific algorithms. A natural example of
such structure is the iterative nature of DP-SGD. That is, we can view one run of DP-SGD
as the composition of multiple independent DP algorithms which are run sequentially.

• Multiple runs & multiple examples: Our method performs auditing by including or ex-
cluding multiple examples in a single training run, while most prior work performs multiple
training runs with a single example example included or excluded. Can we get the best of
both worlds? If we use multiple examples and multiple runs, we should be able to get
tighter results with fewer runs.

• Other measures of privacy: Our theoretical analysis is tailored to the standard definition
of differential privacy. But there are other definitions of differential privacy such as Rényi
DP. And, in particular, many of the upper bounds are stated in this language. Hence it
would make sense for the lower bounds also to be stated in this language.

• Beyond lower bounds: Privacy auditing produces empirical lower bounds on the privacy
parameters. In contrast, mathematical analysis produces upper bounds. Both are necessar-
ily conservative, which leaves a large gap between the upper and lower bounds. A natural
question is to find some middle ground – an estimate which is neither a lower nor upper
bound, but provides some meaningful estimate of the “true” privacy loss. However, it is
unclear what kind of guarantee such an estimate should satisfy, or what interpretation the
estimate should permit.
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