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ABSTRACT

Action anticipation models require an understanding of temporal action patterns
and dependencies to predict future actions from previous events. The key chal-
lenges arise from the vast number of possible action sequences, given the flexibil-
ity in action ordering and the interleaving of multiple goals. Since only a subset
of such action sequences are present in action anticipation datasets, there is an in-
herent ordering bias in them. Another challenge is the presence of noisy input to
the models due to erroneous action recognition or other upstream tasks. This pa-
per addresses these challenges by introducing a novel data augmentation strategy
that separately augments observed action sequences and next actions. To address
biased action ordering, we introduce a grammar induction algorithm that derives
a powerful context-free grammar from action sequence data. We also develop
an efficient parser to generate plausible next-action candidates beyond the ground
truth. For noisy input, we enhance model robustness by randomly deleting or re-
placing actions in observed sequences. Our experiments on the 50Salads, EGTEA
Gaze+, and Epic-Kitchens-100 datasets demonstrate significant performance im-
provements over existing state-of-the-art methods.

1 INTRODUCTION

Action anticipation involves interpreting past events to predict future events in domains such as
robotics Antonucci et al. (2021) and surveillance Duque et al. (2007). This capability mirrors human
foresight, enabling systems to predict future actions based on observed behaviors, thus allowing for
proactive responses.

Predicting next action from an observed action sequence is complex due to three main factors. Flex-
ibility in the order of actions allows certain actions to occur in any order, e.g., cut tomatoes, cut
cucumber, and cut cheese in ingredient preparation. Interleaving goals, where multiple goals are
pursued simultaneously, can result in a sequence of potentially uncorrelated actions. For example,
in the preparation of coffee and cereal, actions for make coffee, and make cereal can be arranged
in multiple valid orders, including in an interleaving manner. As illustrated in Figure 1, the goal of
make cereal can occur before the goal of make coffee (as in sequence a1), after (as in sequence a2),
or interleaved with the goal of make coffee (as in sequences a3 and a4). However, in practice, an
action anticipation dataset typically captures only a subset of these possibilities, which can lead to
the learning of biased action orders, causing the model to favor specific action sequences and failing
to generalize to unseen or less frequent action patterns. Thirdly, action anticipation models often en-
counter noisy inputs, which can arise from misclassified actions, or imprecise temporal annotations,
which complicates the task by introducing uncertainty and variability in action prediction.

This paper tackles the above three challenges by generating new action sequences that, when inte-
grated with the original training sequences, broaden the range of possible action orderings, thereby
reducing bias and enhancing predictive accuracy. Sequence augmentation has been used in natural
language processing Hou et al. (2018) and speech recognition Nguyen et al. (2020) to boost model
generalization and mitigate over-fitting. Such techniques include synonym replacement, random
insertion, deletion, or shuffling of elements. More recently, sequence augmentation has been used
in video understanding Prananta et al. (2022); Lee et al. (2022); Falcon et al. (2020), employing
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Figure 1: A subset of valid action sequences for make coffee (red) and make cereal(black).

methods like temporal stretching, frame interpolation, and mirroring of video sequences. Despite
its success in other domains, augmenting action sequences presents unique challenges that require
maintaining logical and temporal coherence to ensure that the augmented sequences remain realistic
and meaningful. An effective sequence augmentation strategy for action sequences has yet to be
thoroughly investigated.

We introduce a novel sequence augmentation strategy, called ActSeq, that separately augments the
observed action sequence and the predicted next action. We first propose a novel grammar induction
algorithm that extracts a context-free grammar from action sequence labels. This grammar captures
the order between actions, guided by the objects and their interactions within the sequence. We
also develop a modified version of the Earley Parser Earley (1970) that efficiently generates diverse
next action candidates across multiple goals, adhering to the grammar rules and the observed data.
Additionally, we enhance the model’s robustness by borrowing a proven effective augmentation
technique from NLP of random modifications — deleting, or replacing actions — in the observed
action sequences. The experiments on three benchmark datasets show that our approach effectively
reduces action ordering biases and improves on the state-of-the-art action anticipation models’ per-
formances.

2 RELATED WORK

Action Anticipation. A variety of machine learning models have been explored for action antic-
ipation, each leveraging different aspects of temporal and spatial data processing. Convolutional
Neural Networks (CNNs) Abu Farha et al. (2018), long appreciated for their ability to handle spatial
features, have been adapted to address the temporal dimensions of video data. Among these adapta-
tions, we focus on RULSTM Furnari & Farinella (2020), which combines recurrent neural network
capabilities with CNNs to enhance temporal understanding through state retention over time. Re-
cently, tranformer-based models such as AVT Girdhar & Grauman (2021), RAFTformer Girase
et al. (2023) and MotionFormer Patrick et al. (2021) incorporate attention mechanisms that weigh
the relevance of different temporal segments. Zhao & Wildes (2020) uses Conditional Adversarial
Generative Networks (CAGNs) to jointly anticipate long-term activity labels and their corresponding
times.

Sequence Augmentation is a methodology that involves artificially expanding the diversity of train-
ing datasets by altering existing sequences or synthetically generating new ones, thereby helping
models to better generalize across unseen data and mitigate overfitting. Historically, sequence aug-
mentation has been extensively applied in natural language processing (NLP) Li et al. (2022); Feng
et al. (2021). Techniques such as synonym replacement Jungiewicz & Smywiński-Pohl (2019), ran-
dom insertion, deletion, or shuffling of words (or phonemes in speech) Wei & Zou (2019) have
been standard practices to inflate text and speech datasets. These methods have proven effective in
improving the performance of models on tasks ranging from language translation to speech-to-text
recognition. Recently, sequence augmentation has seen innovative applications in video processing
Yun et al. (2020); Kwon et al. (2022), such as temporal stretching Prananta et al. (2022), frame in-
terpolation Lee et al. (2022), mirroringFalcon et al. (2020), and generation with Monte-Carlo Tree
Search (MTCS) Aziere & Todorovic (2023) of video sequences. To the best of our knowledge,
a formal approach to sequence augmentation specifically for action anticipation has not yet been
established. Mittal et al. (2024) use a video-language model that enhances the generalization of
anticipation models by learning plausible future actions.While large language models (LLMs) ex-
cel in scalability and adaptability, they are prone to hallucinations. In contrast, our grammar-based
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Figure 2: The proposed action sequence augmentation strategy ActSeq initiates by deriving video
grammar from an action sequence using the Action Grammar Induction (AGI) algorithm. Subse-
quently, the Cross-Tree Earley Parser (CTEP) predicts alternative next actions based on the observed
actions and the video grammar (the figure shows only one augmented sequence). These predicted
actions are combined with the original observed actions to compose new training samples. Finally,
random modifications (RM) of observed sequences are applied to generate additional training sam-
ples. In this example, the training set expands to three times its original size.

method excels in interpretability with explicitly defined and traceable rules. Appendix A compares
predictions from representative LLMs and our method.

Grammar for activity analysis. Grammar, as a fundamental tool for representing the composi-
tional structure of language, has been extensively explored in the realm of NLP Cremers & Ginsburg
(1975); Seki et al. (1991). Beyond textual analysis, grammar’s application in action anticipation was
first explored by Pei et al. (2011) and Si et al. (2011), who utilized AND-OR grammars learned from
strings of symbols, each representing an action according to the grammar’s defined language. These
early models, however, were limited to deterministic inputs and lacked flexibility. Vo & Bobick
(2014) extended this approach by introducing stochastic context-free grammars that could process
probabilistic sequence inputs, enhancing the model’s adaptability to more realistic, variable data sce-
narios. More recently, Qi et al. (2020) employed the ADIOS grammar induction algorithm to derive
grammars directly from action corpora, marking a significant step towards automation in grammar
generation for action sequences. Piergiovanni et al. (2020) proposed a differentiable grammar mod-
els that learn sequential dependencies from the action sequence data. Gong et al. (2024) recently
introduced a novel grammar induction algorithm that emphasizes key actions and temporal depen-
dencies, incorporating recursive temporal structures to better mirror the repetitive and intertwined
nature of human activities. Dessalene et al. (2023) proposed a rule-based, compositional, and hierar-
chical approach to modeling actions from elemental motions, such as ‘grasp‘ and ‘release‘. Despite
these advancements, many of the existing grammatical frameworks either require hand-crafted rules,
or depend on the limited training data that are biased in the order of actions.

3 ACTION SEQUENCE AUGMENTATION

Given a video of an action sequence, training samples for action anticipation are typically generated
using M + 1 continuous actions from the sequence. Here, the first M actions form the observed
sequence aobs = [a1, a2, . . . , aM ], and the (M + 1)th action is considered as the next action to be
predicted, apred = aM+1.

In sequence augmentation for text classification, e.g., Wei & Zou (2019), augmentation is applied to
a training sample (X, y), where X is the input sequence and y is the output class. In our case, X rep-
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resents the observed actions, and y is the next action. Our proposed action sequence augmentation
strategy ActSeq applies distinct augmentation techniques to both the observed action sequences X
and the next action y. The purpose of proposing alternative next actions is to enhance the diversity
of potential future actions, aiming to reduce ordering bias. This ensures that the model can accu-
rately predict a variety of possible future actions without depending on a single ground-truth action
in the training data. The aim of augmenting observed action sequences is to simulate real-world
inaccuracies such as noisy labels in annotation or erroneous action recognition by an action segmen-
tation model. It also forces the model to learn from a broader context of the action sequence under
consideration .

The overall pipeline of ActSeq comprises three main steps, as illustrated in Figure 2. Action Gram-
mar Induction (AGI): The AGI algorithm initially derives a video grammar from a given action
sequence. This grammar serves as the framework for understanding and predicting action dynam-
ics within the video. Prediction by Cross-Tree Earley Parser (CTEP): For each training sample
extracted from the video sequence, CTEP predicts alternative next actions based on the observed
actions and the video grammar. The predicted alternative next actions combine with the original
observed actions to form new training samples. In Figure 2, for illustration, we show the CTEP
proposing a single next action and, hence, creating one new training sample. Random Modifi-
cations (RM): For each new training sample generated by CTEP, additional training samples are
created through random modifications to the observed action sequences. In Figure 2, for illustration,
we show the RM is set to generate one modified observed sequence, hence, creating one additional
training sample.

3.1 ACTION GRAMMAR INDUCTION (AGI)

We first define two types of ordering: dependent and independent. If action B is dependent on
action A, then A needs to happen before B, denoted by (A,B). On the other hand, if action A and
B are independent, they can happen in any order.

As stated in the introduction, learning the correct order of actions is challenging, primarily due to
the numerous possibilities of combining actions to construct valid action sequences, particularly
when limited by the availability of training samples. However, we observed that actions performed
on a single object tend to follow more consistent sequences. For example, in all sequences shown
in Fig. 1, actions performed on object cup consistently follow the same order: ”take” followed by
”pour into.” The same pattern holds for objects like the bowl and cereal.

The action grammar is defined as a context-free grammar (Section 3.1.2), designed to derive ac-
tions and their orders pertaining to a single object (atomic action) or an interaction between multiple
objects such as “pour cereal into bowl”. Our grammar induction algorithm uses an action depen-
dency matrix, which is derived from the entire training set and maintained as a knowledge base, to
construct a unique grammar for each action sequence.

3.1.1 ACTION DEPENDENCY MATRIX

Dependent actions linked to specific objects follow a similar pattern across different goals. Con-
versely, with independent actions, such as the addition of various ingredients to the bowl, a flexible
order of execution is permitted. These aspects are captured in an action dependency matrix, which is
a skew-symmetric matrix where M(i,j) = 1 if action i is dependent on action j, and is 0 otherwise.

To construct the matrix, we first isolate the actions associated with each object from all action se-
quences in the training data, creating object-specific action sequences. These actions could comprise
of atomic actions and/or interactions. Interactions among objects are decomposed into respective
atomic actions. For instance, for interaction ’pour cereal into bowl’, the action for ’cereal’ is de-
noted as ’pour’, and for ’bowl’ as ’poured into’. Given the object-specifc atomic action sequences,
the dependencies between two actions are then computed by thresholding on

P(A⇒B) =
N(A⇒B)

N(A⇒B) +N(B⇒A)
, (1)

where P(A⇒B) denotes the likelihood that action B is dependent on action A, N(A⇒B) is the number
of times action A precedes action B in sequences where both are present. Ideally, if they are inde-
pendent, P(A⇒B) = P(B⇒A) = 50%, and if they are dependent (e.g. B depends on A), P(A⇒B)
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Table 1: Decomposition of Interactions & Action Dependency Matrix. Interactions are decom-
posed into atomic actions and their dependencies. M(i, j) = 1 : action i is dependent on action j,
M(i, j) = −1: reverse dependency, M(i, j) = 0 (shown as -): no dependency between actions.

Interaction Atomic Actions Take
bowl

Pour
cereal

Poured
into
bowl

Pour
milk

Poured
into
bowl

Stir
cereal

Stir in
bowl

Take bowl - - -1 - -1 - -
Pour cereal Pour cereal - - - - - -1 -
into bowl Poured into bowl 1 - - - - - -1
Pour milk Pour milk - - - - - - -
into bowl Poured into bowl 1 - - - - - -1
Stir cereal Stir cereal - 1 - - - - -

in bowl Stir in bowl - - 1 - 1 - -

Figure 3: Example of Video Grammar construction. From an action sequence (a), action dependen-
cies of atomic actions for each object (b), and interaction decomposition (c) of all atomic actions and
interactions in the sequence, are used to construct a dependency matrix for the sequence, visualized
as a graph (d). (e) demonstrates step by step construction of video grammar’s production rules and
corresponding grammar tree from the dependency matrix.

should be 100%. However in real datasets, this is usually not true due to the bias caused by limited
samples and incorrect or missing labels. Hence, we introduce a threshold, if P(A⇒B) is greater than
this threshold, action B is deemed dependent on action A and M(A,B) = 1. Otherwise the two
actions are considered independent and M(A,B) = 0. The action dependency matrix that captures
the sequential dependencies of actions is shown in Table1.

Figure 3 (b) provides a graph-based visualization of atomic action dependencies for objects. In
(c), the graph shows the decomposition of interaction into atomic actions. Finally, (d) presents a
graphical representation of the action dependencies matrix in Table.1for action sequence in (a).

3.1.2 VIDEO GRAMMAR

Formally, a context-free grammar (CFG) Cremers & Ginsburg (1975) is defined as a 4-tuple G =
(C, T, P, S), where C is a finite set of non-terminal symbols, representing higher-level constructs.
T is a finite set of terminal symbols. P is a finite set of production rules of the form A → α, where
A ∈ C is a non-terminal and α ∈ (C ∪ T )∗. The ∗ represents the set of all strings that composed of
non-terminals and terminals. The → denotes replacement of the non-terminal A with the sequence
α. S is the start symbol.
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Figure 4: Given an action sequence with two entangled goals, AGI separates the two goals and
represents them using two dependency matrices, visualised as two graphs.

We use two types of production rules, ‘AND’ and ‘OR’, defined as (i) AND : C → αβ, and (ii)
OR : C → αβ | βα. The AND rule dictates that the non-terminal C is replaced by the sequence
αβ, establishing that α occurs before β. Conversely, the OR rule, containing the ‘|’ operator, allows
for the non-terminal C to be replaced by either αβ or βα, signifying that α and β can occur in
any order. These rules enable the hierarchical generation of action sequences. The video grammar
is constructed using the dependency matrix. Actions that are dependent are linked with an AND
operator, while independent actions are connected using an OR operator.

We demonstrate the construction of the video grammar with the example shown in Figure 3, starting
with the initial action “Take bowl.” As this action does not depend on any others, it is directly
added to the root node S as V 0 in Figure 3(e). The next action “Pour cereal into bowl” relies
on “Take bowl”, because its component action “poured into bowl” is dependent on “Take bowl”.
Consequently, it is connected to the right of V 0 at the root node as V 1, using an AND operator to
indicate that V 0 precedes V 1. The third action, “Pour milk into bowl,” also depends on “Take bowl”
but is independent of “Pour cereal into bowl.” To manage this independence, a dummy node V 1

replaces the original V 1, now termed V 1
1 , representing “Pour cereal into bowl.” The action “Pour

milk into bowl” is then introduced as V 1
2 and connected to V 1 with an OR operator, indicating that

V 1
1 and V 1

2 can occur in any order. Lastly, “Stir cereal into bowl” is added as V 2 to the root node
because it depends on both V 1

1 and V 1
2 . Figure 3(e) illustrates the fully constructed video grammar’s

production rules and corresponding grammar tree.

The example demonstrates that the proposed AGI algorithm is both simple and effective at capturing
correct action ordering. Another advantage is that when there are multiple goals being pursued at
the same time, for instance, “make cereal” and “make coffee” , AGI is able to separate the two goals
and represent them using two dependency matrices, visualised as a graph in Figure 4.

3.2 CROSS-TREE EARLEY PARSER

The primary objective of the parser is to propose next action candidates based on observed actions,
using the video grammar as a guide. When multiple grammar trees are present, the original Earley
Parser will not predict actions from a grammar tree if none of its actions has been observed. For
instance, as illustrated in Figure 4, if the observed input is “Take bowl,” belonging to the “make ce-
real” grammar tree, the Earley Parser will not predict “Take cup,” which is part of the “make coffee”
grammar tree, Instead, it will continue to process actions only from the “make cereal” grammar tree.

We propose a modified version of the Earley parser called Cross-Tree Earley parser (CTEP) that
can handle interleaving actions from multiple goals. It operates similarly to the Earley Parser but
includes enhancements to handle goal switching and parallel goal execution. However, allowing
parsing across multiple trees will exponentially expand the search space as the number of trees in
a video increases. To enhance search efficiency, the CTEP Parser allows selective initialization of
grammar trees. In our experiments, only the trees containing observed actions and the next N actions
are initialized.
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We first add an initialization process to allow initializing multiple grammar trees. A terminal symbol
“>” is added as the left child of the root node of selected grammar trees; it also serves as the first
input to initialize these grammars. After initialization, the CTEP parser maintains a set of states at
each position in the input sequence of observed actions, similar to the Earley Parser. As it moves
through the input, it updates the set of states according to three primary operations - Prediction,
Scanning and Completion. In the following, the symbols P and Q refer to the non-terminals. The
symbols α and β represent arbitrary strings consisting of terminals and non-terminals. The dot (·)
denotes the current position of the parser within the production rule.

(i) Prediction: If the current state expects a non-terminal (P → α · Qβ), the parser outputs all
possible productions of Q that can be executed. If the current state expects a terminal, the parser
moves on to the Scanning phase. When all the actions in the input are processed, the parser outputs
all possible next terminals in the current states as the candidates for next action. The candidates are
then prioritized based on the order in which they appear in the video sequence. This prioritization
reflects the natural progression of events in the video. (ii) Scanning: The parser checks the next
input symbol in the current state. If it matches the expected terminal, the parser moves the dot to
the right, indicating successful scanning of that part of the input. (iii) Completion: When the dot
reaches the end of a production (P → αβ·), the parser “completes” that production. The parser
then revisits previous states that were anticipating this non-terminal P and advances the dot in those
states.

3.3 RANDOM MODIFICATION ON OBSERVED ACTIONS

Inspired by the effective text classification technique of random insertion, deletion, and replacement
of words, which robustly enhances training sample diversity and improves model generalization Wei
& Zou (2019), we have adopted a similar augmentation strategy for action sequences. For each se-
quence in the training set, we randomly apply one of the following operations to n = ⌊L/k⌋ + 1
actions, where L represents the total number of actions in a training sample and parameter k is
an adjustable impact factor that controls the number of actions to be modified. Action Replace-
ment (AR): Randomly select actions from the sequence and replace each of these actions with one
chosen at random from the sequence. This simulates scenarios where actions may be misclassified
by upstream models or by wrong labeling in the annotation. Action Deletion (AD): Remove ran-
domly selected action(s) in the sequence. This simulates scenarios where actions may be missed or
unobserved during recording or recognition.

4 EXPERIMENTS

4.1 DATASETS

We perform experiments on three action anticipation benchmarks. 50Salads Stein & McKenna
(2013) consists of 901 action annotations, and 17 action classes. We report the average performance
across the standard five splits. EGTEA Gaze+ Li et al. (2021) contains 10,325 action annotations,
19 verbs, 51 nouns and 106 action classes. Methods are evaluated on EGTEA Gaze+ reporting the
average performance across the three splits provided by the authors of the dataset. EPIC-Kitchens-
100 Damen et al. (2022) contains 3806 actions, with 97 verbs, and 300 nouns. Action is represented
in (verb, noun) pair. For example, action ”open fridge” consists of verb ”open”, and noun ”fridge”.
We evaluate our method on the validation dataset following previous work Guo et al. (2024).

4.2 METRICS

We use Mean Top-5 Recall as a class aware metric for Epic-Kitchens and EGTEA Gaze+ following
Furnari et al. (2019). Specifically, when assessing performance on EGTEA Gaze+, the Top-5 Recall
is calculated by averaging across actions. In contrast, for EPIC-Kitchens, the metric averages over
verbs, nouns, and actions. For the 50Salads dataset, which contains significantly fewer actions, we
use Top-1 accuracy as the evaluation metric, following Guo et al. (2024).

We also propose a metric called Mean Action Order Bias (MAOB) to measure the bias in action
order within a dataset. Specifically, for each independent pair of actions, A and B, the action order
bias for a pair is defined as AOBAB = |P(A⇒B) − P(B⇒A)|, where P(A⇒B) is the probability that
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A occurs before B. These probabilities are computed from training samples where both A and B
are present. The Mean AOB is then computed by averaging over all action pairs.

4.3 STUDY OF ACTION ORDER BIAS IN 50SALADS DATASET

Table 2 compares the MAOB for 50Salads dataset between the original sequence and with the aug-
mented sequence generated from ActSeq. The MAOB of the original sequence is 0.32, indicating
the presence of significant bias. The main source of bias arises from ingredients preparation (e.g.,
cutting various ingredients and placing them in a bowl) and from sauce preparation (e.g., combining
different sauces in a cup) processes. Both processes consist of 4 to 5 independent actions, but some
of these actions are significantly more likely to occur in a particular order. For instance, in 67% of
the videos, the action “cut tomato” occurs before “cut cucumber,” and in 71% of the videos, “add
oil” precedes “put salt”. After incorporating our augmented sequences into the training samples, the
MAOB significantly decreased to 0.12, demonstrating the effectiveness of our method in reducing
ordering bias. MAOB studies on EGTEA Gaze+ and Epic-Kitchens-100 are in Appendix B.

Table 2: Mean Action Order Bias on 50Salads.
Method MAOB
Original sequence 0.32
Original + augmented sequence by ActSeq (ours) 0.12

4.4 ABLATION STUDY OF ACTSEQ ON EGTEA GAZE+ DATASET

In this section, we study the impact of augmenting observed actions and next action individually, as
well as in combination on the performance of action anticipation on the EGTEA Gaze+ dataset. We
also compare our augmentation strategy with other common sequence augmentation methods using
a state-of-the-art model based on RAFTformer Girase et al. (2023). Ablation study on 50Salads and
Epic-Kitchens-100 can be found in Appendix C.

Augmentation to observed actions and next action. Table 3 and Table 4 show RAFTFormer’s
Mean Top 5 Recall on EGTEA Gaze+ changes as a function of two variables: (i) the size of aug-
mented sequences by modifying the observed action sequences and (ii) the size of augmented se-
quences by modifying the next action—expressed as multiples of the original training sequences.
For example, “3X” under Observed in Table 3 indicates that the number of new sequences generated
by augmenting observed actions is three times the size of the original set.

Table 3: Ablation on number of augmented
observed actions on EGTEA Gaze+.

Observed Next Top 5 Recall
original

original

62.1
2X 62.8
3X 63.1
4X 63.0
5X 62.5

Table 4: Ablation on number of augmented
next actions on EGTEA Gaze+.

Observed Next Top 5 Recall

original

original 62.1
1X 63.5
2X 64.7
4X 65.2
5X 65.3

Table 5: Ablation on number of augmented observed and next actions on EGTEA Gaze+.
Observed Next Top 5 Recall
original original 62.1

1X 1X 63.8
2X 2X 65.2
3X 4X 66.3
4X 5X 65.5

Table 3 shows the augmentation effects on observed action sequences. The recall rate initially im-
proves from 62.1% with no augmentation to 63.1% at a 3X increase, suggesting that moderate aug-
mentation to the observed action sequence positively impacts model training by forcing the model to
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learn from the context instead of relying on a few key actions. However, further increase to 4X and
5X augmentation leads to a decrease in performance, dropping to 62.5%. This indicates a potential
over-modification of the observed action sequences, where learning next action from the augmented
sequence becomes too difficult. The subtle fluctuation in recall rates across augmentation levels
suggests that while augmentation helps to a certain extent, its benefits are non-linear and can lead to
negative returns when excessive.

On the other hand, Table 4 shows a slightly different trend when augmenting next actions. The recall
rates steadily increase from 62.1% without augmentation to a peak of 65.3% at 5X augmentation,
though with diminishing returns. Notably, 5X is the maximum number of candidates available for
the ETGEA Gaze+ dataset. This indicates a consistent improvement as augmenting next actions
introduces valuable predictive complexity, helping the model better anticipate and generalize future
actions.

Table 5 provides an integrated view by comparing Top 5 Recall when both observed and next actions
are augmented. For example, 3X under Observed and 4X under Next means that there are three times
the augmented observed actions for each of the four augmented next actions. In this case, the recall
peaks at 66.3%, which demonstrates that combining augmentation techniques on both observed and
next actions yields a synergistic effect, outperforming the application of either method in isolation.
Additionally, the results suggest that there is an optimal scaling factor for the observed and next
action sequences that maximizes performance.

Comparison with other sequence augmentation methods. Since sequence augmentation methods
have not been previously applied to action anticipation, we adopt two commonly used methods from
other fields. Method 1 is from text classification, which involves random modifications (deletion,
insertion, addition, or replacement) of words in text Wei & Zou (2019). Method 2 is from multi-label
image classification, which utilizes prediction results from a downstream model Ke et al. (2019).
For method 1, we apply modifications to randomly selected actions as detailed in Section 3.3 to the
video sequence, then generate training samples from the augmented sequence. For method 2, we
take the predicted next actions from AVT Girdhar & Grauman (2021), combine each prediction with
the observed actions from the original training samples to create augmented samples. Additionally,
we propose a new approach, Method 3, called ”NEXT D.” This method uses each of the next D
actions following the observation as the ”next action”, combined with the original observed actions
to generate D training sequences. For example, consider the notation [aobs,apred]=[[a, b, c], d] where
[a, b, c] represents the observed actions and d is the next action. If the action sequence in a video is
[a, b, c, d, e, f, g, ...], and a training sample is [[a, b, c], d], then the “NEXT D” augmented sequences
with D = 2 are [[a, b, c], e] and [[a, b, c], f ].

Table 6: Comparison of RAFTformer’s performance trained on other augmentation methods on
EGTEA Gaze+ dataset. aobs is the observed sequence, apred is the next action.

Method Applied to Recall (%)
Original training set - 63.5
Original + Randomly delete, insert, add, replace actions (5X) aobs, apred 62.2
Original + Predicted results by AVT (5X) apred 63.6
Original + Next 5 (5X) apred 64.8
Original + ActSeq (pred only) (5X) (Ours) apred 65.3
Original + ActSeq (12X) (Ours) aobs, apred 66.3

Table 6 shows RAFTformer’s performance with augmented sequences generated by different meth-
ods on the EGTEA Gaze+ dataset. The application of randomly deleting, inserting, and replacing
actions to the whole video sequence (i.e.,both observed and next actions) leads to a decrease in per-
formance. In contrast, as noted in Table 3, augmentation applied solely to observed actions resulted
in performance improvements. This suggests that random modifications of next actions introduce
significant noise or irrelevant changes, leading to worse performance. Additionally, using predic-
tions from AVT slightly enhances performance implying that while different models may learn dis-
tinct insights from the dataset, they may yield less diversity and accuracy of possible next actions.
Interestingly, the simpler “Next D” method significantly boosts performance to 64.8% when D = 5,
indicating a strong correlation between observed actions and the next few actions. In comparison,
ActSeq, when applied on next action only, achieves a higher recall of 65.3%. ActSeq is able to

9



Published as a conference paper at ICLR 2025

generate valid action sequences even when the size of augmented sequences is 12 times the original
(i.e. 12X) achieving the best recall of 66.3%.

4.5 IMPACT OF SEQUENCE AUGMENTATION STRATEGY ON SOTA

In this experiment, we evaluate state-of-the-art models trained with and without ActSeq on 50Sal-
ads, EGTEA Gaze+, and EPIC-Kitchens-100 datasets, each offering varying complexity in terms of
action classes, goal diversity, and video length. This allows us to assess our method’s generalizabil-
ity across different models and datasets.

The 50Salads dataset (Table.7), with fewer action classes, a single goal and shorter sequences, re-
sults in relatively fewer action ordering possibilities. Even so, reducing ordering bias through Act-
Seq improves the performance of all models, albeit by a small amount. In contrast, EGTEA Gaze+
(Table.8) and EPIC-Kitchens-100 (Table.9) present a much more complex action space with diverse
verbs and nouns across multiple goals, where ActSeq significantly improves recall by enabling mod-
els to capture subtle action ordering variations.

Appendix D contains a step by step demonstration of how our ActSeq method generates augmented
training samples using an example from the Epic-Kitchens dataset. Appendix E demonstrates the
model’s efficiency when trained with low-data.

In summary, these experiments highlight ActSeq’s robustness across different models and bench-
marks. Its consistent performance gains demonstrate its potential as a valuable strategy for improv-
ing action anticipation for datasets with different complexities.

Table 7: Top 1 Accuracy on 50Salads.
Method Action
CNNAbu Farha et al. (2018) 29.8
CNN + ActSeq 31.1
AVTGirdhar & Grauman (2021) 48.0
AVT + ActSeq 49.7
RAFTformerGirase et al. (2023) 53.2
RAFTformer + ActSeq 53.9

Table 8: Top 5 recall on EGTEA Gaze+.
Method Action
RULSTMFurnari & Farinella (2020) 58.6
RULSTM + ActSeq 60.4
AVTGirdhar & Grauman (2021) 62.1
AVT + ActSeq 64.8
RAFTformerGirase et al. (2023) 63.5
RAFTformer + ActSeq 66.3

Table 9: Top 5 recall metrics on the Epic-Kitchen-100 dataset.
Method Verb Noun Action
RULSTMFurnari & Farinella (2020) 30.8 27.8 14
RULSTM + ActSeq 32.1 30.3 15.9
RAFTformerGirase et al. (2023) 33.8 37.9 19.1
RAFTformer + ActSeq 35.1 40.4 20.8
MotionFormerPatrick et al. (2021) 47.1 46.9 21.5
MotionFormer + ActSeq 48.4 49.4 22.4

5 CONCLUSION AND FUTURE WORK

This paper introduces a comprehensive framework aimed at mitigating the challenges of action
ordering bias in datasets and noisy input to action anticipation models through innovative sequence
augmentation techniques. By tailoring distinct augmentation methods to the observed actions and
the next action, we effectively reduce biases in action order and improve the model’s resilience to
noisy input. This approach has demonstrated significant performance improvements across various
datasets and state-of-the-art models.

However, our current framework assumes that when multiple goals are pursued simultaneously,
the action sets for each goal are independent. This simplification may not hold in cases where a
single action contributes to multiple goals. Future research could extend our model to address such
complexities by exploring how intertwined action sequences and overlapping goals can be more
effectively represented and anticipated.
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A COMPARING GRAMMAR-BASED METHODS AND LLMS FOR ACTION
SEQUENCE AUGMENTATION IN ACTION ANTICIPATION

The integration of grammar-based methods in action sequence augmentation has demonstrated
promising results due to their interpretability and structured approach to generating action se-
quences. However, Large Language Models (LLMs) such as ChatGPT also offer compelling al-
ternatives due to their capability to generate diverse and contextually rich action sequences from ex-
tensive training data. Comparing these methodologies is essential for understanding their respective
strengths and limitations in various application scenarios, particularly in dynamic and less-structured
environments.

A.1 EXPERIMENTAL SETTING

• Dataset: 50Salads
• Task: Predict legitimate next actions given a predefined sequence of cooking actions.

• Models Evaluated:
– Proposed Grammar-based Method (ActSeq): Utilizes rules derived from action

narrations to generate sequences.
– Gemini 1.5 Flash, Claude, ChatGPT-3.5 and ChatGPT-4.0: These models rep-

resent LLMs, chosen for their varying capabilities in understanding and generating
text-based sequences.

A.2 EXAMPLES AND COMPARISON OF RESULTS

• Prompt given to LLM models:
– Task: Given the complete action sequence, the observed actions and the goal, deter-

mine what the next action could be (if there are multiple plausible actions, list them
all). Provide a justification for your choice.

– Complete Action Sequence:[cut tomato, place tomato into bowl, cut cheese, place
cheese into bowl, cut lettuce, place lettuce into bowl, add salt, add vinegar, add oil,
add pepper]

– Observed Actions:[cut tomato, place tomato into bowl]
– Goal: Prepare a mixed salad with dressed vegetables.

• Predictions and Analysis:
– Gemini 1.5 Flash:

* Predicted Actions: ‘cut cheese‘
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* Justification: The goal is to prepare a mixed salad with dressed vegetables. The
observed actions indicate that the tomato has been prepared and added to the bowl.
The next logical step in preparing a mixed salad is to prepare another ingredient,
such as the cheese. The action sequence shows that cutting and placing the cheese
into the bowl follows the preparation of the tomato. Therefore, cutting cheese is
the most plausible next action based on the goal and the observed actions.

* Analysis: The model correctly states that ”The next logical step in preparing a
mixed salad is to prepare another ingredient.” However missed ’cut lettuce’ in its
prediction. Its prediction could be copied from the original action sequence.

– Claude:
* Predicted Actions: Cut cheese and place it into the bowl or Cut lettuce and place

it into the bowl.
* Justifications:The goal is to prepare a mixed salad, and the complete action se-

quence indicates that the next step after placing the tomato into the bowl is to cut
the cheese and place it into the bowl, or cut the lettuce and place it into the bowl.
This aligns with the goal of creating a mixed salad with various ingredients.

* Analysis: The model seems to interpret ”Cut cheese and place it into the bowl”
as a single action, or a immediate sequence of actions, suggesting that once the
cheese is cut, it should directly be placed in the bowl. However, there might be
instances where multiple ingredients are cut, then put into bowl afterwards.

– ChatGPT-3.5:
* Predicted Actions: ‘cut cheese‘, ‘cut lettuce‘, ‘add salt‘
* Justifications:cut cheese and cut lettuce are independent of previous steps beyond

what’s observed. Add salt could technically happen after placing the tomato in the
bowl.

* Analysis: The model suggests adding salt immediately after the initial salad
preparation steps, showcasing a lack of understanding of the structured sequence
typically followed in salad preparation.

– ChatGPT-4o:
* Predicted Actions: ‘cut cheese‘, ‘cut lettuce‘
* Justifications:The most plausible next action is ”cut cheese.” Alternatively, ”cut

lettuce” could also be a valid action. Both align with the goal of preparing a mixed
salad by incorporating the next ingredient into the preparation process.

* Analysis: The model correctly predicts the two candidates, however in its justifi-
cation, it prefers ”cut cheese” over ”cut lettuce. it could due to ”cut cheese” is the
one that appears in the ground truth action sequence.

– ActSeq (Grammar-based Method):
* Predicted Actions: ‘cut cheese‘, ‘cut lettuce‘
* Analysis: Correctly identifies the need to continue with ingredient preparation

before moving on to dressing components, demonstrating strong adherence to the
structured task rules.

The analysis of Large Language Models (LLMs) in the action sequence augmentation experiment
reveals several weaknesses, including varied performance based on model capabilities, inherent bi-
ases, and occasional misunderstandings of task. While more sophisticated prompt engineering can
improve LLM responses by guiding them towards more accurate predictions, it remains challenging
to anticipate and cover all potential scenarios.

B EXTENDED MAOB STUDY ON EGTEA GAZE+ AND EPIC-KITCHENS-100
DATASETS

To evaluate the generalizability of our ActSeq method, we extended the MAOB study to the EGTEA
Gaze+ and Epic-Kitchens-100 datasets in addition to 50Salads. The purpose of this study is to
assess how well ActSeq mitigates action order biases in datasets with varying levels of complexity.
For reference, 50Salads contains fewer action classes, a single goal, and shorter video sequences,
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while EGTEA Gaze+ and Epic-Kitchens-100 feature a more diverse set of verbs, nouns, and goals,
presenting a significantly more complex action space.

As shown in Table 10, the augmented sequences generated by our ActSeq method are 12 times (3X
for observed action and 4X for predicted action) of the original sequences. ActSeq consistently re-
duces MAOB across all three datasets, significantly lowering the bias from 0.32 to 0.12 in 50Salads,
from 0.28 to 0.10 in EGTEA Gaze+, and from 0.46 to 0.19 in Epic-Kitchens-100. This demonstrates
that ActSeq effectively mitigates action order biases, resulting in more balanced and representative
datasets.

Notably, the reduction in MAOB correlates with improved performance across all datasets. By min-
imizing biases in action ordering, ActSeq enables models to better generalize to unseen sequences,
especially in datasets like EGTEA Gaze+ and Epic-Kitchens-100, where subtle variations in ac-
tion order can significantly impact performance. These findings further highlight the robustness of
ActSeq and its potential for generalization across diverse datasets.

Table 10: Mean Action Order Bias (MAOB) across datasets.
Method 50Salads EGTEA Gaze+ Epic-Kitchens-100
Original sequence 0.32 0.28 0.46
Original + ActSeq (ours) 0.12 0.10 0.19

The extended MAOB study provides strong supporting evidence for the effectiveness of ActSeq in
reducing action order biases across datasets with varying complexity. These results align with ob-
served performance improvements, emphasizing the robustness and generalizability of our method.
This analysis also underscores the importance of addressing biases to enhance model performance
in diverse and challenging action understanding tasks.

C ABLATION STUDY OF AUGMENTATION RATIO ON 50SALADS AND
EPIC-KITCHENS-100 DATASETS

This appendix conducts a similar ablation study as in Tables 3 and 4 for the 50Salads and Epic-
Kitchens-100 datasets. These datasets differ from EGTEA Gaze+ in size, domain, and data dis-
tribution. The additional studies aim to evaluate the generalizability of the ActSeq method across
datasets with varying characteristics.

The results of the ablation studies are summarized below for both datasets. These studies assess
the impact of varying augmentation ratios for observed and next action sequences on Top-5 Recall
performance.

50Salads Dataset: The 50Salads dataset, characterized by fewer action classes, shorter sequences,
and a single goal, showed consistent improvements with ActSeq. As seen in Table 11, the best
performance was observed with a configuration of 2X observed and 3X next actions.

Epic-Kitchens-100 Dataset: The Epic-Kitchens-100 dataset, with its complex action space and
diverse goals, showed steady improvements in Top-5 Recall with increased augmentation ratios
(Table 12). The best performance of 20.8% achieved at a 3X observed and 4X next configuration.
These results further support the effectiveness of ActSeq in handling diverse and complex datasets.

The ablation studies on 50Salads and Epic-Kitchens-100 confirm the generalizability of ActSeq to
datasets of varying size, domain, and complexity. Moderate augmentation levels (e.g., 2X or 3X)
strike a balance between computational efficiency and performance improvement, making ActSeq a
practical and adaptable solution for enhancing model performance in diverse applications.

D DEMONSTRATION EXAMPLE FROM THE EPIC-KITCHENS DATASET

This appendix demonstrates how our ActSeq method generates augmented training samples from
the Epic-Kitchens dataset. The example illustrates the derivation of action dependencies, their rep-
resentation in a grammar tree, and the step-by-step generation of augmented sequences using our
approach.
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Table 11: Ablation study on the 50Salads dataset: Top-5 Recall (%).
Observed Next Top-5 Recall (%)
original original 53.2

1X original 53.4
2X original 53.5
3X original 53.3
4X original 53.1

original 1X 53.5
original 2X 53.6
original 3X 53.7
original 4X 53.7

1X 1X 53.5
2X 2X 53.7
2X 3X 53.9
2X 4X 53.5

Table 12: Ablation study on the Epic-Kitchens-100 dataset: Top-5 Recall (%).
Observed Next Top-5 Recall (%)
original original 19.1

2X original 19.4
3X original 19.5
4X original 19.6
5X original 19.5

original 1X 19.8
original 2X 20.2
original 4X 20.5
original 5X 20.5

1X 1X 19.9
2X 2X 20.3
2X 4X 20.6
3X 4X 20.8

ORIGINAL SEQUENCE AND DEPENDENCIES

The original sequence of actions is as follows:

Original Sequence: [open drawer, take knife from drawer, put knife on table, take pot from drawer,
close drawer, put pot on stove.]

Using object-based action transitions and interaction decomposition, the following dependencies are
derived:

• open drawer → close drawer

• open drawer → take knife from drawer

• open drawer → take pot from drawer

• take knife from drawer → put knife on table

• take pot from drawer → put pot on stove

These dependencies can be represented as a grammar tree, as shown in Figure 5.

TRAINING SAMPLE EXTRACTION

From the original sequence, training samples are extracted by considering fixed-length observed ac-
tion sequences. In this demonstration, we assume a length of two actions for the observed sequence.
This results in the following training samples, each in the format: [[observed actions], next action]
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Figure 5: Grammar tree representation of the action sequence: open drawer, take knife from drawer,
put knife on table, take pot from drawer, close drawer, put pot on stove.

1.[[open drawer, take knife from drawer], put knife on table]
2.[[take knife from drawer, put knife on table], take pot from drawer]
3.[[put knife on table, take pot from drawer], close drawer]
4.[[take pot from drawer, close drawer], put pot on stove]

AUGMENTATION EXAMPLE

We demonstrate the augmentation process using the first training sample:

[[observed actions],GT next action] = [[open drawer, take knife from drawer], put knife on table]

Predicting Next Action Candidates Using CTEP (our candidate generation method), the follow-
ing next action candidates are predicted based on the observed actions:

{put knife on table, take pot from drawer, close drawer}.

Generating Augmented Sequences To generate augmented sequences, we exclude the ground
truth (GT) next action (put knife on table) and combine the observed actions with other plausible
candidates. The resulting augmented sequences are:

a. [[open drawer, take knife from drawer], take pot from drawer]
b. [[open drawer, take knife from drawer], close drawer]

Applying Random Modifications (RMs) To enhance diversity, random modifications (RMs) are
applied to the observed actions. For example, switching the order of two actions produces:

c. [[take knife from drawer, open drawer], take pot from drawer]
d. [[take knife from drawer, open drawer], close drawer]

In this example, a total of 4 augmented sequences (a,b,c, and d) are generated. This example demon-
strates how ActSeq generates diverse augmented training samples. By combining plausible next ac-
tions with observed sequences and applying random modifications, our method effectively enriches
the training data while adhering to the dependencies derived from the grammar tree.

E DEMONSTRATION OF MODEL EFFECTIVENESS IN LOW-DATA MODE

This appendix demonstrates how our approach improves data efficiency of a network, enabling it to
require fewer original action sequences during training.
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EXPERIMENTAL SETUP

We simulated low-data conditions by selecting a limited number of training videos per task from the
EGTEA Gaze+ dataset. Specifically, we created subsets with 3 and 5 videos per task. These subsets
were used to train the model both with and without ActSeq augmentations. The performance of
these low-data models was compared to that of a full-data model trained with an average of 10
videos per task.

The RAFTFormer model was used as the base, and Top-5 Recall was selected as the evaluation
metric. Table 13 summarizes the results.

Table 13: Performance of the low-data model on EGTEA Gaze+ with ActSeq.
Videos per Task With ActSeq (Top-5 Recall)

3 64.7
5 65.8

Full (on average 10 per task) 66.3

RESULTS AND DISCUSSION

Table 13 demonstrates the consistent improvement in performance achieved with ActSeq across
varying levels of training data availability. With only 3 videos per task, the model achieves a Top-5
Recall of 64.7%. This result highlights the robustness of ActSeq in extremely limited data set-
tings, where it provides sufficient diversity to improve learning outcomes. It’s worth noting that this
performance is surpassing the RAFTFormer model trained with full original training set, which is
63.5%.

As the number of training videos per task increases to 5, the Top-5 Recall improves to 65.8%,
showing that it enables models to achieve performance levels close to those of full-data models
(66.3%). This result illustrates that while larger datasets naturally lead to better performance, ActSeq
ensures that models trained on smaller datasets can still perform competitively.

The experiments validate the data efficiency of ActSeq, showing that it enables models to achieve
performance levels close to those of full-data models, even with fewer available original training
samples. This makes ActSeq particularly valuable in scenarios where collecting large-scale datasets
is impractical or costly. By enriching the training data with diverse and consistent augmentations,
ActSeq provides an effective solution for overcoming data scarcity while maintaining high model
performance.
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