Retrieval Enhanced Data Augmentation for Question Answering
on Privacy Policies

Anonymous ACL submission

Abstract

Prior studies in privacy policies frame the ques-
tion answering (QA) tasks as identifying the
most relevant text segment or a list of sentences
from the policy document for a user query.
However, annotating such a dataset is challeng-
ing as it requires specific domain expertise (e.g.,
law academics). Even if we manage a small-
scale one, a bottleneck that remains is that the
labeled data are heavily imbalanced (only a few
segments are relevant) —limiting the gain in this
domain. Therefore, in this paper, we develop a
novel data augmentation framework based on
ensembling retriever models that captures the
relevant text segments from unlabeled policy
documents and expand the positive examples
in the training set. In addition, to improve the
diversity and quality of the augmented data, we
leverage multiple pre-trained language models
(LMs) and cascaded them with noise reduc-
tion oracles. Using our augmented data on the
PrivacyQA benchmark, we elevate the exist-
ing baseline by a large margin (11% F1) and
achieve a new state-of-the-art F1 score of 50%.
Our ablation studies provide further insights
into the effectiveness of our approach.

1 Introduction

Understanding privacy policies that describe how
user data is collected, managed, and used by the
respective service providers is crucial for determin-
ing if the conditions outlined are acceptable. Policy
documents, however, are lengthy, verbose, equiv-
ocal, hard to understand (McDonald and Cranor,
2008; Reidenberg et al., 2016). Consequently, they
are often ignored and skipped by users (Commis-
sion et al., 2012; Gluck et al., 2016).

To help the users better understand their rights,
privacy policy QAs are framed as answer sentence
selection tasks, essentially a binary classification
task to identify if a policy text segment is relevant
or not (Harkous et al., 2018). However, annotat-
ing policy documents requires expertise and do-
main knowledge, and hence, it is costly and hard

Segmented policy document S

(s1) We do not sell or rent your personal infor-
mation to third parties for their direct marketing
purposes without your explicit consent. (s,,) ...We
will not let any other person, including sellers and
buyers, contact you, other than through your ...

Queries I annotating the red segment as irrelevant

(i1) How does Fiverr protect freelancers’ personal
information? (i) What type of identifiable infor-
mation is passed between users on the platform?

Queries R annotating the red segment as relevant

(r1) What are the app’s permissions? (r,) What
type of permissions does the app require?

Queries D that annotators disagree about relevance

(d1) Do you sell my information to third parties?
(dy) is my information sold to any third parties?

Table 1: QA (sentence selection) from a policy doc-
ument S. Sensitive: For queries R and I, annotators
at large tagged sentence s, as relevant, and irrelevant
respectively. On the other hand, sentence s,,, though
analogous to s in meaning, was never tagged as rele-
vant. Ambiguous: For queries D, experts interpret s
differently and disagree on their annotations.

to obtain. Moreover, as most texts in policy doc-
uments are not relevant, the data is heavily im-
balanced. For example, the only existing dataset,
PrivacyQA (Ravichander et al., 2019) has 1,350
questions in the training dataset, and the average
number of answer sentences is 5, while the average
length of policy documents is 138 sentences.

In this work, we mitigate data imbalance by
augmenting positive QA examples in the training
set. Specifically, we develop automatic retrieval
models to supplement retrieved relevant policy sen-
tences for each user query. The queries we keep
unchanged as they are often less variant and limited
to a few forms (Wilson et al., 2016).

Augmenting privacy policies is challenging.
First, privacy statements often describe similar in-
formation (Hosseini et al., 2016). Thus, their anno-



tations are sensitive to small changes in the text (see
Table 1), which may not be tackled using the exist-
ing augmentation methods based on data synthesis.
For example, Kumar et al. (2020) identifies that
even linguistically coherent instances augmented
via generative models such as GPT-2 (Anaby-Tavor
et al., 2020) do not preserve the class labels well.
Hence, we consider a retrieval-based approach to
augment the real policy statements to address this.
Given a pre-trained LM and a small QA dataset,
we first build a dense sentence retriever (Karpukhin
et al., 2020). Next, leveraging an unlabeled policy
corpus with 0.6M sentences crawled from web ap-
plications, we perform a coarse one-shot sentence
retrieval for each query in the QA training set. To
filter the noisy candidates retrieved, we then train a
QA model (as an oracle) using the same pre-trained
LM and data and couple it with the retriever.

Second, privacy policies are ambiguous; even
skilled annotators dispute their interpretations, e.g.,
for at least 26% questions in PrivacyQA, experts
disagree on their annotations (see Table 1). There-
fore, a single retriever model may not capture all
relevant policy segments. To combat this, we pro-
pose a novel retriever ensemble technique. Dif-
ferent pre-trained models learn distinct language
representations due to their pre-training objectives,
and hence, retriever models built on them can re-
trieve a disjoint set of candidates (verified in Sec-
tion 3). Therefore, we build our retrievers and or-
acles based on multiple different pre-trained LMs
(See Figure 1). Finally, we train a user-defined QA
model on the aggregated corpus using them.

We evaluate our framework on the PrivacyQA
benchmark. We elevate the state-of-the-art perfor-
mance significantly (11% F1) and achieve a new
one (50% F1). Furthermore, our ablation studies
provide an insightful understanding of our model.
All data/code will be released upon acceptance.

2 Methodology

The privacy policy QA is a binary classification task
that takes a user query ¢, a sentence p from policy
documents and output a binary label z € {0, 1} that
indicates if ¢ and p are relevant or not. As most
sentences p are labelled as negative, our goal is to
retrieve relevant sentences to augment the training
data and mitigate the data imbalance issue. Given a
QA training dataset D = {(q;, p;, ;) }i=1, for each
question in D, we (1) retrieve positive sentences
from a large unlabeled corpus. (2) filter the noisy
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Figure 1: Our framework. Given a pre-trained LM, we
train a (i) retriever, (ii) QA model (oracle) both on the
small-size labeled data. From an unlabeled corpus, we
first, retrieve the coarse relevant sentences (positive ex-
amples) for the queries in the training set and use the
oracle to filter out noisy ones. We repeat this for mul-
tiple different pre-trained LMs. Finally we aggregate
them to expand the positive examples in the training set
and learn any user-defined final QA model.

examples using oracle models and aggregate final
candidates. The final candidates are combined with
the base data D to train the QA models. We use an
ensemble of retrievers and oracles built upon vari-
ous pre-trained LMs throughout the whole process.
Next, we provide more details of our approach.

Retriever. Our retriever module is built upon the
Dense Passage Retriever (DPR) model (Karpukhin
et al., 2020; Parvez et al., 2021). It consists of two
encoders Q(-) and P(-) that encode the queries
and the policy sentences, respectively. The rele-
vance of a query ¢ and a policy sentence p is cal-
culated by the dot 7plroduct of Q(q) and P(p), i.e.,
sim(q,p) = Q(q)" - P(p). For each positive pair
in D, DPR optimizes the cross-entropy loss with
in-batch negatives (Henderson et al., 2017). We
train a retriever R, on D, where the encoders in
Ry are initialized with a pre-trained LM L. At
inference, R, retrieves the top-k most relevant
policy sentences from an unlabeled corpus of pol-
icy sentences P = {pq,...,pp} for each query
¢ in D, ie., Rp({a:i}iz1, P k) = {(@pj,1) :
(S [m]apj € Ptop(ink)}’ where Ptop(Qia k) =
arg Maxpicp |pl|=k Zpep' sim(q;, p).

Filtering Oracle. To filter out the noisy retrievals
from Ry ({q}iz1,P, k), we train a QA model
(Qp,) using the training data D as an oracle to pre-
dict whether a query ¢ and a (retrieved) policy sen-
tence p are relevant or not (i.e., Q7. (¢, p) € {0, 1}).
Note that both Qj, and retriever R, are built upon
the same pre-trained LM L but differ in training
objectives (e.g., ranking problem vs. binary clas-



sification and, w/ and w/o in-batch negatives) and
model architectures. We verify the effectiveness
of oracle filtering in Section 3.2. We denote re-
trieval outputs after filtering as Dy, = {(¢,p, 1) :
Q1(g,p) =1,Y(q,p, 1) € Rp({ai}iz1, P, k)}.
Ensemble. Unlike other NLP domains, a privacy
policy sentence can frequently have multiple inter-
pretations (see Table 1). Hence, a single retrieved
corpus Dy, may not capture all relevant candidates
covering such diverse interpretations. To this end,
we use a set of pre-trained LMs £ = {Lq,...,L;}
and aggregate all the corresponding retrieved cor-
pora, Dy = U rer Dr. In Section 3, we show that
retrieved corpora using multiple pre-trained LMs
with different learning objectives can bring a differ-
ent set of relevant candidates. Lastly, we aggregate
D,y With D (i.e., final train corpus 7 = Dy, U D)
and train our final QA model with user specifica-
tions (e.g., architecture, pre-trained LM).

3 Experiments

In this section, we evaluate our approach and
present the findings from our analysis.

Settings. We evaluate our approach on PrivacyQA
benchmark and recall that this is in fact a text classi-
fication task. Following Ravichander et al. (2019),
we use precision, recall, and F1 score as the evalu-
ation metrics. As for the retrieval database P, we
crawl privacy policies from the most popular mo-
bile apps spanning different app categories in the
Google Play Store and end up with 6544 documents
(0.6M statements). By default, all retrievals use top-
10 candidates w/o filtering. All data/models/codes
are implemented using (i) Huggingface Transform-
ers (Wolf et al., 2019), (ii)) DPR (Karpukhin et al.,
2020) libraries and will be released.

Baselines. We fine-tune three pre-trained LMs on
PrivacyQA as baselines: (i) BERT: Our first base-
line is BERT-base-uncased (Devlin et al., 2019)
which is pre-trained on generic NLP textual data.
(i1) PBERT: We adapt BERT to the privacy domain
by fine-tuning it using masked language modeling
on a corpus of 130k privacy policies (137M words)
collected from apps in the Google Play Store (Hark-
ous et al., 2018). (iii) SimCSE: We take the Pri-
vacyBERT model and apply the unsupervised con-
trasting learning SimCSE (Gao et al., 2021) model
on the same 130k privacy policy corpus.

We also consider three other retrieval augmented
QA models based on individual pre-trained LM
without ensemble: (iv) BERT-R: L = {BERT},

Method | Oracle | Precision | Recall | F1

Human | - | 68.8 | 69.0 | 68.9
W/o data augmentation
BERT + Unans. 44.3 36.1 | 39.8
BERT (reprod.) 47.5 38.5 | 42.5
PBERT ) 50.8 43.1 | 46.7
SimCSE 48.8 422 1453
Retriever augmented
X 39.9 50.8 | 44.7
BERTR v 46.5 455 | 46.0
X 48.4 45.6 | 46.9
PBERTR v 49.5 46.3 | 47.8
; X 48.4 472 | 47.8
SimCSE-R v 510 | 452 | 479
Ensemble retriever augmented
Baseline-E X 23.0 543 | 323
ERA v 47.1 52.9 | 49.8
ERA-D v 51.3 50.0 | 50.6

Table 2: Test performances on PrivacyQA. BERT +
Unans. refers to Ravichander et al. (2019). Retrieved
candidates improves all the baseline QA models, es-
pecially when being filtered. Our ensemble retriever
approach combines them and achieve the highest gains.

(v) PBERT-R: L = {PBERT}, (vi) SimCSE-R:
L = {SimCSE}. We first construct 7 (both set-
tings: w/ and w/o oracle) and fine-tune on it the cor-
responding pre-trained LM as the final QA model.
Finally, we consider one more ensemble retrieval
augmented baseline (vii) Baseline-E, which is ex-
actly the same as ours (settings below) except there
are no intermediate filtering oracles.

Ours. We construct out augmented corpus 7, dis-
cussed in Section 2, using the (i) all three afore-
mentioned pre-trained LMs: £ = {BERT, PBERT,
SimCSE} (ii) domain adapted models only: £ =
{PBERT, SimCSE}. For brevity, we call them: En-
semble Retriever Aug. (ERA) and ERA-D. By de-
fault, we fine-tune SimCSE as the final QA model.

3.1 Results and Analysis

The results are listed in Table 2. Overall, domain
adapted models PBERT and SimCSE excel better
than the generic BERT model. The retrieval aug-
mented models enhance the performances more,
specially the recall score. However, they might
contain several noisy examples (see Table 4), and
filtering those out improves the precision scores.
Finally, ERA and ERA-D aggregate these high-
quality filtered policies—leading toward the highest
gain (11% F1 from the previous baseline) and a new
state-of-the-art result with an F1 score of 50.6.
Table 3 shows the performance breakdown for



Query Type | % | B|PB| S| ERA
Data Collection | 42 | 45| 46 | 46| 48
Data Sharing 25| 43| 37| 41| 43
Data Security 11 | 65| 61| 60| 60
Data Retention 4 | 52| 35| 35 56
User Access 2 | 72| 48 | 31 61
User Choice 7 | 41| 60 | 42 31
Others 9 | 36| 45| 52| 55
Overall 100 | 45| 47 | 48| 50

Table 3: Breakdown of Fl-score. B, PB, S refers to
retrievers BERT-R, PBERT-R, and SimCSE-R. Different
models performs better for different types (black-bold).
Our framework ERA combines them and enhances per-
formances for all categories, in general (except: red).

6446 1390
SimCSE SimCSE
904@ 22 338@ 5
PBERT 18 BERT PBERT a4 BERT
6720 5834 1563 2719
(a) (b)

Figure 2: Venn diagram of low mutual agreement (<1%)
among retrievers (a); even amplified after filtering (b).

different query types. Individual retrieval aug-
mented models perform at different scales for each
type, and combining their expertise, ERA enhances
the performances for all types. Next, we show the
Venn diagram of overlapping retrievals in Figure 2.
Although being retrieved from the same corpus,
they rarely overlap. This validates our hypothesis
that retrievers built upon different pre-trained LMs
learn distinct language representations and retrieve
diverse candidates.

3.2 Ablation Study

Are oracles needed? From Table 3, in general,
aggregating retrievals with oracle filtering enhances
model performances than crude additions.

A common oracle. Performances of ERA (last
row in Table 3) with a common oracle based on
SimCSE for all the retrievers regardless of their
corresponding pre-trained models are 49.2, 45.2,
and 47.1, respectively—validating the requirement
of filtering using the corresponding pre-trained LM.

Other pre-trained LM as the final QA model.
Fine-tuning PBERT instead of SimCSE on T (last
two rows in Table 2) becomes: 47.0, 47.1, 47.0 and
51.0, 45.9, 48.3, respectively. This shows that our
approach is generic and enhances the performance
regardless of the end model.

Q: who all has access to my medical information?

Correct Retrievals: (S) We may share your infor-
mation with other health care providers, laborato-
ries, govt. agencies, insurance companies, organ
procurement organizations, or medical examiners.
(P) Lab, Inc will transmit personal health informa-
tion to authorized medical providers.

Incorrect Retrievals: (S) However, we take the
protection of your private health information very
seriously. (P) All doctors, and many other health-
care professionals, are included in our database.

Table 4: Retrieval examples: S (SimCSE-R), P (PBERT-R).

Which pre-trained LMs to use? Table 3 shows
ERA-D that combines fewer number of pre-trained
LMs may even outperform the one with more mod-
els, ERA. Though here we consider a simple ap-
proach (in-domain) for selecting the potential sub-
set of models, this paves a new direction of future
research (e.g., Parvez and Chang (2021)).

Qualitative examples. Table 4 (more in Appendix)
shows some example retrievals of different models.
They are distinct from expert annotated ones and
can bring auxiliary knowledge.

4 Related Works

A line of works focuses on using NLP techniques
for privacy policies (Wilson et al., 2016; Harkous
et al., 2018; Zimmeck et al., 2019; Bui et al., 2021;
Ahmad et al., 2021). Besides the QA tasks as sen-
tence selection, Ahmad et al. (2020) propose an-
other SQuAD-like (Rajpurkar et al., 2016) privacy
policy reading comprehension dataset for a limited
number of queries. Oppositely, we focus on the
more challenging one, which allows unanswerable
questions and “non-contiguous” answer (Ravichan-
deretal.,2021). Model or data aggregation has also
been studied under different NLP contexts (e.g.,
bagging (Breiman, 1996), meta learning (Parvez
et al.,, 2019)). Here, we aggregate the retriever
outputs using different pre-trained LMs.

5 Conclusion

We develop a noise-reduced retrieval-based data
augmentation method that uses the combination of
different pre-trained language models as a back-
bone. Although we focus on the privacy policy
domain, our approach is generic and can broadly
be applied to other NLP domains. We will leave
the exploration as future work.
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Supplementary Material: Appendices

A Limitations/Reproduction

In this paper, we show that leveraging multiple dif-
ferent pre-trained LMs can augment high-quality
training examples and enhance the QA (sentence
selection) task on privacy policies. Our approach
is generic and such unification of different kinds
of pre-trained language models for text data aug-
mentation can improve many other low-resourced
tasks or domains. However, it is possible that our
approach:

* may not work well on other scenarios (e.g.,
domains/language or tasks etc.,).

* subject to the choice of particular set of mod-
els. For example, as mentioned in Section,
3.2, fine-tuning pre-trained models other than
SimCSE (Gao et al., 2021) as the final QA
model achieve lower gain.

* may not work for certain top-k retrievals. For
example, from Table 6, we get different results
with different scales for variable top-k values
(e.g., top-10, top-100).

* uses the same set of hyperparameters for all:

— QA model:

learning rate: 2¢ ",

train epoch: 4,

per gpu train batch size: 31,

num gpus: 4

fp16 enabled

others: mostly default as in Hugging-

face

train time: around 2 hours

* Higgingface transformer version
0.3.2. (it has Apache License 2.0)
— Retriever model:
* learning rate: 2¢7°,

train batch size: 16,

train epoch: 100,

global_loss_buf_sz 600000,

others: mostly default as in DPR (It

has Attribution-NonCommercial 4.0

International license)

% num gpus: 3

* Higgingface transformer version
0.3.2 (it has Apache License 2.0)

# train time: around 12-18 hours

¥ % K X X ¥

*

* % ¥ %

As our primary goal is on the retrieval-based
data augmentation technique, we expect further
optimization of task-specific model hyperparame-

ters to improve performance. Note that our results
are based on single runs, and running it multiple
times with different random seeds may incur slight
variation from the results we report.

B Privacy Policy Data Crawling &
Retrieval Statistics

We crawl our English retrieval corpus from Google
App Store using the Play Store Scraperl . In general,
a privacy policy does not contain any personally
identifiable information. However, there could be
some mention of specific nomenclatures. There
is no easy way to remove them, so we did not
filter them manually. Note that we do not intend to
use any commercial usage. However, below is the
statistics of our (ERA) augmented corpus per each
question category in the PrivacyQA training set.

Query Type | No. of Retrieval
Data Collection 2893
Data Sharing 1848
Data Security 891
Data Retention 542
User Access 145
User Choice 335
Others 14

Table 5: Retrieval statistics per query type.

C Effectiveness of Oracle Filtering and
Different Top-/ Selection

Method \ Filter \ top-k \ Precision \ Recall \ F1
X 10 39.9 50.8 | 44.7
BERER L v 0 | aes | ass |aco
X 10 48.4 456 | 46.9

v 10 46.9 433 | 45.1

PBERTR |y 50 47.8 455 | 46.7
T oL A 95 1. 463 1478
X 10 48.4 472 | 478

. v 10 49.4 448 | 47.0
SimCSE-R| x| 100 | 421 413 | 417
v | 100 51.0 452 | 47.9

Table 6: Model performances with and without filtering
with top-k. In general, without filtering, augmenting the
retrieved candidates enhances recall but may reduce the
precision (and hence may not improve the overall F1).
Filtering, however improves the performance specially
with larger top-k candidates.

: https://github.com/danieliu/play-scraper



D Qualitative Examples

Q: do you sell my photos to anyone?

Q: who all has access to my medical information?

Gold: i) We use third-party service providers to
serve ads on our behalf across the Internet and
sometimes on the Sites. (ii) These companies may
use your personal information to enhance and per-
sonalize your shopping experience with us, to com-
municate with you about products and events that
may be of interest to you and for other promo-
tional purposes. iii) Your use of our Application
with that healthcare institution may be subject to
that healthcare institution’s policies and terms. (iv)
We may share personal information within our
family of brands. (v) From time to time we share
the personal information we collect with trusted
companies who work with or on behalf of us. (vi)
No personally identifiable information is collected
in this process. (vii) We use third-party service
providers to serve ads on our behalf across the In-
ternet and sometimes on our Sites and Apps.

Correct Retrievals: (i) The Application does not
collect or transmit any personally identifiable in-
formation about you, such as your name, address,
phone number or email address. -(SimCSE-R) (ii)
Some of this information is automatically gathered,
and could be considered personally identifiable in
certain circumstances, however it will generally
always be anonymised prior to being viewed by
Not Doppler, and never sold or shared. -(BERT-
R) (iii) We also use the Google AdWords service
to serve ads on our behalf across the Internet and
sometimes on this Website. -(PBERT-R) (iv) To
organ and tissue donation requests: By law, we
can disclose health information about you to organ
procurement organizations. -(BERT-R)

Incorrect Retrievals: (i) When you upload your
photos to our platform or give us permission to ac-
cess the photos stored on your device, your photo
content may also include related image informa-
tion such as the time and the place your photo was
taken and similar “metadata” captured by your im-
age capture device. -(SimCSE-R) (ii) These are
not linked to any information that is personally
identifiable.-(BERT-R)

Gold: i) Apple HealthKit to health information
and to share that information with your healthcare
providers. ii) Your use of our Application with
that healthcare institution may be subject to that
healthcare institution’s policies and terms.

Correct Retrievals: (i) We may share your infor-
mation with other health care providers, laborato-
ries, government agencies, insurance companies,
organ procurement organizations, or medical ex-
aminers. -(SimCSE-R) (ii) Do not sell your per-
sonal or medical information to anyone. -(BERT-
R) (iii) Lab, Inc will transmit personal health infor-
mation to authorized medical providers. -(PBERT-
R) (iv) To organ and tissue donation requests: By
law, we can disclose health information about you
to organ procurement organizations. -(BERT-R)

Incorrect Retrievals: (i) However, we take the
protection of your private health information very
seriously. -(SimCSE-R) (ii) All doctors, and many
other healthcare professionals, are included in our
database. -(PBERT-R) (iii) You may be able to
access your pet’s health records or other informa-
tion via the Sites. -(BERT-R) (iv) will say “yes”
unless a law requires us to disclose that health
information.-(BERT-R) (v) do not claim that our
products “cure” disease.-(BERT-R) (vi) Has no ac-
cess to your database password or any data stored
in your local database on your devices.-(BERT-R)

Table 7: A fraction of retrieval examples (ii).

Table 8: A fraction of retrieval examples (i).



