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Abstract
Prior studies in privacy policies frame the ques-001
tion answering (QA) tasks as identifying the002
most relevant text segment or a list of sentences003
from the policy document for a user query.004
However, annotating such a dataset is challeng-005
ing as it requires specific domain expertise (e.g.,006
law academics). Even if we manage a small-007
scale one, a bottleneck that remains is that the008
labeled data are heavily imbalanced (only a few009
segments are relevant) –limiting the gain in this010
domain. Therefore, in this paper, we develop a011
novel data augmentation framework based on012
ensembling retriever models that captures the013
relevant text segments from unlabeled policy014
documents and expand the positive examples015
in the training set. In addition, to improve the016
diversity and quality of the augmented data, we017
leverage multiple pre-trained language models018
(LMs) and cascaded them with noise reduc-019
tion oracles. Using our augmented data on the020
PrivacyQA benchmark, we elevate the exist-021
ing baseline by a large margin (11% F1) and022
achieve a new state-of-the-art F1 score of 50%.023
Our ablation studies provide further insights024
into the effectiveness of our approach.025

1 Introduction026

Understanding privacy policies that describe how027

user data is collected, managed, and used by the028

respective service providers is crucial for determin-029

ing if the conditions outlined are acceptable. Policy030

documents, however, are lengthy, verbose, equiv-031

ocal, hard to understand (McDonald and Cranor,032

2008; Reidenberg et al., 2016). Consequently, they033

are often ignored and skipped by users (Commis-034

sion et al., 2012; Gluck et al., 2016).035

To help the users better understand their rights,036

privacy policy QAs are framed as answer sentence037

selection tasks, essentially a binary classification038

task to identify if a policy text segment is relevant039

or not (Harkous et al., 2018). However, annotat-040

ing policy documents requires expertise and do-041

main knowledge, and hence, it is costly and hard042

Segmented policy document S
(s1) We do not sell or rent your personal infor-
mation to third parties for their direct marketing
purposes without your explicit consent. (sn) ...We
will not let any other person, including sellers and
buyers, contact you, other than through your ...
Queries I annotating the red segment as irrelevant
(i1) How does Fiverr protect freelancers’ personal
information? (i2) What type of identifiable infor-
mation is passed between users on the platform?
Queries R annotating the red segment as relevant
(r1) What are the app’s permissions? (r2) What
type of permissions does the app require?
Queries D that annotators disagree about relevance
(d1) Do you sell my information to third parties?
(d2) is my information sold to any third parties?

Table 1: QA (sentence selection) from a policy doc-
ument S. Sensitive: For queries R and I, annotators
at large tagged sentence s1 as relevant, and irrelevant
respectively. On the other hand, sentence sn, though
analogous to s1 in meaning, was never tagged as rele-
vant. Ambiguous: For queries D, experts interpret s1
differently and disagree on their annotations.

to obtain. Moreover, as most texts in policy doc- 043

uments are not relevant, the data is heavily im- 044

balanced. For example, the only existing dataset, 045

PrivacyQA (Ravichander et al., 2019) has 1,350 046

questions in the training dataset, and the average 047

number of answer sentences is 5, while the average 048

length of policy documents is 138 sentences. 049

In this work, we mitigate data imbalance by 050

augmenting positive QA examples in the training 051

set. Specifically, we develop automatic retrieval 052

models to supplement retrieved relevant policy sen- 053

tences for each user query. The queries we keep 054

unchanged as they are often less variant and limited 055

to a few forms (Wilson et al., 2016). 056

Augmenting privacy policies is challenging. 057

First, privacy statements often describe similar in- 058

formation (Hosseini et al., 2016). Thus, their anno- 059
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tations are sensitive to small changes in the text (see060

Table 1), which may not be tackled using the exist-061

ing augmentation methods based on data synthesis.062

For example, Kumar et al. (2020) identifies that063

even linguistically coherent instances augmented064

via generative models such as GPT-2 (Anaby-Tavor065

et al., 2020) do not preserve the class labels well.066

Hence, we consider a retrieval-based approach to067

augment the real policy statements to address this.068

Given a pre-trained LM and a small QA dataset,069

we first build a dense sentence retriever (Karpukhin070

et al., 2020). Next, leveraging an unlabeled policy071

corpus with 0.6M sentences crawled from web ap-072

plications, we perform a coarse one-shot sentence073

retrieval for each query in the QA training set. To074

filter the noisy candidates retrieved, we then train a075

QA model (as an oracle) using the same pre-trained076

LM and data and couple it with the retriever.077

Second, privacy policies are ambiguous; even078

skilled annotators dispute their interpretations, e.g.,079

for at least 26% questions in PrivacyQA, experts080

disagree on their annotations (see Table 1). There-081

fore, a single retriever model may not capture all082

relevant policy segments. To combat this, we pro-083

pose a novel retriever ensemble technique. Dif-084

ferent pre-trained models learn distinct language085

representations due to their pre-training objectives,086

and hence, retriever models built on them can re-087

trieve a disjoint set of candidates (verified in Sec-088

tion 3). Therefore, we build our retrievers and or-089

acles based on multiple different pre-trained LMs090

(See Figure 1). Finally, we train a user-defined QA091

model on the aggregated corpus using them.092

We evaluate our framework on the PrivacyQA093

benchmark. We elevate the state-of-the-art perfor-094

mance significantly (11% F1) and achieve a new095

one (50% F1). Furthermore, our ablation studies096

provide an insightful understanding of our model.097

All data/code will be released upon acceptance.098

2 Methodology099

The privacy policy QA is a binary classification task100

that takes a user query q, a sentence p from policy101

documents and output a binary label z ∈ {0, 1} that102

indicates if q and p are relevant or not. As most103

sentences p are labelled as negative, our goal is to104

retrieve relevant sentences to augment the training105

data and mitigate the data imbalance issue. Given a106

QA training dataset D = {(qi, pi, zi)}mi=1, for each107

question in D, we (1) retrieve positive sentences108

from a large unlabeled corpus. (2) filter the noisy109

Retrieval
Model-1

Retrieval
Model-l

Oracle
Model-1

c

Pre-trained
LM-1

Pre-trained
LM-l

Unlabeled 
Data
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Candidates
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Figure 1: Our framework. Given a pre-trained LM, we
train a (i) retriever, (ii) QA model (oracle) both on the
small-size labeled data. From an unlabeled corpus, we
first, retrieve the coarse relevant sentences (positive ex-
amples) for the queries in the training set and use the
oracle to filter out noisy ones. We repeat this for mul-
tiple different pre-trained LMs. Finally we aggregate
them to expand the positive examples in the training set
and learn any user-defined final QA model.

examples using oracle models and aggregate final 110

candidates. The final candidates are combined with 111

the base data D to train the QA models. We use an 112

ensemble of retrievers and oracles built upon vari- 113

ous pre-trained LMs throughout the whole process. 114

Next, we provide more details of our approach. 115

Retriever. Our retriever module is built upon the 116

Dense Passage Retriever (DPR) model (Karpukhin 117

et al., 2020; Parvez et al., 2021). It consists of two 118

encoders Q(⋅) and P (⋅) that encode the queries 119

and the policy sentences, respectively. The rele- 120

vance of a query q and a policy sentence p is cal- 121

culated by the dot product of Q(q) and P (p), i.e., 122

sim(q, p) = Q(q)T ⋅ P (p). For each positive pair 123

in D, DPR optimizes the cross-entropy loss with 124

in-batch negatives (Henderson et al., 2017). We 125

train a retriever RL on D, where the encoders in 126

RL are initialized with a pre-trained LM L. At 127

inference, RL retrieves the top-k most relevant 128

policy sentences from an unlabeled corpus of pol- 129

icy sentences P = {p1, . . . , pM} for each query 130

qi in D, i.e., RL({qi}mi=1,P, k) = {(qi, pj , 1) ∶ 131

i ∈ [m], pj ∈ Ptop(qi, k)}, where Ptop(qi, k) ∶= 132

argmaxP ′
⊂P,∣P ′∣=k ∑p∈P ′ sim(qi, p). 133

Filtering Oracle. To filter out the noisy retrievals 134

from RL({qi}mi=1,P, k), we train a QA model 135

(QL) using the training data D as an oracle to pre- 136

dict whether a query q and a (retrieved) policy sen- 137

tence p are relevant or not (i.e., QL(q, p) ∈ {0, 1}). 138

Note that both QL and retriever RL are built upon 139

the same pre-trained LM L but differ in training 140

objectives (e.g., ranking problem vs. binary clas- 141

2



sification and, w/ and w/o in-batch negatives) and142

model architectures. We verify the effectiveness143

of oracle filtering in Section 3.2. We denote re-144

trieval outputs after filtering as DL = {(q, p, 1) ∶145

QL(q, p) = 1,∀(q, p, 1) ∈ RL({qi}mi=1,P, k)}.146

Ensemble. Unlike other NLP domains, a privacy147

policy sentence can frequently have multiple inter-148

pretations (see Table 1). Hence, a single retrieved149

corpus DL may not capture all relevant candidates150

covering such diverse interpretations. To this end,151

we use a set of pre-trained LMs L = {L1, . . . , Ll}152

and aggregate all the corresponding retrieved cor-153

pora, Daug = ⋃L∈LDL. In Section 3, we show that154

retrieved corpora using multiple pre-trained LMs155

with different learning objectives can bring a differ-156

ent set of relevant candidates. Lastly, we aggregate157

Daug with D (i.e., final train corpus T = Daug ∪D)158

and train our final QA model with user specifica-159

tions (e.g., architecture, pre-trained LM).160

3 Experiments161

In this section, we evaluate our approach and162

present the findings from our analysis.163

Settings. We evaluate our approach on PrivacyQA164

benchmark and recall that this is in fact a text classi-165

fication task. Following Ravichander et al. (2019),166

we use precision, recall, and F1 score as the evalu-167

ation metrics. As for the retrieval database P , we168

crawl privacy policies from the most popular mo-169

bile apps spanning different app categories in the170

Google Play Store and end up with 6544 documents171

(0.6M statements). By default, all retrievals use top-172

10 candidates w/o filtering. All data/models/codes173

are implemented using (i) Huggingface Transform-174

ers (Wolf et al., 2019), (ii) DPR (Karpukhin et al.,175

2020) libraries and will be released.176

Baselines. We fine-tune three pre-trained LMs on177

PrivacyQA as baselines: (i) BERT: Our first base-178

line is BERT-base-uncased (Devlin et al., 2019)179

which is pre-trained on generic NLP textual data.180

(ii) PBERT: We adapt BERT to the privacy domain181

by fine-tuning it using masked language modeling182

on a corpus of 130k privacy policies (137M words)183

collected from apps in the Google Play Store (Hark-184

ous et al., 2018). (iii) SimCSE: We take the Pri-185

vacyBERT model and apply the unsupervised con-186

trasting learning SimCSE (Gao et al., 2021) model187

on the same 130k privacy policy corpus.188

We also consider three other retrieval augmented189

QA models based on individual pre-trained LM190

without ensemble: (iv) BERT-R: L = {BERT},191

Method Oracle Precision Recall F1

Human - 68.8 69.0 68.9
W/o data augmentation
BERT + Unans.

-

44.3 36.1 39.8
BERT (reprod.) 47.5 38.5 42.5
PBERT 50.8 43.1 46.7
SimCSE 48.8 42.2 45.3
Retriever augmented

BERT-R
✗ 39.9 50.8 44.7
✓ 46.5 45.5 46.0

PBERT-R
✗ 48.4 45.6 46.9
✓ 49.5 46.3 47.8

SimCSE-R
✗ 48.4 47.2 47.8
✓ 51.0 45.2 47.9

Ensemble retriever augmented
Baseline-E ✗ 23.0 54.3 32.3
ERA ✓ 47.1 52.9 49.8
ERA-D ✓ 51.3 50.0 50.6

Table 2: Test performances on PrivacyQA. BERT +
Unans. refers to Ravichander et al. (2019). Retrieved
candidates improves all the baseline QA models, es-
pecially when being filtered. Our ensemble retriever
approach combines them and achieve the highest gains.

(v) PBERT-R: L = {PBERT}, (vi) SimCSE-R: 192

L = {SimCSE}. We first construct T (both set- 193

tings: w/ and w/o oracle) and fine-tune on it the cor- 194

responding pre-trained LM as the final QA model. 195

Finally, we consider one more ensemble retrieval 196

augmented baseline (vii) Baseline-E, which is ex- 197

actly the same as ours (settings below) except there 198

are no intermediate filtering oracles. 199

Ours. We construct out augmented corpus T , dis- 200

cussed in Section 2, using the (i) all three afore- 201

mentioned pre-trained LMs: L = {BERT, PBERT, 202

SimCSE} (ii) domain adapted models only: L = 203

{PBERT, SimCSE}. For brevity, we call them: En- 204

semble Retriever Aug. (ERA) and ERA-D. By de- 205

fault, we fine-tune SimCSE as the final QA model. 206

3.1 Results and Analysis 207

The results are listed in Table 2. Overall, domain 208

adapted models PBERT and SimCSE excel better 209

than the generic BERT model. The retrieval aug- 210

mented models enhance the performances more, 211

specially the recall score. However, they might 212

contain several noisy examples (see Table 4), and 213

filtering those out improves the precision scores. 214

Finally, ERA and ERA-D aggregate these high- 215

quality filtered policies–leading toward the highest 216

gain (11% F1 from the previous baseline) and a new 217

state-of-the-art result with an F1 score of 50.6. 218

Table 3 shows the performance breakdown for 219
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Query Type % B PB S ERA
Data Collection 42 45 46 46 48
Data Sharing 25 43 37 41 43
Data Security 11 65 61 60 60
Data Retention 4 52 35 35 56
User Access 2 72 48 31 61
User Choice 7 41 60 42 31
Others 9 36 45 52 55
Overall 100 45 47 48 50

Table 3: Breakdown of F1-score. B, PB, S refers to
retrievers BERT-R, PBERT-R, and SimCSE-R. Different
models performs better for different types (black-bold).
Our framework ERA combines them and enhances per-
formances for all categories, in general (except: red).

SimCSE

BERTPBERT

904 22

18

6446

6720 5834

15

(a)

SimCSE

BERTPBERT

338 5

4

1390

1563 2719

3

(b)

Figure 2: Venn diagram of low mutual agreement (<1%)
among retrievers (a); even amplified after filtering (b).

different query types. Individual retrieval aug-220

mented models perform at different scales for each221

type, and combining their expertise, ERA enhances222

the performances for all types. Next, we show the223

Venn diagram of overlapping retrievals in Figure 2.224

Although being retrieved from the same corpus,225

they rarely overlap. This validates our hypothesis226

that retrievers built upon different pre-trained LMs227

learn distinct language representations and retrieve228

diverse candidates.229

3.2 Ablation Study230

Are oracles needed? From Table 3, in general,231

aggregating retrievals with oracle filtering enhances232

model performances than crude additions.233

A common oracle. Performances of ERA (last234

row in Table 3) with a common oracle based on235

SimCSE for all the retrievers regardless of their236

corresponding pre-trained models are 49.2, 45.2,237

and 47.1, respectively–validating the requirement238

of filtering using the corresponding pre-trained LM.239

Other pre-trained LM as the final QA model.240

Fine-tuning PBERT instead of SimCSE on T (last241

two rows in Table 2) becomes: 47.0, 47.1, 47.0 and242

51.0, 45.9, 48.3, respectively. This shows that our243

approach is generic and enhances the performance244

regardless of the end model.245

Q: who all has access to my medical information?

Correct Retrievals: (S) We may share your infor-
mation with other health care providers, laborato-
ries, govt. agencies, insurance companies, organ
procurement organizations, or medical examiners.
(P) Lab, Inc will transmit personal health informa-
tion to authorized medical providers.

Incorrect Retrievals: (S) However, we take the
protection of your private health information very
seriously. (P) All doctors, and many other health-
care professionals, are included in our database.

Table 4: Retrieval examples: S (SimCSE-R), P (PBERT-R).

Which pre-trained LMs to use? Table 3 shows 246

ERA-D that combines fewer number of pre-trained 247

LMs may even outperform the one with more mod- 248

els, ERA. Though here we consider a simple ap- 249

proach (in-domain) for selecting the potential sub- 250

set of models, this paves a new direction of future 251

research (e.g., Parvez and Chang (2021)). 252

Qualitative examples. Table 4 (more in Appendix) 253

shows some example retrievals of different models. 254

They are distinct from expert annotated ones and 255

can bring auxiliary knowledge. 256

4 Related Works 257

A line of works focuses on using NLP techniques 258

for privacy policies (Wilson et al., 2016; Harkous 259

et al., 2018; Zimmeck et al., 2019; Bui et al., 2021; 260

Ahmad et al., 2021). Besides the QA tasks as sen- 261

tence selection, Ahmad et al. (2020) propose an- 262

other SQuAD-like (Rajpurkar et al., 2016) privacy 263

policy reading comprehension dataset for a limited 264

number of queries. Oppositely, we focus on the 265

more challenging one, which allows unanswerable 266

questions and “non-contiguous” answer (Ravichan- 267

der et al., 2021). Model or data aggregation has also 268

been studied under different NLP contexts (e.g., 269

bagging (Breiman, 1996), meta learning (Parvez 270

et al., 2019)). Here, we aggregate the retriever 271

outputs using different pre-trained LMs. 272

5 Conclusion 273

We develop a noise-reduced retrieval-based data 274

augmentation method that uses the combination of 275

different pre-trained language models as a back- 276

bone. Although we focus on the privacy policy 277

domain, our approach is generic and can broadly 278

be applied to other NLP domains. We will leave 279

the exploration as future work. 280
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Supplementary Material: Appendices

A Limitations/Reproduction429

In this paper, we show that leveraging multiple dif-430

ferent pre-trained LMs can augment high-quality431

training examples and enhance the QA (sentence432

selection) task on privacy policies. Our approach433

is generic and such unification of different kinds434

of pre-trained language models for text data aug-435

mentation can improve many other low-resourced436

tasks or domains. However, it is possible that our437

approach:438

• may not work well on other scenarios (e.g.,439

domains/language or tasks etc.,).440

• subject to the choice of particular set of mod-441

els. For example, as mentioned in Section,442

3.2, fine-tuning pre-trained models other than443

SimCSE (Gao et al., 2021) as the final QA444

model achieve lower gain.445

• may not work for certain top-k retrievals. For446

example, from Table 6, we get different results447

with different scales for variable top-k values448

(e.g., top-10, top-100).449

• uses the same set of hyperparameters for all:450

– QA model:451

* learning rate: 2e−5,452

* train epoch: 4,453

* per gpu train batch size: 31,454

* num gpus: 4455

* fp16 enabled456

* others: mostly default as in Hugging-457

face458

* train time: around 2 hours459

* Higgingface transformer version460

0.3.2. (it has Apache License 2.0)461

– Retriever model:462

* learning rate: 2e−5,463

* train batch size: 16,464

* train epoch: 100,465

* global_loss_buf_sz 600000,466

* others: mostly default as in DPR (It467

has Attribution-NonCommercial 4.0468

International license)469

* num gpus: 3470

* Higgingface transformer version471

0.3.2 (it has Apache License 2.0)472

* train time: around 12-18 hours473

As our primary goal is on the retrieval-based474

data augmentation technique, we expect further475

optimization of task-specific model hyperparame-476

ters to improve performance. Note that our results 477

are based on single runs, and running it multiple 478

times with different random seeds may incur slight 479

variation from the results we report. 480

B Privacy Policy Data Crawling & 481

Retrieval Statistics 482

We crawl our English retrieval corpus from Google 483

App Store using the Play Store Scraper1. In general, 484

a privacy policy does not contain any personally 485

identifiable information. However, there could be 486

some mention of specific nomenclatures. There 487

is no easy way to remove them, so we did not 488

filter them manually. Note that we do not intend to 489

use any commercial usage. However, below is the 490

statistics of our (ERA) augmented corpus per each 491

question category in the PrivacyQA training set. 492

Query Type No. of Retrieval

Data Collection 2893
Data Sharing 1848
Data Security 891

Data Retention 542
User Access 145
User Choice 335

Others 14
Table 5: Retrieval statistics per query type.

C Effectiveness of Oracle Filtering and 493

Different Top-k Selection 494

Method Filter top-k Precision Recall F1

BERT-R
✗ 10 39.9 50.8 44.7
✓ 10 46.5 45.5 46.0

PBERT-R

✗ 10 48.4 45.6 46.9
✓ 10 46.9 43.3 45.1
✗ 50 47.8 45.5 46.7
✓ 50 49.5 46.3 47.8

SimCSE-R

✗ 10 48.4 47.2 47.8
✓ 10 49.4 44.8 47.0
✗ 100 42.1 41.3 41.7
✓ 100 51.0 45.2 47.9

Table 6: Model performances with and without filtering
with top-k. In general, without filtering, augmenting the
retrieved candidates enhances recall but may reduce the
precision (and hence may not improve the overall F1).
Filtering, however improves the performance specially
with larger top-k candidates.

1https://github.com/danieliu/play-scraper
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D Qualitative Examples495

Q: do you sell my photos to anyone?

Gold: i) We use third-party service providers to
serve ads on our behalf across the Internet and
sometimes on the Sites. (ii) These companies may
use your personal information to enhance and per-
sonalize your shopping experience with us, to com-
municate with you about products and events that
may be of interest to you and for other promo-
tional purposes. iii) Your use of our Application
with that healthcare institution may be subject to
that healthcare institution’s policies and terms. (iv)
We may share personal information within our
family of brands. (v) From time to time we share
the personal information we collect with trusted
companies who work with or on behalf of us. (vi)
No personally identifiable information is collected
in this process. (vii) We use third-party service
providers to serve ads on our behalf across the In-
ternet and sometimes on our Sites and Apps.

Correct Retrievals: (i) The Application does not
collect or transmit any personally identifiable in-
formation about you, such as your name, address,
phone number or email address. -(SimCSE-R) (ii)
Some of this information is automatically gathered,
and could be considered personally identifiable in
certain circumstances, however it will generally
always be anonymised prior to being viewed by
Not Doppler, and never sold or shared. -(BERT-
R) (iii) We also use the Google AdWords service
to serve ads on our behalf across the Internet and
sometimes on this Website. -(PBERT-R) (iv) To
organ and tissue donation requests: By law, we
can disclose health information about you to organ
procurement organizations. -(BERT-R)

Incorrect Retrievals: (i) When you upload your
photos to our platform or give us permission to ac-
cess the photos stored on your device, your photo
content may also include related image informa-
tion such as the time and the place your photo was
taken and similar “metadata” captured by your im-
age capture device. -(SimCSE-R) (ii) These are
not linked to any information that is personally
identifiable.-(BERT-R)

Table 7: A fraction of retrieval examples (ii).

Q: who all has access to my medical information?

Gold: i) Apple HealthKit to health information
and to share that information with your healthcare
providers. ii) Your use of our Application with
that healthcare institution may be subject to that
healthcare institution’s policies and terms.

Correct Retrievals: (i) We may share your infor-
mation with other health care providers, laborato-
ries, government agencies, insurance companies,
organ procurement organizations, or medical ex-
aminers. -(SimCSE-R) (ii) Do not sell your per-
sonal or medical information to anyone. -(BERT-
R) (iii) Lab, Inc will transmit personal health infor-
mation to authorized medical providers. -(PBERT-
R) (iv) To organ and tissue donation requests: By
law, we can disclose health information about you
to organ procurement organizations. -(BERT-R)

Incorrect Retrievals: (i) However, we take the
protection of your private health information very
seriously. -(SimCSE-R) (ii) All doctors, and many
other healthcare professionals, are included in our
database. -(PBERT-R) (iii) You may be able to
access your pet’s health records or other informa-
tion via the Sites. -(BERT-R) (iv) will say “yes”
unless a law requires us to disclose that health
information.-(BERT-R) (v) do not claim that our
products “cure” disease.-(BERT-R) (vi) Has no ac-
cess to your database password or any data stored
in your local database on your devices.-(BERT-R)

Table 8: A fraction of retrieval examples (i).

8


