
1

Measuring Strength of Joint Causal Effects
Kurt Butler, Graduate Student Member, IEEE, Guanchao Feng, and Petar M. Djurić, Life Fellow, IEEE

Abstract—In the study of causality, we often seek not only
to detect the presence of cause-effect relationships, but also
to characterize how multiple causes combine to produce an
effect. When the response to a change in one of the causes
depends on the state of another cause, we say that there is
an interaction or joint causation between the multiple causes.
In this paper, we formalize a theory of joint causation based
on higher-order derivatives and causal strength. Our proposed
measure of joint causal strength is called the mixed differential
causal effect (MDCE). We show that the MDCE approach can
be naturally integrated into existing causal inference frameworks
based on directed acyclic graphs or potential outcomes. We then
derive a non-parametric estimator of the MDCE using Gaussian
processes. We validate our approach with several experiments
using synthetic data sets, demonstrating its applicability to static
data as well as time series.

Index Terms—causal effect, interaction, joint causality, Gaus-
sian processes, nonlinear systems

I. INTRODUCTION

Many scientific experiments study problems of causality,
where one or more causal variables or factors combine to
produce an effect. To describe cause-effect relationships rig-
orously, we employ statistical models [1]. Linear models are
often a first choice for modeling, but linear models alone
cannot describe interactions within a causal model, i.e., they
fail to accurately describe situations in which the mechanism
that one causal variable uses to produce an effect is moderated
by the value of another causal variable [2]. In this case,
the causal mechanism that produces the effect can only be
understood when causes are considered jointly, and one cannot
decompose the causal mechanism into independent pieces that
separate the contributions of each causal variable.

Causality, as a rigorous statistical subject, has seen numer-
ous different interpretations by different authors [3]–[5]. Inter-
actions in causal models, as its own topic, has also received
continuous interest throughout the past century [6]–[8]. This
interest is also clearly seen in the applied sciences, including
neuroscience [2], environmental science [9], psychology [10],
economics [11], and epidemiology [12]. However the word
interaction has a plurality of possible meanings [13], of which
some do not align with our discussion here. For this reason, we
prefer the term joint causation to express the idea that multiple
causes produce an effect jointly, in an irreducible manner.

Most popular approaches to modeling interactions use para-
metric models, including bilinear models [14], generalized
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linear models [15], ensembles [16], or Volterra series [17],
[18]. While parametric models are easy to analyze, each
parametric family describes a different notion of interaction,
which might differ from the notion produced by using another
family of models. Additionally, the accurate estimation of joint
causation depends on the expressiveness of the model class
and preprocessing techniques, such as centering [2], [19]. A
number of methods based on analysis of variance (ANOVA)
have also been applied to discover interactions [20]. The
ANOVA approach has a particular usefulness in that it can
describe categorical causal variables. However, ANOVA also
can be formulated as a linear regression model [21]. A more
properly non-parametric approach is the Sobol’ method [22],
which considers an orthogonal decomposition of the function
of interest into pieces. each utilizing a subset of the input
variables. The amount of variances contributed by a set of
variables can then be used as a measure of joint sensitivity,
called Sobol’ indices [23]. These indices are powerful as they
can quantify interactions in a model-free manner. However,
being a global method, this approach cannot provide local
information about the model.

The contribution of this paper is to propose a principled and
non-parametric theory of joint causation using higher-order
derivatives and causal strength. Our proposed measure, the
mixed differential causal effect (MDCE), represents the joint
causation as a function that expresses how multiple causal
variables interact to produce a given effect. The MDCE can be
effectively estimated using Gaussian processes (GPs) to pro-
duce a Bayesian posterior over functions. Several advantages
of the GP approach are examined through examples, including
the detection of joint causation, robustness to change of kernel,
sparse approximation of the GP kernel, and applications to
time series.

We organize the paper as follows. We present literature
related to this work in Section II. In Section III, we introduce
the problem of joint causation and the MDCE approach to
studying it. In Section IV, we estimate the MDCE from data
using Gaussian process regression (GPR), and we discuss
several aspects of this approach theory, including robustness to
the kernel choice, detection of joint causation and approxima-
tions to exact GPR. We demonstrate the performance of our
approach in Section V, and we provide conclusions in Section
VI.

II. RELATED WORK

Potentially the most popular family of interaction-based
models are Volterra models [17], [18], [24]. Volterra models
are restrictive in the sense that specification of the Volterra
kernel also specifies the notion of interaction under study, and
changing the Volterra kernel changes the notion of interaction.
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An advantage of our differential approach is that it is straight-
forward to compare the MDCE estimated via GPR to what we
would expect under a particular Volterra model. Furthermore,
the notion of MDCE also provides a natural way to compare
the results obtained using distinct Volterra kernels.

Designing a GP kernel to account for interactions has also
been proposed before [25]–[27]. These approaches invoke an
additive decomposition of the GP kernels to produce a GP
predictor that is a sum of interacting and non-interacting parts.
Support vector ANOVA [28] provides a separate but related
framework to produce a similar decomposition. Like Volterra
modeling, the kernel decomposition also specifies the notion
of interaction, but the interpretation is less straightforward
because distinct kernels can approximate the same function.
However, we show that additive kernels can be combined with
the MDCE approach in Section V.

III. PROBLEM FORMULATION

In this section, we introduce our theory of causal strength
and joint causation and discuss several interesting aspects of
it. We begin by framing our work in the context of the existing
causality literature.

A. Paradigms of causal inference

There are various approaches to modern causal inference,
including the graphical framework of Pearl [5] and the poten-
tial outcomes framework of Rubin [4]. Although they approach
problems differently, the frameworks of Pearl and Rubin are
often interpreted to represent a common defintion of causality,
called interventional causality [5, p.243-245]. We distinguish
this from a third popular framework, Granger causality [3],
which is well-established in econometrics and neuroscience
[29]. However, it should be noted that Granger causality and
interventional causality are not equivalent ideas.1

Regardless of one’s framework and definition of causality,
our proposed theory of joint causation can be employed to
explain how multiple causes produce their effects. Our theory
is best understood using the concept of a causal mechanism
[31], that is, a function F that takes in a vector of cause
variables x = (x1, ..., xD) and a noise variable ε and assigns a
value to a response variable y, denoted as y := F (x, ε). Causal
strength and joint causation are then properties of a causal
mechanism. To relate our approach to the existing schools of
thought, we propose defining a causal mechanism within the
frameworks of Pearl, Rubin, and Granger.

1) Causal graphs: In the Pearl framework, one models
the causal relationships between a set of random variables
X1, ..., XD using a directed acyclic graph (DAG) G which
encodes the conditional dependencies between variables [5].
A structural causal model (SCM) extends the DAG model by
providing an explicit description of how each Xi obtains its

1Granger causality is defined using predictive ability and the so-called
arrow of time. This differs fundamentally from interventional causality, which
defines causality via interventions upon a system. It is possible that Granger
causal analysis can be useful when working in an interventional framework
[30, p.201], but without limiting assumptions, neither Granger causality nor
interventional causality can logically imply the other.

value [30]. Namely, each Xi is determined by a functional
assignment

Xi := Fi(Pai, εi),

where Pai = [Xj1 , ..., XjKi
] are the parents of Xi in G, Ki =

dim(Pai), and εi is an exogenous noise term.
In this setting, each Fi is a causal mechanism, where Pai

are the input causes and Xi is the response variable. In
our analysis, we want to measure how strongly each parent
Xj ∈ Pai influences Xi, as viewed through the particular
mechanism Fi. This approach measures the causal strength
of a parent-child relationship in the DAG, which we refer to
as direct causal effect. We distinguish this from total causal
effect, where the effect of Xj on Xi is calculated by summing
over every possible path in the DAG [32]. Total causal effect
thus considers that many causal mechanisms may be composed
to go from cause to effect. In this paper, we only work with
direct causal effect, since questions about the total causal effect
may be derived from the direct causal effect [33].

2) Potential outcomes: In the Rubin framework, we work
with a vector of D possible causes a = [a1, ..., aD], and a
potential outcome function yn(a) for each instance of the
response variable [34]. Our goal in this framework is to
characterize the distribution of Yn(a) for every possible a.

To express the potential outcome function as a causal
mechanism, we let x = a, and we use the reparameterization
trick [35] to express the random variable Yn(x) as a function
F (x, εn) of a noise variable εn.

3) Granger causality: Granger causality relies on two
principles: 1. the cause precedes its effect, and 2. the cause
possesses unique information about the future values of its
effect [36]. If a time series, denoted as x, is considered to
cause another time series, denoted as y, then forecasts of y
that incorporate both its own past values and the past values of
x demonstrate greater accuracy compared to predictions based
solely on the past values of y. In our context, if yt+1 represents
a sample of the time series y observed at time instant t + 1,
using a functional assignment, our interest is in

yt+1 := F (Pat, εt+1), (1)

where Pat represents the parents of yt+1, which could be past
samples of the time series y and x.

B. Causal strength and joint causation

To begin, consider a causal mechanism that assigns a value
to the response variable y,

y := F (x1, ..., xD) + ε,

where x = [x1, ..., xD] is a set of observed cause variables and
ε is a noise variable, which we now assume to be additive.2

The symbol := is used to indicate the direction of causality
[30]. Typical examples of this model include the linear model,

y :=

D∑
i=1

aixi + ε, (2)

2Additive noise is not required for defining causal strength, but all models
we consider will use this assumption.
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and the bilinear or quadratic model,

y :=

D∑
i=1

aixi +

D∑
i,j=1

bijxixj + ε, (3)

where ai, bij are constants in each model.
When the function F is continuously differentiable, the

partial derivatives ∂F/∂xi quantify the sensitivity of the effect
variable to local changes in each cause xi. In the context of
causal models, this can also be interpreted as a measure of
the strength of causation [37]. For this reason, we define the
differential causal effect (DCE) of xi on y to be the partial
derivative,

DCExi→y(x1, ..., xD) =
∂F (x1, ..., xD)

∂xi
. (4)

We observe in (4) that it is possible for DCExi→y to be a
function of xj (i ̸= j), meaning that the causal strength of xi

on y is being moderated by another variable xj . We introduce
the shorthand notation

∂i
∆
=

∂

∂xi

to make some of the expressions more concise.
Inversely, one notion of independence of multiple causes

is that the DCE of each xi on y only depends upon xi; i.e.,
∂iF is only a function of xi. As a result, the mixed second-
derivatives of F are zero,

∂2F

∂xj∂xi
=

∂

∂xj

(
∂F (x1, ..., xD)

∂xi

)
= 0, i ̸= j. (5)

The quantity ∂j∂iF in (5), which we will call the mixed
differential causal effect (MDCE), thus describes the manner
in which xj moderates the strength of causation xi → y. The
sign of the MDCE can describe whether the interaction of
xi and xj is ‘synergistic’ or ‘antagonistic’ [8]. We may also
denote the MDCE by ∂2y/∂xi∂xj or ∂i∂jy when the causal
mechanism F is implicitly understood. Note that since

∂i∂jF = ∂j∂iF (6)

whenever F has continuous second derivatives [38], the joint
causation is usually symmetric, i.e., the ordering of i, j does
not matter.

We say that xi, xj are separable causes of y if the function
F admits an additive decomposition that separates xi and xj :

F (xi, xj ,x−i,−j) = F1(xi,x−i) + F2(xj ,x−j) (7)

where the vector x−i,−j contains all the variables xk except xi

and xj (similarly, x−i and x−j represent the vectors excluding
xi and xj , respectively). When F has continuous second
derivatives, xi and xj are separable if and only if ∂i∂jF = 0.
Otherwise, we say that the pair xi, xj jointly causes y if ∂j∂iF
is not identically zero. When xi and xj jointly cause y, it is
impossible to discuss the causal effect of xi on y without also
considering xj , and vice-versa. For example in the bilinear
model (3), the mixed derivatives are

∂2F

∂xi∂xj
= bij + bji.

We see immediately that the mixed derivatives for the bilinear
model are constants, and unchanged if we switch i and j. The
magnitude of ∂i∂jF quantifies the extent to which xi, xj are
interacting when they drive y.

In order to study joint causation in practice, one must be
able to estimate derivatives of functions from data, which we
address in Section IV.

C. Higher-order joint causation

To discuss the joint causation of three or more causes, we
extend the analysis in an obvious way. We define the higher-
order mixed derivatives ∂i1∂i2 · · · ∂iKF to be the K-th order
MDCE, which describes the joint causation of xi1 , xi2 , ..., xiK

on y. Since ∂i1 · · · ∂iKF is only nonzero if ∂ia∂ibF ̸= 0, for
all ia, ib ∈ {i1, ..., iK} s.t. ia ̸= ib, pairwise joint causation is
a necessary condition for higher-order joint causation.

D. Change of variables

We have already noted some elementary properties of the
MDCE, such as symmetry (6) and the additive decomposition
formula (7). Some additional important properties arise when
considering a change of variables.

Joint causation is not invariant to nonlinear transformations
at the output; that is, we can expect the joint causation to differ
if we change the output quantity of interest. As an elementary
example, consider the following causal system:

x1 ∼ U(0, 1)
x2 ∼ U(0, 1)
y := ax1 + bx2

ỹ = y2,

where a, b > 0. For the sake of causality, we regard y and ỹ as
different representations of the same variable in the system,
so that we are not discussing chains of causal interactions
xi → y → ỹ. An analogy would be that standard deviation
and variance are equivalent quantities, described in different
coordinates.

The joint causation of x1 and x2 on y is zero, since the
functional relationship between the three is linear. However,
we observe that because

ỹ = a2x2
1 + b2x2

2 + 2abx1x2,

the joint causation of x1 and x2 on ỹ is non-zero, since
the MDCE is the constant function 2ab. We remark that this
example not only applies to the MDCE, but also to traditional
measures of interaction as well.

To understand this phenomenon in general, consider the
situation in which y := F (x1, x2) is a causal mechanism, and
we have a nonlinear transformation at the output, ỹ = g(y).
Ordinary calculus tells us how to relate ∂1∂2y and ∂1∂2ỹ:

∂2ỹ

∂x1∂x2︸ ︷︷ ︸
Transformed MDCE

=
∂2ỹ

∂y2
∂y

∂x1

∂y

∂x2︸ ︷︷ ︸
Bias term

+
∂ỹ

∂y

∂2y

∂x1∂x2
.︸ ︷︷ ︸

Original MDCE

(8)

The second term in (8) contains the original MDCE, scaled
by a function ∂ỹ/∂y analogous to the chain rule for the first
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derivative. However, the bias term in (8) will distort the MDCE
estimate when we transform y nonlinearly. As a result, joint
causation is not invariant under reparameterization, and the
previous example shows that while we may find no joint
causation (or interaction) in one coordinate system, there may
be a nonzero interaction in a different coordinate system.

For transformations of the cause variables, the situation is
much more tame. If x1 = g1(x̃1) and x2 = g2(x̃2), for some
appropriate functions g1, g2, then the MDCE is only scaled
according to the coordinate change,

∂2y

∂x̃1∂x̃2
=

∂2y

∂x1∂x2

∂x1

∂x̃1

∂x2

∂x̃2
. (9)

As a result, if the joint causation of x1, x2 on y is zero, it
remains zero for any reparameterization of these variables.

E. Confounders

When studying causal systems in the real world, we must
be cautious about the presence of unobserved confounders,
variables that exert a causal influence on multiple observed
covariates [5, p.12]. In our discussion so far, we have focused
on the analysis of individual causal mechanisms. However,
confounders distort our inference because they affect multi-
ple causal mechanisms simultaneously. A basic confounding
scenario is the “common cause” situation, in which a vector
of unobserved variables z exerts a causal influence on both x
and y. To describe the situation in a model, we would need at
least two causal mechanisms,

x := G(z) + εx, (10)
y := F (x, z) + εy. (11)

When the confounder z influences both x and y, it becomes
impossible to distinguish when a change in y is directly
due to the change in x, or if both changes were due the
common cause z. As a result, the presence of a confounder can
sabotage our measurements of causal strength. In particular,
the two issues are that (1) confounders could prevent us from
accurately estimating the mechanism F , and (2) the DCE or
MDCE could depend on the value of z. Simpson’s paradox
demonstrates that due to confounders, the true causal strength
could be dramatically different from what we measure [37].

Although confounders can create very challenging scenarios
for measuring causal strengths, under certain assumptions it
may be possible to estimate MDCEs. In Section V-C, we study
a system where the MDCE can still be estimated efficiently
despite the influence of a so-called ‘linear confounder.’ While
this experiment is curious, we leave a more systematic study
of confounder bias for future work.

IV. DISCOVERING CAUSATION WHEN F IS UNKNOWN

A. Gaussian process regression

We now review Gaussian process regression (GPR) as a
non-parametric, probabilistic tool to estimate functions, and
their higher-order derivatives, from data. We are given a vector
of covariates x = (x1, x2, ..., xD) and a target quantity y,
given by

y = F (x) + ε,

where F (·) is unknown, and ε is zero-mean white Gaussian
noise with variance σ2, which we assume to be fixed for
now. GPR estimates the function F in a Bayesian manner
by placing a Gaussian process (GP) prior over the space of
possible functions.

We say that a function F is a GP if for any finite set of points
x1, ...,xN , the probability distribution over F (x1), ..., F (xN )
is multivariate normal. The function

m(x)
∆
= E(F (x))

is called the mean function, and the function

k(x,x′)
∆
= cov(F (x), F (x′))

is referred to as kernel or covariance function of the GP.
Together m and k uniquely specify a GP distribution. We write
F ∼ GP(m, k).

To learn functions from data, GPR takes a Bayesian ap-
proach. First, a GP prior is placed over F . When picking
a prior, we often set m(x) ≡ 0 in the absence of prior
knowledge about E(F (x)). We then consider a data set
{(xn, yn);n = 1, ..., N} consisting of input-output pairs. For
notation, we let X be an N × D matrix whose nth row is
xn, and y is an N × 1 vector whose nth element is yn. To
make predictions about F (x) at a new location x, we obtain
a posterior distribution after conditioning on X,y,x , which
is also Gaussian. Following the derivation in [25], we may
express this posterior as

F (x)|X,y,x ∼ N (mp(x), kp(x,x)), (12)

where

mp(x) = k∗(x)
⊤(K+ σ2I)−1y, (13)

kp(x,x
′) = k(x,x′)− k∗(x)

⊤(K+ σ2I)−1k∗(x
′), (14)

are the posterior mean and kernel, respectively, and σ2 is
the noise variance. The vector k∗(x) and the matrix K are
commonly used notation in these formulas, and are given by

(k∗(x))n = k(xn,x), Knn′ = k(xn,xn′).

The estimated function F̂ is usually taken to be the pos-
terior mean, mp. Examining (13), we observe that F̂ can be
expressed in terms of a sum,

F̂ (x) = mp(x) = k∗(x)
⊤(K+ σ2I)−1y (15)

=

N∑
n=1

k (x,xn)αn, (16)

where α = (K+ σ2I)−1y is a vector of constants.
For GPR to yield a meaningful predictive distribution,

proper choices must be made in selecting the kernel function
k and noise variance σ2. Typically, k is selected from a
parameterized family of kernels, where the kernel parameters
and σ2 are jointly optimized during training to maximize
the likelihood of the resulting model [39]. We discuss kernel
selection in detail in Section IV-C.
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B. Differentiation of Gaussian processes

When the kernel function k of the GP prior has certain
properties, such as continuity, differentiability or periodicity,
then these properties will be conferred to samples from the
GP posterior [40], [41]. In particular, if

F ∼ GP(m, k), (17)

for appropriate functions m, k, one can show that ∂iF is also
a Gaussian process [42]:

∂F

∂xi
∼ GP

(
∂m

∂xi
,

∂2k

∂xi∂x′
i

)
. (18)

From (18), we see that for F to be differentiable (as a
function randomly sampled from the GP), it is a necessary
condition that m and k are once and twice differentiable,
respectively. This condition is also sufficient for the GP to
be differentiable [41]. The equations (17) and (18) allow
us to obtain a posterior over the derivatives, even if only
observations of F are available. This result also shows that,
when everything is defined, the mean and partial derivative
commute: ∂iE(F ) = E(∂iF ).

To estimate derivatives of a function F from data, we can
first estimate the posterior GP, F |X,y. Then given the GP,
we can use (18) and (16) to get an estimator of the derivative,
i.e.,

∂̂F (x)

∂xi
= E

(
∂F (x)

∂xi

∣∣∣∣X,y,x

)
(19)

=
∂mp

∂xi
(20)

=

N∑
n=1

∂k (x,xn)

∂xi
αn. (21)

Naturally, if we wish to study the MDCE using GPs, then
we must obtain the posterior distribution of ∂i∂jF . First, we
must obtain the posterior distribution for the function F from
data, as in (12), and then repeated application of (18) yields

∂2F

∂xi∂xj

∣∣∣∣X,y ∼ GP

(
∂2mp

∂xi∂xj
,

∂4kp
∂xi∂x′

i∂xj∂x′
j

)
. (22)

Due to the form of F̂ given in (13), computing these
quantities is straightforward. In particular,

E
(

∂2F

∂xi∂xj

∣∣∣∣X,y

)
=

∂2mp

∂xi∂xj
=

N∑
n=1

∂2k (x,xn)

∂xi∂xj
αn, (23)

is an estimator of the mean of the MDCE. The quality of the
estimator depends on the data X,y and the choice of kernel
k, which we now address.

C. Covariance functions

So far, we have assumed that the kernel for the GP prior,
k, has been given. In practice, we adopt a parametric form
for the kernel k, and we select the optimal parameters θ by
the maximum likelihood estimator [39]. The kernel parameters
are often called hyperparameters because they do not directly
determine the structure of the output function, but rather they

tend to modify how the training data were used to produce a
posterior. In general, the family of kernels being used is highly
customizable, and designing a good kernel family can lead to
a great deal of expressiveness in the GP model [25].

To produce the MDCE estimator as in (22), we will need
to differentiate the kernel functions used by the GP. We will
provide analytical results for some common kernels. For
more complex kernels, we note that the use of computational
tools, such as automatic differentiation [43] or symbolic
differentiation, can greatly simplify the implementation of
MDCE estimators in practice.

SE and ARD-SE kernels. The default kernel is often the
squared-exponential (SE) kernel [25],

kSE(x,x
′) = σ2

f exp

−
D∑

j=1

(xj − x′
j)

2

2ℓ2

 , (24)

where σf , ℓ are hyperparameters and are called signal variance
and length-scale, respectively. A useful and simple general-
ization over the SE kernel is the SE kernel with automatic
relevance determination (ARD-SE) [44],

kARD-SE(x,x
′) = σ2

f exp

−
D∑

j=1

(xj − x′
j)

2

2ℓ2j

 , (25)

where each input dimension j receives its own length-scale
parameter ℓj .

The SE and ARD-SE kernels can be differentiated easily.
To make the calculation straightforward, notice that kARD-SE
and kSE can be expressed as a product of 1-dimensional SE
kernels. As a result, when i ̸= j, it can be shown that

∂2kARD-SE (x,x
′)

∂xi∂xj
= σ2

f exp

(
−

D∑
d=1

(xd − x′
d)

2

2ℓ2d

)

×
(
xi − x′

i

ℓ2i

)(
xj − x′

j

ℓ2j

)
. (26)

Using the same trick, we may compactly express the higher-
order mixed derivatives as

∂LkARD-SE (x,x
′)

∂xi1 · · · ∂xiL

= kARD-SE(x,x
′)

L∏
l=1

(
xil − x′

il

−ℓ2il

)
,

where i1, ..., iL is a list of indices with no repeats.
Periodic kernels. As noted earlier, other kernels are often of

interest to enforce specific properties on the learned functions.
The periodic kernel is sometimes used to enforce periodicity
of the learned functions along each input dimension [45]:

kper(x,x
′) = σ2

f exp

(
−1

2

D∑
d=1

sin2(fd(xd − x′
d))

ℓ2d

)
, (27)
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where σ2
f , ri, fi are again hyperparameters. The mixed deriva-

tive is again straightforward to compute, although the expres-
sions get a bit more unwieldy,

∂2kper(x,x
′)

∂xi∂xj
= σ2

f exp

(
−1

2

D∑
d=1

sin2(fd(xd − x′
d))

ℓ2d

)

×
(
fi sin(fi(xi − x′

i)) cos(fi(xi − x′
i))

−ℓ2i

)
×

(
fj sin(fj(xj − x′

j)) cos(fj(xj − x′
j))

−ℓ2j

)
.

Matérn kernels. The SE, ARD-SE and periodic kernels
are smooth functions, meaning that they are infinitely differ-
entiable, and as a result the GP posterior will model F as an
infinitely-differentiable function. In cases where only functions
of limited differentiability are of interest, it is common to
consider the Matérn class of kernels [25], [46]. The general
class of Matérn kernels is given by

kMatern(r) = σ2
f

21−ν

Γ(ν)

(√
2νr

ℓ

)ν

Kν

(√
2νr

ℓ

)
, (28)

where r
∆
= ||x− x′|| is the Euclidean distance between x and

x′, and Kν is a modified Bessel function. The hyperparameters
ν, σ2

f and ℓ are positive numbers. When using a Matérn
kernel, a function F sampled from the kernel is only k-
times differentiable if and only if k < ν. As a result, twice-
differentiable functions can be modeled by selecting ν = 5/2,
leading to the Matérn 5/2 kernel,

kMat5/2(r) = σ2
f

(
1 +

√
5r

ℓ
+

5r2

3ℓ2

)
exp

(
−
√
5r

ℓ

)
, (29)

where now ℓ and σ2
f are the only hyperparameters. For

studying pairwise joint causation, at least two derivatives are
required to compute the MDCE. The kernel (29) can be
differentiated to yield

∂2kMat5/2(x,x
′)

∂xi∂xj
= −σ2

f

(
5
√
5r2

3ℓ3
+

5r

3ℓ2

)
exp

(
−
√
5r

ℓ

)

×
(xi − x′

i)(xj − x′
j)

r2

+ σ2
f

(
25r2

3ℓ4
− 5

√
5r

3ℓ3
− 5

3ℓ2

)

× exp

(
−
√
5r

ℓ

)
(xi − x′

i)(xj − x′
j)

−r3
,

which is somewhat less elegant but nonetheless tractable.
Combining old kernels to make new ones. The power of

GPR comes not only from the wide number of kernels, but also
from the ability to design new kernels through the summation
and multiplication of existing kernels [40]. When kernels
are added together, the resulting GP estimate also admits an
additive decomposition. For example, if k(x1, x2, x

′
1, x

′
2) =

k1(x1, x
′
1) + k2(x2, x

′
2), then a function F sampled from the

GP posterior will admit an additive decomposition as well; in
this case, F (x) can be expressed as F1(x1) + F2(x2) [25].

The additive kernel in [26] combines several SE kernels
together to produce such an additive decomposition of func-
tions. The SE additive kernel for D input features may be
summarized as

kadd(x,x
′) =

D∑
i=1

kSE(xi, x
′
i)

+

D∑
i=1

D∑
j=i+1

kSE(xi, xj , x
′
i, x

′
j)

...
+ kSE(x,x

′). (30)

By linearity, any derivative of the additive kernel can be
obtained by individually differentiating each of the kernels
in the sum. Since we are using SE kernels in this model, the
MDCE estimator given by this additive kernel can be directly
obtained using (26).

D. Bayesian detection of joint causation

In this section, we consider the problem of deciding when
xi, xj do not jointly cause y. To formulate the problem using
decision theory, we consider a Bayesian multiple hypothesis
testing framework [47]. Aside from decision making, knowl-
edge of which joint causalities are detectable can be leveraged
in kernel design to refine the GPR model.

Suppose that we have a set of candidate models
M0, · · · ,MQ−1 to describe a data set X,y, and we assign
prior probabilities P (M0), · · · , P (MQ−1) to each model.
Assuming that X and y were generated by one of the models,
the minimum probability of error detector will select the model
with the highest posterior probability [47]. Mathematically, we
decide model Mr is the best model if

P (Mr|X,y) > P (Mq|X,y), ∀q ̸= r. (31)

To decide if a given pair, xi, xj jointly cause y, a binary
test will suffice. In model M0, we suppose that the joint
causation is null, ∂i∂jF ≡ 0. According to (7), the function
F admits a factorization that separates xi and xj . To encode
this assumption into the model, we can enforce this constraint
through the kernel function. Thus, under model M0, we have
that

F |M0 ∼ GP(0, k), (32)
k(x,x′) = k1(xi, x̃, x

′
i, x̃

′) + k2(xj , x̃, x
′
j , x̃

′), (33)

where x̃ again represents x with xi and xj omitted. Under
the competing model M1, joint causation is permissible, and
so we permit the use of a kernel that can model the joint
causation:

F |M1 ∼ GP(0, k3). (34)

The kernels k1, k2, k3 are typically chosen from the same fam-
ily, e.g., ARD-SE kernels. If priors over the hyperparameters
are given, we may marginalize over the hyperparameter space
and perform the model selection in a fully Bayesian manner.
As an alternative, a hybrid approach in which we separately
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optimize the hyperparameters for each kernel under each
model from training data, and then perform the comparison
using the ‘best’ hyperparameters for each model on test data.
In the latter cases, we use the training data to obtain a posterior
of the hyperparameters that is approximated by a Dirac delta
function located at the best values of the hyperparameters.
In either case, the posterior values P (Mq|X,y) are obtained
via Bayes rule and modelling the data X,y by GPs based on
the kernels of each model. When the prior over the models
is uniform, the comparison of posterior simplifies to be a
comparison of the model likelihoods [47].

When more specific models or hypotheses are of interest,
the multiple hypothesis testing approach can be invoked to pro-
duce the corresponding direct tests, but still, a separate GPR
model must be constructed for each test. Since the procedure
of computing individual GPs and their likelihoods can also
be parallelized, this approach can be implemented efficiently.
However, the number of possible competing hypotheses grows
exponentially with the dimension, so this approach is not
scalable without modification.

A greedy approach to detect all the interactions is to
repeatedly sift through each pair of features and to run
the corresponding binary test. For each i = 1, ..., D and
j = i + 1, ..., D, we assume that F ∼ GP(0, k) for two
possible cases: in the first case, we propose no change to the
kernel k, and in the second case we modify k to ensure that
∂2k/∂xi∂xj = 0.3 This approach would require D(D− 1)/2
comparisons and two models to be learned per comparison, so
it requires us to train D(D−1) GPR models. However, as the
complexity of the kernels increases, training the GPR models
may potentially becomes prohibitive after many iterations. The
number of comparisons could be reduced if we decide to
proceed only with binary tests of the variables that produce
∂i∂jF close to zero.

E. Spectral Approximations to GPR

For a large number of training points N , using a GPR model
as presented becomes prohibitive since the evaluation of the
likelihood function requires the inversion of an N×N matrix.
There are several approximations to GPR that are readily
available [25], [48], [49], and the corresponding estimators
of the MDCE can be derived for these approximations. In
this section, we will focus on approximations obtained when
one attempts to “sparsify” the spectral representation of the
GP [50], [51], because they lend themselves to a rather
straightforward analysis.

The motivation for sparse spectrum GPs, following from
[50], is as follows: Consider stationary kernel function
k(x,x′), that is, a kernel function that depends only on
r = x − x′. Bochner’s theorem [52] states that k(r) can be
expressed as the Fourier transform of a finite positive measure,

3By symmetry of the covariance function, this also means that
∂2k/∂x′

i∂x
′
j = 0.

i.e., a scaled probability measure σ2
0pk(v). This allows us to

express the kernel in terms of an expectation,

k(x,x′) = k(r) =

∫
e2πiv

⊤rσ2
0pk(v)dv

= σ2
0Epk

(
e2πiv

⊤r
)

= σ2
0Epk

(
e2πiv

⊤xe−2πiv⊤x′
)
. (35)

The expression in (35) suggests that if one approximates the
expectation using Monte Carlo integration, we may express the
kernel through a series of samples vm ∼ pk(v), m = 1, ...,M .
Since the power spectrum is symmetric about 0, we may also
use −vm as samples, which allows us to cancel the imaginary
parts of the expression and yield an estimator,

k(x,x′) ≈ σ2
0

M

M∑
m=1

cos(2πv⊤
m(x− x′)). (36)

Once the frequency vectors vm in (36) have been sampled,
we can approximate the GPR posterior mean (16) using
trigonometric functions:

E(F (x)|X,y,x) =

N∑
n=1

k (x,xn)αn

≈ F̂ (x) =

M∑
m=1

αm sin(v⊤
mx) + βm cos(v⊤

mx).

(37)

We can extend the sparse spectrum GP approach to estimate
the MDCE by differentiating the expression in (37) and obtain

∂2F̂ (x)

∂xi∂xj
= −

M∑
m=1

αmvm,ivm,j sin(v
⊤
mx) (38)

−
M∑

m=1

βmvm,ivm,j cos(v
⊤
mx). (39)

In Section V, we compare the performance of sparse spectrum
GPR to exact GPR when estimating the MDCE.

V. EXPERIMENTS

We now explore various aspects of the MDCE approach
through several examples and experiments. MATLAB code to
reproduce these results is available online4. We include the
following examples:

A. Comparison of different GP kernels for estimating the
MDCE.

B. A time series example that compares MDCE with Volterra
modeling. Additionally, we compare both methods to the
Bayes detector.

C. MDCE estimation in a system with “linear confounders.”
D. Comparison of exact GPR and sparse GPR.
E. A real data experiment using housing data from New

Taipei City.

4See https://github.com/KurtButler/joint causation.

https://github.com/KurtButler/joint_causation


8

Kernel
Function SNR SE ARD-SE Additive Matérn 5/2 Periodic

Local interaction 5dB 1.082 1.480 1.556 1.293 2.202
Local interaction 20dB 0.252 0.258 0.252 0.382 1.144

Egg box 5dB 0.377 0.385 0.385 0.844 0.128
Egg box 20dB 0.023 0.024 0.024 0.108 0.004

Egg box + Bilinear 5dB 7.053 7.250 7.234 6.625 17.179
Egg box + Bilinear 20dB 0.656 0.713 0.710 0.971 12.473

TABLE I: Mean-square-errors (MSE) of the GP mean as an estimator of the MDCE, for various functions with two inputs.
The signal-to-noise ratio (SNR) is also shown for each example.

A. Comparison of kernels

To compare the performance of multiple kernels, we con-
sidered the general problem estimating the MDCE of x1, x2

on y in a nonlinear additive noise model:

x1, x2 ∼ U(−2, 2) (40)

ε ∼ N (0, σ2
ε) (41)

y := F (x1, x2) + ε. (42)

The noise variance σ2
ε was selected such that the resulting

signal-to-noise ratio (SNR), defined to be E(F 2)/σ2
ε , was

either 5dB or 20dB (we considered both cases). To try a variety
of examples, we used three functions F :

1) A “local interaction” function,

F (x1, x2) = sin(x2) + cos(2x1) cos(3x2)σ(x1), (43)

where σ(x)
∆
= 1/(1 + exp(−5x)) is a sigmoid function.

Due to the presence of the sigmoid function, interactions
in the model are only significant when x1 > 1. We show
the local interaction function and its MDCE function in
Fig. 1.

2) An “egg box” function,

F (x1, x2) = sin(2x1) sin(2x2).

This function displays periodic behavior in both argu-
ments, and has a spatially-varying MDCE function.

3) A sum of the egg box function and a bilinear term,

F (x1, x2) = sin(2x1) sin(2x2) + 4x1x2.

This function modifies the previous example to enforce
an MDCE with nonzero mean. Additionally, the bilinear
term has the potential to mask the influence of the eggbox
function due to the difference in magnitude between the
two summands.

In Fig. 2, we compare the estimates of the local interaction
function with various kernels: the SE kernel, ARD-SE kernel,
the additive kernel, Matérn 5/2 and the periodic kernel. After
observing 300 samples of the original function immersed
in white Gaussian noise (SNR = 20dB), we compare the
various estimates of the MDCE. In practice, we might use any
combination of the given kernels to improve our estimates, but
we show each kernel separately to get a sense of the properties
of each individual kernel. We also show the predictive mean-
square-error (MSE) for each case, measured as the averaged
difference between F and F̂ averaged (numerically) across the
grid.

In Table I, we systematically compare the results for each
function and SNR combination, averaged across 100 randomly
generated data sets.

Fig. 1: Local interaction function F (x1, x2), as given in (43),
and its corresponding MDCE ∂1∂2F , visualized as functions
of x1 and x2. Observations of the function immersed in white
Gaussian noise are shown as black dots. The signal-to-noise
ratio is 20dB. Given noisy observations of F , the goal is to
use GPR to model ∂1∂2F , which is unobserved.

B. Time series example

To demonstrate our approach on a time series example,
we consider the Volterra model used in nonlinear system
identification [17], [18]. In the second-order bilinear Volterra
model, the output signal yt is modeled as a bilinear function
of another signal xt and its lags,

yt := F (xt, xt−1, · · · , xt−T ) + wt

=
T∑

i=0

aixt−i +

T∑
i=0

T∑
j=0

bijxt−ixt−j + wt, (44)

where wt is white Gaussian noise. The variance of wt was
chosen such that the signal-to-noise ratio, defined as the power
ratio of the signal st := F (xt, · · · , xt−T ) to wt, is 20 dB. In
our simulation, we let xt be an autoregressive process,

xt = 0.85xt−1 + vt, (45)

where vt ∼ N (0, 1). To pick coefficients for the Volterra
model, we sampled ai ∼ N (0, 1) independently and we fixed
bij ∈ {0,±1}. In Fig. 3, we show a realization of this process.

In Fig. 4, we compare the Hessian matrix (HF )ij = ∂i∂jF
of the model obtained to the averaged MDCE, the coefficients
of a fitted Volterra model with bilinear kernel, and the Bayes
detector. To estimate the averaged MDCE using GPR, we
averaged the estimate of each ∂i∂jF over the sampled points.
The GPR estimates of the averaged MDCE are comparable to
directly fitting a Volterra model, but GPR did not require us
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Fig. 2: We use heatmaps to visualize how different kernels
produce different estimates of the MDCE, given the observa-
tions of the local interaction function in (43). The posterior
means of the MDCE are shown for each choice of kernel.
All kernels demonstrated the ability to interpolate within the
region in which data were observed, but the additive kernel
yielded the lowest fitting error.

0 50 100 150 200 250 300 350 400 450 500
-5

0
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t

0 50 100 150 200 250 300 350 400 450 500

0

50

100
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t

Fig. 3: A realization of the Volterra model in (44). The time
series xt is generated as an autoregressive process, via (45).
The signal yt is then generated as a function of xt, according
to (44). Given only observations of xt and yt, we then study
the input-output relationship using the methods in Fig. 4.

to assume the relationship xt → yt to have a bilinear form.
The Bayes detector, with a uniform prior over models, is also
evaluated, and we found that it detected the location of the
nonzero interactions fully. Combining the Bayes detector with
the MDCE regression estimates can yield a better model of
the Hessian matrix, with only weak assumptions.
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Fig. 4: Study of a Volterra system using MDCE. Time series
xt and yt were generated as in Fig. 3. The Hessian matrix
of the Volterra model, (44), is depicted, and is shown to be
accurately estimated by the MDCE (averaged across the input
space). The Hessian matrix is interpreted as a measure of joint
causation between features. A parametric approach, using a
bilinear Volterra model of the data, yields a similar pattern.
Finally, we can also employ the Bayes detector, (31), to decide
which entries of the Hessian are zero, which yields the correct
joint causalities in this case.

C. Linear confounders

In this experiment, we consider a situation in which the
MDCE estimator is robust to the presence of a certain class of
common-cause confounder. Recalling equations (10) and (11),
we consider the following probabilistic causal model with a
confounder variable z:

z ∼ N (0, σ2
z), (46)

x := az +wx, (47)

y := (x⊤Bx)(1 + βz) + 1⊤x+ 5z + wy, (48)

where σ2
z is the variance of the confounder z, the constants

a,B are fixed, and wx ∼ N (0, σ2
xI) and wy ∼ N (0, σ2

y) are
independent Gaussian noises. The parameter β is a control
parameter that modulates how z can influence the MDCE. In
particular, consider that under this model the MDCE of xi and
xj on y is given by

∂2y

∂xi∂xj
= (Bij +Bji)(1 + βz),

where Bij are the entries of the matrix B. When β = 0, the
confounder z is ‘linear’ and does not influence the MDCE, and
as a result we anticipate that one will be able to accurately the
MDCE when the signal-to-noise (SNR) ratio5 is reasonable.
When β ̸= 0, we expect that the MDCE estimates will be
distorted depending on the strength of the confounder, in
particular, depending on the magnitude of σz .

5Here, we are considering the signal to be x⊤Bx + 1⊤x and the noise
to be 5z + wy . If the SNR is too low, we cannot obtain clean information
about the x → y relationship. However for moderate values of the SNR, we
should be able to learn a model x → y that preserves the joint causalities.
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Fig. 5: Demonstration of the MDCE’s robustness to linear
confounders. We plot the median estimation error across
repeated trials, where in each trial we compute the mean-
square error of the MDCE estimate for a randomly generated
data set. as a As the strength of the confounder, σz , increases,
the MDCE accuracy should theoretically degrade. However,
in the case that the confounder is ‘linear,’ and does not affect
the second derivatives of the relationship, then the MDCE
estimator is significantly more robust to the presence of the
confounder.

In Figure 5, we consider estimation of the MDCE in the
cases of β = 0 and β = 0.5. Additionally, in each case,
we vary σz from 0 to 1. For each value of β and σz , we
performed 300 trials, where in each trial we generate a random
data set, and then we estimate the corresponding MDCEs. The
parameter matrices a and B were randomly selected in each
trial, where a had values sampled from N (0, 1) and B had
entries sampled from N(0, 1), with an additional thresholding
operation to induce sparsity in B. We use dim(x) = 3 in all
the experiments.

Figure 5 shows that for systems of the form of (48), two
different paradigms of behavior are possible depending on β.
In the ‘linear confouder’ scenario, when β = 0, the magnitude
of the confounder does not significantly affect our ability to
estimate the MDCE. This is contrast to the general situation in
which any common cause confounder can negatively impact
the study of causal strength. Thus, the MDCE as a measure
of joint causation is robust to certain types of confounders.

D. Sparse GPR

We consider the following model to evaluate the sparse GP
estimate of the MDCE:

x1, x2 ∼ U(−2, 2),

y := F (x1, x2) + ε, (49)

where

F (x1, x2) = sin(2x1 + 2x2)x2 + 3 cos(x1) + sin(x2),

ε ∼ N (0, σ2
ε),

and σ2
ε is selected so that the SNR is 20dB.

In Fig. 6, we compare estimates of the function and the
MDCE using both exact GPR, and sparse GPR approxima-
tions. The base GP model assumed an SE kernel. In this case,
the SE kernel hyperparameters were selected to be ℓ = 0.9275
and σf = 2.6226. For the sparse GPR, we used M = 200
frequencies from the power spectral density of this kernel.
Under these conditions, the exact and sparse GPRs were
able to obtain nearly indistinguishable models of the original

Fig. 6: Comparison of MDCE estimates using exact GPR and
sparse approximation. The function F and its MDCE ∂1∂2F ,
as given in (49), are estimated using exact GPR and sparse
GPR, respectively. The SNR in this example is 20dB. The
exact GPR is able to accurately reproduce the function and
its MDCE. The sparse approximation produces a reasonable
estimate, but the error blows up near the boundary of the
square.

function F . In comparison, the sparse GPR estimates of the
MDCE were more erroneous near the boundaries of the square.
However, within the interior of the square, we observed that
the sparse GPR estimate of the MDCE was largely accurate.
Naturally, standard GPR outperformed the sparse GPR using
the same number of samples.

E. New Taipei City housing data

In our last example, we demonstrate how to analyze joint
causation in a real data set. We used the New Taipei City
housing data set from the UCI Machine Learning Repository
[53]. This data set has 7 input features which are used to
predict the price of a house in New Taipei City, and under the
potential outcomes framework we can interpret this predictive
model as a causal hypothesis. There are 414 samples in the
data set, of which 364 were randomly selected to be used
for training, and the remaining 52 were used to validate the
model by checking the prediction error. We fit a GPR model
with ARD-SE kernel to predict the house price y as a function
of the input covariate vector x. We cross-validated our model
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Fig. 7: Experimental results for the New Taipei City housing
data set. (A) We show the out-of-sample prediction abilites
for two models of the housing price: the first is a GPR
model, and the second is a Volterra model using a bilinear
Volterra kernel. The GPR model yielded a lower out-of-sample
prediction mean-square-error (MSE). (B) The average MDCE
under the GPR model, Ex∼p(x),F∼p(F |X,y)(∂i∂jF (x)), after
averaging over both the input location x and the model
posterior uncertainty p(F |X,y).

by randomizing the data set several times, confirming that our
MDCE predictions are consistent as we change the training
data.

In Figure 7, we visualize our model. The normalized predic-
tion MSE is 0.252, so the GPR is able to explain the majority
of the variance in the housing price using the given features.
Since the model proved itself to be predictive, and it passed
cross-validation, we find it appropriate to interrogate it with
MDCE analysis. When viewing the MDCE, we can see that
House Age and Distance to the MRT (metro) are both positive
interacting features, which indicates that a house with both
features together make a house perceived as more valuable
than either feature does alone. Feature pairs with negative
average MDCEs, like (Number of) Convenience Stores and
Distance to the MRT, indicate that evaluators of the house
are making tradeoffs when they assess the house’s value.
The ARD-SE kernel assigned a very low importance to the
Longitude feature, so it was not important to the predictions,
and this is reflected in the lack of joint causalities between
Longitude and the other features.

VI. CONCLUSION

In this paper, we proposed the mixed differential causal
effect as a measure of the strength of joint causation. By intro-
ducing Gaussian processes to model the posterior distribution
over the mixed derivatives, we gained the ability to model the
joint causation non-parametrically, making minimal assump-
tions about the underlying function. We applied the method to
both static and time-series data and obtained results consistent
with the existing theory, but also suggestive of future work
and applications. The concept of joint causation is of interest
to researchers in a number of fields including econometrics,
climate science and medicine. The proposed tool for estimating
joint causation can be used to understand studied phenomena
without knowing the exact relationships between the causing
and caused variables. Further, the tool can find applications in

building novel parametric models that would allow for easier
interpretations of acquired measurements.
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597–605, 2016.

[19] Cecil Robinson and Randall E Schumacker, “Interaction effects: center-
ing, variance inflation factor, and interpretation issues,” Multiple Linear
Regression Viewpoints, vol. 35, no. 1, pp. 6–11, 2009.

[20] Christophe Leys and Sandy Schumann, “A nonparametric method to
analyze interactions: The adjusted rank transform test,” Journal of
Experimental Social Psychology, vol. 46, no. 4, pp. 684–688, 2010.

[21] Andrew Gelman, “Analysis of variance—why it is more important than
ever,” The Annals of Statistics, vol. 33, no. 1, feb 2005.

[22] Ilya M Sobol, “Global sensitivity indices for nonlinear mathematical
models and their Monte Carlo estimates,” Mathematics and Computers
in Simulation, vol. 55, no. 1-3, pp. 271–280, 2001.

[23] Art B Owen, “Sobol’indices and Shapley value,” SIAM/ASA Journal on
Uncertainty Quantification, vol. 2, no. 1, pp. 245–251, 2014.

[24] Qiuling Yang, Mario Coutino, Geert Leus, and Georgios B Giannakis,
“Autoregressive graph Volterra models and applications,” EURASIP
Journal on Advances in Signal Processing, vol. 2023, no. 1, pp. 1–21,
2023.



12

[25] Carl Edward Rasmussen and Christopher K Williams, Gaussian Pro-
cesses for Machine Learning, MIT Press, 2006.

[26] David K Duvenaud, Hannes Nickisch, and Carl Rasmussen, “Additive
Gaussian processes,” Advances in Neural Information Processing
Systems, vol. 24, 2011.

[27] Francis Bach, “Exploring large feature spaces with hierarchical multiple
kernel learning,” Advances in Neural Information Processing Systems,
vol. 21, 2008.

[28] Vladimir Vapnik, Statistical Learning Theory, Adaptive and Learning
Systems for Signal Processing, Communications and Control. Wiley,
1998.

[29] Steven L Bressler and Anil K Seth, “Wiener–Granger causality: a well
established methodology,” Neuroimage, vol. 58, no. 2, pp. 323–329,
2011.

[30] Jonas Peters, Dominik Janzing, and Bernhard Schölkopf, Elements of
Causal Inference: Foundations and Learning Algorithms, The MIT
Press, 2017.

[31] B Schölkopf, D Janzing, J Peters, E Sgouritsa, K Zhang, and J Mooij,
“On causal and anticausal learning,” in 29th International Conference
on Machine Learning (ICML 2012). International Machine Learning
Society, 2012, pp. 1255–1262.

[32] Saber Salehkaleybar, AmirEmad Ghassami, Negar Kiyavash, and Kun
Zhang, “Learning linear non-Gaussian causal models in the presence of
latent variables,” Journal of Machine Learning Research, vol. 21, no.
39, pp. 1–24, 2020.

[33] Yuhao Liu, Chen Cui, Daniel Waxman, Kurt Butler, and Petar M.
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