
A Multivariate Unimodality Test Harnessing the Dip Statistic of Mahalanobis
Distances Over Random Projections

Prodromos Kolyvakis1 Aristidis Likas2

1 ORamaVR SA, Geneva, Switzerland & Talos Automata SMPC, Ioannina, Greece
2 Department of Computer Science and Engineering, University of Ioannina, 45110 Ioannina, Greece

Abstract

Unimodality, pivotal in statistical analysis, of-
fers insights into dataset structures and drives
sophisticated analytical procedures. While uni-
modality’s confirmation is straightforward for one-
dimensional data using methods like Silverman’s
approach and Hartigans’ dip statistic, its gen-
eralization to higher dimensions remains chal-
lenging. By extrapolating one-dimensional uni-
modality principles to multi-dimensional spaces
through linear random projections and leveraging
point-to-point distancing, our method, rooted in
α-unimodality assumptions, presents a novel mul-
tivariate unimodality test named mud-pod. Both
theoretical and empirical studies confirm the ef-
ficacy of our method in unimodality assessment
of multidimensional datasets as well as in esti-
mating the number of clusters. The implementa-
tion of mud-pod is publicly available at https:
//github.com/prokolyvakis/mudpod.

1 INTRODUCTION

Unimodality, a fundamental concept in statistical analysis,
serves as a critical lens through which one can decipher the
inherent structure and patterns within datasets. Understand-
ing unimodality is paramount for multiple reasons. Firstly,
it provides a rudimentary insight into the nature of the data,
highlighting whether the data points converge towards a
common central tendency or deviate significantly. Secondly,
unimodality serves as a precursor to more complex analyti-
cal procedures, such as clustering algorithms, determining
their necessity, and potentially influencing their outcomes
[Kalogeratos and Likas, 2012, Daskalakis et al., 2013, 2014].
In essence, the importance of unimodality transcends mere
statistical significance, extending its value to practical, real-
world applications.

In one-dimensional data, unimodality can be fundamentally
understood as the task of discerning whether a given distri-
bution exhibits a single prominent peak or mode. A notable
advantage is that one-dimensional unimodality can be con-
firmed using robust statistical hypothesis tests, particularly
for one-dimensional data. Methods such as Silverman’s
approach, exploiting fixed-width kernel density estimates
[Silverman, 1981], the widely recognized Hartigans’ dip
statistic [Hartigan and Hartigan, 1985] and more recently
the UU-test [Chasani and Likas, 2022] are prime examples.

Nevertheless, when transitioning to higher dimensions, the
process of defining unimodality becomes less straightfor-
ward, even when considering only symmetric distributions.
The intricacies of multi-dimensional spaces impose chal-
lenges that are not present in one-dimensional settings, lead-
ing to diverse interpretations and approaches to gauge uni-
modality. Even worse, these intricacies make the general-
ization of unimodality tests notably challenging. Numerous
efforts have been made to capture the geometric essence of
unimodality in Rd (d > 1) and translate it into an analytical
framework [Dai, 1989]. In a seminal work by Olshen and
Savage [1970], a definition of generalized unimodality char-
acterized by a positive parameter α was proposed, called
α-unimodality, which is pertinent to distributions across Rd

and offers a broader perspective that encompasses many
aspects of 1-dimensional unimodality [Dharmadhikari and
Joag-Dev, 1988, Chapter 3.2]. Despite the various defini-
tions, however, few methods are available for assessing
unimodality in multidimensional data vectors.

In parallel, another line of research has delved into the
use of random projections as a strategy for capturing the
essence of multi-dimensional distributions. Random projec-
tions, known for its efficacy in dimensionality reduction,
have shown significant potential for learning mixtures of
Gaussians [Dasgupta, 1999]. Additionally, the Diaconis-
Freedman effect elucidates the behavior of random projec-
tions of probability distributions in the high-dimensional
space [Diaconis and Freedman, 1984]. Specifically, for a
given probability distribution P in a d-dimensional space,
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when we consider a dimension q much smaller than d, the
majority of the q-dimensional projections of P resemble
scaled mixtures of spherically symmetric Gaussian distri-
butions [Dümbgen et al., 2013]. Consequently, random pro-
jections appear to be a potent tool for the analysis of uni-
modality as they facilitate the transformation of the problem
into a seemingly simpler space. However, not every random
projection is conducive to our analysis; many projections
can obfuscate distinct modes by distorting distances. Con-
sequently, we limit our approach to a family of random
projections that, with a certain probability, maintain pair-
wise distances.

In this work, we tackle the complexity of extending uni-
modality testing to higher dimensions. Echoing the prin-
ciples of α-unimodality, we introduce a novel algorithm
for efficient multivariate unimodality testing. Our approach
bridges the gap between the simplicity of one-dimensional
unimodality confirmation and the intricacies of its higher-
dimensional counterpart. Central to our investigation are
the α-unimodality preserving properties of point-to-point
distancing and linear random projections. We demonstrate
that linear random projections preserve the α-unimodality
property in Mahalanobis distances from a reference point.
Leveraging these one-dimensional Mahalanobis distances,
we apply the dip test for unimodality detection. Employ-
ing various random projections, akin to Monte Carlo sim-
ulations, we assess the α-unimodality of the original data
distribution. In summary, the contribution of our work is
two-fold. Firstly, to the best of our knowledge, we propose
the first mathematically founded multivariate unimodality
test, dubbed mud-pod1. Secondly, we present the mp-means
incremental clustering method which is a wrapper around k-
means exploiting mudpod for unimodality assessment. Both
theoretical findings and empirical validations underpin our
methods, showcasing efficacy in unimodality assessments
and clustering scenarios.

2 RELATED WORK

A multivariate unimodality test that aligns closely with our
work is the dip-dist, introduced by Kalogeratos and Likas
[2012]. This criterion aims to ascertain the modality (uni-
modal vs. multimodal) of a dataset by applying the unidi-
mensional dip test on each row of the pairwise distance
matrix of the dataset. The rationale behind this approach
is that by selecting an arbitrary data point and calculating
its distances to all other points, we obtain a snapshot of
the underlying cluster morphology. In presence of a single
cluster, the distribution of distances is expected to be uni-
modal. To further the applicability of this criterion, it has
been integrated into a clustering method named dip-means.
This incremental algorithm employs cluster splitting based

1Multivariate Unimodality Dip based on random Projections,
Observers & Distances.

on the dip-dist to determine if a cluster should be divided.
Consequently, dip-means can automatically estimate the
cluster count. However, the dip-dist criterion is not without
its limitations. A glaring drawback is its reliance on pairwise
distances and its operation within the original data space,
which can present challenges in certain scenarios. More-
over, the dip-dist method operates in an ad-hoc manner,
lacking a rigorous mathematical foundation. In our work,
we address these limitations by introducing random projec-
tions to assess unimodality on randomly projected distances.
This approach permits Monte Carlo hypothesis testing by
enabling sampling, previously not directly feasible in the
original space. Additionally, we leverage the Mahalanobis
distance and we empirically demonstrate its added benefits.
Last but not least, we provide a mathematical formulation
and prove the consistency of our test, thereby establishing
the missing foundation for the dip-dist method.

The folding test, introduced in Siffer et al. [2018], offers
a versatile evaluation method suitable for both univariate
and multivariate scenarios. This test revolves around the
concept of folding, involving three key steps: (a) folding
the distribution with respect to a designated pivot s, (b) cal-
culating the variance of the folded distribution, and lastly,
(c) comparing this folded variance to the original variance.
The central idea behind the folding test is that when ap-
plied to multimodal distributions, the folded distribution
typically exhibits a significantly reduced variance compared
to its unimodal counterparts. A limitation of the folding
test is its reliance on the empirical assumption that folding
a multimodal distribution leads to a reduction in variance.
Consequently, the concept of unimodality is not explicitly
integrated into the folding test computation. It is important
to note that there are cases where this assumption does not
hold true, resulting in incorrect outcomes for the folding
test [Chasani and Likas, 2022]. Another research direction
focuses on examining particular families of unimodal distri-
butions. In the work of Dunn et al. [2021], a scalable test for
log-concavity is elucidated building on maximum likelihood
estimation (MLE), validated in finite samples across any di-
mension. A noteworthy empirical observation from their
research is the pronounced efficacy achieved by adopting
random projections. However, it is crucial to acknowledge
that while log-concave functions capture a substantial sub-
set of unimodal functions, they fall short of encompassing
the entirety of the concept and may struggle to extend their
applicability to more diverse and real-world scenarios.

3 METHODS

3.1 PRELIMINARIES

In the following, we present key notation and foundational
background applicable throughout this paper. We use capital
letters to denote random variables or matrices and boldface



type to represent vectors.

3.1.1 α-Unimodal Distrubutions

Without loss of generality, we assume that the mode of the
unimodal distribution is at 0. A random d-vector X ∈ Rd is
said to have an α-unimodal distrubution about 0 if, for every
bounded, nonnegative, Borel measurable function g on Rd

the quantity tαE[g(tX)] is nondecreasing in t ∈ (0,∞). In
what follows, we use the notation X ∼ Pα to represent a
d-vector following an α-unimodal distribution. It follows
from the defintion that if X ∼ Pα and α < β, then X ∼
Pβ . An important equivalent characterization for the set of
α-unimodal distrubutions is the Decomposition theorem:
X ∼ Pα iff X is distributed as U

1
αZ, where U is uniform

on (0, 1) and Z is independent of U [Olshen and Savage,
1970].

This decomposition provides the intuition that an α-
unimodal vector can be generated by first choosing a “di-
rection” Z and then scaling it toward the mode at 0 by a
random radial factor U1/α. In particular, larger values of α
lead to stronger concentration of mass near the mode (and
correspondingly lighter tails), neatly capturing the degree
of unimodality through the power 1/α applied to the uni-
form radial component. This theorem closely mirrors the
intuition of one-dimensional unimodality, since Khintchine
[1938] demonstrated that a real random variable X has a
unimodal distribution iff X ∼ UZ, where U is uniform on
[0, 1] and U and Z are independent. It follows that a scalar
X ∼ Pα iff Xα is unimodal as per the standard definition
in R. Next, we present and prove three pivotal properties
of α-unimodality, i.e., the translation, norm, and projection
properties.

Lemma 3.1 (Translation Property). Let X ∼ Pα and c ∈
Rd, then X+ c ∼ Pα .

Proof. Let tαE[g(tX+ tc)] = tαE[h(tX)], where h(x) =
g(x+ c). Note that h is bounded, nonnegative, Borel mea-
surable and that the first expression is nondecreasing iff the
last expression is nondecreasing in t.

Lemma 3.2 (Norm Property). If X ∼ Pα, then ||X|| ∼ Pα.

Proof. ||X|| =
√
(U

1
αZ)⊤(U

1
αZ) = U

1
α ||Z||

Lemma 3.3 (Projection Property). Let X ∼ Pα and let A
be a real matrix from Rd to Rq , then AX ∼ Pα.

Proof. A direct use of the Decomposition Theorem.

Leveraging the foundational properties described above, we
now present a salient result. This result not only fortifies
our understanding of α-unimodal distributions but will also
play an instrumental role in the rest of the paper.

Lemma 3.4 (Mahalanobis). Let X ∼ Pα with a well-
defined covariance matrix Σ and o ∈ Rd, then the dis-
tribution of the Mahalanobis distances with respect to o,
given by

√
(X− o)⊤Σ−1(X− o) is α-unimodal.

Proof. Given a positive semidefinite covariance matrix Σ,
and utilizing the matrix square root decomposition, the Ma-
halanobis distance can be expressed as:√

(x− o)⊤Σ−1(x− o) = ||Σ− 1
2 (x− o)||

Proof stems from translation and projection lemmas.

Mahalanobis distance possesses distinct properties: it is unit-
less, scale-invariant, and considers the covariance structure
across all dimensions. Traditionally, it has been employed in
multivariate hypothesis testing. Notably, the Hotelling’s T 2

statistic [Hotelling, 1931], which generalizes the Student’s
t-statistic, exemplifies its usage. The Mahalanobis distance
is pivotal to our multivariate unimodality test.

3.1.2 Dip Test

The dip test serves as a tool for discerning multimodal-
ity within a unidimensional dataset. It gauges this by ex-
amining the maximum deviation, i.e., the Kolmogorov-
Smirnov statistic, between the empirical cumulative dis-
tribution function (e.c.d.f.), F (t), and the nearest unimodal
c.d.f., G(t). The dip statistic for a distribution function F is
defined as: dip(F ) = minG∈U ρ(F,G), where ρ(F,G) =
maxt |F (t) − G(t)| and U represents the set of all possi-
ble unimodal distributions. The dip test’s significance is
highlighted by its ability to unveil the least among the most
substantial deviations between the empirical cumulative
distribution function F of the univariate dataset and the
c.d.f.s of the class of unimodal distributions. A salient at-
tribute of the dip statistic is its convergence as the sample
size burgeons, such that limn→∞ dip(Fn) = dip(F ) [Har-
tigan and Hartigan, 1985]. Moreover, the class of uniform
distributions U is acclaimed to be the most fitting for the
null hypothesis, owing to its stochastically larger dip val-
ues compared to other unimodal distributions. To calculate
the dip value, the e.c.d.f. of the data is considered, and the
unimodal piecewise linear function with the smallest max-
imum distance to the e.c.d.f. is determined. The p-value
for unimodality, derived via bootstrap samples, functions
as a determinant for the dataset’s modality. A dataset with
a p-value greater than a indicates unimodality; otherwise,
multimodality is suggested.

3.1.3 Random Projections

The Diaconis-Freedman effect can be a valuable tool for
unimodality analysis, simplifying the problem by likely



transforming it into a Gaussian mixture model. When con-
sidering a probability distribution P in a d-dimensional
space, most q-dimensional projections of P with q ≪ d
resemble scale mixtures of spherically symmetric Gaussian
distributions. Additionally, linear random projections can
preserve distances when projecting high-dimensional points
into lower-dimensional spaces. This phenomenon is encap-
sulated in the celebrated Johnson and Lindenstraus lemma
[Johnson and Lindenstraus, 1984, Fernandez-Granda, 2016]
presented below:

JL Lemma: Let S := {xi}ki=1 be a subset of Rd and ϵ > 0.
Then, let Π ∈ Rd×q, where q ≥ 8 log(k)/ϵ2 , be a random
matrix with i.i.d. entries Πij ∼ N (0, 1/d). With probabil-
ity at least 1/k , for any xi, xj ∈ S, we have:

(1− ϵ)∥xi − xj∥2 ≤ ∥Πxi −Πxj∥2 ≤ (1+ ϵ)∥xi − xj∥2.
We denote by RΠ the set of matrices fulfilling the distance
preservation criteria specified in the JL Lemma. According
to the JL Lemma, if Π is sampled with i.i.d. N (0, 1

d ) en-
tries, then P (Π ∈ RΠ) ≥ 1

k . By employing a square root
decomposition, we can demonstrate the applicability of the
JL lemma to the Mahalanobis distance [Bhattacharya et al.,
2009], while mitigating the singularity issue inherent in in-
verting the covariance matrix in high dimensions [Lopes
et al., 2011, Radhendushka Srivastava and Ruppert, 2016].

3.2 CONNECTING THE DOTS

Given a dataset of multidimensional data vectors, assess-
ing its unimodality becomes intricate. Random projections
offer a solution by maintaining key pairwise distances and
performing unimodality assessment in a more Gaussian-
like space. By picking an arbitrary observer data point and
deriving its distances to all other points, we garner a snap-
shot of the underlying cluster morphology. In presence of
a single cluster, the distribution of distances is proven to
be unimodal. Notably, the narrative this observer presents
is contingent upon its location. We integrate this idea of
random projection and the observer’s perspective into what
we term a view. Our proposed algorithm focuses on ana-
lyzing these views, pinpointing those views that contradict
unimodal narratives, and thus highlight multifaceted cluster
formations. In the rest of the section, we will rigorously
define the aforementioned concept.

Given a set SX of points from X ∼ Pα, let o ∈ SX be a
random point, dubbed observer. We define the set of Maha-
lanobis distances with regard to this observer as follows:

Do
S =

{
||Σ− 1

2 (x− o)|| | x ∈ SX \ {o}
}
.

Let Π ∈ RΠ, we define Π ◦ Do
S to be the set of the Ma-

halanobis distances of the randomly projected points with
respect to an observer o. Specifically, we have:

Π◦Do
S =

{
||Σ− 1

2

Π Π(x− o)|| | x ∈ SX \ {o} ∧Π ∈ RΠ

}
,

where ΣΠ = ΠΣΠT . It is important to note that since
X ∼ Pα, the elements of both Do

S and Π ◦ Do
S exhibit α-

unimodal distributions, as established earlier. This yields
the subsequent observation.

Proposition 3.5 (Randomisation Hypothesis). Given X ∼
Pα, the distributions of elements within Do

S and Π ◦ Do
S

retain α-unimodality under any transformation Π ∈ RΠ.

The Randomisation Hypothesis (RH) is central to our
analysis. RH facilitates the execution of a series of one-
dimensional unimodality tests, subsequently allowing the
evaluation of the α-unimodality of the distribution that pro-
duces our data X . Under the RH, every randomly projected
distances should exhibit unimodality. Any deviation from
this expected behavior can signal a departure from unimodal-
ity in the original data distribution. Random projections con-
fer several distinct merits. Firstly, they preserve the pairwise
distances, as endorsed by the JL lemma. Secondly, given our
observations, random projections serve as an invaluable tool
for unimodality investigation. They transmute the challenge
into a space resembling a mixture of Gaussians. Further-
more, they ameliorate the singularity problem associated
with the inversion of the covariance matrix used by the Ma-
halanobis distance. Lastly, they pave the way for harnessing
Monte Carlo simulation for hypothesis testing [Lehmann
and Romano, 2005], i.e., they establish the bedrock for sam-
pling from a distribution, specifically RΠ, that is ostensibly
simpler than the original data distribution of X.

3.3 MULTIVARIATE UNIMODALITY TESTING

Building on the aforementioned foundation, we now intro-
duce our multivariate α-unimodality test called mud-pod.
For a given α and a set of points SX from X ∼ Pα, we
define our hypotheses:

H0 : X ∼ Pα vs. H1 : X ̸∼ Pα.

We define the pairing of a random projection Π with an
observer o as a random view. We assume independence be-
tween the random projection Π and the observer o. Given a
set of N random vectors S and a random view, we can ob-
tain the corresponding set of Mahalanobis distances Π ◦Do

S.
Under the null hypothesis, recall that Π ◦ Do

S = {di}N−1
i=1

is α-unimodal, and the set {dαi }N−1
i=1 is unimodal, allowing

the employment of the dip test. Let T (Π ◦ Do
S) denote the

dip test p-value. If a ∈ [0, 1] is the significance level, the
null hypothesis is rejected iff T (Π ◦ Do

S) ≤ a.

Utilizing the idea of random views, which, as previously
discussed, preserve α-unimodality, we can employ them as
a foundation for Monte Carlo simulations. The rationale is
that as more views reject the null hypothesis, our confidence
about data multimodality increases. Let {Πi}Mi=1 ⊂ RΠ be
a set of M random projections. Leveraging Monte Carlo
hypothesis testing theory [Lehmann and Romano, 2005,



Chapter 11.2.2] and building on the fact that the dip statistic
has a well defined c.d.f. [Hartigan and Hartigan, 1985],
we explore the conditional c.d.f. of the dip test: JN (t) =
P (T (Π ◦ Do

S) ≤ t | SX)). The aforementioned probability
is measured over the joint distribution of random projections
RΠ and the distribution of observers O. Let I{.} denote the
indicator function, we define Ĵn,M (t) as the approximation
of the true c.d.f JN (t) computed on the series of the random
views:

ĴN,M (t) = M−1
M∑
i=1

I {T (Π ◦ Do
S) ≤ t}

By a direct application of the Glivenko-Cantelli theorem,
we have that ĴN,M (t) converges w.p. 1 to JN (t) [Sharipov,
2011]. Interestingly, the Dvoretsky, Kiefer, Wolfowitz in-
equality [Massart, 1990] provides bounds on the closeness
between ĴN,M (t) and JN (t) for a given M . Specifically,
we have:

P

(
sup
t∈R

|ĴN,M (t)− JN (t)| > τ

)
≤ 2e−2Mτ2

Hitherto, we have not delineated the methodology for se-
lecting observers from the set of points obtained from a
random projection. Several sampling strategies can exist,
with the most intuitive being uniform random sampling.
However, empirical results suggest that uniformly select-
ing observers based on a specific percentile of the distance
distribution from the samples’ mean yields superior per-
formance. The underlying rationale is that points situated
farther away from the means possess a better capability
to discern the topographical elevations formed by distinct
clusters [Kalogeratos and Likas, 2012]. It is important to
note that despite the dependency introduced between the
observer o and the random projection Π by the percentile
strategy, our analysis remains valid thanks to the exten-
sion of the Glivenko-Cantelli theorem to strictly stationary
sequences [Sharipov, 2011]. Ultimately, the projection di-
mension is the minimal integer that satisfies the JL lemma
for a specified ϵ. Algorithm 1 details the complete mud-pod
test. It is important to note that dip-dist [Kalogeratos and
Likas, 2012] is a special case of mud-pod, omitting α ex-
ponent, operating in the original space using the Euclidean
distance and considering all data points as observers. It is
also worth noting that the algorithm computes an empirical
Monte Carlo rejection rate, denoted as ρ̂MC

rej . If a rigorous
global Monte Carlo p-value is desired, we can define it by
ranking the observed statistic relative to those obtained from
the Monte Carlo projections, or by aggregating individual
p-values through a well-established method such as Fisher’s
combined test.

4 EXPERIMENTS

In this section, we present a comprehensive suite of experi-
ments conducted for both multivariate unimodality testing

Algorithm 1 mud-pod (α, X , a, M , p, ϵ)
Input: α (the positive unimodality index), X (a set of real
vectors), a (a significance threshold), M (number of simula-
tions), p (p-th percentile), ϵ (distance distortion)
Output: ρ̂MC

rej : an empirical Monte Carlo rejection rate
1: for i = 1 to M do
2: Project the points via a

⌈
8 log(|X|)

ϵ2

⌉
random projec-

tion, resulting in XΠi.
3: Select an observer o from the p-th percentile of the

projected Mahalanobis distances from the mean.
4: Compute the set of distances from o, i.e., Π ◦ Do

S.
5: Conduct a dip test on exponentiated Π◦Do

S distances.
6: end for
7: return ρ̂MC

rej = 1
M

∑M
i=1 I{T (Πi ◦ Do

S) ≤ a}

and estimating cluster counts in clustering tasks. Our deci-
sion to assess our algorithm for cluster estimation is driven
by its complexity and wide practical relevance [Schubert,
2023]. A pertinent query pertains to which α-unimodality
family we aim to detect. Despite its rigor, we opted to as-
sess 1-unimodality regardless of the underlying data space.
Empirical results indicated its efficacy even on challenging
real-world datasets. Our algorithm is characterized by three
parameters: M, ϵ, p. Following an initial exploration, we
identified parameter values that consistently produced fa-
vorable outcomes. Specifically, we set M = 100, ϵ = 0.99,
p = 0.99, and chose a significance level a = 0.01.

4.1 UNIMODALITY EXPERIMENTS

Table 1 presents an intricate assessment of the capability of
three distinct tests — dip-dist (DD), mudpod (MP), and fold-
ing (F) — in discerning unimodal and multimodal datasets.
DD and F tests are non-parametric and we also set a = 0.01.
It is important to note that DD is a special case of mud-
pod, omitting α exponent, operating in the original space
using the Euclidean distance and considering all data points
as observers. The evaluation was carried out over ten dis-
tinct runs for each test on a combination of both synthetic
and real-world data drawn from the MNIST dataset [Le-
Cun et al., 1998]. Starting with synthetic unimodal datasets,
namely the single 2D and 3D Gaussian distributions, we
find a unanimous agreement across the three tests, with none
indicating any instances of multimodality. Examining the
synthetic bimodal distributions, 2D Moons and Circles show
clear multimodality, confirmed by DD and MP tests with
100% detection. DD and MP also report 100% detection for
bimodal Gaussians in 2D and 3D. However, DD’s perfor-
mance declines with three closely aligned Gaussians in both
2D and 3D, unlike MP’s consistent 100% detection. The F
test only identifies multimodality in the 2D Circles dataset.

Transitioning to real-world datasets, such as MNIST, offers
a more intricate perspective. For our tests, we utilized the



Table 1: Performance comparison of dip-dist (DD), mudpod (MP), and folding (F) tests in determining unimodality or
multimodality. The table displays the percentage of multimodality cases identified over 10 runs. 1000 points randomly
sampled from synthetic sets and MNIST training set per experiment. For space constraints, Single MNIST experiment
results are compressed, with digits divided by semi-colons summarizing the outcomes across all tests. Gn denotes a
nD Gaussian distribution. C(r) symbolizes the 2D equation of a circle with radius r. Utilizing parametric equations
U(θ) = (cos(θ), sin(θ)) and L(θ) = (1− cos(θ), 1− sin(θ)− 0.5) with θ ∈ [0, π].

Experiment Distribution Details DT MP F
Single 2D Gaussian G ([0, 0], I) 0 0 0
Single 3D Gaussian G ([0, 0, 0], I) 0 0 0

Two 2D Circles 1
2

(
C(0.5) +N (0, 0.052I)

)
+ 1

2

(
C(1) +N (0, 0.052I)

)
100 100 100

Two 2D Moons 1
2

(
U(θ) +N (0, 0.052I)

)
+ 1

2

(
L(θ) +N (0, 0.052I)

)
100 100 0

Two 2D Gaussians 0.5 ·G1 ([1, 4], I) + 0.5 ·G2 ([2, 1], I) 100 100 0
Three 2D Gaussians 1

3 ·G1 ([t, t], I) +
1
3 ·G2 ([0, 0], I) +

1
3 ·G3 (−[t, t], I) | t = 2.5 50 100 0

Two 3D Gaussians 0.5 ·G1 ([1, 4, 2], I) + 0.5 ·G2 ([1,−2, 3], I) 100 100 0
Three 3D Gaussians 1

3 ·G1 ([t, t, t], I) +
1
3 ·G2 ([0, 0, 0], I) +

1
3 ·G3 (−[t, t, t], I) | t = 2.9 10 100 0

Single Digit MNIST 0; 2; 3; 4; 7; 8 0 0 100
Single Digit MNIST 1 100 100 100
Single Digit MNIST 5 0 10 100
Single Digit MNIST 6 10 10 100
Single Digit MNIST 9 10 20 100

Even Digits MMNIST {0, 2, 4, 6, 8} 10 90 100
Odd Digits MMNIST {1, 3, 5, 7, 9} 80 100 100
All Digits MMNIST {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 0 100 100

flattened MNIST representations without any transforma-
tions. It is noteworthy that, while MNIST has labels, their
alignment with clustering in the original space is not guar-
anteed. For instance, consider the digit “1”, representable as
a single stroke or a combination of two distinct ones. It can
be observed that for digits 0, 2, 3, 4, 7, and 8, the DD and
MP tests consistently reject multimodality, while the F test
falsely decides multimodality in all cases. Notably, all tests
unanimously flag digit 1 as multimodal. The digits 5, 6, and
9 reveal varied outcomes, with the F test persistently rec-
ognizing multimodality. The conduction of three additional
tests to assess multimodality of even, odd, and all MNIST
subsets in multi-digit scenarios reveals a decline in DD’s
efficacy. In summary, we observe a pronounced tendency
of the F test to detect multimodality across various datasets,
with DD and MP performance being comparable in simpler
scenarios, but DD falling short in multi-digit scenarios.

Ablation Study: Our test comprises several components,
including random projections, Mahalanobis distance, and
uniform sampling of distances from origin percentiles. In
Table 2, we present an ablation study to evaluate the signifi-
cance of each component. We have generated datasets from
a mixture of two 2D Gaussians as the target distribution, for
which the bimodality or unimodality can be determined an-
alytically [Konstantellos, 1980]. The reported performance
is aggregated from a series of experiments conducted with

Table 2: Impact of space, distance, and observer selection
strategy on mudpod’s unimodality detection performance.
Mudpod’s result agreement is shown for a mixture of two
2D Gaussians with confirmed ground truth unimodality.
Notation: ‘O’ for Original, ‘RP’ for Randomly Projected,
‘E’ for Euclidean, ‘M’ for Mahalanobis, ‘R’ for Random
and and ‘P’ for Percentile.

Space Distance Observer Agreement (%)
O E R 0.80
O E P 0.87
O M R 0.82
O M P 0.87

RP E R 0.85
RP E P 0.90
RP M R 0.92
RP M P 0.95

four different significance levels 0.001, 0.005, 0.01, 0.05,
across 1000 distinct data sets, with each experiment exe-
cuted 10 times. Our ablation study reveals key insights into
the performance of different observer picking strategies,
spaces, and distances for unimodality detection. Primarily,
the percentile strategy (P) for observer picking demonstrated
superiority over the random strategy (R) across all tested
combinations of space and distance. Furthermore, the Ma-



Table 3: The table presents the number of clusters ( K ) and the associated NMI values obtained by various methods on
different datasets. Values marked with † could not be computed due to memory constraints or were terminated after 8 hours.
All results are represented as mean ± standard deviation over 10 executions. For the k-means algorithm, the correct number
of clusters was always predefined.

Method USPS MNIST F-MNIST HAR

k NMI k NMI k NMI k NMI

Ground truth 10 1.0 10 1.0 10 1.0 5 1.0

k-means - 0.61±0.00 - 0.49±0.00 - 0.51±0.00 - 0.61±0.01
x-means 35±0 0.61±0.01 35±0 0.55±0.00 35±0 0.51±0.00 41±2 0.56±0.01
g-means 35±0 0.61±0.00 35±0 0.55±0.00 35±0 0.51±0.00 931±29 0.42±0.00
pg-means 2±1 0.14±0.07 2±1 0.18±0.09 4±2 0.31±0.11 2±1 0.14±0.05
dip-means 4±0 0.44±0.00 1±0 0.01±0.05 9±2 0.50±0.01 3±0 0.73±0.00
hdbscan 13±0 0.38±0.00 36±0 0.33±0.00 3±0 0.05±0.00 3±0 0.52±0.00
SpecialK 1±0 0.00±0.00 5±2 0.04±0.02 1±0 0.00±0.00 1±0 0.00±0.00
fold-means 31±0 0.59±0.01 31±0 0.55±0.01 31±0 0.54±0.01 11±0 0.61±0.00
mp-means 8±2 0.62±0.03 9±2 0.55±0.04 9±1 0.54±0.01 3±0 0.73±0.00

Method Optdigits Pendigits Isolet TCGA

k NMI k NMI k NMI k NMI

Ground truth 10 1.0 10 1.0 26 1.0 5 1.0

k-means - 0.69±0.01 - 0.69±0.01 - 0.73±0.01 - 0.80±0.01
x-means 35±0 0.71±0.01 35±0 0.70±0.01 233±4 0.66±0.01 20±1 0.68±0.01
g-means 35±0 0.72±0.01 35±0 0.70±0.01 101±6 0.69±0.01 283±48 0.49±0.04
pg-means 1±0 0.02±0.07 3±1 0.34±0.18 † † 1±0 0.02±0.04
dip-means 1±0 0.00±0.00 16±1 0.71±0.02 4±0 0.44±0.01 2±0 0.50±0.01
hdbscan 21±0 0.71±0.00 38±0 0.72±0.00 4±0 0.04±0.00 7±0 0.75±0.00
SpecialK 3±0 0.05±0.00 3±1 0.34±0.21 1±0 0.00±0.00 1±0 0.00±0.00
fold-means 4±1 0.45±0.11 1±0 0.00±0.00 1±0 0.00±0.00 † †
mp-means 8±1 0.67±0.06 14±1 0.70±0.01 20±7 0.63±0.14 6±1 0.95±0.03

halanobis distance consistently emerged as a more effective
metric compared to the Euclidean distance. This perfor-
mance difference was especially evident in the Randomly
Projected space, suggesting that the intrinsic characteris-
tics of the Mahalanobis distance, e.g., accounting for data
covariance, plays a pivotal role in enhancing detection relia-
bility. Notably, the randomly projected (RP) space exhibited
a pronounced advantage over the original space in our as-
sessments. This superiority held true irrespective of the
distance metric or observer strategy employed. Such a trend
strongly indicates that the RP space aligns more coherently
with the ground truth unimodality, offering better detection
capabilities compared to the original space. In summary,
our findings recommend a strategic combination of the P
strategy, Mahalanobis distance, and the RP space.

4.2 CLUSTERING EXPERIMENTS

This section analyzes the performance of mp-means, an
approach that incorporates mud-pod into the dip-means
wrapper method, replacing dip-dist. Specifically, both mp-

means and dip-means employ incremental k-means clus-
tering based on testing clusters for unimodality. Starting
with one cluster (the entire dataset), they incrementally in-
crease k by splitting multimodal clusters, terminating when
all clusters are deemed unimodal. They differ in the cluster
unimodality assessment. Dip-means uses the dip-test crite-
rion, while mp-means uses our proposed unimodality test.
Upon detecting a multimodal cluster, they split the one with
the highest dip value. It’s split into two using the 2-means
algorithm or assigning clusters at mean ± standard devia-
tion, using the cluster’s mean and standard deviation. In our
work, we opt for the latter for computational efficiency. In
this way, the number of clusters is increased to k+1 and the
k+1 centers are updated via k-means. A similar integration
of the folding test yields the fold-means algorithm.

In Table 3, we compare the performance of various cluster-
ing methods estimating the number of clusters across several
datasets. It is important to note that in all our experiments,
we use the raw flattened data encoding and apply only a
feature-wise z-transformation. Although our method em-
ploys the Mahalanobis distance and is scale-agnostic, we ob-
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Figure 1: The plot shows the relative error between the estimated and actual number of clusters generated by mp-means,
against increasing Monte Carlo simulations. Ten executions per experiment, variance depicted. The plot is more discernible
in color.

served that scaling profoundly affects other algorithms. Our
experiments include datasets like USPS, MNIST, Fashion-
MNIST (F-MNIST), Human Activity Recognition (HAR),
Optdigits, Pendigits, Isolet, and TCGA. Detailed dataset de-
scriptions are provided in Appendix 6. As ground truth num-
ber of clusters, the number of classes was considered in all
datasets. We benchmark against classic algorithms, includ-
ing x-means [Pelleg and Moore, 2000], g-means [Hamerly
and Elkan, 2003], pg-means [Feng and Hamerly, 2006], dip-
means [Kalogeratos and Likas, 2012], SpecialK [Hess and
Duivesteijn, 2020] and hdbscan [Campello et al., 2013]. A
detailed overview of the baseline algorithms and their hyper-
parameter setups are provided in Appendix 7. Our evaluation
metrics consist of the estimated number of clusters (k) and
the Normalized Mutual Information (NMI). NMI values
lie between [0, 1], where 1 signifies a perfect match and 0
represents an arbitrary result.

This experiment set, encompassing both the complexity of
many modes and inherent clustering errors, is notably more
challenging than unimodality testing. We observe that most
of the classical approaches, notably x-means and g-means,
tend to predict a high value for k, frequently estimating
around 35 clusters for datasets such as USPS, MNIST, and
F-MNIST. Similarly, x-means, consistently overestimates
the k value on these datasets, accompanied by NMI values

not consistently reaching the top tier. In contrast, pg-means
often significantly underestimates the number of clusters,
suggesting a notable diversion from the ground truth. This
assertion is further supported by its suboptimal NMI values
across multiple datasets, with values as low as 0.14 for the
USPS dataset. Hdbscan shows a varying range in k values
across datasets, highlighting its adaptability. However, this
variability does not always correlate with high NMI values.
Its performance on the USPS dataset, where it estimates 13
clusters with an NMI of 0.38, is a case in point.

SpecialK, which leverages nonparametric concentration
bounds on a spectral embedding, consistently underesti-
mates the number of clusters across all datasets. As shown
in Table 3, it typically returns k = 1 (or very low values) and
yields near-zero NMI scores on datasets like MNIST and
OptDigits, even when it identifies a larger number of clusters.
This behavior suggests that the Bernstein-inequality crite-
rion is overly conservative on these high-dimensional and
heterogeneous real-world data, collapsing all points into a
single cluster. Turning our attention to the HAR dataset, the
dip-means and mp-means methods are particularly notable.
They estimate k values closely aligned with the ground truth
of 5 and simultaneously achieve the highest NMI scores,
specifically 0.73. This is indicative of their capability in
deciphering the cluster structure inherent to the data. In the



context of the Optdigits and Pendigits datasets, dip-means
struggles to align its k estimations with the ground truth,
predicting values of 1 and 16, respectively. Notably, mp-
means appears more consistent, with k values of 8 and 14
for Optdigits and Pendigits, respectively, and corresponding
NMI scores that are commendable. In an experiment with
k-means using accurate cluster count, the NMI of mp-means
closely aligns with, or even exceeds, that of k-means. In-
triguingly, the projection dimension of mp-means varies
between subclusters. The experiments also underscore its
robustness across multiple projection spaces. In conclusion,
the consistent performance of mp-means underscores its
utility in solving clustering problems with unknown number
of clusters.

Ablation Study on Simulations’ Number: In Figure 1, the
relative error between the estimated number of clusters K
and the true value, as deduced by the mp-means algorithm,
is depicted against the number of Monte Carlo simulations
(M ). The shaded regions around each line represent the
variance over 10 executions, highlighting result consistency.
As observed, for all datasets, an increase in the number of
Monte Carlo simulations tends to correspond with a decline
in the relative error, signifying an enhancement in the accu-
racy of k estimation. While some datasets exhibit minimal
spread, others display significant variance, suggesting the
need for more Monte Carlo simulations. This suggests a
need for more projections on certain datasets. However, this
variance does not significantly impede k estimation. Sum-
marizing, Figure 1 substantiates the notion that increasing
the number of Monte Carlo simulations augments the preci-
sion of the mp-means algorithm’s k estimation, albeit with
varying degrees of improvement across different datasets.
Interestingly, we note that convergence occurs at around
100 simulations, which is significant for practical use.

5 CONCLUSIONS

In this paper, we addressed the challenges associated
with generalizing unimodality testing to higher dimensions.
Building upon the notion of α-unimodality, we presented
a novel methodology that provides a robust approach to
multivariate unimodality testing. Utilizing point-to-point
distancing and linear random projections, our approach
bridges the gap between the simplicity of one-dimensional
unimodality confirmation and the intricacies of its higher-
dimensional counterpart. By integrating our unimodality
test with k-means, we introduced a new incremental cluster-
ing approach that automatically estimates the cluster count
while performing clustering. Empirical evaluations affirm
our test’s efficacy in unimodality assessments and cluster-
ing scenarios, highlighting its vital applicability across di-
verse data-driven domains. Future exploration will focus
on identifying additional α-unimodality preserving oper-
ations to enhance our test, e.g, exploiting JL lemma’s re-

laxations through matrix sketching, experimenting with α-
unimodality for α ̸= 1, and applying the test to various data
analysis tasks, such as covariate shift and time series change
detection.
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6 CLUSTERING DATASETS

Table 4 summarizes the benchmark datasets used in our experiments, varying in size, dimensions, number of classes k
(considered as ground-truth number of clusters), complexity, and domain. The datasets USPS, MNIST, and F-MNIST feature
images of handwritten digits and fashion items, respectively. Specifically, USPS and MNIST contain grayscale images of
handwritten digits from 0 to 9, with MNIST having a resolution of 28 x 28 pixels. In contrast, F-MNIST, or Fashion MNIST,
encompasses grayscale images of ten clothing types, also at a resolution of 28 x 28 pixels. The Human Activity Recognition
(HAR) dataset captures data from sensors to classify human activities, such as walking and sitting. OptDigits and Pendigits
both pertain to handwritten digits: OptDigits consists of 8 x 8 resolution images, while Pendigits uses 16-dimensional vectors
containing pixel coordinates. The Isolet dataset is an assemblage of speech recordings, representing the sounds of spoken
letters, characterized by vectors with 617 spectral coefficients derived from the speech. Finally, TCGA is a compendium of
gene expression profiles garnered from RNA sequencing of diverse cancer specimens, inclusive of clinical data, normalized
counts, gene annotations, and pathways for five cancer types. For USPS, MNIST, and F-MNIST, we use the test datasets with
10000 points. For other datasets, we utilize the full set, typically containing fewer than 10000 points, except for Pendigits.
Despite better preliminary results, we we constrained the sizes of USPS, MNIST, and F-MNIST to their test sets to avoid
sample number bias.

7 CLUSTERING ALGORITHMS

In this section, we provide an overview of the clustering algorithms employed in our experiments. We focus on methods that
automatically estimate the number of clusters. We benchmark our approach against well-established algorithms, namely
x-means [Pelleg and Moore, 2000], g-means [Hamerly and Elkan, 2003], pg-means [Feng and Hamerly, 2006], dip-means

Table 4: Datasets for our experiments: Size indicates data instances, Dimension shows original encoding’s flattened size, and
k represents ground-truth class labels.

Dataset Type Description Size Dimension k Source

USPS Image Handwritten digits 10000 256 10 Hull [1994]
MNIST Image Handwritten digits 10000 784 10 LeCun et al. [1998]
F-MNIST Image Zalando’s article image 10000 784 10 Xiao et al. [2017]
HAR Time-series Smartphone-based activity 2947 561 5 Kelly et al. [2023]
Optdigits Image Handwritten digits 1797 64 10 Kelly et al. [2023]
Pendigits Time-series Handwritten digits 10992 16 10 Kelly et al. [2023]
Isolet Spectral Speech recordings pronouncing letters 6238 617 26 Kelly et al. [2023]
TCGA Tabular Cancer gene expression profiles 801 20531 5 Kelly et al. [2023]
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[Kalogeratos and Likas, 2012], SpecialK [Hess and Duivesteijn, 2020] and hdbscan [Campello et al., 2013]. Given our
design’s adherence to the original dataspace, we exclude methods combining learning embeddings and clustering, like
deep clustering approaches. To select the best number of clusters, x-means incorporates a regularization penalty guided by
the Bayesian Information Criterion (BIC), which accounts for model complexity. However, this approach excels mainly
with abundant data and distinct spherical clusters. Another extension, g-means, tests the assumption that each cluster
originates from a Gaussian distribution. Given the challenges of statistical tests in high dimensions, g-means first projects
cluster datapoints onto a high variance axis and then employs the Anderson-Darling test for normality. Clusters failing this
test are iteratively split to identify the Gaussian mixture. Conversely, projected g-means (pg-means) assumes a Gaussian
mixture for the entire dataset, evaluating the model as a whole. It relies on the EM algorithm, constructing one-dimensional
projections of both the dataset and the learned model, and subsequently assessing model fit in the projected space using the
Kolmogorov-Smirnov (KS) test. This approach’s strength lies in identifying overlapping Gaussian clusters of varying scales
and covariances.

Moreover, hdbscan enhances dbscan by transforming it into a hierarchical clustering method and subsequently employs
a technique to derive a flat clustering based on cluster stability. Hdbscan aims to obtain an optimal cluster solution by
maximizing the aggregate stability of chosen clusters. Both mp-means and fold-means build upon the wrapper method (dip-
means) introduced in the work of Kalogeratos and Likas [2012]. Dip-means draws upon this approach and uses the dip-dist
criterion internally. These methods incrementally increase cluster count and apply unimodality tests to clusters shaped by
k-means. The process concludes when all clusters are characterized as unimodal. SpecialK introduces a nonparametric
statistical approach to determine the number of clusters without assuming specific data distributions. It assesses whether two
clusters likely originate from the same distribution by computing a bound on the probability that they do, using only sample
means and variances. This method serves as a wrapper applicable to any clustering algorithm minimizing the k-means
objective, including Gaussian mixtures and Spectral Clustering.

For baseline model hyperparameters, we adopt a significance level a = 0.01 for all relevant algorithms. The default setups
are used for x-means and g-means from Novikov [2019], pg-means as per Feng and Hamerly [2006], SpecialK as per
Hess and Duivesteijn [2020] and hdbscan following McInnes et al. [2017]. The default hyperparameters for dip-means are
those provided by the authors1. For the folding test, we utilize the publicly available Python version2. Given the folding
test’s propensity to indicate multimodality, we set a cap on k for fold-means. Specifically, for all algorithms necessitating a
maximum k value, we set kmax = 300.

8 RUNTIME COMPLEXITY

The computational efficiency of the mud-pod algorithm is crucial for its practical applicability, especially when dealing with
large datasets. Here, we provide a detailed analysis of its runtime complexity. The mud-pod algorithm (Algorithm 1) operates
within a main loop that runs for M iterations. In each iteration, the following key computational steps are performed:

1. Random Projection: Each iteration begins by projecting the dataset X , containing n points in Rd, into a lower-
dimensional space Rq using a random projection matrix Πi. The dimension q is determined by the Johnson-

Lindenstrauss lemma to be q =

⌈
8 log n

ϵ2

⌉
, where ϵ is the allowable distortion.

Generating the random projection matrix Πi ∈ Rd×q involves sampling dq independent Gaussian random variables.
Projecting the dataset requires computing the matrix product XΠi, which has a computational complexity of O(ndq).

2. Covariance Computation & Inversion: Computing the covariance matrix ΣΠ of the projected data involves O(nq2)
operations, given that each element of the q × q covariance matrix requires summing over n points. Inverting ΣΠ

requires O(q3) time using standard matrix inversion algorithms.

3. Mahalanobis Distance Computation: Calculating the Mahalanobis distances from the observer o to each of the n− 1
other points requires O(nq2) operations. Each distance computation involves a quadratic form in q dimensions, which
takes O(q2) time, and this is done for n− 1 points.

4. Observer Selection: Selecting an observer from the p-th percentile of the distances from the mean involves computing
all distances from the mean and then selecting based on the percentile. Computing distances from the mean takes
O(nq) time. Finding the p-th percentile can be done in O(n) time using selection algorithms.

1https://kalogeratos.com/psite/material/dip-means/
2https://github.com/asiffer/python3-libfolding
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5. Dip Test Execution: The dip test is performed on the set of Mahalanobis distances, which contains k = n− 1 elements.
The computational complexity of the dip test is O(k log k) [Hartigan and Hartigan, 1985], primarily due to the sorting
step required for computing the empirical cumulative distribution function.

Considering these steps, the per-iteration computational complexity is dominated by the random projection step, which is
O(ndq). The other steps involve operations that are either of lower order or involve dimensions (q) significantly smaller
than d and n.

Since the main loop runs for M iterations, the total computational complexity of the mud-pod algorithm is:

O
(
M

(
ndq + nq2 + q3 + nq + n log n

))
.

Given that q =

⌈
8 log n

ϵ2

⌉
, we observe that q = O(log n). Therefore, q, q2, and q3 grow logarithmically with n, and for

large n, they are significantly smaller than n and d. Simplifying the complexity expression by considering the dominant
terms, we have:

O
(
M

(
nd log n+ n log2 n+ log3 n+ n log n

))
.

Since d is typically much larger than log n, and log3 n is negligible compared to nd log n for large n, the total runtime
complexity simplifies to:

O (Mnd log n) .

Therefore, mud-pod is well-suited for high-dimensional data analysis, providing a computationally feasible method for
multivariate unimodality testing.
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