
Under review as a conference paper at ICLR 2024

ONE-STAGE PROMPT-BASED CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Prompt-based Continual Learning (PCL) has gained considerable attention as a
promising continual learning solution as it achieves state-of-the-art performance
while preventing privacy violation and memory overhead issues. Nonetheless,
existing PCL approaches face significant computational burdens because of two
Vision Transformer (ViT) feed-forward stages; one is for the query ViT that gen-
erates a prompt query to select prompts inside a prompt pool; the other one is
a backbone ViT that mixes information between selected prompts and image to-
kens. To address this, we introduce a one-stage PCL framework by directly using
the intermediate layer’s token embedding as a prompt query. This design removes
the need for an additional feed-forward stage for query ViT, resulting in ∼ 50%
computational cost reduction for both training and inference with marginal accu-
racy drop (≤ 1%). We further introduce a Query-Pool Regularization (QR) loss
that regulates the relationship between the prompt query and the prompt pool to
improve representation power. The QR loss is only applied during training time,
so there is no computational overhead at inference from the QR loss. With the
QR loss, our approach maintains ∼ 50% computational cost reduction during
inference as well as outperforms the prior two-stage PCL methods by ∼ 1.4%
on public class-incremental continual learning benchmarks including CIFAR-100
and ImageNet-R.

1 INTRODUCTION

Training models effectively and efficiently on a continuous stream of data presents a significant
practical hurdle. A straightforward approach would entail accumulating both prior and new data and
then updating the model using this comprehensive dataset. However, as data volume grows, fully re-
training a model on such extensive data becomes increasingly impractical (Mai et al., 2022; Hadsell
et al., 2020). Additionally, storing past data can raise privacy issues, such as those highlighted by the
EU General Data Protection Regulation (GDPR) (Voigt & Von dem Bussche, 2017). An alternative
solution is to adapt the model based solely on currently incoming data, eschewing any access to past
data. This paradigm is termed as rehearsal-free continual learning (Choi et al., 2021; Gao et al.,
2022; Yin et al., 2020; Smith et al., 2021; Wang et al., 2022d;c; Smith et al., 2023a), and the primary
goal is to diminish the effects of catastrophic forgetting on previously acquired data.

Among the rehearsal-free continual learning methods, Prompt-based Continual Learning (PCL)
stands out as it has demonstrated state-of-the-art performance in image classification tasks, even
surpassing rehearsal-based methods (Wang et al., 2022d;c; Smith et al., 2023a; Wang et al., 2022a).
PCL utilizes a pre-trained Vision Transformer (ViT) (Dosovitskiy et al., 2021) and refines the model
by training learnable tokens on the given data. PCL adopts a prompt pool-based training scheme
where different prompts are selected and trained for each continual learning stage. This strategy en-
ables a model to learn the information of the training data in a sequential manner with less memory
overhead, as the prompt pool requires minimal resources.

Although PCL methods show state-of-the-art performance, huge computational costs from the two
ViT feed-forward stages make the model difficult to deploy into resource-constrained devices (Harun
et al., 2023; Wang et al., 2022b; Pellegrini et al., 2021). Specifically, the PCL method requires two-
stage ViT feedforward steps. One is for the query function that generates a prompt query. The other
one is a backbone ViT that mixes information between selected prompts and input image tokens.
We refer to this approach as a two-stage PCL method, illustrated in Fig. 1 Left.

1

Under review as a conference paper at ICLR 2024

Query
Function

(ViT)

Backbone ViT Layer

Token Embedding

x L

query

Two-Stage PCL (Prior Work) One-Stage PCL (Ours)
Prompt Pool

Feedforward stage 1

Fe
ed

fo
rw

ar
d

st
ag

e
2

x L

query

Prompt Pool Fe
ed

fo
rw

ar
d

st
ag

e
1

Token Embedding

Backbone ViT Layer

prompt prompt

20 25 30 35
GFLOPs

68

70

72

74

76

Ac
cu

ra
cy

 A
N
 (%

) Reduce GFLOPs by ~50%
 while maintaining accuracy

L2P (CVPR22)
DualPrompt (ECCV22)
CodaPrompt (CVPR23)
OS-Prompt (ours)
OS-Prompt++ (ours)

Figure 1: Difference between prior PCL work and ours. Prior PCL work (Left) has two feed-forward
stages for (1) a query function (ViT) to select input-specific prompts and (2) a backbone ViT layer to
perform prompt learning with the selected prompts and image tokens. On the other hand, our one-
stage PCL framework (Middle) uses an intermediate layer’s token embedding as a prompt query so
that it requires only one backbone ViT feed-forward stage. As a result, our method reduces GFLOPs
by ∼ 50% compared to prior work while maintaining accuracy (Right).

To address this limitation, we propose a one-stage PCL framework with only one ViT feed-forward
stage (Fig. 1 Middle), called OS-Prompt. Rather than deploying a separate ViT feed-forward phase
to generate a prompt query, we directly use the intermediate layer’s token embedding as a query.
This is based on our observation that early layers show marginal shifts in the feature space dur-
ing continual prompt learning (details are in Section 4.1). This observation enables us to use the
intermediate token embedding as a prompt query which requires consistent representation across
continual learning to minimize catastrophic forgetting. Surprisingly, OS-Prompt shows a marginal
performance drop (less than 1%) while saving ∼ 50% of computational cost (Fig. 1 Right).

As our OS-Prompt uses the intermediate layer’s token embedding as a query instead of the last
layer’s token embedding (which is used in prior PCL methods), there is a slight performance drop
due to the lack of representation power. To address this, we introduce a Query-Pool Regularization
(QR) loss, which is designed to enhance the representation power of a prompt pool by utilizing
the token embedding from the last layer. Importantly, the QR loss is applied only during training,
ensuring no added computational burden during inference. We refer to our enhanced one-stage
framework with QR loss as OS-Prompt++. Our OS-Prompt++ bridges the accuracy gap, performing
better than OS-Prompt.

Overall, our contribution can be summarized as follows: (1) We raise a drawback of the current PCL
methods — high computational cost, particularly due to the two distinct ViT feed-forward stages.
As a solution to the computational inefficiency in existing PCL techniques, we propose OS-Prompt
that reduces the computational cost by nearly 50% without any significant performance drop. (2)
To counter the slight performance degradation observed in our one-stage PCL framework, we intro-
duce a QR loss. This ensures that the prompt pool maintains similarity with token embedding from
both intermediate and final layers. Notably, our QR loss avoids any additional computational over-
head during inference. (3) We conduct experiments with rehearsal-free continual learning setting on
CIFAR-100 (Krizhevsky et al., 2009) and ImageNet-R (Hendrycks et al., 2021) benchmarks, out-
performing the previous SOTA method CodaPrompt (Smith et al., 2023a) by ∼ 1.4% with ∼ 50%
computational cost saving.

2 RELATED WORK

2.1 CONTINUAL LEARNING

For a decade, continual learning has been explored as an important research topic, concentrating on
the progressive adaptation of models over successive tasks or datasets. One of the representative
methods to address continual learning is the regularization-based method (Aljundi et al., 2018; Li &
Hoiem, 2017; Zenke et al., 2017). By adding a regularization loss between the current model and
the previous model, these methods aim to minimize catastrophic forgetting. However, their perfor-
mance is relatively low on challenging datasets compared to the other continual learning methods.

2

Under review as a conference paper at ICLR 2024

An alternative approach proposes to expand the network architecture as it progresses through dif-
ferent continual learning stages (Li et al., 2019; Rusu et al., 2016; Yoon et al., 2017; Serra et al.,
2018). Though these typically surpass the results of regularization-based methods, they come at the
expense of significant memory consumption due to the increased parameters. Rehearsal-based con-
tinual learning has introduced a component for archiving previous data (Chaudhry et al., 2018; 2019;
Hayes et al., 2019; Buzzega et al., 2020; Rebuffi et al., 2017). By leveraging accumulated data dur-
ing the subsequent stages, they often outperform other continual learning methods. However, saving
images causes memory overhead and privacy problems. Given the inherent limitations, a growing
interest is observed in rehearsal-free continual learning. These are crafted to address catastrophic
forgetting without access to past data. Most of them propose methods to generate rehearsal images
(Choi et al., 2021; Gao et al., 2022; Yin et al., 2020; Smith et al., 2021), but generating images
is resource-heavy and time-consuming. Recently, within the rehearsal-free domain, Prompt-based
Continual Learning (PCL) methods have gained considerable attention because of their performance
and memory efficiency. By utilizing a pre-trained ViT model, they train only a small set of param-
eters called prompts to maintain the information against catastrophic forgetting. For example, L2P
(Wang et al., 2022d) utilizes a prompt pool, selecting the appropriate prompts for the given image.
Extending this principle, DualPrompt (Wang et al., 2022c) proposes general prompts for encom-
passing knowledge across multiple continual learning stages. Advancing this domain further, Smith
et al. (2023a) facilitates end-to-end training of the prompt pool, achieving state-of-the-art perfor-
mance. However, huge computational costs from the two ViT feed-forward stages make the model
difficult to deploy into resource-constrained devices. Our work aims to resolve such computational
complexity overhead in PCL.

2.2 PROMPT-BASED LEARNING

The efficient fine-tuning method for large pre-trained models has shown their practical benefits
across various machine learning tasks (Rebuffi et al., 2018; Zhang et al., 2020; 2021; Zhou et al.,
2022; He et al., 2022; Hu et al., 2021). Instead of adjusting all parameters within neural architec-
tures, the emphasis has shifted to leveraging a minimal set of weights for optimal transfer outcomes.
In alignment with this, multiple methodologies (Rusu et al., 2016; Cai et al., 2020) have integrated
a streamlined bottleneck component within the transformer framework, thus constraining gradient
evaluations to select parameters. Strategies like TinyTL (Cai et al., 2020) and BitFit (Zaken et al.,
2021) advocate for bias modifications in the fine-tuning process. In a recent shift, prompt-based
learning (Jia et al., 2022; Khattak et al., 2023) captures task-specific knowledge with much smaller
additional parameters than the other fine-tuning methods (Wang et al., 2022d). Also, prompt-based
learning only requires storing several prompt tokens, which are easy to plug-and-play, and hence,
they are used to construct a prompt pool for recent continual learning methods.

3 PRELIMINARY

3.1 PROBLEM SETTING

In a continual learning setting, a model is trained on T continual learning stages with dataset
D = {D1, D2, ..., DT }, where Dt is the data provided in t-th stage. Our problem is based on
an image recognition task, so each data Dt consists of pairs of images and labels. Also, data from
the previous tasks is not accessible for future tasks. Following the previous rehearsal-free continual
learning settings (Wang et al., 2022c; Smith et al., 2023a), we focus on the class-incremental con-
tinual learning setting where task identity is unknown at inference. This is a challenging scenario
compared to others such as task-incremental continual learning where the task labels are provided
for both training and test phases (Hsu et al., 2018). For the experiments, we split classes into T
chunks with continual learning benchmarks including CIFAR-100 (Krizhevsky et al., 2009) and
ImageNet-R (Hendrycks et al., 2021).

3.2 TWO-STAGE PROMPT-BASED CONTINUAL LEARNING

In our framework, we focus on improving efficiency through a new query selection rather than
changing the way prompts are formed from the prompt pool with the given query, a common focus
in earlier PCL studies (Wang et al., 2022c;d; Smith et al., 2023a). For a fair comparison with
earlier work, we follow the overall PCL framework established in previous studies. Given that our

3

Under review as a conference paper at ICLR 2024

contribution complements the prompt formation technique, our method can seamlessly work with
future works that propose a stronger prompt generation method.

The PCL framework selects the input-aware prompts from the layer-wise prompt pool and adds them
to the backbone ViT to consider task knowledge. The l-th layer has the prompt pool Pl = {k1l :
p1l , ..., k

M
l : pMl } which contains M prompt components p ∈ RLp×D and the corresponding key

k ∈ RD. Here, Lp and D stand for the prompt length and the feature dimension, respectively.

The prior PCL method consists of two feed-forward stages. In the first stage, a prompt query q ∈ RD

is extracted from pre-trained query ViT Q(·), utilizing the [CLS] token from the final layer.

q = Q(x)[CLS]. (1)

Here x is the given RGB image input. The extracted prompt query is used to form a prompt ϕl ∈
RLp×D from a prompt pool Pl, which can be formulated as:

ϕl = g(q, Pl). (2)

The prompt formation function g(·) has been a major contribution in the previous literature. L2P
(Wang et al., 2022d) and DualPrompt (Wang et al., 2022c) select prompts having top-N similarity
(e.g., cosine similarity) between query q and prompt key kl. The recent state-of-the-art CodaPrompt
(Smith et al., 2023a) conducts a weighted summation of prompt components based on their similarity
to enable end-to-end training.

The obtained prompt ϕl for layer l is given to backbone ViT layer fl with input token embedding
xl. This is the second feed-forward stage of the prior PCL methods.

xl+1 = fl(xl, ϕl). (3)

Following DualPrompt (Wang et al., 2022c) and CodaPrompt (Smith et al., 2023a), we use prefix-
tuning to add the information of a prompt ϕl inside fl. The prefix-tuning splits prompt ϕl into
[ϕk, ϕv] ∈ R

Lp
2 ×D, and then prepends them to the key and value inside the self-attention block of

ViT. We utilize Multi-Head Self-Attention (MHSA) (Dosovitskiy et al., 2021) like the prior PCL
work, which computes the outputs from multiple single-head attention blocks.

MHSA(x, ϕk, ϕv) = Concat[head1, ..., headH]Wo. (4)

headi = Attention(xW i
q , [ϕk;x]W

i
k, [ϕv;x]W

i
v). (5)

Here, Wo,Wq,Wk,Wv are the projection matrices. This prefix-tuning method is applied to the first
5 layers of backbone ViT. The leftover layers conduct a standard MHSA without prompts.

However, the prior PCL approach requires two-stage ViT feedforward (Eq. 1 and Eq. 3), which
doubles computational cost. In our work, we aim to improve the computational efficiency of the
PCL framework without degrading the performance.

4 METHODOLOGY: ONE-STAGE PROMPT-BASED CONTINUAL LEARNING

We propose to reduce the computational cost of PCL by restructuring two-step feedforward stages.
To this end, we propose a new one-stage PCL framework called OS-Prompt. Instead of using a
separate feedforward step to compute the prompt query q from Eq. 1, we take a token embedding
from the intermediate layer of a backbone ViT as the query (illustrated in Fig. 1).

4.1 HOW STABLE ARE TOKEN EMBEDDINGS ACROSS CONTINUAL PROMPT LEARNING?

We first ensure the validity of using intermediate token embedding as a prompt query. The original
two-stage design employs a frozen pre-trained ViT, ensuring consistent prompt query representation
throughout continual learning. It is essential to maintain a consistent (or similar) prompt query rep-
resentation because changes in prompt query would bring catastrophic forgetting. In our approach,
token embeddings in the backbone ViT continually change as prompt tokens are updated during
learning. For instance, after training on tasks 1 and 2, prompts have different values, resulting in
varying token embeddings for an identical image. Consequently, it is crucial to assess if token
embeddings sustain a consistent representation throughout the continual learning.

4

Under review as a conference paper at ICLR 2024

Figure 2: We measure distances between token embeddings of previous tasks when a new task is
learned. Each column represents the embeddings after training a model on Tasks 3, 5, 7, and 9.
Each row means the distance from the embeddings of Tasks 1, 3, and 5. For instance, the top-left
figure represents the distance between token embeddings of Task 1 and those learned when Task 3
is completed. We train prompts using CodaPrompt (Smith et al., 2023a) and use 1−CosSim(x, y)
to measure the layer-wise distance on the training dataset. We use a CIFAR100 10-task setting.

To address the concern, we validate the deviation of the token embedding as prompt continual learn-
ing progresses. In Fig. 2, we show how this change happens at each layer during continuous learning
tasks. From our study, two main observations can be highlighted: (1) When we add prompts, there
is a larger difference in the deeper layers. For example, layers 1 ∼ 5 have a small difference (≤
0.1). However, the last layer shows a bigger change (≥ 0.1). (2) As learning continues, the earlier
layers remain relatively stable, but the deeper layers change more. This observation concludes that
although prompt tokens are included, the token embedding of early layers shows minor changes
during training. Therefore, using token embeddings from these earlier layers would give a stable
and consistent representation throughout the continual learning stages.

4.2 ONE-STAGE PCL FRAMEWORK

Building on these observations, we employ the token embedding from the early layers as a prompt
query to generate layer-wise prompt tokens. For a fair comparison, we implement prompts across
layers 1 to 5, in line with prior work. The proposed OS-Prompt framework is illustrated in Fig. 3.
For each layer, given the input token embedding, we directly use the [CLS] token as the prompt
query. The original query selection equation (Eq. 1) can be reformulated as:

ql = xl[CLS]
. (6)

Using the provided query ql, we generate a prompt from the prompt pool following the state-of-the-
art CodaPrompt (Smith et al., 2023a). It is worth highlighting that our primary contribution lies not
in introducing a new prompt generation technique but in presenting a more efficient framework for
query selection. We first measure the cosine similarity γ(·) between ql and keys {k1l , ..., kMl }, and
then we perform a weighted summation of the corresponding value pml (i.e., prompt) based on the
similarity.

ϕl =
∑
m

γ(ql, k
m
l)pml . (7)

The generated prompt is then prepended to the image tokens. Notably, since we produce a prompt
query without the need for an extra ViT feedforward, the computational overhead is reduced by
approximately 50% for both training and inference.

5

Under review as a conference paper at ICLR 2024

[C L S]To
ke

n
E

m
be

dd
in

g

Ba
ck

bo
ne

 V
iT

 L
ay

er

[C L S] Ba
ck

bo
ne

 V
iT

 L
ay

er

[C L S] Ba
ck

bo
ne

 V
iT

 L
ay

er

[C L S] Ba
ck

bo
ne

 V
iT

 L
ay

er

…

[C L S] Ba
ck

bo
ne

 V
iT

 L
ay

er

C
la

ss
ife

r

①

②

③

…

Reference
Function

(ViT)

[C
 L S]

Key 𝑘1 Value	𝑝"

…

C
os

in
e

si
m

ila
rit

y

…

W
ei

gh
te

d
SU

M

Key 𝑘# Value 𝑝#

…

C
os

in
e

si
m

ila
rit

y

…

W
ei

gh
te

d
SU

M

Key 𝑘$ Value 𝑝$

…

C
os

in
e

si
m

ila
rit

y

…

W
ei

gh
te

d
SU

M

Key

C
os

in
e

si
m

ila
rit

y

…

from Backbone ViT

[C L S] from Reference ViT

[C L S]

Similarty Matrix

Similarty Matrix

𝐿!"

: frozen

④

Prompt Pool 𝑃#

Query-Pool Regularization Loss (only for OS-Prompt++ Training Phase)

QR Loss

Prompt Pool 𝑃$ Prompt Pool 𝑃%

Figure 3: Our OS-Prompt (OS-Prompt++) framework. An image passes through the backbone ViT
layers to get the final prediction. From layer 1 to layer 5, we prepend prompt tokens to the image
tokens, which can be obtained in the following progress: 1⃝ We first compute the image token
embedding from the previous layer. 2⃝ We use [CLS] token as a prompt query used for measuring
cosine similarity between prompt keys inside the prompt pool. 3⃝ Based on the similarity, we do
weighted sum values to obtain prompt tokens. 4⃝ To further improve the accuracy, we present OS-
Prompt++ . We integrate the query-pool regularization loss (dotted line), enabling the prompt pool
to capture a stronger representation from the reference ViT.

4.3 QUERY-POOL REGULARIZATION LOSS

Our OS-Prompt relies on intermediate token embeddings. As a result, the prompt query exhibits
diminished representational capacity compared to previous PCL approaches that utilize the [CLS]
token from the final layer. This reduced capacity for representation brings performance degradation.
To mitigate this, we introduce a Query-Pool Regularization (QR) loss. The QR loss ensures that the
query-pool relationship becomes similar to that of the final layer’s [CLS] token, thereby improving
representation power. We extract the [CLS] token from the last layer of a reference ViT architecture
R(·) and employ it as our reference prompt query r ∈ R1×D where D is the feature dimension:

r = R(x). (8)
Let Kl ∈ RM×D be the matrix representation of prompt keys at layer l. We then define a similarity
matrix Al

query ∈ RM×1 to capture the relationship between query ql ∈ R1×D (from Eq. 6) and
prompt keys. Similarly, we compute the similarity matrix Al

ref to represent the relationship between
the reference prompt query r and the prompt keys.

Al
query = Softmax(

Klq
T
l

||Kl||2||ql||2
) Al

ref = Softmax(
Klr

T

||Kl||2||r||2
). (9)

We apply Softmax() to measure the relative similarity among query-key pairs, considering that q
and r show distinct feature distributions originating from different layers. The QR loss penalizes the
distance between two similarity matrices.

LQR =
∑
l

||Al
query −Al

ref ||22. (10)

The QR loss is added to the cross-entropy loss LCE for classification. The total loss function can be
written as:

Ltotal = LCE + λLQR, (11)
where λ is a hyperparameter to balance between two loss terms. Importantly, the QR loss is applied
during the training phase, ensuring that there is no computational overhead during inference. Note
that we only train prompts within a prompt pool while freezing the other weight parameters.

As the QR loss is an architecture-agnostic design with respect to the reference ViT (it just forwards
an image and get [CLS] token embedding), we leverage advanced ViT models to improve the impact
of QR loss. We explore recent state-of-the-art ViT models like Swin-Transformer-v2 (Liu et al.,
2022), PoolFormer (Yu et al., 2022a), and CaFormer (Yu et al., 2022a). In our experiments, we
observe using a strong reference ViT improves the performance (Section 5.3).

6

Under review as a conference paper at ICLR 2024

Table 1: Results on ImageNet-R for different task configurations: 5 tasks (40 classes/task), 10 tasks
(20 classes/task), and 20 tasks (10 classes/task). AN represents the average accuracy across tasks,
and FN indicates the mean forgetting rate. ↑ and ↓ indicate whether a metric is better with a higher
or lower value, respectively. We average values over five runs with different seeds.

Setting Task-5 Task-10 Task-20
Method AN (↑) FN (↓) AN (↑) FN (↓) AN (↑) FN (↓)
UB 77.13 - 77.13 - 77.13 -
FT 18.74 ± 0.44 41.49 ± 0.52 10.12 ± 0.51 25.69 ± 0.23 4.75 ± 0.40 16.34 ± 0.19
ER 71.72 ± 0.71 13.70 ± 0.26 64.43 ± 1.16 10.30 ± 0.05 52.43 ± 0.87 7.70 ± 0.13
LwF 74.56 ± 0.59 4.98 ± 0.37 66.73 ± 1.25 3.52 ± 0.39 54.05 ± 2.66 2.86 ± 0.26
L2P 70.83 ± 0.58 3.36 ± 0.18 69.29 ± 0.73 2.03 ± 0.19 65.89 ± 1.30 1.24 ± 0.14
Deep L2P 73.93 ± 0.37 2.69 ± 0.10 71.66 ± 0.64 1.78 ± 0.16 68.42 ± 1.20 1.12 ± 0.13
DualPrompt 73.05 ± 0.50 2.64 ± 0.17 71.32 ± 0.62 1.71 ± 0.24 67.87 ± 1.39 1.07 ± 0.14
CodaPrompt 76.51 ± 0.38 2.99 ± 0.19 75.45 ± 0.56 1.64 ± 0.10 72.37 ± 1.19 0.96 ± 0.15
OS-Prompt 75.74 ± 0.58 3.32 ± 0.31 74.58 ± 0.56 1.92 ± 0.15 72.00 ± 0.60 1.09 ± 0.11
OS-Prompt++ 77.07 ± 0.15 2.23 ± 0.18 75.67 ± 0.40 1.27 ± 0.10 73.77 ± 0.19 0.79 ± 0.07

5 EXPERIMENTS

5.1 EXPERIMENT SETTING

Dataset. We utilize the Split CIFAR-100 (Krizhevsky et al., 2009) and Split ImageNet-R
(Hendrycks et al., 2020) benchmarks for class-incremental continual learning. The Split CIFAR-
100 partitions the original CIFAR-100 dataset into 10 distinct tasks, each comprising 10 classes.
The Split ImageNet-R benchmark is an adaptation of ImageNet-R, encompassing diverse styles, in-
cluding cartoon, graffiti, and origami. For our experiments, we segment ImageNet-R into 5, 10, or
20 distinct class groupings. Given its substantial intra-class diversity, the ImageNet-R benchmark is
viewed as a particularly challenging benchmark. We also provide experiments on DomainNet (Peng
et al., 2019), a large-scale domain adaptation dataset. We use 5 different domain as a continual
learning tasks where each task consists of 69 classes.

Experimental Details. We performed our experiments using the ViT-B/16 (Dosovitskiy et al., 2021)
pre-trained on ImageNet-1k, a standard backbone in earlier PCL research. To ensure a fair compar-
ison with prior work, we maintain the same prompt length (8) and number of prompt components
(100) as used in CodaPrompt. Like CodaPrompt, we divide the total prompt components into the
number of tasks, and provide the partial component for each task. In task N , the prompt components
from task 1 ∼ N is frozen, and we only train the key and prompt components from task N . We split
20% of the training set for hyperparameter λ tuning in Eq. 11. Our experimental setup is based on
the PyTorch. The experiments utilize four Nvidia RTX2080ti GPUs. For robustness, we conducted
our benchmarks with five different permutations of task class order, presenting both the average and
standard deviation of results. Detailed information can be found in the Appendix B.

Evaluation Metrics. We use two metrics for evaluation: (1) Average final accuracy AN , which
measures the overall accuracy across N tasks. (Wang et al., 2022d;c; Smith et al., 2023a) (2) Average
forgetting FN , which tracks local performance drop over N tasks (Smith et al., 2023b;a; Lopez-Paz
& Ranzato, 2017). Note, AN is mainly used for performance comparison in literature.

5.2 COMPARISON WITH PRIOR PCL WORKS

We compare our OS-Prompt with prior continual learning methods. This includes non-PCL meth-
ods such as ER (Chaudhry et al., 2019) and LWF (Li & Hoiem, 2017), as well as PCL methods like
L2P (Wang et al., 2022d), DualPrompt (Wang et al., 2022c), and CodaPrompt (Smith et al., 2023a).
We present both the upper bound (UB) performance and results from fine-tuning (FT). UB refers to
training a model with standard supervised training using all data (no continual learning). FT indi-
cates that a model undergoes sequential training with continual learning data without incorporating
prompt learning. Moreover, we report L2P/Deep L2P implementation from CodaPrompt (Smith
et al., 2023a), both in its original form and improved version by applying prompt pool through lay-
ers 1 to 5. In our comparisons, OS-Prompt represents our one-shot prompt framework without the
QR loss, while OS-Prompt++ is with the QR loss.

Table 1 shows the results on ImageNet-R. Our OS-Prompt indicates only a slight performance drop
(≤ 1%) across the 5-task, 10-task, and 20-task settings. The reason for the performance drop could
be the reduced representational capacity of a prompt query from the intermediate token embedding.

7

Under review as a conference paper at ICLR 2024

Table 2: Accuracy comparison on
CIFAR-100 10-task setting.

Method AN (↑) FN (↓)
UB 89.30 -
ER 76.20 ± 1.04 8.50 ± 0.37
Deep L2P 84.30 ± 1.03 1.53 ± 0.40
DualPrompt 83.05 ± 1.16 1.72 ± 0.40
CodaPrompt 86.25 ± 0.74 1.67 ± 0.26
OS-Prompt 86.42 ± 0.61 1.64 ± 0.14
OS-Prompt++ 86.68 ± 0.67 1.18 ± 0.21

Table 3: GFLOPs comparison of PCL works. We also
provide relative cost (%) with respect to L2P.

Method Training GFLOPs Inference GFLOPs
L2P 52.8 (100%) 35.1 (100%)
Deep L2P 52.8 (100%) 35.1 (100%)
DualPrompt 52.8 (100%) 35.1 (100%)
CodaPrompt 52.8 (100%) 35.1 (100%)
OS-Prompt 35.4 (66.7%) 17.6 (50.1%)
OS-Prompt++ 52.8 (100%) 17.6 (50.1%)

Table 4: Analysis on the impact of Reference ViT architecture on ImageNet-R.
Setting Task-5 Task-10 Task-20
Method (ViT Architecture) AN (↑) FN (↓) AN (↑) FN (↓) AN (↑) FN (↓)
OS-Prompt++ (ViT-B/16) 77.07 ± 0.15 2.23 ± 0.18 75.67 ± 0.40 1.27 ± 0.10 73.77 ± 0.19 0.79 ± 0.07
OS-Prompt++ (Swin-v2) 77.27 ± 0.21 2.24 ± 0.24 75.94 ± 0.28 1.29 ± 0.15 73.89 ± 0.38 0.72 ± 0.11
OS-Prompt++ (PoolFormer) 77.20 ± 0.50 2.19 ± 0.27 75.86 ± 0.40 1.42 ± 0.24 73.81 ± 0.64 0.73 ± 0.11
OS-Prompt++ (CaFormer) 77.16 ± 0.42 2.16 ± 0.24 75.91 ± 0.54 1.30 ± 0.12 73.83 ± 0.54 0.72 ± 0.05

However, OS-Prompt++ effectively counters this limitation by incorporating the QR loss. Such an
observation underscores the significance of the relationship between the query and the prompt pool
in PCL. OS-prompt++ shows slight performance improvement across all scenarios. This implies
a prompt query that contains task information helps to enhance representation in the prompt pool,
suggesting that exploring methods to integrate task information inside the prompt selection process
could be an interesting research direction in PCL. Table 2 provides results on 10-task CIFAR-100,
which shows a similar trend with ImageNet-R. We also provide DomainNet results in Appendix H

A100 V100 Rtx2080ti
GPU

0

100

200

300

400

La
te

nc
y

(m
s)

L2P
Dual

Coda
OS/OS++(Ours)

Figure 4: Comparison of la-
tency across PCL methods on
different GPU models.

In Table 3, we provide GFLOPs for various PCL methods, round-
ing GFLOPs to one decimal place. It is worth noting that while
prior PCL methods might have marginally different GFLOP val-
ues, they are close enough to appear identical in the table. This
implies that different prompt formation schemes proposed in prior
works do not substantially impact GFLOPs. The table shows
OS-Prompt operates at 66.7% and 50.1% of the GFLOPs, dur-
ing training and inference, respectively, relative to prior methods.
While OS-Prompt++ maintains a training GFLOPs count compa-
rable to earlier work due to the added feedforward process in the
reference ViT, it does not employ the reference ViT during infer-
ence, bringing it down to 50.1% GFLOPs. In Fig. 4, we compare the inference GPU latency of
previous PCL methods with our OS-Prompt across three distinct GPU setups. All measurements are
taken using a batch size of 32. Similar to the trend observed in FLOPs, our approach reduces the
latency by ∼ 50%. We provide further discussion on training computational cost in Appendix G.

5.3 DOES STRONGER REFERENCE VIT IMPROVE PERFORMANCE?

The QR loss is an architecture-agnostic design with respect to the reference ViT because it only
requires forwarding an image to obtain the [CLS] token embedding. To amplify the effects of the
QR loss, we experiment with cutting-edge ViT models such as Swin-Transformer-v2 (Liu et al.,
2022), PoolFormer (Yu et al., 2022a), and CaFormer (Yu et al., 2022a). For a fair comparison, we
ensure that all these advanced architectures are trained on ImageNet-1k. As presented in Table 4,
leveraging advanced reference ViT architectures improves accuracy by providing stronger represen-
tations. For example, compared to ViT-B/16 baseline, using Swin-v2 improves the AN metric by
0.2%/0.27%/0.12% on Task-5/Task-10/Task-20, respectively. This result underscores the advantage
of our method, emphasizing its adaptability with future advanced ViT architectures. We also explore
the advantage of applying the advanced ViT architectures to the prior work in Appendix D.

5.4 ANALYSIS OF DESIGN COMPONENTS

QR Loss Design. To understand the effect of different components in our proposed QR loss (Eq.
10), we conducted an ablation study with different settings, summarized in Table 5. There are two
main components in the QR loss: Cosine Similarity and Softmax, and we provide the accuracy
of different four combinations. Without Cosine Similarity and Softmax, our framework yields a

8

Under review as a conference paper at ICLR 2024

Table 5: Analysis of QR loss design. We train
OS-Prompt++ on 10-task ImageNet-R setting.

CosSim Softmax AN (↑) FN (↓)
75.00 ± 0.53 1.68 ± 0.12

✓ 75.47 ± 0.42 1.38 ± 0.16
✓ 75.51 ± 0.33 1.28 ± 0.06
✓ ✓ 75.67 ± 0.40 1.27 ± 0.10

Table 6: Hyperparameter sensitivity study of λ on
ImageNet-R 5/10/20-task.

λ Task-5 Task-10 Task-20
1e-5 77.03 ± 0.10 75.63 ± 0.39 73.63 ± 0.21
5e-5 77.02 ± 0.13 75.62 ± 0.41 73.62 ± 0.19
1e-4 77.07 ± 0.15 75.67 ± 0.40 73.77 ± 0.19
5e-4 77.13 ± 0.24 75.68 ± 0.38 73.68 ± 0.17

101 102

Components

60

70

A N
(%

)

OS++
OS
Coda

Dual
L2P

4 8 12 16 20
Prompt Length

60

65

70

75

A N
(%

)

OS++
OS
Coda

Dual
L2P

Figure 5: Analysis of accuracy AN with respect to prompt
components (Left) and prompt length (Right). We use 10-taks
ImageNet-R setting.

45 48 51
Training GFLOPs

75.4

75.6

75.8

A N
(%

)

Layer6

Layer7

Layer8

Layer9

Layer10

Layer11

Layer12

Figure 6: Trade-off between
GFLOPs and accuracy within a
reference ViT.

performance of 75.00% for AN . Adding Cosine Similarity or Softmax improves the performance,
suggesting their collaborative role in enhancing the model’s performance in our QR loss design.
We also provide the sensitivity analysis of our method with respect to the hyperparameter λ in
Table 6. Across the three distinct task configurations on ImageNet-R, we note that the performance
fluctuations are minimal, despite the variation in λ values. These results underline the robustness of
our method with respect to λ value, suggesting that our approach is not sensitive to hyperparameter.

Prompt Design. We further examine the impact of both the number of prompt components and
the prompt length on accuracy. In Fig. 5 (left), we measure accuracy across configurations with
{10, 20, 50, 100, 200, 500} prompts. The OS-prompt demonstrates a consistent accuracy enhance-
ment as the number of prompts increases. Notably, OS-prompt++ reaches a performance plateau
after just 50 prompts. Additionally, our ablation study of prompt length, presented in Fig. 5 (right),
reveals that our method maintains stable accuracy across various prompt lengths.

5.5 ACCURACY-EFFICIENCY TRADE-OFF WITHIN A REFERENCE VIT

During the training of OS-prompt++, our method does not improve the energy efficiency (Note, we
achieve ∼ 50% computational saving during inference). This arises from our approach of extracting
the reference prompt query r from the final layer of the reference ViT. To further enhance energy
efficiency during the OS-prompt++ training, we delve into the trade-off between accuracy and ef-
ficiency within the Reference ViT. Instead of relying on the last layer’s [CLS] token embedding
for the reference prompt query, we opt for intermediate token embeddings. Since our prompt pool
is applied in layers 1 to 5 of the backbone ViT, we utilize the intermediate token embeddings from
layers deeper than 5 within the reference ViT. Fig. 6 illustrates this trade-off with respect to the layer
index where we get the reference prompt. Our findings show that utill layer 8, there is only a slight
increase in accuracy, which suggests a potential to reduce GFLOPs without performance drop.

6 CONCLUSION

In this paper, we introduce the OS-Prompt framework where we improve the efficiency of the con-
ventional two-stage PCL in a simple yet effective manner. By harnessing the power of intermediate
token embeddings for prompts and introducing the Query-Pool Regularization (QR) loss, we save
computational cost without performance drop on class-incremental continual learning scenarios.
One of the potential limitations of our OS-Prompt++ is, in comparison to OS-Prompt (our light ver-
sion), it introduces an increase in training computational cost from the reference ViT feedforward.
This computational efficiency during training becomes important in the context of addressing the
online continual learning problem (Ghunaim et al., 2023) where the model needs rapid training on
the given streaming data. To further improve the efficiency, we can adopt the early exit in (Phuong
& Lampert, 2019), where they make predictions in the middle layers.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In ECCV, 2018.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
experience for general continual learning: a strong, simple baseline. In NeurIPS, 2020.

Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. Tinytl: Reduce memory, not parameters for
efficient on-device learning. Advances in Neural Information Processing Systems, 33:11285–
11297, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. arXiv preprint arXiv:1812.00420, 2018.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual
learning. arXiv preprint arXiv:1902.10486, 2019.

Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Dual-teacher class-incremental learning with
data-free generative replay. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 3543–3552, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. ICLR, 2021.

Qiankun Gao, Chen Zhao, Bernard Ghanem, and Jian Zhang. R-dfcil: Relation-guided represen-
tation learning for data-free class incremental learning. In European Conference on Computer
Vision, pp. 423–439. Springer, 2022.

Yasir Ghunaim, Adel Bibi, Kumail Alhamoud, Motasem Alfarra, Hasan Abed Al Kader Hammoud,
Ameya Prabhu, Philip HS Torr, and Bernard Ghanem. Real-time evaluation in online continual
learning: A new hope. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11888–11897, 2023.

Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan Pascanu. Embracing change: Continual
learning in deep neural networks. Trends in cognitive sciences, 2020.

Md Yousuf Harun, Jhair Gallardo, Tyler L Hayes, and Christopher Kanan. How efficient are today’s
continual learning algorithms? In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2430–2435, 2023.

Tyler L Hayes, Nathan D Cahill, and Christopher Kanan. Memory efficient experience replay for
streaming learning. In ICRA, 2019.

Xuehai He, Chunyuan Li, Pengchuan Zhang, Jianwei Yang, and Xin Eric Wang. Parameter-efficient
fine-tuning for vision transformers. arXiv preprint arXiv:2203.16329, 2022.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer.
The many faces of robustness: A critical analysis of out-of-distribution generalization. arXiv
preprint arXiv:2006.16241, 2020.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In ICCV, pp. 8340–8349, 2021.

Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and Zsolt Kira. Re-evaluating continual learning
scenarios: A categorization and case for strong baselines. arXiv preprint arXiv:1810.12488, 2018.

10

Under review as a conference paper at ICLR 2024

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In Computer Vision–ECCV 2022: 17th European Confer-
ence, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXIII, pp. 709–727. Springer,
2022.

Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fahad Shah-
baz Khan. Maple: Multi-modal prompt learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 19113–19122, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A continual
structure learning framework for overcoming catastrophic forgetting. In ICML, pp. 3925–3934.
PMLR, 2019.

Zhizhong Li and Derek Hoiem. Learning without forgetting. TPAMI, 40(12):2935–2947, 2017.

Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 12009–12019, 2022.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
NeurIPS, 2017.

Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe, Hyunwoo Kim, and Scott Sanner. Online
continual learning in image classification: An empirical survey. Neurocomputing, 469:28–51,
2022.

Lorenzo Pellegrini, Vincenzo Lomonaco, Gabriele Graffieti, and Davide Maltoni. Continual learning
at the edge: Real-time training on smartphone devices. arXiv preprint arXiv:2105.13127, 2021.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 1406–1415, 2019.

Mary Phuong and Christoph H Lampert. Distillation-based training for multi-exit architectures. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 1355–1364, 2019.

Lyle Pursell and SY Trimble. Gram-schmidt orthogonalization by gauss elimination. The American
Mathematical Monthly, 98(6):544–549, 1991.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In CVPR, pp. 2001–2010, 2017.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Efficient parametrization of multi-
domain deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 8119–8127, 2018.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In ICML, pp. 4548–4557, 2018.

11

Under review as a conference paper at ICLR 2024

James Smith, Yen-Chang Hsu, Jonathan Balloch, Yilin Shen, Hongxia Jin, and Zsolt Kira. Always
be dreaming: A new approach for data-free class-incremental learning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 9374–9384, 2021.

James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim,
Assaf Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual de-
composed attention-based prompting for rehearsal-free continual learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11909–11919, 2023a.

James Seale Smith, Junjiao Tian, Shaunak Halbe, Yen-Chang Hsu, and Zsolt Kira. A closer look
at rehearsal-free continual learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2409–2419, 2023b.

Paul Voigt and Axel Von dem Bussche. The eu general data protection regulation (gdpr). A Practical
Guide, 1st Ed., Cham: Springer International Publishing, 10(3152676):10–5555, 2017.

Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. S-prompts learning with pre-trained transformers:
An occam’s razor for domain incremental learning. Advances in Neural Information Processing
Systems, 35:5682–5695, 2022a.

Zifeng Wang, Zheng Zhan, Yifan Gong, Geng Yuan, Wei Niu, Tong Jian, Bin Ren, Stratis Ioannidis,
Yanzhi Wang, and Jennifer Dy. Sparcl: Sparse continual learning on the edge. Advances in Neural
Information Processing Systems, 35:20366–20380, 2022b.

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
rehearsal-free continual learning. In European Conference on Computer Vision, pp. 631–648.
Springer, 2022c.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vin-
cent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. CVPR,
2022d.

Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong Li, Arun Mallya, Derek Hoiem, Ni-
raj K Jha, and Jan Kautz. Dreaming to distill: Data-free knowledge transfer via deepinversion.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
8715–8724, 2020.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. arXiv preprint arXiv:1708.01547, 2017.

Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, and
Shuicheng Yan. Metaformer is actually what you need for vision. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 10819–10829, 2022a.

Weihao Yu, Chenyang Si, Pan Zhou, Mi Luo, Yichen Zhou, Jiashi Feng, Shuicheng Yan, and Xin-
chao Wang. Metaformer baselines for vision. arXiv preprint arXiv:2210.13452, 2022b.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In ICML, 2017.

Jeffrey O Zhang, Alexander Sax, Amir Zamir, Leonidas Guibas, and Jitendra Malik. Side-tuning:
a baseline for network adaptation via additive side networks. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16, pp.
698–714. Springer, 2020.

Renrui Zhang, Rongyao Fang, Wei Zhang, Peng Gao, Kunchang Li, Jifeng Dai, Yu Qiao, and Hong-
sheng Li. Tip-adapter: Training-free clip-adapter for better vision-language modeling. arXiv
preprint arXiv:2111.03930, 2021.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models. International Journal of Computer Vision, 130(9):2337–2348, 2022.

12

Under review as a conference paper at ICLR 2024

A CODE IMPLEMENTATION

We provide a code with .zip format in Supplementary Materials. Our code is based on the Co-
daPrompt official Github implementation 1. The codebase contains the prior PCL methods.

B EXPERIMENTAL DETAILS

We maintain the prompting configuration (i.e., lengths and locations) for L2P and DualPrompt as
suggested by the CodaPrompt paper. The detailed configurations are as follows: L2P incorporates
a prompt pool of size 20, a total prompt length of 20, and selects 5 prompts from the pool for
inference. DualPrompt utilizes a length 5 prompt in layers 1 ∼ 2 and length 20 prompts in layers
3 ∼ 5. CodaPrompt uses a prompt length of 8 and 100 prompt components. For all PCL methods,
including our OS-prompt, we employ the Adam optimizer (Kingma & Ba, 2014) with β1 = 0.9 and
β2 = 0.999, using a batch size of 128 images. We use cosine-decaying learning rate scheduling with
learning rate 1e − 3. All images are resized to 224x224 and normalized. CIFAR-100 is trained for
20 epochs, and ImageNet-R for 50 epochs.

To train a prompt pool in our method, we freeze prompts from the previous stages (1 ∼ N − 1) and
only train N stage’s prompt. For example, for 10-task class incremental continual learning, we add
10 prompts to the prompt pool for each stages and only train newly added 10 prompts. To initialize
the new prompts, we use Gram-Schmidt process (Pursell & Trimble, 1991) at the start of each new
task, as described in CodaPrompt official Github implementation. Furthermore, in alignment with
prior PCL implementations, we substitute the predictions from prior-task logits with negative infinity
during the training phase of the current task. Note that we do not use the query attention proposed
in CodaPrompt.

C ADVANCED VIT ARCHITECTURE DETAILS

Here we provide the architecture details of advanced ViTs used in our work. We use pre-trained
models from PyTorch Image Models (timm) 2.

• Swin-Transformer-v2 (Liu et al., 2022) introduces three primary technical contributions to ad-
vance large-scale models in computer vision: firstly, a combined residual-post-norm method with
cosine attention to enhance training stability; secondly, a log-spaced continuous position bias tech-
nique that allows seamless transfer from low-resolution pre-training to high-resolution downstream
tasks; and thirdly, SimMIM, a self-supervised pre-training method designed to curtail the reliance
on vast quantities of labeled images. We use SwinV2-S model in our work.

• PoolFormer (Yu et al., 2022a) adopts a fundamental approach by utilizing pooling as the to-
ken mixer in their model. This pooling operator, distinguished by its lack of trainable parameters,
straightforwardly averages the features of neighboring tokens. We use PoolFormer-M36 model in
our work.

• CaFormer (Yu et al., 2022b) incorporates depthwise separable convolutions in the initial layers
and employing standard self-attention in the later layers. The model establishes 85.5% accuracy on
ImageNet-1K without any reliance on external data sources or the use of distillation techniques. We
use CaFormer-M36 model in our work.

D STRONGER QUERY VIT IN TWO-STAGE PCL FRAMEWORK

We investigate the benefits of integrating advanced ViT architectures into previous PCL approaches.
In Table 7, we provide the performance of various ViT architectures on 10-task ImageNet-R setting.

L2P with ViT-B/16 yields an AN of 69.29, whereas employing the Swin-v2, PoolFormer, and
CaFormer architectures results in a notable performance improvement with AN scores by ∼ 4.3%.

1https://github.com/GT-RIPL/CODA-Prompt
2https://huggingface.co/timm

13

Under review as a conference paper at ICLR 2024

Table 7: Analysis on the impact of ViT architecture on ImageNet-R.

Setting Task-10
Method (ViT Architecture) AN (↑) FN (↓)
L2P (ViT-B/16) 69.29 ± 0.73 2.03 ± 0.19
L2P (Swin-v2) 73.53 ± 0.41 1.36 ± 0.15
L2P (PoolFormer) 73.60 ± 0.34 1.42 ± 0.16
L2P (CaFormer) 73.63 ± 0.43 1.40 ± 0.10
DualPrompt (ViT-B/16) 71.32 ± 0.62 1.71 ± 0.24
DualPrompt (Swin-v2) 72.62 ± 0.58 1.12 ± 0.18
DualPrompt (PoolFormer) 72.61 ± 0.47 1.07 ± 0.07
DualPrompt (CaFormer) 72.83 ± 0.49 1.24 ± 0.14
CodaPrompt (ViT-B/16) 75.45 ± 0.56 1.64 ± 0.10
CodaPrompt (Swin-v2) 76.16 ± 0.36 1.25 ± 0.17
CodaPrompt (PoolFormer) 76.12 ± 0.10 1.08 ± 0.13
CodaPrompt (CaFormer) 76.55 ± 0.34 1.05 ± 0.05

Table 8: Analysis on prompt formation methods. Results on ImageNet-R for different task config-
urations: 5 tasks (40 classes/task), 10 tasks (20 classes/task), and 20 tasks (10 classes/task). AN

represents the average accuracy across tasks, and FN indicates the mean forgetting rate. We average
values over five runs with different seeds.

Setting Task-5 Task-10 Task-20
Method AN (↑) FN (↓) AN (↑) FN (↓) AN (↑) FN (↓)
UB 77.13 - 77.13 - 77.13 -
Deep L2P 73.93 ± 0.37 2.69 ± 0.10 71.66 ± 0.64 1.78 ± 0.16 68.42 ± 1.20 1.12 ± 0.13
OS-Prompt (L2P) 74.61 ± 0.29 2.29 ± 0.21 73.43 ± 0.60 1.42 ± 0.10 71.42 ± 0.24 0.95 ± 0.06
DualPrompt 73.05 ± 0.50 2.64 ± 0.17 71.32 ± 0.62 1.71 ± 0.24 67.87 ± 1.39 1.07 ± 0.14
OS-Prompt (Dual) 74.65 ± 0.15 2.06 ± 0.20 72.57 ± 0.23 1.13 ± 0.03 70.55 ± 0.48 0.81 ± 0.10
CodaPrompt 76.51 ± 0.38 2.99 ± 0.19 75.45 ± 0.56 1.64 ± 0.10 72.37 ± 1.19 0.96 ± 0.15
OS-Prompt (Coda) 75.74 ± 0.58 3.32 ± 0.31 74.58 ± 0.56 1.92 ± 0.15 72.00 ± 0.60 1.09 ± 0.11

For the DualPrompt method, the ViT-B/16 architecture provides an AN of 71.32%. Transition-
ing to more advanced architectures improves the performance by ∼ 1.5%. Similarly, CodaPrompt
shows performance improvement with Swin-v2, PoolFormer, and CaFormer architectures compared
to ViT-B/16 architecture. In sum, the results suggest that regardless of the chosen method, more ad-
vanced architectures such as Swin-v2, PoolFormer, and CaFormer tend to outperform the ViT-B/16
configuration. Nevertheless, incorporating a more advanced query ViT does not alleviate compu-
tational cost; in fact, it may substantially increase computational cost. Conversely, while our OS-
Prompt++ technique utilizes the strengths of advanced ViT architectures, we do not need to deploy
the advanced ViT during inference, resulting in energy-efficiency.

E ANALYSIS ON PROMPT FORMATION STRATEGY

In our approach, the construction of prompts is achieved through a weighted summation of com-
ponents within the prompt pool, mirroring the strategy employed by CodaPrompt. In this section,
we delve into the impact of varying prompt formation strategies on performance. For comparative
insight, we present results from two previous PCL methodologies: L2P and DualPrompt. While
L2P selects 5 prompts from the internal prompt pool, DualPrompt distinguishes between general
and task-specific prompts. Aside from the distinct prompt formation strategies, the configurations
remain consistent.

In Table 8, we adopt the prompt formation strategies proposed in L2P and Dual, resulting in config-
urations denoted as OS-Prompt (L2P) and OS-Prompt (Dual). Our findings reveal the following: (1)
The effectiveness of OS-prompt varies based on the prompt formation technique employed. Notably,
OS-Prompt (L2P) and OS-Prompt (Dual) yield lower accuracy than our original approach, which re-
lies on CodaPrompt. This suggests that our method’s performance could benefit from refined prompt
formation techniques in future iterations. (2) The OS-prompt framework, when integrated with L2P
and Dual prompt formation strategies, outperforms the original Deep L2P and DualPrompt, a trend

14

Under review as a conference paper at ICLR 2024

not observed with CodaPrompt. This may indicate that the prompt formation strategies of L2P and
DualPrompt, which rely on hard matching (i.e., top-k), are more resilient than CodaPrompt’s. Con-
versely, CodaPrompt employs soft matching, utilizing a weighted summation of all prompts based
on proximity. This might be more susceptible to the diminished representation power from the inter-
mediate layer’s features. Simultaneously, a prompt query imbued with task-specific data (since our
query token incorporates task prompts) appears to enhance representation within the prompt pool.

F ALGORITHM

In this study, we introduce the algorithms of both the prior PCL and our OS-Prompt, detailed in
Algorithm 1 and 2, respectively. As discussed in the primary text, earlier PCL methods deploy a
query ViT to produce a prompt query, as seen in line 2 of Algorithm 1. With this generated prompt
query, prompts are formed during the feedforward process, as illustrated in lines 3 to 5 of Algorithm
1. In contrast, our approach utilizes the intermediate [CLS] token as a prompt query, as indicated in
line 4 of Algorithm 2.

Algorithm 1 Prior PCL works
Input image x, Query ViT Q(·), BackBone ViT F (·) consists of layer fl, where l ∈ {1, ..., L}, prompt forma-
tion function g(), Prompt pool Pl

1: # feedforward step with image x
2: q = Q(x) ▷ Compute a prompt query
3: for l← 1 to 5 do ▷ Apply a prompt pool for the first five layers
4: ϕl ← g(q, Pl)
5: xl+1 ← fl(xl, ϕl)
6: end for
7: for l← 6 to L do ▷ Standard ViT operation for leftover layers
8: xl+1 ← fl(xl)
9: end for

10: return Classifier(xL+1)

Algorithm 2 OP-Prompt (Ours)
Input image x, BackBone ViT F (·) consists of layer fl, where l ∈ {1, ..., L}, prompt formation function g(·),
Prompt pool Pl

1: # feedforward step with image x
2: for l← 1 to 5 do ▷ Apply a prompt pool for the first five layers
3: ql ← xl[CLS]

▷ Use [CLS] token as a prompt query
4: ϕl ← g(ql, Pl)
5: xl+1 ← fl(xl, ϕl)
6: end for
7: for l← 6 to L do ▷ Standard ViT operation for leftover layers
8: xl+1 ← fl(xl)
9: end for

10: return Classifier(xL+1)

G DISCUSSION ON TRAINING COMPUTATIONAL COST

In this section, we provide an in-depth discussion of the training computational cost of PCL methods.
Following (Ghunaim et al., 2023), Table 9 presents the relative training complexity of each method
with respect to ER (Chaudhry et al., 2019), which is the simple baseline with standard gradient-based
training.

Here, we would like to clarify the training computational cost of prompt learning. In general neural
network training, the forward-backward computational cost ratio is approximately 1:2. This is due
to gradient backpropagation (dL

dal
= Wl+1

dL
dal+1

) and weight-updating (dL
dWl

= dL
dal+1al), where L

represents the loss, W denotes the weight parameter, a is the activation, and l is the layer index.

15

Under review as a conference paper at ICLR 2024

Table 9: Relative training computational cost.

CL strategy Method Relative training complexity w.r.t ER
Replay-based ER 1
Regularization-based LWF 4/3
Prompt-based L2P 1
Prompt-based DualPrompt 1
Prompt-based CodaPrompt 1
Prompt-based OS-Prompt (Ours) 2/3
Prompt-based OS-Prompt++ (Ours) 1

In prompt learning, the forward-backward computational cost ratio is approximately 1:1. This is in
contrast to general neural network training, as only a small fraction of the weight parameters (less
than 1%) are updated.

Bearing this in mind, we present the observations derived from the table, assuming that all methods
employ the same architecture.
• Previous PCL (L2P, DualPrompt, CodaPrompt) consists of two steps; First, the query ViT
requires only feedforward without backpropagation; Second, the backbone ViT feedforward-
backward training with prompt tuning. This results in the relative training computational cost is 1
(= QueryV iTforward(1)+BackboneV iTforward(1)+BackboneV iTbackward(1)

ERforward(1)+ERbackward(2)).
• Similarly, our OS-Prompt++ has a reference ViT which only requires a feedforward step, bringing
1 relative training computational cost with respect to ER.
• On the other hand, our OS-Prompt requires one feedforward-backward step like
standard training. Therefore, relative training computaional cost becomes 2

3 (=
BackboneV iTforward(1)+BackboneV iTbackward(1)

ERforward(1)+ERbackward(2)). This shows the potential of our OS-Prompt
on online continual learning.

Overall, we propose two versions of the one-stage PCL method (i.e., OS-prompt and OS-prompt++),
and these two options enable the users can select a suitable method depending on the problem setting.
For example, for online continual learning, OS-prompt is a better option since it requires less training
cost. On the other hand, for offline continual learning, one can use OS-prompt++ to maximize the
performance while spending more training energy.

H DOMAINNET EXPERIMENTS

We conducted experiments on DomainNet (Peng et al., 2019), a large-scale domain adaptation
dataset consisting of around 0.6 million images distributed across 345 classes. Each domain in-
volves 40,000 images for training and 8,000 images for testing. Our continual domain adaptation
task was created using five diverse domains from DomainNet: Clipart → Real → Infograph →
Sketch → Painting. The experimental methodology closely followed the protocol established in
prior PCL research (Smith et al., 2023a). The outcomes of these experiments are presented in Table
10. Our method (OS-prompt and OS-propmt++) achieves comparable performance compared to the
previous PCL methods with 50% inference computational cost. These results affirm the practical
viability of our approach, indicating its applicability in real-world scenarios.

I IMPACT OF UNSUPERVISED PRE-TRAINED WEIGHTS

One underlying assumption of existing PCL methods is their reliance on supervised pretraining on
ImageNet-1k. While this pre-training has a substantial impact on model performance, it may not
always be feasible for a general continual learning task. One possible solution is using unsupervised
pre-trained models. To explore this, we use DINO pre-trained weights (Caron et al., 2021) instead of
ImageNet-1k pre-trained weights, and compare the performance across ER, LwF, and PCL works.
We set the other experimental settings as identical.

16

Under review as a conference paper at ICLR 2024

Table 10: Performance comparison on DomainNet 5-task setting.

Method AN (↑) FN (↓)
UB 79.65 -
FT 18.00 ± 0.26 43.55 ± 0.27
ER 58.32 ± 0.47 26.25 ± 0.24
L2P 69.58 ± 0.39 2.25 ± 0.08
Deep L2P 69.58 ± 0.39 2.25 ± 0.08
DualPrompt 70.73 ± 0.49 2.03 ± 0.22
CodaPrompt 73.24 ± 0.59 3.46 ± 0.09
OS-Prompt 72.24 ± 0.13 2.94 ± 0.02
OS-Prompt++ 73.32 ± 0.32 2.07 ± 0.06

We report the results in Table 11. The non-PCL methods (ER and LwF) demonstrate similar or even
superior performance compared to DualPropmt and L2P. This contrasts with the results obtained us-
ing the ImageNet-1k pretrained model, where PCL methods outperformed non-PCL methods. This
observation suggests that the backbone model plays a crucial role in PCL. However, CodaPrompt
and our OS-Prompt outperform the other methods by a significant margin. This indicates that our
method continues to perform well even without utilizing supervised pretraining.

Table 11: Analysis on the impact of unsupervised Pre-trained Weights. We use DINO pre-trained
weights (Caron et al., 2021).

Method AN (↑) FN (↓)
ER 60.43 ± 1.16 13.30 ± 0.12
LwF 62.73 ± 1.13 4.32 ± 0.63
L2P 60.32 ± 0.56 2.30 ± 0.11
DualPrompt 61.77 ± 0.61 2.31 ± 0.23
CodaPrompt 67.61 ± 0.19 2.23 ± 0.29
OS-Prompt 67.52 ± 0.34 2.32 ± 0.13
OS-Prompt++ 67.92 ± 0.42 2.19 ± 0.26

17

	Introduction
	Related Work
	Continual Learning
	Prompt-based Learning

	Preliminary
	Problem Setting
	Two-stage Prompt-based Continual Learning

	Methodology: One-stage Prompt-based Continual Learning
	How Stable are Token Embeddings Across Continual Prompt Learning?
	One-stage PCL Framework
	Query-Pool Regularization Loss

	Experiments
	Experiment Setting
	Comparison with prior PCL works
	Does stronger reference ViT improve performance?
	Analysis of Design Components
	Accuracy-Efficiency Trade-off within a Reference ViT

	Conclusion
	Code Implementation
	Experimental Details
	Advanced ViT Architecture Details
	Stronger Query ViT in Two-stage PCL Framework
	Analysis on Prompt Formation Strategy
	Algorithm
	Discussion on Training Computational Cost
	DomainNet Experiments
	Impact of Unsupervised Pre-trained Weights

