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Abstract: In recent months, there has been much concern about students using ChatGPT and similar tools to
do their assignments, but what if we as instructors incorporate these tools deliberately? What can the resulting
student work tell us about their understanding and misconceptions? Two programming assignments using
ChatGPT were given to students in a CS 101 course; the resulting student work revealed insights into student
learning in ways that are difficult to capture in traditional programming assignments. A qualitative analysis of
this  data  suggests  the  following  about  student  learning:  (1)  Students  prefer  to  represent  code  using  a
flowchart but have more errors in their representation than those who choose pseudocode, (2) Students are
less  likely to  error-check the  input  when  modifying  existing  code  than  they when incorporating  a  pre-
generated subroutine into a program they started themselves, and (3) Creating a different approach to an AI-
generated solution reveals misconceptions student have concerning topics covered much earlier in the course.

One day in fall, 2022, a student came to my office to show me this new tool, ChatGPT. More
specifically,  to  show  me  that  ChatGPT  could  create  very  good  code  for  half  of  the  programming
assignments in our introductory computer science course. Obviously, my initial thought was, “What do we
do now?,” a thought that was echoed throughout computer science departments everywhere. Banning these
tools  would  not  only be  futile,  it  would  be  a  disservice  to  our  students  since  over  80% of  software
professionals  are  using generative  AI to  write  code  (Kolakowski,  2023).  How to use  them in the CS
classroom, however, has instructors divided. Many have not used generative-AI themselves (Prather et al.,
2023) and most worry that students will blindly generate code without taking time to understand it (Prather
et  al.,  2023;  Zastudil  et  al.,  2023).  But  to  successfully  program  using  generative  AI,  students  need
instruction not only in the core CS concepts but also how to choose between various solutions to identify
the “best fit” for their problem (Becker et al., 2023).

As  a  former  math  educator,  I  realized  that  mathematics  has  already  survived  a  similar
technological revolution with the graphing calculator, so I developed two programming assignments that
apply current math pedagogy to computer science education (Jacques, 2023). Unexpectedly, when I used
these assignments in my introductory computer science course, I learned more about what my students
understood or still misunderstood than I have with more traditional assignments. This paper will share the
results of qualitatively analyzing the student work from these assignments.

Math pedagogy

Convergent Cognition Theory suggests that new knowledge in one domain can be built from prior
knowledge in another domain and vice-versa (Rich, Bly, & Leatham, 2014). This reciprocal effect happens
because both domains share core attributes, but learners find that one is more abstract and the other is more
applied. Mathematics and computer science share this relationship because, “Computer science inherently
draws on mathematical thinking” (Wing, 2006). In most of the literature, this theory is realized through the
application of  computer  programming to learn  mathematics  (e.g.,  Aydin,  2005;  Harel  & Papert,  1990;
Kafai, 1996). Being a reciprocal relationship, however, suggests that one could apply math pedagogy to
computer science education.

Having students create alternate representations of an algorithm, explain someone else’s solution,
or develop a different approach to solving a problem are strategies for developing critical thinking skills in
math education research (Khalid et al., 2020; Laursen & Rasmussen, 2019; NCTM, 2014; NRC, 2001).
Applying these strategies to computer science education has the same benefits (Blackwell et al.,  2001;
Corney et al., 2014; Gomes & Mendes, 2007; Viera et al., 2017) but used to require that the instructor
develop the code for students to use or use other people’s materials; the first is time-consuming and the
second may not reflect what the instructor wants or needs to do with their students. With ChatGPT and
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other  LLM’s,  creating  the  starting  code is  simpler  for  instructors  and  can  be  included  as  part  of  the
assignment so students are interacting with these tools themselves.

The assignments

Students  were  given  two  assignments  that  each  used  ChatGPT  in  different  ways.  The  first
assignment, “Credit Card Debt,” provided students with code that I had generated on ChatGPT; the second
assignment, “How Many Zeros,” asked students to use ChatGPT themselves to generate code (Jacques,
2023).  For each  assignment,  students  were to  represent  the generated  code with either  a  flowchart  or
pseudocode then  use their  representation to  determine if  the  generated code actually solved  the  given
problem. With “Credit Card Debt,” students were then tasked with modifying the code to solve a different
but  related problem. With “How Many Zeros,”  students  needed to develop an  alternative  approach to
solving the same problem then time each approach to determine which was faster. 

Participants and Methods

This  research  project  spanned  two  semesters  and  three  sections  of  an  introductory  computer
science course taught by two different instructors with similar teaching experience. The first phase occurred
in spring, 2023, with 19 undergraduates (8 F / 11 M) at a private university in southeastern USA who had
no prior programming experience before being enrolled in an introductory computer science course; the
second phase occurred in the same institution during fall, 2023, with 53 undergraduates (17 F / 36 M) who
also  had  no  prior  programming  experience.  At  the  start  of  data  collection,  participants  had  been
programming in Python for approximately ten weeks. Participants were given each of the assignments to
complete on their own. With each assignment, they were asked to explain the AI-generated code using a
flowchart  or pseudocode then to create their  own code in Python to either  modify the generated code
(Credit  Card  Debt)  or  to  develop  an  alternate  approach  to  the  problem  (How  Many  Zeros).
Flowcharts/pseudocode  and  Python  files  were  collected  electronically  and  de-identified.  A qualitative
analysis was then performed on all  submitted materials.  With the flowcharts and pseudocode,  analysis
identified what processes participants included and if the logic reflected the AI-generated code. With the
Python programs, analysis identified any errors or misconceptions participants displayed in their code.

Findings

Most participants chose to create flowcharts rather than pseudocode. With Credit Card Debt, only
nine participants created pseudocode; with How Many Zeros no participants created pseudocode. 

In  Credit  Card  Debt,  eight  of  the  nine  who used  pseudocode  accurately represented  the  AI-
generated code (Fig.  1);  the  only error  was  that  the  loop did not  include all  necessary steps.  For  the
flowcharts, 17 were accurate representations, 14 used one or more incorrect symbols, 15 did not include the
print statements in the loop (Fig. 2), and 17 had both errors. For the coding part of the assignment, all were
able to adjust the program to determine how many months would be needed to pay the debt in full. Thirteen
also included code to warn the user if their monthly payment was less than the monthly interest. 

With How Many Zeros, 23 of the flowcharts were correct, seven of which had AI-generated code
that counted the zeros using integer arithmetic. The most common errors were forgetting to include the loop
from 1 to the user input (n = 19) and other logic errors (n = 10). Other errors included not breaking down
the steps correctly (n = 7) or using symbols incorrectly (Fig. 4) (n = 5). Eight had multiple errors (e.g., Fig.
3). Forty-three of the programs correctly created an alternative subroutine to solve the same problem. The
remaining ten treated the number as a string in both the AI-generated code and their own (Fig. 5). There
were more errors  of this kind in the spring semester  than in the following fall  because the researcher
slightly changed the wording on this assignment for the second iteration: Instead of referring to the numeric
version as the integer approach, the assignment called it the arithmetic approach.
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Figure 1: Pseudocode accurately representing AI-generated code.

Figures 2, 3, 4: Flowcharts inaccurately representing AI-generated code.
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Figure 5: ChatGPT-generated subroutine and student-created subroutine.

Discussion

In  this  study,  the  student  work  revealed  that  many  participants  had  difficulties  accurately
representing an  algorithm written  in  Python.  Some of  the  issues  were  trivial,  such  as  using incorrect
symbols in a flowchart, but other errors suggest that beginning programmers have difficulties describing
the logical flow of a program. This study also suggests that they are able to modify code to solve a different
problem  but  have  difficulties  when  asked  to  develop  an  alternative  algorithm for  the  same  problem.
Additionally, this study suggests that beginning programmers may not recognize what variable type a value
is being treated as in a Python program, since Python does not make that explicit like other languages do,
and so instructions need to indicate how the values are being manipulated and not what their type is in
order to have students accurately recognize what approach the LLM generated.

This study has immediate implications for instructors. Having students use LLM’s to generate
code  quickly  provides  them  with  something  they  can  use,  allowing  instructors  to  increase  activities
designed for critical thinking. Doing so has the added benefit of informing the instructor what concepts or
skills have resonated with students and which need further instruction. Most of the findings in this study are
likely language-independent, but it would be interesting to learn if the variable-type difficulties also occur
in an introduction CS course that uses a programming language with strict variable typing, such as Java. It
would  be  interesting  to  learn  what  other  instructors  develop  for  LLM-enabled  assignments  and  what
student misconceptions are revealed from them.
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