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Abstract

Humans can generate both rapid and accurate responses in diverse tasks by building
perceptuo-motor expertise through practice. Expert responses are robust to task-
irrelevant distractors and state-space nuisance. In this paper, we investigate the
representational transformations that guide skill acquisition in both humans and
artificial agents. Specifically, we investigate the hypothesis that the evolution of
task-specific efficient representational coding emerges in the higher layers of the
visuo-motor hierarchy in biological and artificial networks. Towards this end,
we built a custom shooter game with the specific aim of introducing maximal
variance in perceptual state spaces, in which the development of expertise entails
building robustness to such state-space distortions. Deep reinforcement learning
agents playing the game develop representational alignment with the task-relevant
features in higher layers late in the training process, with the lower layers remaining
agnostic to the task. We aim to investigate parallel representational alignment in
humans through longitudinal neural recordings to precisely probe the evolution of
representational bottlenecks that result in the formation of expertise.

1 Introduction

An expert driver can drive effectively in challenging conditions, such as rain or snowstorms. Even
in such low-visibility state spaces, scene perception and subsequent maneuvering remain robust.
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An expert birdwatcher can identify the correct bird species even when there is significant variation
within individual species. Such perceptuomotor skills develop in humans through practice, with
experts showing a marked difference in performance compared to novices. Experts may see the world
differently from novices; if so, where in the perceptual hierarchy do such differences emerge? What
transformations do representations undergo in the shift from novice to expert?

DiCarlo and Cox [2007] argue that populations of neural responses are tuned to create disentangled
representations that effectively guide invariant object perception. When perceptual hypotheses are
entangled, object perception is rendered difficult, degrading performance. Effective disentanglement
of task-relevant variables could facilitate expert responses that are rapid and accurate. If so, where in
the perceptuo-motor hierarchy are representations disentangled?

Moreover, excessive task-specific alignment could lead to fragility. Being hyper-focused on one task
can degrade performance in other tasks that could impinge on the agent at any time. This creates a
trade-off between being task-generalists and task-specificists. As humans are task-generalists and can
acquire competence across diverse tasks, representational disentanglement is likely localized to a few
layers of the visuo-motor hierarchy, enabling rapid task switching. Mante et al. [2013] demonstrates
through neurophysiological evidence and recurrent network modeling that irrelevant sensory inputs
are not filtered out in the early stages of the visual hierarchy, but rather pruned away in the integration
stage in the prefrontal cortex.

Representational bottlenecks likely emerge at specific layers of biological representations to support
both expert action performance and task-switching flexibility. We can likely track information
bottlenecks in the brain through examining representational transformations that evolve during skill
acquisition. Specifically, quantifying to what extent task-irrelevant signals are suppressed and task-
relevant signals are amplified gives us a measure of the representational bottleneck in a layer Tishby
et al. [2000], Achille and Soatto [2018]. We can likewise trace representational bottlenecks in the
layers of artificial networks. Tacchetti et al. [2017] showed that architectures that most facilitated
invariant object recognition were also the ones to capture human neural recordings best.

In this study, we investigate the representational bottlenecks that result in task-specific expertise in
humans and artificial agents. Through longitudinal neural recordings from a human training from
novice to expert on a perceptuo-motor task, we aim to track representational transformations across
the visuo-motor hierarchy in the brain during the process of building expertise and to identify parallels
and divergences in various network architectures for building expertise in artificial agents.

2 Experiment

We designed a custom 2D shooter game in Unity (see Figure 1). The objective of the game is to shoot
as many enemy targets as possible before the level ends. Enemies are split into three categories, and
a specific bullet can hit each category. Visual features of the enemy indicate its category, and this
needs to be learned through trial and error. Figure 1(b) shows the enemy features and three bullet
actions in the game. Enemies’ visual features can be tagged with five attributes: head gear, body
color, enemy-weapon type, facial expression, and eye color. Unknown to the participants, one feature
of the enemy is designated as the target feature, and the correct bullet is mapped to it. In this study,
we designated the enemy weapon as the target feature, with three instances: axe, spear, and sword.
We mapped each instance to one of three bullet types in the game: lightning, fireball, or iceshard.

The game is thus a visual category-learning task, made challenging by composite enemy features that
serve as distractors. Moreover, the game includes a navigation component in which the player must
navigate through obstacles in the maze to reach the enemy. There are background non-enemy objects
that serve as distractors, in addition to changing ambient conditions such as day, night, rain, and snow.
The maze’s layout is also divided into four terrains that are visually distinct. Enemies spawn one at
a time and stay in the scene for a set duration of time (8-12 seconds) before they disappear if not
shot. Participants navigate through the maze to reach the enemy’s shooting range and choose the
appropriate bullet to shoot the enemy and earn points in the game.
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(a) Game scenes in different terrains and weather conditions. (b) Enemy visual features; One
enemy feature is predictive of
the bullet category that can be
used to hit it.

Figure 1: Shooter game. Player locates the enemy and moves towards it to shoot with a specific bullet.
Enemy disappears within a time limit if not shot.

3 Humans exhibit incremental and insight-like learning patterns in the task

We recruited five participants aged 19-31 through the online platform Prolific. Each participant
played 23 levels in total, each level lasting 2 minutes, with a total game time of 46 minutes.

Figure 2 (top) shows learning patterns of five human participants in the task. Three of the participants
successfully learned the enemy-weapon mapping during the task. Participants displayed sudden
insight-like learning patterns: upon figuring out the mapping rule, they made consistent, correct
responses, in contrast to the episodes before the insight. Different participants achieved insight-like
learning at varying stages of the game, with one participant learning the mapping after playing just
two levels.

Figure 2 (bottom) plots the time between successive hits during the course of the game. The
metric indicates how quickly participants were able to navigate the maze to reach the enemy’s
shooting range. Although marked by a steep learning curve in the beginning, participants continue to
demonstrate steady improvement in performance throughout the game. Four out of five participants
show continuous improvement in handling game controls and navigating the obstacles around the
maze. One participant showed no learning and, in fact, showed a decline in performance, indicating
disengagement.

We dissociated the two subtasks of the game — steady movement-based navigation and sudden
insight-like category learning — as two separate learning strategies — procedural (implicit) and
declarative (explicit), akin to the two memory systems in the brain Squire [2004]. We modeled
separate artificial agents for the movement and shooting subtasks to capture these distinct phases of
learning.

4 Training produces a gradient of increasing target selectivity in the layers of
artificial agents

We trained modular deep reinforcement learning (RL) agents using a proximal policy optimization
(PPO) algorithm Schulman et al. [2017]. We split the game into two subtasks — movement and
shooting Lample and Chaplot [2016]. The movement subtask navigates through the maze and reaches
the enemy, and the shooting subtask learns to map the enemy with the specific bullet type. More
details about the training procedure are provided in the supplementary section.
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Figure 2: Top: Human learning curves showing score change per level, with positive score changes
highlighted in blue. The red vertical line indicates the time point where the insight-like learning
manifests. Bottom: Time between successive hits reduced over the course of the game, indicating
improved navigation and game control skills.

We computed the accuracy of predicting the bullet type (action), enemy weapon type (target), and
enemy facial expression (distractor) from different layers of the CNN in the shooting agent PPO.
Throughout the training, the final layers were tuned to predict the target feature while decreasing their
predictability of the distractor variable (Figure 3). Likewise, in the movement agent, the predictability
of the biome (terrain type) decreased across the higher layers, as it is irrelevant to the movement
action (Figure 4). However, day/night is still highly predictable, as night offers limited visibility and
might affect movement. These results align with the hypothesis that representational bottlenecks
emerge in higher layers of the network to facilitate task-specific expertise.

Figure 3: Decoding accuracy of action (bullet type), target (enemy weapon), and distractor (enemy
facial expression) from different layers of the CNN in the shooting agent PPO at different stages of
training.
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Figure 4: Decoding accuracy of the terrain type (biome) and day/night from different layers of the
CNN in the movement agent PPO at early (top) and late (bottom) stages of training.

5 Future course of action

Our next steps involve a parallel investigation into human learning to compare with the artificial
agent’s representational changes. We plan to collect longitudinal functional MRI (fMRI) data from six
participants. Each participant will play the game for approximately four hours, split across multiple
days. To ensure the task remains dynamic and to probe the flexibility of representational learning,
we will shuffle the target feature and introduce new enemy features throughout the experiment. This
will allow us to track the evolution of representational transformations within the human brain’s
visuo-motor hierarchy as expertise is built and as task rules are switched.

We plan to train different AI architectures, specifically ones that are built on unsupervised disentan-
glement of enemy features for a more human-like priors in representations Higgins et al. [2017]. By
doing this, we can investigate whether a more human-like prior over representations leads to skill-
acquisition patterns that more closely resemble those of our human participants. This comparative
approach will provide a comprehensive understanding of how expertise is formed in both biological
and artificial systems.
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A Supplementary Material

Figure 5: PCA visualization of the final layer activations in the shooting agent PPO at different
stages of training. Enemy weapon type is the target feature while facial expression is the distractor.
Enemy weapon type representations become more disentangled and aligned with that of action
representations through the course of training, while the distractor feature becomes more entangled.

A.1 Environment

The platform is a 2D Unity game (60 fps) consisting of procedurally generated mazes. They are
generated using random-walker generation to ensure that participants cannot rely on spatial memory
or fixed navigation patterns. The environment varies with the following:

• Biomes: Arctic, Desert, Forest, Volcano, Ocean, and Sunset biomes alter color schemes and
visual context.

• Weather & Time: Weather effects (Rain, Snow, Fog) and day/night cycles add to visual
complexity.

• Controlled complexity parameters: Maze shape and connectivity ensure consistent diffi-
culty while maintaining novelty.

A.2 Task

The task is modeled as a partially observable Markov decision process (POMDP).The core challenge
is a dual-objective task that combines maze navigation with feature-based classification.

An observation ot ∈ Ω is an RGB image rendered from a top-down camera in the 2D environment.
This camera is fixed to the player’s position, keeping them centered within the frame and revealing
only a segment of the maze within a fixed radius. The state of the environment, st ∈ S , which is not
fully visible to the agent, includes the precise coordinates of the agent (x, y) and the enemy (xe, ye),
and any spells in flight. It also contains the enemy’s properties, and static environmental information
like the full topology of the maze and current conditions (biome, weather, day/night status).

An enemy’s configuration is a vector of categorical features

E = [f1, f2, . . . , fk], where fi ∈ {1, . . . , Vi}.

One feature, fd, is designated as the diagnostic feature, while the remaining k − 1 features are
distractors.

6



The action space A is composed of navigation actions {up, down, left, right} and three targeting
actions {bullet1, bullet2, bullet3}. A reward is issued based on the correspondence between the
chosen bullet aj and the value of the diagnostic feature fd. The reward function is defined as

R(s, a) =


+1, if a = bulletj and j = fd(s),

−1, if a = bulletj and j ̸= fd(s),

0, otherwise.

This setup forces the agent to learn a policy π(at | ot) that correctly maps visual evidence of fd to
the corresponding action, while being invariant to variations in the distractor features.

A.3 AI Architecture

The agent’s policy is parameterized by a convolutional neural network (CNN) that processes the RGB
observations (ot, downsampled to 84× 84). The network architecture consists of three convolutional
layers (32 8×8 filters with stride 4, 64 4×4 filters with stride 2, and 64 3×3 filters with stride 1),
each followed by a Rectified Linear Unit (ReLU) activation function. The flattened output of the final
convolutional layer is passed to a fully connected layer with 512 units, which feeds into two separate
output heads: a policy head for the action distribution π(at | ot) and a value head for the state-value
estimate V (ot).

A.4 Policy and Reward Formulation for Movement Agent

The action space is discrete, comprising four navigational actions. The agent’s learning is guided by
a hybrid reward function, Rt, issued at each timestep to encourage efficient navigation to the target.
The total reward is a sum of three components:

Rt = Rprox +Rgoal +Rtime.

Where each component is defined as:

• Proximity Reward (Rprox): A dense shaping reward based on the change in Euclidean
distance, d, to the target. It provides +0.02 for moving closer (dt < dt−1) and −0.02 for
moving farther away (dt > dt−1).

• Goal Reward (Rgoal): A sparse, terminal reward of +2.0 is issued when the agent success-
fully reaches the enemy’s location. This reward is 0 at all non-terminal timesteps.

• Time Penalty (Rtime): A small, constant penalty of −0.001 is applied at every timestep to
incentivize the agent to complete the task as quickly as possible.

A.5 Policy and Reward Formulation for the Shooting Agent

The action space is discrete, comprising three targeting actions. The agent’s learning is guided by
a reward function, Rt, issued at each timestep based on the correctness of the chosen action, +1 if
correct and -1 if incorrect. The agent can shoot multiple times until it makes the correct hit. The
episode ends after the agent successfully hits the enemy.
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