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Abstract: While large language models (LLMs) have made significant strides in natural language processing

(NLP), they continue to face challenges in adequately addressing the intricacies of the Chinese language in certain

scenarios. We propose a framework called Six-Writings multimodal processing (SWMP) to enable direct integration

of Chinese NLP (CNLP) with morphological and semantic elements. The first part of SWMP, known as Six-Writings

pictophonetic coding (SWPC), is introduced with a suitable level of granularity for radicals and components, enabling

effective representation of Chinese characters and words. We conduct several experimental scenarios, including the

following: (1) We establish an experimental database consisting of images and SWPC for Chinese characters,

enabling dual-mode processing and matrix generation for CNLP. (2) We characterize various generative modes

of Chinese words, such as thousands of Chinese idioms, used as question-and-answer (Q&A) prompt functions,

facilitating analogies by SWPC. The experiments achieve 100% accuracy in answering all questions in the Chinese

morphological data set (CA8-Mor-10177). (3) A fine-tuning mechanism is proposed to refine word embedding

results using SWPC, resulting in an average relative error of ≤25% for 39.37% of the questions in the Chinese

wOrd Similarity data set (COS960). The results demonstrate that SWMP/SWPC methods effectively capture the

distinctive features of Chinese and offer a promising mechanism to enhance CNLP with better efficiency.

Key words: Chinese language model; Chinese natural language processing (CNLP); Generative language model;

Multimodal processing; Six-Writings
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1 Introduction

Chinese language and its associated culture

form an essential part of human civilization’s devel-

opment (Wang L, 1959; Xu S, 1997; Zhao YR, 2017).
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The journey from Chinese information to Chinese

natural language processing (CNLP) and finally to

Chinese language intelligence processing (CLIP) has

been a long and historical one. Over several gener-

ations of relentless efforts, remarkable achievements

have been made (Li BA et al., 2005; Feng, 2012).

However, given the challenges arising from the ad-

vancements in artificial intelligence (AI), it is essen-

tial to establish a strong connection between CNLP

and artificial general intelligence (AGI), as empha-

sized by Weigang et al. (2022). While large lan-

guage models (LLMs) have demonstrated significant
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success in natural language processing (NLP) (Schul-

man et al., 2022; Zhou J et al., 2023), they continue

to face the difficulties in achieving expected results

when dealing with certain intricate Chinese process-

ing tasks. This observation is especially significant in

the development of Chinese language models. Sev-

eral key factors contribute to these existing gaps,

making it difficult to accurately capture the nuanced

expression features of the Chinese language.

1. The field of computer information science

and technology, including most AI, machine learn-

ing (ML), LLMs, and image processing models, has

been developed based on English and corresponding

coding. Chinese language is essentially translated

into a form that modern computers can understand.

2. Chinese informatization requires strict dif-

ferentiation of Chinese character codes, such as the

national standard GB 18030-2022 (Standardization

Administration of the People’s Republic of China,

2022) or Unicode (The Unicode Consortium, 2022).

These codes serve as the foundation for Chinese in-

formatization but are insufficient for effectively cal-

culating the similarity between Chinese characters.

To achieve accurate similarity results, CNLP needs

specialized coding approaches and appropriate lan-

guage models that can effectively comprehend Chi-

nese characters and multimodal patterns.

3. The lack of a standardized Chinese character

coding suitable for Chinese language models has re-

sulted in the absence of (1) a unified presentation for

prompting questions and (2) a standardized method

for calculating the similarity between Chinese char-

acters. Despite most research findings indicating

high similarity, CNLP’s actual results are less than

ideal.

In this context, an important challenge—and

the main goal of this study—is to design an appropri-

ate Chinese multimodal processing and coding sys-

tem, which allows ML models to effectively master

Chinese characters and multimodal patterns, while

improving the accuracy of various CNLP tasks.

When reflecting on the history of development

of the Chinese language, the contributions of Shen

XU, a philologist during the Eastern Han Dynasty,

are worth noting. He compiled the earliest Chinese

dictionary in history called “Shuo Wen Jie Zi” (说

文解字) (Xu S, 1997). This reference book system-

atically analyzed the visual forms of Chinese char-

acters and provided detailed explanations of their

origins (Song et al., 2006). The methods introduced

for character creation and usage are collectively re-

ferred to as “Six-Writings” (六书). The classification

system in this cited book categorizes Chinese char-

acters into six types according to their multimodal

composition and usage: pictograms, phono-semantic

characters, simple ideograms, compound ideograms,

transfer, and loan characters (Yeromiyan, 2022).

This paper introduces a novel approach

called Chinese Six-Writings multimodal processing

(SWMP) for Chinese language models, as shown

in Fig. 1. It is referred to as the Six-Writings

concept for phono-semantics, pinyin, image, au-

dio/video, property, and understanding. Within this

unified coding framework, character and word cod-

ing can be seamlessly integrated with Chinese gram-

mar while retaining flexible Chinese customary char-

acteristics. The paper presents the proposal and

applications on Six-Writings pictophonetic coding

(SWPC), the first part of SWMP. It puts forward the

basic concepts and methods for text/image process-

ing based on character generation and representation

of prompt in addition to outlining future research

directions.

With the development of SWPC, let us exam-

ine the question-and-answer (Q&A) mode concern-

ing standard Chinese word formats. In this con-

text, we can consider a word pair (护佑bless, 佑

护bless) and predict their similarity. Manual eval-

uation using the reference materials indicates a sim-

ilarity score of 0.883 (Huang JJ et al., 2019), while

calculation using the language model yields a score

of 0.634 (Jin et al., 2022). To calculate this, we

apply our SWPC approach, taking into account

the Chinese word formation method’s out-of-order

word rules (AB = BA). The similarity of this word

pair is determined as follows: Sim(f (AB), f (BA))

= max(Sim(f (AB), f (BA)), Sim(f (AB), f (AB))) =

1.000, f(·) = SWPC(·). Note that >90% of mod-

ern Chinese characters possess pictophonetic fea-

tures (Zhang B, 2008). We present some calculation

modes for the pictophonetic coding of other Chinese

phrases, such as AQAB, AABB, and ABAB (Zhang

B, 2008; Jin et al., 2022), which effectively reflect the

nuances of CNLP. These modes bear similarities to

the Q&A style used in prompt engineering (Liu PF

et al., 2023), which tackles the challenges of “pre-

train, prompt, and predict,” commonly encountered

with language models.
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Fig. 1 Framework of Six-Writings multimodal processing (SWMP) for Chinese characters

To test our proposed methods, we design some

analogical reasoning models (in which SWPC ad-

heres to the grouping rules of Chinese words) and

study some experimental situations, including pro-

cessing of the Chinese analogical (CA8) data set (Li

S et al., 2018). The analogical reasoning method an-

swers all questions of the CA8-morphological (CA8-

Mor-10177) data set and 12.05% of the questions in

the CA8-semmantic (CA8-Sem-7636) data set with

100% accuracy. The SWPC approach can also be

used to fine-tune the results of word embedding and

analyzes 39.37% question pairs in the Chinese wOrd

Similarity-960 (COS960) data set (Huang JJ et al.,

2019). The relative error between similarity calcu-

lation and artificial basis evaluation is ≤25%. The

analysis shows that our proposal embodies the deli-

cate local representation and overall relevance of the

Chinese language, and has the potential to supple-

ment current CNLP theory and technology. Our

study makes significant contributions in the follow-

ing aspects:

1. The variation problem in Chinese similarity

calculation is revealed. Further, we propose an aug-

mentation method for converting Chinese characters

(and pinyin) from letter code to numerical code for

CNLP, as shown in Section 3.

2. We construct a framework called SWMP,

which allows for the unified multimodal coding of

Chinese characters (and words) with appropriate

granularity for language models in Section 4.

3. We introduce a novel method SWPC and its

applications, establishing a generative mechanism

for representing characters (and words) using pic-

tophonetic features, as shown in Section 5.

4. An experimental database is established, con-

sisting of images and SWPCs for the root, radical,

and components, so that characters can be processed

in dual mode through SWPC and graphics, as shown

in Section 6.

5. We have developed the analogical reasoning

modes and prompting functions of SWPC for various

word combinations, such as repetition (AABB), pre-

fix (PQAB), and suffix (ABPQ). Further, SWPC is

successfully applied to the CA8 data set (Li S et al.,

2018) and COS960 data set (Huang JJ et al., 2019),

as shown in Sections 7 and 8.

6. We point out the research directions for the

future, as shown in Section 9.

2 Related works

To improve the performance of CNLP, several

methods have been introduced to effectively capture

the semantic and morphological information of Chi-

nese characters. Chen XX et al. (2015) proposed

a framework to create low-dimensional distributed

word embeddings, named the character-enhanced

word embedding (CWE) model, which includes sub-

word information and character n-grams. Another

framework for the joint learning of character and

word embeddings uses a convolutional neural net-

work (CNN) to model the internal structure of each

character and a recurrent neural network to model

the context of each word (Xu J et al., 2016). Yu et al.

(2017) proposed an approach named the joint learn-

ing word embedding (JWE) model to jointly em-

bed Chinese words, their characters, and fine-grained

subcharacter components.

Cao et al. (2017, 2018) proposed cw2vec, which

decomposes Chinese characters or words into strokes,

reorganizes them with semantic and morphological

levels through n-gram, and learns word embedding.

Additionally, character embedding models, includ-

ing pinyin and Wubi (WB) input letter coding (The

Wubi Group, 2000), were developed to capture struc-

tural and phonetic information (Zhou JN et al.,

2019). Zhuang et al. (2019) constructed the vec-

tor representation of strokes and adjacent strokes

as sub-character embedding, combined with charac-

ter embedding to achieve continuous enhancement

of word embedding. Cj2vec (Kang et al., 2019)

uses the Cangjie alphabet code to represent Chinese
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characters; it trains the model in the same way as

cw2vec. Zhang Y et al. (2019) introduced ssp2vec,

which integrates strokes, structures, and pinyin of

Chinese characters into a superset to capture the

characteristics of Chinese sub-characters. Wang SR

et al. (2020) introduced radical and stroke-enhanced

word embeddings (RSWE), which captures the lo-

cal structural features of words and integrates im-

plicit information from radicals to enhance seman-

tic embedding. Zhao DP et al. (2021) conducted a

study on the calculation of Chinese text similarity

using the sequence alignment algorithm. Learning

from Chinese word embeddings, Lu et al. (2022) used

the semantic relevance hidden in lower components

(sub-characters) to further distinguish the seman-

tics of corresponding higher components (characters

and words). Jin et al. (2022) developed a model

that captures semantic and morphological informa-

tion using the four-corner (FC) features of characters

and words. More recently, based on graph clustering,

sense embedding was used to improve entity linking

in the Chinese domain (Zhang ZB et al., 2023).

Some valuable research works have used im-

ages of the Chinese characters to improve CNLP

tasks. The character glyph features are directly

learned from the bitmaps of characters by convo-

lutional auto-encoder (convAE), and the glyph fea-

tures improve Chinese word representations (Su and

Lee, 2017). Glyce was developed to enrich the pic-

tographic evidence in characters and increase the

model’s ability to generalize (Meng et al., 2019). A

multimodal model, Glyph2Vec, was developed to ex-

tract visual features from word glyphs to expand

current word embedding space for out-of-vocabulary

(OOV) word embedding (Chen HY et al., 2020). Re-

lated to the study of Chinese character glyphs, some

recent advances in image synthesis and generation

using soft shadow networks are particularly interest-

ing (Sheng et al., 2021, 2022, 2023). Specifically, the

approach of “pixel height,” which is a new geometric

representation that encodes the correlations among

objects, ground, and camera posture, is a novel idea

and is of significant reference value for the further

synthesis and generation of Chinese characters using

text/image component coding.

Notably, Song et al. (2006) studied the produc-

tive expression of the phonetic semantic relations of

Shuo Wen Jie Zi (说文解字). Wang JT (2011) ex-

plored the calculation of Chinese string similarity

based on the clustering features of Chinese charac-

ters. Liu MD and Liang (2021) proposed a method

of dividing Chinese characters into squares based on

the calculation of similarity using radical knowledge

representation learning and thereby constructed the

radical knowledge graph spectrum. These works pro-

vide valuable insights and raise the issue of calcula-

tion of similarity between Chinese characters. Ac-

tually, most CNLP tasks involve calculating similar-

ity, but there is still considerable room for improve-

ment in specific calculations, warranting further

discussion.

The aforementioned research essentially inte-

grates the features of Chinese characters into word

embedding technology to improve CNLP. However,

some studies have pointed out that these attempts

have limited effectiveness and may introduce unnec-

essary noise due to nonstandard representation of

Chinese characters (Jin et al., 2022). LLMs have

different processing costs according to the different

languages processed, with English having the lowest

processing cost (Petrov et al., 2023). Another widely

recognized problem in word embedding technology is

the vector dimension of high-frequency words, which

usually ranges from 50 to 300. In other words, the

dimension is inefficient and costly. Lengthy digi-

tal codes for high-frequency characters are not effi-

cient at all. Taking Chinese as an example, there

are >1000 commonly used characters, so it is very

important to use effective and accurate character en-

coding to reflect the unique features of the Chinese

language.

Our research distinguishes itself from previous

studies by incorporating a multimodal analysis of

Chinese characters. While many previous studies

have relied solely on the morphological and pic-

tophonetic features for word embedding, our re-

search considers the Six-Writings of Chinese charac-

ters and uses a generative radical/component cod-

ing approach. This mechanism provides a more

comprehensive understanding of Chinese character

representation, which is essential for accurately cal-

culating the similarity between Chinese characters.

This paper presents a thorough investigation of the

challenges associated with this task and proposes

a new approach that enhances the capabilities of

CNLP.
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3 Variation in similarity calculation
and augmentation methods

This section introduces the concept of statistical

coefficient of variation (Cv). It further explores the

variation issues and solutions related to numerical

codes such as WB and pinyin.

3.1 Concept of the coefficient of variation

In the probability theory and statistics, when

comparing the similarity (dispersion) between two

sets of data, variations can occur if the measurement

scales or data dimensions of the two sets are incon-

sistent. Cv is a normalized measure of the degree of

dispersion in a probability distribution. It is defined

as the ratio of the standard deviation to the mean

(Everitt and Skrondal, 2010):

Cv =
σ

μ
, (1)

where Cv is the coefficient of variation, μ is the mean

value, and σ is the standard deviation.

In the field of NLP, numerous tasks require

the computation of similarity between characters or

words. In the case of English and other alphabetic

languages, American Standard Code for Information

Interchange (ASCII) codes, which align with com-

puter information processing, are commonly used

for digitizing letters. Subsequently, the similarity

between words or sentences can be determined. It

is also suggested that cosine similarity is well-suited

for essential language modeling tasks in the litera-

ture (Turney, 2012; Mikolov et al., 2013).

Currently, in CNLP research, there are two

primary technical approaches aimed at improving

the understanding of Chinese by language models

through the utilization of Chinese character features:

(1) integrating Chinese character representations,

such as letter or numerical codes, during the word

embedding process to acquire the necessary charac-

ter or word representation vectors for the language

model; (2) using Chinese characters or numerical

codes directly to construct Chinese knowledge maps

and subsequently determining character similarity.

These two techniques typically use pinyin,

strokes, FC numbers, WB letter, or numerical codes

to represent Chinese characters and words. The

similarity between characters or words is then cal-

culated to accomplish various CNLP tasks. How-

ever, when training ML models to embed vectors

for words, there is no standardized input mode or

coding for the digital representation of Chinese char-

acters. The stroke of Chinese characters is directly

digitized (usually between 1 and 5) and inputted into

the language model (Cao et al., 2017, 2018; Wang

SR et al., 2020). Others are represented using letter

codes through Chinese character input methods such

as Cangjie (Kang et al., 2019), WB (Zhou JN et al.,

2019), or FC numbers (Jin et al., 2022).

Due to the diverse techniques used to describe

the features of Chinese characters and the varying

granularities of the language elements in these rep-

resentation methods, variations in similarity calcu-

lations are inevitable. These are the challenges that

CNLP is facing. We use the concept of the statistical

Cv to describe the variation problem in calculating

the similarity between characters, and propose the

solutions of normalization and augmentation to deal

with these variations.

3.2 Augmentation of WB code

WB code is a widely used Chinese input method

for entering characters on computers or mobile de-

vices (The Wubi Group, 2000). The term Wubi

translates to “five-stroke typing,” referring to the

fact that each Chinese character is constructed us-

ing five basic strokes. TheWB input method is based

on the principle of inputting characters according to

their shape, rather than their pronunciation. Users

can enter the character by typing its shape, result-

ing in faster and more accurate input compared to

pronunciation-based methods.

On a traditional QWERTY keyboard, the WB

input method organizes the arrangement of multiple-

digit roots to correspond to specific keys, following

the composition rules of Chinese characters (The

Wubi Group, 2000). It is arranged in the follow-

ing manner: the keyboard is divided into five zones,

numbered 1–5, and each zone has five keys. These

keys are assigned respective letter keys, also num-

bered 1–5, arranged from the middle to the outer

ends of the keyboard. By combining the zone and

position numbers, 25 codes are formed. The zone

codes are as follows: 11(G), 12(F), ..., 51(N), 52(B),

..., 55(X). Table 1 provides a comparison between the

letter codes (key positions) and the number codes

(partitions) of WB on the QWERTY keyboard, in

addition to a statistical analysis of their variability.

According to the rules of WB, although WB
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letter codes are used to encode Chinese characters, a

corresponding WB number code is naturally formed

for each character. These codes range from 11 to 55,

with an average value (μ) of 33, a standard deviation

(σ) of 14.5057, and a Cv of 0.4396. Because of the

narrow value range of numerical codes, the result of

cosine similarity calculations is obviously larger. For

example, when calculating the similarity of the word

pair (粘膜mucous, 黏膜membrane) in the COS960

data set (Huang JJ et al., 2019), the benchmark sim-

ilarity in the original data set is 0.6500 (2.6/4.0).

However, the cosine similarity calculated using the

WB number code is 0.8867, resulting in a relative

error of 36.42% compared to the benchmark.

To address this variation, data augmentation is

applied by expanding the value range of WB num-

ber codes from 11–55 to 11–99 according to the rules

of WB. The average corrected number for the 25

codes becomes 55, with σ being 29.0115 and Cv be-

ing 0.5275 (Table 1). The advantage of the augmen-

tation is that it enlarges the distance between char-

acters in numerical coding, thus producing relatively

small cosine similarity values. For example, the co-

sine similarity of the aforementioned word pair (粘

膜mucous, 黏膜membrane) becomes 0.7997, with a

relative error of 23.03% compared to the benchmark

similarity.

Table 1 Coefficient of variation (Cv) for WB let-

ter/numerical codes and augmented codes

WB Letter/Number AWB Letter/Number

G/11 W/34 G/11 W/57

F/12 Q/35 F/13 Q/59

D/13 Y/41 D/15 Y/71

S/14 U/42 S/17 U/73

A/15 I/43 A/19 I/75

H/21 O/44 H/31 O/77

J/22 P/45 J/33 P/79

K/23 N/51 K/35 N/91

L/24 B/52 L/37 B/93

M/25 V/53 M/39 V/95

T/31 C/54 T/51 C/97

R/32 X/55 R/53 X/99

E/33 E/55

μ 33 μ 55

σ 14.506 σ 29.011

Cv 0.4396 Cv 0.5275

AWB: augmented WB

Based on the above analysis, it is evident that

the numerical representation of different scales leads

to different calculation results when using similarity

measures such as cosine similarity. This variation

in similarity calculation highlights the problem of

variation in Chinese character similarity, which war-

rants attention. Notably, if Hamming (HM) similar-

ity is used, the data augmentation in Table 1 does

not affect the similarity calculation. The HM sim-

ilarity of WB and the normalized and augmented

coding (AWB) for the aforementioned word pair (粘

膜mucous, 黏膜membrane) both yield a similarity

score of 0.5625, with a relative error of 13.46% com-

pared to the benchmark.

The FC method has been used to index and

search Chinese characters based on their shapes.

Each Chinese character has four corners numbered

from zero to nine, representing the basic elements

of the character’s shape, such as horizontal strokes,

vertical strokes, or dots. By combining the num-

bers of these basic elements, a four-digit (plus one

complement number) code is created to identify the

characters. Recently, FC numbers have been used to

represent Chinese characters, aiming to improve the

effectiveness of CNLP (Jin et al., 2022).

We conduct statistical analysis on the FC

number table, which comprises 27 585 Chinese

characters (https://github.com/zongxinbo/rime-

zong/blob/master/sjhm.dict.yaml), yielding the

following insights: 18.30% (5047) of FC numbers

are reused, and 79.42% (21 909) Chinese characters

share the same FC number with other characters.

In certain cases, 117 Chinese characters (such as

带 (bring) and 芳 (fragrant)) simultaneously apply

the FC number 44227. The Cv for the whole set of

27 585 characters is 0.5286.

Furthermore, we examine the WB let-

ter coding table, consisting of 27 536 Chinese

characters (https://github.com/yanhuacuo/98wubi-

tables/blob/master/GB18030-27533.txt), and ob-

tained the following findings: 15.34% (4224) of WB

letter codes are reused, and 35.05% (9650) Chinese

characters share the same WB letter code with other

characters. There are 21 instances of Chinese char-

acters (e.g., 殼 (shell)) that use the WB code FPGC

concurrently. The Cv for the whole set of 27 536

characters is 0.6185.

Table 1 lists the specific normalized and aug-

mented WB (AWB) codes that serve two purposes.

First, we propose a coding approach to combine FC

numbers and WB in order to effectively reduce the

occurrence of duplicate codes. Second, the number
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range of the FC number is 0–9, and the number

coding of WB is augmented from 11–55 to 11–99,

which does not affect the coding rules of WB. Ta-

ble 1 and the above discussions also show how nor-

malized and augmented coding can improve the Cv,

resulting in consistent similarity calculation between

characters (or words) compared to using just WB or

FC numbers.

3.3 Augmentation of pinyin numerical code

Chinese pinyin consists of initials and vowels,

with a total of 23 initials—b p m f d t n l g k h j q x

zh ch sh r z c s y w, and 24 vowels—a o e i u ü ai ei

ui ao ou iu ie üe er an en in un ün ang eng ing ong.

By using the lowercase letter v instead of ü, all the

26 English letters can fully represent the initials and

vowels. Referring to the English alphabet coding of

the GB 18030-2022 standard, the numerical codes of

the capital letters A–Z range from 65 to 90 (decimal).

The average value (μ) is 77.50, σ is 7.3598, and Cv is

0.0950, as shown in Table 2 (because of the regular-

ity of the sequence, several rows are omitted). This

small Cv affects the calculation of phonetic similarity

between Chinese characters. Similarly, if only low-

ercase alphanumeric codes are used to represent the

initials and vowels (a–z: 97–122), a similar situation

arises: μ is 109.50, σ is 7.3598, and Cv is 0.0672.

To address the problem of the small Cv, we pro-

pose a normalization and augmentation method of

digital conversion for pinyin. Specifically, the initial

letters are coded using uppercase letters from GB

18030-2022, the vowel letters are coded using low-

ercase letters, and the vowel letter ü is coded using

the lowercase letter v. Table 2 presents the phonetic

alphabet coding and a comparison between the GB

and augmented codes.

The first column represents the 26 uppercase

and lowercase English letters. The second column

shows the decimal codes in GB 18030-2022 corre-

sponding to these uppercase and lowercase letters.

For example, the code for A/a is 65/97. Column 3

normalizes the codes of the 52 letters A–Z and a–z

from 65–122 to 11–99, using integers. In this pro-

cess, the code for F is adjusted from 70 to 19, f is

adjusted from 102 to 68, and n is adjusted from 110

to 81 to avoid using 0 as a code. After normaliza-

tion and augmentation, the coding for A/a becomes

11/59. The average value of the 52 letter codes is

54.8669, σ is 27.4341, and Cv is 0.5000. It is close

Table 2 Coefficient of variation (Cv) for the GB code

and augmented codes to present letters

Letter GB code Augmented code

A/a 65/97 11/59

B/b 66/98 13/62

C/c 67/99 14/63

D/d 68/100 16/65

E/e 69/101 17/66

F/f 70/102 19/68

... ... ...

V/v 86/118 43/93

W/w 87/119 45/94

X/x 88/120 46/96

Y/y 89/121 48/97

Z/z 90/122 49/99

Cv of GB A–Z 26 letters 0.0950

Cv of GB a–z 26 letters 0.0672

Cv of augmented 52 letters 0.5000

A–Z and a–z

to 0.5275, the coefficient of the augmented number

code in Table 1.

Based on the normalized and augmented Chi-

nese pinyin numerical coding presented in Table 2,

the coding for the pinyin zhāng of 张 (zhang) is as

follows: the code for the initial consonant ZH is 4922,

and the code for the vowel ang is 598169. To analyze

the pronunciation similarity between张 (zhang) and

黄 (huang), we calculate the cosine similarity using

the GB numbers of capital letters. The similarity of

cosine by pronunciation between the two characters

is 0.9752. However, when the augmented GB num-

bers of uppercase and lowercase letters are used in

Table 2, the similarity of pronunciation cosine be-

tween the two characters is 0.9251. In both cases,

the HM similarity is 0.7.

This example emphasizes once again that there

are differences in calculating the cosine similarity

for Chinese characters due to the different numer-

ical codes assigned to letters. The proposed pinyin

numerical augmentation method is very similar to

the conversion between English letters and numbers.

In Chinese pinyin, we use uppercase letters/numbers

to represent initials and lowercase letters/numbers to

represent vowels, thus increasing the numerical dis-

tance between initials and vowels. This method has

a positive effect on calculating the cosine similarity

between pinyin representations.
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4 Framework of SWMP

This section provides an overview of the Six-

Writings concept and presents the framework of

SWMP for Chinese characters (or words), and the

related discussion.

4.1 Concept of Six-Writings

Modern Chinese characters have evolved from

ancient Chinese characters, and understanding the

structure of Chinese characters requires knowl-

edge of their ancient counterparts. Shen XU’s

Shuo Wen Jie Zi (说文解字) from the Eastern

Han Dynasty classified Chinese characters into Six-

Writings (六书, liùshū), representing six different

structural types (Xu S, 1997; Yeromiyan, 2022):

1. Pictograms (象形): characters that visually

resemble the objects they represent, such as日 (Sun).

2. Ideograms (指事): characters wherein the

form itself expresses a specific meaning, represent-

ing abstract concepts such as numbers or directions,

e.g., 上 (up) and下 (down).

3. Compound ideograms (会 意): charac-

ters composed of two or more ideograms, con-

veying complex meanings, e.g., 亻 (person)+

木 (wood)=休 (rest).

4. Pictophonetic (形声): characters composed of

phonetic components for pronunciation and semantic

components for meaning, such as羊 (sheep),洋 (for-

eign), and样 (kind), all pronounced as “yang.”

5. Transformed cognates (转注): characters that

have undergone changes in pronunciation over time

and no longer resemble their original form, for exam-

ple, 考 (old)=老 (old).

6. Loan characters (假借): words borrowed from

other languages that share similar pronunciation or

meaning, e.g.,乎 (hu)=呼 (call).

The Six-Writings of Chinese characters is a

multimodal way of understanding Chinese charac-

ters, which was summarized by the ancients. It takes

into account how human beings understand Chi-

nese characters through their five senses. Following

Shuo Wen Jie Zi, this paper proposes a compre-

hensive multimodal processing framework and cod-

ing method for Chinese characters (or words), which

adapt to modern Chinese language models.

4.2 Framework of SWMP

The SWMP framework for Chinese language

models consists of six parts: (1) pictophonetic, (2)

pinyin, (3) property, (4) image, (5) audio/video, and

(6) understanding (word embedding), as shown in

Fig. 1.

The first part deals with the letter/number cod-

ing of the pictophonetic features of the radical and

components of Chinese characters. The second part

is pinyin and tone coding of Chinese characters. The

third part includes coding the main attributes of

characters, such as human-related attributes, gen-

der, and semantic interpretation. The fourth part

represents image information related to characters.

The fifth part contains the audio/video information.

Finally, the sixth part deals with the word embed-

ding vectors and other semantic information of char-

acters (or words) for understanding. For instance,

the character伯 (uncle) is used as an example in the

image, and its WB letter code is WRG, with the cor-

responding number code being 343211. According to

Table 1, the AWB code is 575311.

This comprehensive multimodal processing

framework allows for a detailed representation of

Chinese characters and words in the Six-Writings

style, facilitating various language processing tasks

and enabling a deeper understanding of their struc-

ture and attributes.

In practical applications, different parts of the

SWMP framework can be combined based on specific

task requirements. For example, Section 5 of this pa-

per focuses on the detailed explanation of the first

part of SWMP for pictophonetic representation. The

second part creates the Six-Writings pinyin code,

while the first and third parts can be combined to

form the Six-Writings semantic code. Furthermore,

integrating the first, second, and fourth parts results

in the comprehensive text/pronunciation/image pro-

cessing of Six-Writings.

To facilitate the analysis, this paper provides

the basic naming specifications for Chinese cod-

ing according to Xinhua Dictionary, including the

following:

1. The FC numbers consist of a total of five

digits, each ranging from zero to nine.

2. Stroke code (SC) varies in length depend-

ing on the complexity of Chinese characters, ranging

from one to five.
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3. The WB numerical code comprises a total

of eight digits. If the code has <8 digits, zeros are

appended to the end.

4. The combination of AWB and FC code is

known as SWPC, which usually uses a total of 10

digits.

5. Six-Writings pinyin (SWPY) is a numerical

code that represents pinyin, including 11 digits for

the pinyin and tone codes.

6. Six-Writings image code (SWIC) is a digi-

tal representation of a character by an image, typi-

cally represented by a 0–1 digital matrix of Chinese

characters.

In the following we provide an introduction to

the rules, methods, and applications associated with

the combination and utilization of SWMP. We pri-

marily focus on the overall design framework of

SWMP; it places particular emphasis on the research

methods and applications of SWPC, SWPY, and

SWIC. The coding and application of audio/video

and property understanding by multi-dimensional

classification (Saleh and Weigang, 2023) will be ad-

dressed as future research endeavors.

4.3 SWPY code

The digital conversion and augmentation of Chi-

nese pinyin are shown in Table 2. The pinyin tone

represents the tone in Putonghua, commonly known

as the four tones. The level tone (first tone) is rep-

resented by ˉ, such as lā; the rising tone (second

tone) is represented by ˊ, such as lá; the falling-

rising tone (third tone) is represented by ˇ, such

as lǎ; the falling tone (fourth tone) is represented

by ˋ, such as là. Since the longest pinyin does not

exceed five letters, such as zhang (zhāng), each let-

ter is converted into two numbers along with the

tone. Therefore, the numerical code of pinyin con-

sists of 11 digits. For example, the pinyin (zhāng)

for character 张 (zhang) is coded as 49225981691,

and the pinyin (lǜ) for character绿 (green) is coded

as 28930000004.

In summary, modern Chinese characters are

characterized by flexibility and diversity due to his-

torical evolution and other factors. This includes

the presence of polysemy (multiple meanings) and

homophony (multiple pronunciations). Recognizing

Chinese characters requires the synthesis of multi-

modal information like Six-Writings, such as picto-

phonetic codes, pinyin, images, and others. The pro-

posed SWMP for CNLP is a promising approach for

achieving this goal.

5 SWPC approach

This section introduces the SWPC of Chinese

characters and its application in measuring the sim-

ilarity between the characters or words.

5.1 Pictophonetic property

Chinese characters are logograms with a hier-

archical structure consisting of strokes and compo-

nents. Strokes are the basic units of character for-

mation, and components are formed by combining

strokes (Wang L, 1959; Wang SK, 2016). It is esti-

mated that over 90% of Chinese characters belong

to the phono-semantic (形声, x́ıngshēng) category

(Zhang B, 2008; Yeromiyan, 2022). Phono-semantic

characters are typically composed of a semantic com-

ponent, namely the radical (形旁, x́ıngpáng) and a

phonetic component (声旁, shēngpáng). The se-

mantic component represents the overall meaning or

category of the character and is commonly referred to

as the radical component. The phonetic component,

on the other hand, serves as a means to differentiate

characters with similar meanings or pronunciations.

According to Fig. 1, the first part of SWMP is the

pictophonetic code for Chinese characters.

In this study, we propose a new pictophonetic

code, SWPC, which is derived from the AWB nu-

meric codes and FC numbers. Chinese pictophonetic

features are considered as combinations of radical

and phonetic components, which can be further cat-

egorized into the following eight types (Wang SK,

2016): (1) radical on the left, phonetic on the right;

(2) phonetic on the left, radical on the right; (3) rad-

ical on the top, phonetic on the bottom; (4) radical

on the bottom, phonetic on the top; (5) radical on

the inside, phonetic on the outside; (6) radical on

the outside, phonetic on the inside; (7) radical occu-

pying a corner; (8) phonetic taking a corner. Based

on these eight classifications, SWPC consists of the

radical code (semantic component) and the phonetic

code (phonetic component), as follows:

1. SWPC radical code consists of AWB radical

code (two digits) and FC radical code (two digits).

The phonetic code is composed of the WB compo-

nent code (six digits). Generally, it is composed of

10 digits.
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2. If a character has a four-digit WB shaped

side code, the radical code of SWPC is the same

as four-digit code. The phonetic code is formed

by combining the remaining WB component codes

(four-digit numbers) with FC component codes (two-

digit numbers), resulting in a total of 10 digits.

3. For other Chinese characters that do not pos-

sess pictophonetic properties, their codes are based

on the AWB numeric code (eight digits, with trailing

zeros if necessary) followed by the last two digits of

the FC numbers, totaling 10 digits.

SWPC is expected to be a more comprehensive

and informative representation of Chinese characters

than previous pictophonetic codes. It has the po-

tential to improve the accuracy of Chinese character

recognition and other NLP tasks. The following sub-

sections provide detailed explanations and examples

of various combinations to form SWPC. For specific

principles of stroke splitting and coding rules, please

consult the relevant resources on the WB method

(The Wubi Group, 2000).

5.2 Character by left and right components

Most Chinese characters are formed by combin-

ing the left and right components. For example,

character 横 (horizontal) has the WB letter code

SAMW and the WB numeric code 14152534. Ac-

cording to the WB coding rule, as shown in Fig. 2,

the key position of the left radical木 (wood) on the

QWERTY-based keyboard is S, and its position code

is 14. The code of the phonetic component 黄 (yel-

low) is 152534. According to Table 1, the normalized

and augmentedWB number is 17193957, with a radi-

cal code of 17 and a phonetic code of 193957, totaling

8 digits.

Fig. 2 WB coding of character 横横横 (horizontal)

(http://life.chacuo.net/convertxuezi)

Another character酮 (ketones) has theWB code

SGMK, the WB numeric code 14112523, the normal-

ized and augmented code 17113935, the radical code

17, and the component code 113935. The radical

codes of 横 (horizontal) and 酮 (ketones) are the

same, i.e., 17, resulting in duplicate codes. Note

that the FC numbers of these two characters are dif-

ferent. The FC number of character 横 (horizontal)

is 44986, the radical 木 (wood) has a number code

of 49, and the phonetic 黄 (yellow) has a number

code of 486. To avoid code duplication and enhance

the digital representation of the pictophonetic fea-

tures, we combine the advantages of WB and FC and

modify the radical 木 (wood) of character 横 (hori-

zontal) to 1749, while keeping the phonetic 黄 (yel-

low) unchanged at 193957. The combination of the

normalized and augmented WB numerical code and

FC numbers is called SWPC. In this case, character

横 (horizontal) is coded as 1749193957, with a total

of 10 digits.

Similarly, the FC number of character 酮 (ke-

tones) is 17620, with the radical酉 (unitary) having

a code of 16 and the phonetic component 同 (same)

having a code of 720. The SWPC is 1716113935, ef-

fectively distinguishing the two radicals 木 (wood)

and 酉 (unitary). This demonstrates the advan-

tages of using SWPC to represent Chinese charac-

ters, especially when calculating the similarity be-

tween Chinese characters (or words) and conducting

multimodal text/image processing.

5.3 Character by upper and lower compo-

nents

Let us take character 写 (write) as an example

to explain SWPC in the case of upper and lower

combination. Its WB code is PGNG, and its WB

numerical code is 45115111. The radical 冖 (top)

is positioned at the top. According to the WB rule

(Fig. 3), the key position is P, the radical code is 45,

and the augmented code is 79. The phonetic code

is 115111. Referring to its FC numbers as 37127,

the radical number is 37, and the phonetic number is

127. By the combination of WB and FC, the SWPC

for写 (write) is 7937119111.

Fig. 3 WB coding of character 写写写 (write)

(http://life.chacuo.net/convertxuezi)

Since there are multiple characters with the

same radical key code, such as character 宝 (pre-

cious) also related to the P key, with WB letter code

PGYU and WB numeric code 45114142, consider-

ing that the FC number of character 宝 (precious)

is 30103, we also combine WB with the FC num-

bers. The SWPC for 宝 (precious) is 7930117173,
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where the radical code is 7930 and the phonetic code

is 117173, avoiding duplication with the WB radical

code of写 (write).

5.4 Character by internal and external com-

ponents

Let us take character医 (medicine) as an exam-

ple to explain SWPC for the internal and external

combination. Its WB code is ATDI and its WB nu-

meric code is 15311343. The radical匚 is positioned

on the outside, with WB key position A and number

code 15 (Fig. 4). The phonetic component 矢 (ar-

row) is positioned on the inside, with code 311343.

The FC number of word医 (medicine) is 71718. The

SWPC is 1977511575, with the radical code being

1977 to avoid code duplication, and the phonetic

code is 511575.

Fig. 4 WB coding of character 医医医 (medicine)

(http://life.chacuo.net/convertxuezi)

In addition to the aforementioned composition

modes, there are other combinations. Specifically,

we can refer to the WB rules and the methods intro-

duced here to define their SWPC.

We have produced a database of 1000 commonly

used Chinese characters using SWPC. The repetition

rate of SWPC is <0.2%, which is much lower than

the repetition rates of other encoding systems, such

as FC numbers (24.5%) and WB code (1.5%).

5.5 SWPC for similarity between words

A morpheme is the smallest unit in a language

that combines sound and meaning. For Chinese, it

serves as the basic building block for word formation

and is the smallest independent language unit within

a sentence (Huang BR and Li, 2012).

There are two types of morphemes: roots and

affixes. Roots are meaningful morphemes that can

occur in different positions within a word, while af-

fixes are adhesive morphemes with fixed positions

and unreal meanings in compound words. The ba-

sic patterns of Chinese word formation include root,

root+root, prefix+root, and root+suffix. The root,

prefix, or suffix can consist of one or more Chinese

characters. For instance, 国家 (country) and 学

生 (student) are compound words formed by com-

bining two roots, while 老子 (Laozi) is a compound

word consisting of a prefix and a root, and橘子 (or-

ange) is a compound word consisting of a root and a

suffix (Huang BR and Li, 2012).

The coding of Chinese words can be achieved by

naturally combining the SWPC of characters. This

is one of the generative properties of SWMP. For

instance, let us consider word 朦胧 (hazy), where

the WB code for character 朦 (deceive) is 33154533

(EAPE), and the FC number is 74232. Similarly, the

WB numeric code for character胧 (hazy) is 33135551

(EDXN), and the FC number is 73214. The radicals

for both characters, 月 (Moon), share the SWPC

radical code 3372. Therefore, the WB code for word

朦胧 (hazy) becomes 33154533 33135551, and the

SWPC is 5572197955 5572159991.

Using SWPC, we can naturally deduce the cal-

culation of similarity between words, which is impor-

tant for various tasks of CNLP. Numerous studies

have explored the calculation of similarity between

Chinese words (Zhao DP et al., 2021). In particular,

Wang JT (2011) refined the result of string match-

ing by clustering patterns of Chinese characters, and

proposed a two-level similarity model.

Table 3 gives the results of similarity calculation

between the selected word pairs in Wang JT (2011).

Although these results may not be the standard an-

swers, we use the results of EE+WB and JE+WB

as benchmarks. Among them, EE stands for the

similarity algorithm based on the editing distance,

and JE stands for the similarity algorithm based on

the Jaro-Winkler distance, with the WB code being

used. The WB numerical code and SWPC are used

in our research.

In Table 3, the Chinese word pairs are trans-

lated as the following: (松驰slack, 松弛slack), (走

漏leaked, 走露leaked), (李鹏Li Peng, 李朋Li Peng),

(曝光exposure, 暴光exposure), (霎时instant, 剎

时instant), (修葺repair,修茸repair), (赋予confer,服

役service), and (虚心humility, 步履walk).

In Table 3, using FC, five-stroke, and SWPC,

the similarity between cosine and HM similarity is

calculated for comparison. Lines 11 and 12 in the

table display the mean relative error (MRE) and

variance of relative error (VRE) of these similari-

ties compared to the results obtained with EE+WB

(Wang JT, 2011). Lines 13 and 14 show the MRE

and VRE of these similarities compared to those

calculated using JE+WB. From the perspective of
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the phono-semantic features of Chinese characters,

cosine similarity is not suitable for describing the

similarity between Chinese characters (and words).

In all cases, the average and VREs are very high

compared with the benchmark results. Note that it

is impossible to distinguish word pairs with different

glyphs. For instance, the cosine similarity between

虚心 (humility) and 步履 (walk) is above 0.7041.

However, the calculation of HM similarity is rela-

tively stable, especially when the SWPC (HM* col-

umn) proposed in this paper is adopted. Compared

to the benchmark results of JE+WB, the MRE with

JE is 0.1180, and the VRE with JE is 0.0257. More-

over, the HM similarity of the word pair 虚心 (hu-

mility) and 步履 (walk) is 0.4313, enabling a better

distinction between them.

Table 3 Similarity comparison among the different

code methods

Word
FC WB SWPC

EE+WB JE+WB
COS HM COS HM COS HM*

松驰 松弛 0.922 0.800 0.889 0.625 0.873 0.713 0.750 0.861

走漏 走露 0.774 0.600 0.825 0.500 0.742 0.550 0.500 0.500

李鹏 李朋 0.890 0.900 0.908 0.750 0.879 0.825 0.875 0.967

曝光 暴光 0.678 0.700 0.956 0.750 0.941 0.725 0.750 0.925

霎时 刹时 0.807 0.600 0.873 0.625 0.815 0.613 0.500 0.500

修葺 修茸 1.00 1.00 0.877 0.688 0.842 0.844 0.875 0.963

赋予 服役 0.719 0.400 0.756 0.125 0.675 0.263 0.125 0.250

虚心 步履 0.704 0.300 0.917 0.563 0.884 0.431 0.292 0.528

MRE with EE 0.976 0.367 1.140 0.192 1.000 0.241 – –

VRE with EE 0.838 0.027 1.390 0.555 1.320 0.298 – –

MRE with JE 0.478 0.232 0.546 0.189 0.467 0.118 – –

VREwith JE 0.187 0.255 0.499 0.112 0.467 0.026 – –

MRE: mean relative error; VRE: variance of relative error; EE: similarity al-

gorithm based on the editing distance; JE: similarity algorithm based on the

Jaro-Winkler distance

6 SWPC for text/image processing

SWPC provides convenience for multimodal

processing of Chinese characters using image and

text data. Drawing from the coding process of WB

(The Wubi Group, 2000; Gao, 2003), tens of thou-

sands of Chinese characters can be categorized into

three main situations based on their character for-

mation rules:

1. The character itself serves as a root character.

2. The character’s root is a radical (semantic) of

another Chinese character, represented by a radical

code (a part of SWPC).

3. The character’s root is a component (pho-

netic) of another Chinese character, represented by

a phonetic code (a part of SWPC).

Fig. 5 illustrates some Chinese characters in

the form of a matrix. The Chinese character pic-

tures in the first and third columns are the same

as those in the third row. These characters have

three identities. Let us take 口 (mouth) as an

example. It is a Chinese character itself (root)

with an SWPC of 35353535 and an FC number of

60000. Furthermore,口 (mouth) functions as a rad-

ical with an SWPC code of 3560, and also serves

as a component with a phonetic code of 351100 by

SWPC. The character 斤 (catty) shares similar fea-

tures. As shown in Fig. 5, the Chinese character

听 (listen) (3560533100) is generated by combining

the radical code of 口 (mouth) with the phonetic

code of斤 (catty) (533100). Similarly, the character

叹 (sigh) (3560977100) is generated by combining

the radical code of 口 (mouth) with the phonetic

code of 又 (again). The pattern in Fig. 5 is evident,

with each row displaying Chinese characters shar-

ing the same semantic component and radical code.

Similarly, each column of Chinese characters repre-

sents the same (or similar) phonetic components with

identical or similar phonetic codes.

The following list outlines the main steps of the

image/text multimodal processing algorithm, with

the complexity of O(n2), by combining SWPC with

the image 0-1 matrix of Chinese characters:

Step 1: coding the root characters. The root

characters are coded using the SWPC method and

saved in a data set. Following the WB principle of

character splitting, there are approximately 300 root

characters. As an example, this section uses four root

characters (口 (mouth), 女 (female), 斤 (catty), and

又 (again)), along with their corresponding radical

and phonetic components, as well as the nine Chinese

characters generated by them (Fig. 5). This step

essentially labels the roots, radicals, and phonetic

components of Chinese characters.

Step 2: pre-processing the images of the afore-

mentioned root characters, including radicals and

phonetic components. Each root (or radical or com-

ponent) image is binarized using the Otsu threshold

method (Otsu, 1979). This process converts the im-

age into a matrix of zeros (0) and ones (1), where

each matrix unit corresponds to a single image. This

matrix is referred to as SWIC. Fig. 6 illustrates a 0-1

matrix of character口 (mouth).

Step 3: establishing a Chinese character root

image/text (coding) database. After digitizing all
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Fig. 5 Character matrix generated by the combination of radical and phonetic component codes

the images based on the coded root characters and

their SWPC (from step 1), a databae of roots (as

well as radicals and phonetic components) of Chi-

nese characters is created. A simple root database

is established with the four characters mentioned in

step 1 (Fig. 5).

Step 4: similarity calculation between the im-

age codes of Chinese characters (image matrix). We

use the HM distance similarity (Hamming, 1950) to

predict the similarity between image matrices of Chi-

nese characters. The HM distance metric for binary

inputs measures the number of differing positions

between corresponding bits. In other words, it cal-

culates the sum of differences between the bit units of

two compared images. Therefore, the output of the

HM function corresponds to the count of bit differ-

ences, where zero indicates complete image equality.

Step 5: multimodal processing of Chinese char-

acter using image/text. Based on the root database

of characters (with the image matrix and SWPC of

radical and component), various tasks of multimodal

processing can be performed. Four roots and their

associated radicals and components are processed to

generate nine Chinese characters, which are listed in

Fig. 5.

Step 6: result generation. Given a Chinese

character, with the above steps our algorithm can

identify which combinations of radical and phonetic

components generate the similar character through

similarity analysis. It is possible to provide the cor-

responding SWPC for understanding that character,

as shown in Fig. 7.

After processing and comparing the image of a

new character (source) with each image of the root

Fig. 6 Character 口口口 (mouth) by a 0-1 matrix
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93%

91%
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Fig. 7 Correctly identified and generated Chinese

characters using image and SWPC (References to

color refer to the online version of this figure)

characters (target) in the root character database,

the algorithm provides the similarity percentage, as

shown in Fig. 7. This percentage represents the

similarity between the source image and each target

image. The chart in Fig. 7 represents this comparison

and lists the three most similar symbols (including

radicals or phonetic parts) between root characters

and the image itself. Blue indicates the matching

character (source and target), green indicates the

correct prediction of radical and components, and

red indicates the wrong prediction.

However, note that the proposed algorithm



Weigang et al. / Front Inform Technol Electron Eng 2024 25(1):84-105 97

using HM distance similarity is a simple method

to solve this problem and has certain limitations.

As mentioned above, it calculates the differences be-

tween image matrices, regardless of factors such as

handwriting style, aesthetics, or change in radical po-

sitions (such as higher, lower, or inclined positions).

Due to these limitations, some errors can occur, as

seen in Fig. 8, where characters like 听 (listen) are

incorrectly identified. This technical problem does

not affect the basic principle of SWMP.

3560533100

3560

9575

35353535

9774

0% 20% 40% 60% 80% 100%

Similarity

3560533100 3560 9575

100%

92%

88%

87%

86%

Fig. 8 Incorrectly identified Chinese characters using

image and SWPC

Using the SWPC method, a root database with

the image matrices and corresponding SWPC will be

established. Because the WB input method can gen-

erate 300 roots, radicals, and components, the size

of the database can still be managed. These compo-

nents and their combinations can generate >10 000

Chinese characters. For any new Chinese character

as the source, its similarity with each root in the

database can be determined without the necessity to

learn from any corpus, enabling image processing by

“once learning” mechanism (Weigang and da Silva,

1999) to obtain the whole image of the character at

one time.

Further research in this direction will be essen-

tial for advancing algorithms in pattern recognition,

image synthesis, and generation. The use of soft

shadow networks has great potential for a variety

of applications (Sheng et al., 2023), including the

generation of OOV characters without the need to

consult any corpus or other sources.

7 SWPC for analogical reasoning

In this section, we establish analogical reasoning

models that align with the morphological features

of Chinese words and apply them to the Chinese

analogical (CA8) data set and other Chinese idioms.

The CA8 data set was developed by the School

of Chinese Information at Beijing Normal Univer-

sity (Li S et al., 2018). Its objective is to provide

benchmark data and evaluate the analogical reason-

ing tasks in CNLP. The data set consists of two parts:

CA8-MOR-10177 comprises 10 177 pairs of

questions concerning the formation of Chinese words,

focusing on their morphological properties such as

repetition, prefixes, and suffixes.

CA8-SEM-7636 contains 7636 pairs of questions

related to the formation of Chinese words, highlight-

ing the semantic rules of the Chinese language. The

questions primarily cover 28 types of semantic rela-

tions from the domains of geography, history, nature,

and human aspects.

7.1 Analogical reasoning method

Analogical reasoning, which explores language

regularities, plays a crucial role in NLP. By cal-

culating the representation vector of characters or

words, the analogy problem can be solved given

the word representations. For instance, examples

like “apples–apple+car≈cars” illustrate morphologi-

cal rules, while “king–man+woman≈queen” demon-

strates semantic rules (Turney, 2012; Mikolov et al.,

2013). Currently, many studies apply ML models,

specifically word embedding techniques, to capture

vector representations of words with semantic and

syntactic properties. Pre-training on large corpora

enables these models to enhance Chinese processing

performance by providing insights into meaning and

relationships.

Considering the pictophonetic features of Chi-

nese characters and the Chinese language program,

we divide the question pairs in the CA8 data set into

two categories:

1. In standard language scenarios, new char-

acters or words are generated based on Chinese

language regulations and customs. If we have

a question pair (A:B; C:X ), where A, B, and C

are known characters or words, and X is an un-

known, we can use SWPC to encode the characters

or words. Hereinafter, unless otherwise specified,

f(·) = SWPC(·). With f(A), f(B), and f(C), the

generation of f(X) of character or word, X , can be

expressed as follows:

f(X) = f(B)− f(A) + f(C). (2)

The encoding requirement in Eq. (2) ensures

that the differences between characters or words are

distinguishable by morphological rules. In this case,

the HM distance can be used to determine and char-

acterize the similarities and differences between X

and other characters.
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2. In non-standardized language scenarios, new

words are generated with maximum similarity.

Different from the aforementioned scenario, it be-

comes necessary to calculate the similarity between

characters or words due to the flexibility and id-

iomatic nature of Chinese. To account for uncer-

tain language environments where exact but simi-

lar words may not exist, we can search for charac-

ters or words with the highest similarity to f(X) =

SWPC(X) relative to the known A, B, and C. This

can be expressed as follows:

Find X : argmax{Sim(f(X), f(B)− f(A) + f(C))}.

(3)

Because this paper focuses on SWPC, our pri-

mary investigation revolves around the analogical

reasoning problem that adheres to morphological

regulations. Although Mikolov et al. (2013) demon-

strated the effectiveness of cosine similarity in cap-

turing syntactic and semantic relations, it necessi-

tates further in-depth exploration, particularly for

Chinese characters.

7.2 Analogical modes for CA8-Mor-10177

While Chinese character formation exhibits flex-

ibility and diversity, it still adheres to fundamental

rules, as explained in the classic Chinese grammar

textbook (Wang L, 1959; Zhang B, 2008; Wang SK,

2016). Based on the CA8-Mor-10177 data subset

(see Table 1 in Li S et al. (2018)), we present the

basic pattern generation and similarity calculation

methods for morphological characters using SWPC.

7.2.1 Repetitive character combination modes

The CA8-Mor-10177 data subset comprises var-

ious patterns involving character repetition, includ-

ing A-character repetitive classes and three specific

generation modes (A-A, A-一 (one)-A, A-来 (come)-

A-去 (go)), totaling 2554 questions. There are also

AB repetitive classes with three specific genera-

tion modes (A-A-B-B, A-里 (within)-A-B, A-B-A-

B), amounting to 2535 questions. This subsection

generalizes these patterns based on Chinese word

formation methods and generates new words using

SWPC.

1. (A, A-P-A) mode

The CA8-Mor-10177 data subset presents sev-

eral (A, A-一 (one)-A) patterns, such as 避 (avoid)

(A) and补 (make up) (X ): (避,避一避;补,补一补).

Similar patterns exist in Chinese, such as 大 (large)

(A) and 不 (no): (大, 大-不-大). Therefore, for this

type of Chinese word formation, we propose a more

general A-P-A model, which can be summarized as

(A, A-P-A; B, X -P-X ). The generation of a new

word can be expressed as follows:

f(XPX) = Concat((f(AP)− f(A0) + f(X0)), f(X)),

(4)

where Concat(·) is used to concatenate two strings

of numbers, 0 is a vector with zeros, and its length

is equal to that of the preceding word code, filling in

the blanks. The correctness of Eq. (4) can be verified

using the HM distance:

HMDis(f(A), f(X))

= [HMDis(f(APA), f(XPX))]/2, (5)

where HMDis(·) represents the HM distance between

the two strings of SWPC. To save space, the word

generation modes described later exclude the verifi-

cation modes based on the HM distance.

2. (A, A-P-A-Q) mode

The CA8-Mor-10177 data subset presents sev-

eral questions: (说(A), 说(A)来(P)说(A)去(Q));

比(X ), 比(X )来(P)比(X )去(Q)), involving说 (say),

来 (come), 去 (go), and 比 (compare). Chinese lan-

guage exhibits similar patterns in other words, such

as 能上能下 (being able to go up and down) and 不

上不下 (not going up or down). Therefore, for these

Chinese word patterns, we propose a more general A-

P-A-Q model, namely (A, A-P-A-Q; X, X -P-X -Q).

Using SWPC, we have

f(XPXQ) =Concat((f(AP) − f(A0) + f(X0)),

(f(AQ) − f(A0) + f(X0))), (6)

where the length of 0 equals that of the previous

word code used to fill in the blanks.

3. (AB, A-P-AB) overlapping mode

The CA8-Mor-10177 data subset includes sev-

eral questions, such as (慌张(AB), 慌(A), 里(P), 慌

张(AB);马虎(XY );马(X ),里(P)马虎(XY )), involv-

ing 慌张 (panic), 里 (connection), and 马虎 (care-

less). This mode can be summarized as (AB, A-

P-AB; XY, X -P-XY ). Like the previous model, we

have

f(XPXY) =Concat((f(AP)

− f(A0) + f(X0)), f(XY)). (7)

4. (AB, AA-BB) overlapping mode
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Within the CA8-Mor-10177 data subset, there

are several problems: (安全(AB), 安安(AA)全

全(BB); 快乐(XY ), 快快(XX )乐乐(YY )), involving

安全 (safety) and 快乐 (happy). The model can be

summarized as follows: (AB, AA-BB;XY,XX -YY ).

Like the previous model, we have

f(XXY Y ) = f(AABB) − f(0AB0)

+ f(0XY0) − f(A00B) + f(X00Y). (8)

The data set encompasses not only the AB and

ABAB overlapping patterns but also various other

patterns commonly found in Chinese word forma-

tion, such as ABAC, ABCA, ABBC, ABCB, ABCC,

and more. These patterns, including the AABB

mode generated by SWPC, play a substantial role

in Chinese character recognition and understanding

the formation of Chinese words. While we do not

delve into the specifics of these modes, it is impor-

tant to acknowledge the significance of these patterns

in CNLP.

7.2.2 Prefix word pattern

The CA8-Mor-10177 data subset includes 21

patterns of semi-prefixes, such as大 (big),小 (small),

老 (old), 第 (order), and 亚 (second), totaling 2553

questions. This pattern can be summarized as (A,

PA; X , PX ), e.g., 虎-老虎 (tiger-tiger) and 鹰-老

鹰 (eagle-eagle). If A or P represents a multi-

character word, the pattern can be extended to (AB,

PQ-AB;XY , PQ-XY ), e.g.,草原-大草原 (grassland-

prairie) and都市-大都市 (city-metropolis). Like the

above formulas, we have the model as follows:

f(PQXY) = f(PQAB) − f(00AB) + f(00XY). (9)

7.2.3 Suffix word pattern

The CA8-Mor-10177 data subset contains 41

patterns of semi-suffixes, including者 (zhe),式 (shi),

性 (sex), and others, totaling 2535 questions, e.g.,

我 (I, A), 我们 (we, AP); 你 (you, X ), 你们 (you,

XP). This pattern can be summarized as (A, AP; X ,

XP). If A or P represents a multi-character word, the

pattern can be extended to (AB, AB-PQ; XY , XY -

PQ), e.g., 乐观, 乐观主义 (optimism-optimism) and

悲观,悲观主义 (pessimism-pessimism). Referring to

the above formulas, we have

f(XYPQ) = f(ABPQ) − f(AB00) + f(XY00).

(10)

7.3 Analogical modes from CA8-Sem-7636

Among the question pairs of the CA8-Sem-7636

data subset (Li S et al., 2018), 920 (12.05% of the to-

tal) adhere to the patterns of Chinese word formation

discussed in Section 7.2. For instance, examples like

(小学 (primary school),小学生 (primary school stu-

dent), 中学 (middle school), 中学生 (middle school

student)) and (北京 (Beijing), 北京大学 (Peking

University),南京 (Nanjing),南京大学 (Nanjing Uni-

versity)) fall into this category. When using SWPC,

some question pairs change from following the se-

mantic rule to follow the morphological rule, which

can effectively and accurately generate new words

for such problems.

There are 37 additional question pairs, which

make up 0.48% of the data set. Due to the usage

habits of the Chinese language, word formation in

these cases does not strictly follow morphology. Ex-

amples include (葡萄藤grapevine, 葡萄grape; 芒果

树mango tree, 芒果mango). Generating new words

for these word pairs requires calculating the similar-

ity between words using Eq. (3) with SWPC. For

instance, as for {find word w: argmaxSim(f(w), f(葡

萄grape) − f(葡萄藤grapevine) + f(芒果树mango

tree))}, the cosine similarity to find 芒果 (mango) is

0.9463.

7.4 Comparative analysis with the baseline

Building upon the construction of the CA8 data

set, Li S et al. (2018) conducted experimental analy-

ses using the Skip-gram model with negative sam-

pling (SGNS) (Mikolov et al., 2013) and positive

point wise mutual information (PPMI) (Levy et al.,

2015), along with three data preparation methods.

The results can be found in Table 4 of Li S et al.

(2018). For CA8-Mor-10177, using the SGNS model,

the Chinese characters were added for word embed-

ding, resulting in an accuracy of 0.455. For CA8-

Sem-7636, the PPMI model and word+ngram were

used for word embedding, resulting in an accuracy

of 0.586. The findings here demonstrate that by an-

alyzing the same data subset, 10 177 problems were

predicted using SWPC, achieving 100% accuracy in

generating new words. Analyzing the data subset

of CA8-Sem-7636 led to the prediction of 920 ques-

tions, accounting for 12.05% of the data set, with

100% accuracy.

Table 4, which is reproduced from Kang et al.
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(2019) and has been combined with our results, il-

lustrates the comparison of performance for CA8-

morphological data. These results highlight the ap-

plicability of SWPC in directly analyzing characters

or words with standard language patterns for certain

CNLP tasks.

Table 4 Comparison of the performance for CA8-

morphological data

Model
Accuracy

A AB Prefix Suffix Subtotal

Skip-gram 0.023 0.089 0.003 0.252 0.111

CBOW 0.031 0.003 0.097 0.256 0.116

CWE 0.202 0.171 0.135 0.498 0.231

JWE 0.051 0.139 0.004 0.298 0.146

Cj2vec 0.188 0.173 0.181 0.521 0.289

SWPC (ours) 1.000 1.000 1.000 1.000 1.000

A and AB are categories in CA8-morphological data

7.5 Prompting by using SWPC

Note that the application of prompt engineer-

ing to language models, as discussed by Liu PF

et al. (2023), highlights a new research direction.

The concept of “pre-train, prompt, and predict”

(PPP) holds significant potential for English-based

language models and has been well received by the

society. Simultaneously, the analogical reasoning

model based on SWPC and Chinese grammar war-

rants in-depth discussion on how to conduct prompt

engineering research in CNLP. If the SWPC ana-

logical reasoning models proposed here and Chinese

grammar can be integrated into Chinese language

models, they have the potential to achieve 100% ac-

curacy in prompt-based learning by question answer-

ing. This would allow us to fine-tune Chinese LLMs

and achieve a better PPP effect for thousands of

Chinese idioms and other related CNLP tasks.

We devised a Chinese Q&A prompt using the

CA8-SEM-7636 data set (Li S et al., 2018) to assess

the performance of LLMs, such as ChatGPT and

Google Bard: Please use the following forms: (1)

(XP, YP; XQ, YQ): (公狼male wolf, 母狼female

wolf; 公熊male bear, 母熊female bear); (2) (XP,

YP; MR, FR): (公狼male wolf, 母狼female wolf; 雄

鸟male bird,雌鸟female bird); (3) to have the correct

animal name (XQ, YQ; MT, ?): (公熊, 母熊; 雄

兔male rabbit, ?).

Initially, ChatGPT provided an incorrect re-

sponse. However, upon prompt modification and

training with the accurate answer, ChatGPT sub-

sequently produced the correct response. In con-

trast, Google Bard initially generated an erroneous

answer. Despite our efforts to rectify this through

training, Google Bard continued to produce inaccu-

rate responses. This highlights the need for substan-

tial improvement in some LLMs’ ability to generate

coherent Chinese text.

Liu PF et al. (2023) proposed Eq. (11) to search

over the set of potential answers “z” by calculating

the probability of their corresponding filled prompts

using a pre-trained language model P (.; θ):

ẑ = search P (ffill(x
′, z); θ), z ∈ Z, (11)

where θ is the learning parameter from LLMs. Using

word embedding to represent the characters or words

(Mikolov et al., 2013), as in Eq. (3), we have

Find z : argmaxSim(f(z), f(MR)−f(MQ)+f(FQ)),

(12)

where f(·) = WE(·), and WE(·) is the word em-

bedding code using ML. Some experimental perfor-

mances are reported for this example in Table 4; the

accuracy is no more than 58.6% (Li S et al., 2018)

and ≤42.33% (Jin et al., 2022).

We have introduced a range of analogical rea-

soning models using SWPC. These models can be

effectively applied to the prompting functions put

forth by Liu PF et al. (2023). For an illustration,

Table 5 shows the analogical reasoning using the

prompt method for the above question.

All the Chinese characters (words) in Table 5

are represented by SWPC, which is used for the

prompting and prediction processes. In this exam-

ple, the Chinese program and habits are used to

ensure reasoning (prompting) processing. In some

cases, it is necessary to calculate the similarity. Sim-

ilar to Eq. (12), when applying the SWPC approach,

f(·) = SWPC(·). There is z=FR; i.e., in our exam-

ple, F=雌 (female), R=兔 (rabbit).

In the Chinese language, thousands of words are

formed by idioms (成语) and proverb (习语) accord-

ing to Chinese program and habits. These words

can be transferred to (AP, BP; MQ, FQ) and related

modes; see Eqs. (4)–(10) and also refer to the CA8

data set (Li S et al., 2018). The search probability

P (·; θ) in Eq. (11) is 1.00; in other words, the accu-

racy in Eq. (12) reaches 100%. In this case, we may
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Table 5 Solving the analogical reasoning problem by prompt mode∗

Name Notation Example Description

Input x (公熊, 母熊; 雄鸟, 雌鸟) -> One or multiple texts

Output y (公熊, 母熊; 雄兔, ?) Output other text

Prompting fprompt(x) (AP, BP; MQ, FQ) ->(AP, A function that converts the input into a specific form by

function BP; [X], [Z}) inserting the input x and adding a slot [Z ], where z will be

filled later

Prompt x′ (AP, BP; MQ, FQ) ->(AP, [X] is instantiated by input x′ = MR but answer slot [Z ] is not

BP; MR, [Z})

Fill prompt ffill(x
′,z) (MQ, FQ) ->(MR, ?R) A prompt where slot [Z ] is filled with any character related to

R

Answered ffill(x
′,z*) (MQ, FQ) ->(MR, FR) A prompt where slot [Z ] is filled with a true answer FR

prompt

Answer z FR (雌兔)，XR (母兔)，. . . To verify the Chinese program and customs
∗ Using a form similar to that in Liu PF et al. (2023)

regard the Chinese language as a special LLM, which

can be more effectively used for analogical reasoning

and prompting.

The Chinese language possesses some charac-

teristics that give rise to special grammatical rules

and habits in character/word formation. Currently,

several LLMs do not adequately address these intri-

cacies in Chinese. However, SWMP/SWPC meth-

ods try to effectively capture these distinctive fea-

tures and significantly boost the development of Chi-

nese LLMs, yielding twice the results with half the

effort.

8 Fine-tuning of similarity by SWPC

In 2019, the Department of Computer Science

and Technology at Tsinghua University developed

the COS960 test data set (Huang JJ et al., 2019),

which studies the similarity between word embed-

ding models and Chinese characters from related cor-

pora. The data set consists of 960 pairs of words, and

the similarity score specified manually is used as the

benchmark. The question pairs were designed in the

format of (唯独, 惟独only 3.7333), where 3.7333/4

represents the average similarity based on 15 manual

evaluations. We discuss the calculation and compar-

ison of fine-tuning the similarity using the FC num-

ber, WB code, and SWPC.

8.1 Similarity between Chinese word pairs

SWPC is primarily used to calculate the sim-

ilarity of the word pairs and analyze the effective-

ness of the proposed method. Similarity calculation

methods include cosine similarity and HM distance

similarity, facilitating analysis and comparison. The

following presents the similarity calculation of sev-

eral word pairs in different language scenarios.

When the semantics and forms of Chinese char-

acters are similar, and the number of paired words is

the same or slightly different, the similarity between

the word pairs can be calculated directly using modes

such as (AC ≈ BC) and (AB ≈ AC).

For instance, SimCos(f(唯 独unique), f(惟

独unique)) = 3.8084, the average score of hu-

man evaluation is 3.7333, and the relative error is

2.01%. SimCos(f(火爆fire storm), f(火暴fire storm))

= 3.7870, the average score of human evaluation is

3.6667, and the relative error is 3.28%.

When the semantics and forms of Chinese char-

acters are similar, the number of paired words is the

same or slightly different, but the positions are dif-

ferent. Most of these word pairs are Chinese words

with different orders (AB = BA). The similarity

between two words can be calculated using the fol-

lowing equation:

Sim(f(AB), (BA)) = max(Sim(f(AB), f(BA)),

Sim(f(AB), f(AB))),
(13)

where f(·) = SWPC(·). For word pair (躲闪,

闪躲dodge), there is Sim(f (躲闪), f (闪躲)) =

max(Sim(f (躲闪), f (闪躲)), Sim(f (躲闪), f (躲

闪)))=1.00, which is 3.45% higher than the manual

score 3.8667. There will also be some (AC ≈ CB)

modes, e.g., (帷幔, 幔帐curtain). There is Sim(f (帷

幔), f (幔帐)) = max(HamSim(f (帷幔), f (幔帐)),

HamSim(f (帷幔), f (帐幔)), HamSim(f (幔帷), f (幔

帐))) = max(3.6480, 3.8860, 3.8860) = 3.8860, which

is 29.53% higher than the manual score 3.0.
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The question regarding the customary forma-

tion of Chinese words remains. For instance, it is

uncertain whether the combination of Chinese char-

acters CA or BC is in accordance with the conven-

tions of Chinese words. These questions will be ex-

plored in the study of Six-Writings semantic coding

(SWSC).

8.2 Analysis of similarity of the COS960

dataset

Table 6 presents a comparative analysis of the

similarity calculation for 960 word pairs in the

COS960 test data set. The first column of the table

represents the manual scores assigned to the data set,

categorized into six intervals serving as benchmark

data. The subsequent columns display the relative

errors between the benchmark scores and the simi-

larities computed using FC, WB, and SWPC, sep-

arately. The similarity calculation methods include

cosine similarity and HM similarity.

Table 6 Relative error of similarity of COS960 data

Interval

Relative error

FC WB SWPC

COS HM COS HM COS HM*

Sim=4 0.186 0.400 0.113 0.375 0.147 0.388

3≤Sim<4 0.116 0.317 0.086 0.265 0.099 0.291

2≤Sim<3 0.146 0.167 0.205 0.154 0.175 0.161

1≤Sim<2 0.425 0.217 0.477 0.212 0.425 0.214

0≤Sim<1 0.511 0.117 0.665 0.150 0.607 0.133

Sim=0 0.548 0.200 0.729 0.188 0.653 0.194

Mean 0.339 0.200 0.461 0.192 0.404 0.196

HM* denotes the average value of the HM similarity index

calculated using both FC numbers and SWPC, while Mean

represents the overall average across all 960 word pairs

The analysis results of similarity calculation for

the whole COS960 data set are listed below:

1. For word pairs with high similarity

(2≤Sim≤4), three codes (FC, WB, and SWPC) are

used, and the cosine similarity shows good agreement

with the benchmark. However, when dealing with

word pairs with low similarity (0≤Sim<2), some dis-

similar word pairs result in higher similarity scores.

The results in Table 6 do not accurately reflect their

true similarity.

2. When considering word pairs with high simi-

larity (3≤Sim≤4), using the three codes, the calcula-

tion error of HM similarity is large, with an average

relative error above 26%. However, for word pairs

with low similarity (0≤Sim<3), the calculation re-

sults of HM similarity are better, with an average

relative error of less than 20%. Even for completely

dissimilar word pairs, the dissimilarity between them

can be clearly distinguished.

3. The HM similarity is highly sensitive to the

pictophonetic coding of Chinese characters. Partic-

ularly, in the first 26 word pairs with high similarity

(Sim=4) in the COS960 test data set, four pairs of

Chinese words exhibit the property of different order

(AB ≈ BA). If this factor is not considered, the aver-

age relative error of HM approximation for these 26

words is 44.21%. However, if this factor is taken into

account and the similarity calculation is corrected,

the average relative error of HM approximation is

reduced to 32.80%. Table 6 demonstrates that HM

similarity calculation can effectively reflect the simi-

larity and dissimilarity between Chinese word pairs.

4. The calculation results of FC, WB, and

SWPC in the two similarity methods are relatively

stable, aligning with the analysis results mentioned

earlier. Considering the advantages of SWPC’s com-

bination of FC and WB coding, the results presented

in the HM* column are more robust and credible.

Particularly, the calculation of HM similarity can be

used to fine-tune the results of CNLP tasks, such as

word embedding, allowing for the reflection of nu-

anced aspects of Chinese characters.

9 Conclusions and future work

With the rapid advancement of AI, CNLP has

made significant progress. However, the accuracy

of certain tasks in CNLP requires further improve-

ment. We propose the SWMP framework for Chinese

language models. This framework integrates multi-

modal information of Chinese characters, including

pictophonetics, pinyin, images, and semantics, to en-

hance the effectiveness of CNLP.

By conducting variability analysis of the picto-

phonetic coding of Chinese characters, such as FC

numbers, and exploring similarity calculation meth-

ods, we propose to augment and normalize the WB

numerical coding from 11–55 to 11–99. At the same

time, the numerical coding method of pinyin is de-

veloped; i.e., the initial consonants are coded by the

GB uppercase letters/numbers and the vowels are

coded by GB lowercase letters/numbers. Then they

are augmented and normalized in the range of 11–99.
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Under the unified coding framework of SWMP,

we introduce the concept of SWPC, which combines

the expression of characters with Chinese grammar

and flexible properties. With its moderate gran-

ularity of representation, SWPC possesses a gen-

erative and prompting mechanism for multimodal

processing of Chinese characters and graphics, com-

plementing existing language models using word

embedding methods. The specific applications of

SWPC, and also our contributions, are as follows:

1. Considering the variability of numerical ex-

pressions of Chinese characters and the analysis of

related similarity calculation methods (Wang JT,

2011), SWPC can effectively express the similarity

between similar characters and the dissimilarity be-

tween different characters.

2. By combining SWPC with Chinese character

image processing and other multimodal processing

technologies, we propose different methods for Chi-

nese character generation. Through simple exam-

ples, our research demonstrates how to establish a

Chinese character data set including roots, radicals,

and phonetic components, based on their SWPC,

thus forming a Chinese character generative matrix

that facilitates various CNLP tasks.

3. By leveraging Chinese grammar, the phono-

logical features of Chinese characters, and the re-

quirements of language models, we establish analog-

ical reasoning models for various word combinations

using SWPC. As a result, the processing accuracy

of word pairs, including repetition (AABB), prefix

(PQAB), and suffix (ABPQ), can achieve 100% ac-

curacy. These models are also used for the purpose

of prompting Q&A Chinese language models.

4. The application of SWPC to data sets like

CA8 (Li S et al., 2018) enables high-precision analog-

ical reasoning for word pairs conforming to Chinese

grammar and pictophonetic properties. Given that

90% of Chinese characters exhibit phono-semantic

characteristics, the proposed method holds consider-

able potential for practical applications.

5. SWPC is applied in analyzing the COS960

data set (Huang JJ et al., 2019) to evaluate the

strengths and weaknesses of various similarity cal-

culation methods. The objective is to improve the

prediction accuracy of word similarity. At the same

time, the SWPC approach can be used as a com-

plementary technology to fine-tune word embedding

results based on ML.

The core and essence of the ancient Six-Writings

lie in “explaining words by writing” (说文解字)

in multimodal processing. Our proposed SWMP

method is not limited to CNLP (including simpli-

fied and traditional Chinese characters), but can be

applied to other non-alphabetic languages such as

Japanese, Korean, and Vietnamese. This compre-

hensive approach aims to enhance the effectiveness

of applications in a multi-lingual environment.

The SWMP framework we propose is just the

first step in improving Chinese language models us-

ing the concept of Six-Writings. It still has some

shortcomings that need to be addressed. For ex-

ample, to enable multimodal processing of pictopho-

netic, pinyin, image, property, audio/video, and un-

derstanding, we need to integrate SWMP into the

language model, or even establish a new Chinese lan-

guage model. This integration should also involve

the fusion of these various types of information.

Furthermore, we have presented only the the-

ory and methodology of SWMP/SWPC and not

addressed the establishment of a Chinese charac-

ter database (e.g., 3500 common Chinese charac-

ters), which would facilitate SWPC/image coding

based on roots, radicals, and components. It is

necessary to establish a common Chinese charac-

ter root database to realize the coding of roots,

radicals, and components by SWPC. However, the

number of characters, the granularity of character

splitting, and the standardization of coding all re-

quire the support from the academic community and

even the government. It is also necessary to de-

velop a more appropriate coding/image multimodal

analysis ML algorithm using SWPC associated to

pinyin/image/audio/video, and to gradually intro-

duce SWPC into Chinese LLMs and related tasks.

Finally, we should strengthen the coding of semantic

features of the Chinese words, combine it with word

embedding technology, and conduct application re-

search in the CNLP field.
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