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Abstract

Deep unsupervised representation learning for brain pathology segmentation is of great
interest for medical imaging, as it does not require extensive annotations for training and
allows the detection of unseen pathologies. While recent approaches proposed to model
the distribution of healthy brain Magnetic Resonance Imaging (MRI) using variational au-
toencoders, we propose to model the pixel distribution of the healthy brain by introducing
a shape-prior based on the brain tissue distribution. To this end, we propose Shape-Prior
variational Autoencoders (SPA) to disentangle the generative factors of brain MRI, namely
cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM). Our method ob-
tains interpretable latent representations, providing pixel-wise tissue probability maps. We
evaluated the proposed method on MRIs of 538 patients from six data-sets containing de-
myelinating lesions, small vessel disease, and tumors. Experimental results indicate that
our method is capable of disentangling the generative brain MR factors and avoiding the
reconstruction of anomalous regions, leading to better lesion detection performance.

Keywords: shape-prior, variational autoencoders, disentanglement, generative factors,
brain anomaly detection

1. Introduction

The use of artificial intelligence for rapid and automated segmentation of abnormal struc-
tures is an important part of radiological assessment, improving clinical workflow and re-
ducing the burden on radiologists (Hosny et al., 2018). Recently, many machine learning
algorithms for identifying and segmenting critical MR findings of the brain have been pro-
posed. Although supervised methods have been successfully applied to biomedical imag-
ing (Ronneberger et al., 2015) and specifically to brain pathology segmentation (Baur et al.,
2021b; Kamnitsas et al., 2016; Myronenko, 2019; Isensee et al., 2019; McKinley et al., 2019),
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their performance is limited by the amount and variety of annotated training data, which
are sparse and expensive to collect. Furthermore, their performance in detecting abnormal-
ities is constrained to the lesions present in the training dataset (Kamnitsas et al., 2017).
To alleviate these issues, unsupervised lesion detection methods have been proposed. The
underlying idea is that brain pathology can be identified as a deviation of the healthy brain
distribution. As an early attempt, (Leemput et al., 2001) utilized registration to a healthy
brain atlas and modeled the pixel intensities using tissue-specific probabilistic priors to
detect lesions. Based on a similar concept, (Moon et al., 2002) used an atlas prior with
spatial features, and (Marcel et al., 2004) combined spatial and intensity based atlas pri-
ors. (Aı̈t-Ali et al., 2005; Freifeld et al., 2007) use probabilistic Gaussian Mixture Models
(GMM) to detect and segment multiple sclerosis (MS) lesions. More recently, convolutional
autoencoders are able to extract more powerful representations and are used to compress
and encode healthy brain scans, then learn how to reconstruct the data back as close to
the original input as possible. This allows localization and segmentation of pathology from
faulty reconstructions of abnormal samples (Schlegl et al., 2017; Chen and Konukoglu, 2018;
Pawlowski et al., 2018; Baur et al., 2021a; Bercea et al., 2021a; Silva-Rodrguez et al., 2021).
However, autoencoders are prone to over-fitting (Steck, 2020). Variational autoencoders
(VAEs) (Kingma and Welling, 2014) overcome this issue by approximating the distribution
of high dimensional data and were successfully applied to brain anomaly detection (Zim-
merer et al., 2018, 2019; Pinaya et al., 2021). Gaussian mixture variational autoencoders
allow more complex representation in the latent space and extend VAEs to replace the
uni-model Gaussian prior with a mixture of Gaussians (Dilokthanakul et al., 2017). The
closest to our proposed method is the work by (You et al., 2019), who applied GMVAEs
to unsupervised brain anomaly detection. In this work, we introduce novel Shape-Prior
variational Autoencoders (SPA) for unsupervised brain pathology segmentation, see Fig-
ure 1. While the GMMs capture the variation in the healthy brain manifold, we propose to
combine the traditional efforts in modeling the pixel distributions with the representation
power and generalization capability of VAEs. To realize this, we build a probabilistic shape
prior to enforce the latent disentanglement of the brain MR generative factors, namely
cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM). At inference, our
method obtains interpretable latent representations, providing pixel-wise tissue probabil-
ity maps. These probabilistic maps are then decoded to pseudo-healthy reconstructions
of pathological samples, which when subtracted from the original input, results in the lo-
calization and segmentation of anomalous regions. We validate the proposed method on
MR scans of 538 patients from six data-sets containing demyelinating lesions, small vessel
disease, and tumors and show superior performance. Additionally, we provide insight into
the latent tissue disentanglement of healthy and pathological data.

2. Methods

2.1. SPA: Shape-Prior variational Autoencoders

In contrast to previous works, we combine traditional modeling of pixel distributions with
tissue-specific probabilistic brain priors with the representation power of modern VAEs. We
formulate the latent variable model as log p(X) = log

∫
p(X|Z)p(Z)dZ, with X ∈ RH×W

the image, Z ∈ RH×W×K the latent variable and p(Z) the tissue-specific probabilistic prior.
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Figure 1: The proposed novel Shape-Prior variational Autoencoder disentangles the pixel-
wise latent generative factors of brain MR, namely cerebrospinal fluid (CSF), gray matter
(GM), and white matter (WM). The anomaly segmentation is given by the residual of the
input image and its pseudo-healthy reconstruction.

To this end, we introduce the shape-prior p(Z) based on the tissue distribution of healthy
patients. We model every pixel i in p(Z) as a Gaussian-mixture model given by:

p(Zi) =

K∑
c=1

πc,i · N (µc,i, σc,i) (1)

with K being the number of components of the mixture model: here we use K = 4 clusters
to explicitly model the tissue channels given by CSF, GM, WM, and background; and
N (µc,i, σc,i) represents the distribution of the probability of pixel i belonging to cluster c
of a healthy population. Our objective is to maximize the log-likelihood, log p(X) of the
observed samples. As the integral is intractable, we approximate the true posterior p(Z|X)
with a proposal distribution q(Z|X) as introduced in (Kingma and Welling, 2014).

log p(X) ≥ ELBO = Eq(Z|X)[log p(X|Z)]−KL[q(Z|X)||p(Z)], (2)

where KL denotes the Kullback-Leibler divergence; the encoder q(Z|X), projects the input
X to the latent space Z and is parameterized by the neural network E(Φ); the decoder
p(X|Z), reconstructs the X̂ from Z and it is parameterized by the neural network D(Ψ).

2.2. Disentangled Representations

Disentangled learning of the latent representation are achieved by weighting the KL diver-
gence loss term in Equation 2 with a β term (Higgins et al., 2017). Thus, our objective is
to optimize the following loss term:

arg min
ΦΨ

∑
X

LRec(X, X̂) + βLKL(E(X; Φ), p(Z)), (3)
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Figure 2: Visualization of the latent tissue disentanglement. The first row shows the re-
sults on healthy data, and the next two rows show tissue probability maps in presence of
anomalies. Line integrals (magenta) visualize the intensity of the pixels along the line.

where LRec = 1
H×W

∑H×W
i=0 |X − X̂|+ TV (X̂) + λPL(X, X̂), β is used to weight the influ-

ence of the prior, and LKL is the KL divergence. To enforce high-resolution and smooth
reconstructions, we follow prior work for style transfer and super-resolution (Johnson et al.,
2016) and add a perceptual loss and total variation regularizer to the usual mean absolute
error. The main benefit of using the additional loss terms is the increased reconstruc-
tion accuracy, i.e., SSIM on healthy test data of 0.954 compared to 0.807 in our previous
work (Bercea et al., 2021b). We use the same loss function for all the baselines to ensure a
fair comparison. Finding the right β term in practice is tedious. Due to the strong influence
of the prior distribution, the resulting latent representations are often oversimplified and
do not adequately reflect the underlying structure of the data (Dilokthanakul et al., 2017).
As we show in section 4 this problem also occurs in our method and degenerates the latent
tissue disentanglement. Current solutions require exhaustive search either for an annealing
parameter to slowly incorporate the KL term during training (Sønderby et al., 2016), or for
a cutoff threshold to stop optimizing the KL term (Kingma et al., 2017). Inspired by the
signal processing literature, we propose a heuristic based on a given signal-to-noise ratio
(SNR) to achieve both good reconstruction fidelity and latent regularization. Specifically,
we adapt the reparameterization trick from µ+ σ � η to:

µ+
1√
SNR

· ‖µ‖
‖η‖
· σ � η

where � is the Hadamard product, ‖ · ‖ is the `2-norm, and η ∼ N (0, I).
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Table 1: Datasets details

HI MSLUB MSISBI MSI WMH GBI BRATS

Train/Val/Test 125/15/23 -/-/30 -/-/21 -/-/48 -/-/60 -/-/94 -/-/285
Cohort Healthy Multiple Sclerosis Vascular lesions Brain tumors
Age 69± 4 39± 10 N/A 32± 10 N/A 61± 20 60± 9
Sex

56 76 N/A 61 N/A 50 N/A
(% female)

Scanner (3T)
Philips Siemens Philips Philips Philips& Siemens &GE Siemens Multiple
Achieva Intera Achieva Achieva Diverse Verio (N=19)

Res (mm) 1.5× 0.9× 0.9 0.8× 0.47× 0.47 2.2× 0.82× 0.82 1.5× 0.9× 0.9 Diverse 1.5× 0.9× 0.9 1× 1× 1
TR/TE/TI (s) 10/0.14/2.75 5/0.392/1.8 11/0.068/2.8 10/0.14/2.75 Diverse 5/0.395/1.8 Diverse

All images were re-sampled to 1× 1× 1 mm, skull-stripped, and registered to the SRI-24 atlas (Rohlfing et al., 2010)

3. Experimental setup

Datasets, Implementation and Hyperparameters. Details of the used datasets are
shown in section 3. The healthy (HI), MS lesions (MSI) and glioblastoma (GBI) internal
databases are provided by Klinikum Rechts der Isar in Munich. We use public datasets of
MSLUB (Lesjak et al., 2018), MSISBI (Carass et al., 2017), WMH(Kuijf et al., 2019), and
BraTS (Menze et al., 2015; Bakas et al., 2017, 2019). Both the common encoder E(Φ) and
decoder D(Ψ) follow the original U-Net description by Ronneberger et al. (Ronneberger
et al., 2015), but adjusted the network to handle input at a 128 × 128 resolution. The
resulting network has 3 blocks each for encoding and decoding. The composition of a block
is as follows: 2 × [3 × 3 convolutions with filters ∈ {32, 64, 128} , batch normalization
and LeakyReLu activation]. The mean and log sigma estimation of VAEs is implemented
using two convolution only layers with a kernel size of 1. For the implementation of SPA,
we additionally add a sigmoid and logsigmoid activation layers to bring the estimated
distribution in the range of the prior. We follow (You et al., 2019) for the GMVAE latent
implementation. We derived the distribution of the tissue specific probabilistic prior on 136
healthy patients from our healthy internal dataset HI. We calculated the mean and variance
of the atlas distribution by averaging segmentation maps of CSF, GM, WM and background
of 136 healthy patients, that were obtained using the antsAtroposN4.sh script (Avants
et al., 2009). Note that, our method is not dependent on the derived atlas and can be
extended with any distribution over the tissue-specific probability maps. For all baselines,
we used self-supervision techniques as described in (Bercea et al., 2021b) to enforce healthy
reconstructions and trained the networks until convergence with a batch size of 2, and
ADAM optimizer with a learning rate of 5 · 10−4 and exponential decay of 0.97. We set the
λ := 0.1, β := 10−3, and SNR := 16 as discussed in section 4.

Pre- and post-processing. Similar to (Baur et al., 2021a), all scans have been registered
to the SRI24 atlas template space (Rohlfing et al., 2010) and have subsequently been skull-
stripped with ROBEX (Iglesias et al., 2011) and normalized to the [0,1] range. We used
all axial slices with visible tissue information with a size of 128×128px for training and
evaluation. We keep the absolute residual of the input and its reconstruction. We use the
generated heat maps to compute AUPRC and binarize the results using a threshold τ to
compute the maximum DICE scores per dataset.

Evaluation metrics. We observe both L1 and KL losses on validation data for the model
selection. To measure the anomaly segmentation performance and compare different models,

5



SPA

Table 2: We show AUPRC to assess anomaly detection on six datasets with pathology. We
compare our method to sota unsupervised models without any post-processing (Baur et al.,
2021a), namely: context VAE (c-VAE) (Zimmerer et al., 2018), constrained adversarial
AEs (cAAE) (Chen and Konukoglu, 2018), f-AnoGAN (Schlegl et al., 2017), and Gaussian-
mixture VAEs with image restoration (GM-IR) (You et al., 2019); two variational baselines
with the same training and implementation details as our network; and two supervised
methods based on U-Net (Ronneberger et al., 2015). (∗) shows results with simple post-
processing (keeping positive residual and applying median filtering of size 3); and (•) shows
results on a validation subset; bold/underscore show the best two results among baselines.

Sota Unsupervised - AUPRC ↑
Training Healthy
Method c-VAE cAAE f-AnoGAN GM-IR VAE GMVAE SPA SPA∗

MSLUB 0.030 0.035 0.034 0.037 0.059 0.078 0.059 0.132

MSISBI 0.023 0.027 0.035 0.025 0.007 0.011 0.023 0.019

MSI 0.027 0.036 0.041 0.036 0.092 0.162 0.178 0.389

WMH n/a 0.027 0.101 0.159 0.167

GBI 0.052 0.076 0.061 0.086 0.160 0.209 0.234 0.453

BraTS n/a 0.104 0.215 0.320 0.397

AUPRC ↑
Supervised Thresh.

MSLUB BraTS n/a

0.420• 0.049 0.150

0.423 0.020 0.135

0.478 0.094 0.114

0.407 0.147 0.280

0.267 0.463 0.367

0.350 0.751• 0.473

we report the area under the precision TP/(TP + FP ) - recall TP/(TP + FN) curves
(AUPRC), with TP , FP , and FN being true positives, false positives and false negatives.

4. Results

We experimentally validated our method on multiple institutes with real pathological data-
sets containing MS-, vascular-, and brain tumor lesions. Our main findings are i) we suc-
cessfully disentangle the generative factors of brain MR imaging, namely, the CSF, GM,
WM, and background; ii) we avoid the reconstruction of unwanted pathological features;
and consequently iii) we improve the anomaly detection performance.

Latent Tissue Disentanglement. Our proposed method aims at disentangling the gen-
erative factors of brain MR and provide latent pixel-wise tissue probability maps. Figure 2
provide quantitative and qualitative results of the learned latent representations. We show
the Dice score of predicted tissue maps on 30 healthy unseen test subjects. Visually, the
tissue segmentation maps capture the underlying anatomy and intracranial tissue distribu-
tion despite the lower Dice scores. In particular for CSF one can observe a tendency to also
segment CSF surrounding the brain, where the skull would normally be. However, consid-
ering that a small rim of (sub)dural CSF surrounds the brain and the space surrounding it
has a very similar (low) intensity as CSF on these FLAIR images as a result of the skull
stripping, the segmentation makes sense. The first row in the figure visualizes the tissue
probability maps on a healthy patient, followed by two examples containing pathology. The
provided intensity profiles show the intensity of the pixels along the marked line. Note
that, while anomalies correspond to a peak in the intensity profile of the input, finding a
common threshold for both cases is not straightforward. For example, the peak in the first
row would correspond to the intensity of healthy tissue of the second case. Interestingly,
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Figure 3: Qualitative results of our method compared to the VAE and GMVAE baselines.
The first columns show the input and ground truth segmentation mask followed by recon-
structions and residual heatmaps for the different datasets (rows). The last four columns
show a zoomed-in image highlighting the reconstruction of unwanted pathological features.

the anomalous regions are either encoded as WM or GM in the latent tissue maps, having
the same probability as healthy tissues. The decoder will thus only reconstruct intensities
of healthy tissues containing CSF, GM, and WM, as can be seen in the line profiles. Fi-
nally, note that due to the pseudo-healthy reconstructions, the residual maps and their line
profiles are very similar to the ground truth, making anomalies easy to detect.

Anomaly Segmentation. Table 2 shows the anomaly segmentation performance of our
proposed method. We outperform sota unsupervised anomaly detection methods without
any post-processing, see Table 8 in (Baur et al., 2021a) and achieve an average improvement
(AUPRC) of 154.5%, 177.5% and 35.5% over the best unsupervised method, GM-IR, and
variational baselines VAE and GMVAE, respectively. Compared to supervised methods,
our proposed method outperforms or achieves competitive anomaly results with different
U-Net variants. Even though not directly comparable, a supervised U-Net validated on
the dataset it was trained on achieves the best results. This indicates that our method
generalizes better to unseen domains, and that the performance of supervised method is
degraded on pathologies not seen during training, reconfirming the results in (Baur et al.,
2021b). The commonly used approach in clinical practice is a naive threshold-based classifier
that selects hyper-intense regions. With just a simple post-processing step (keeping positive
residuals and applying a median filter of size 3) our method achieves remarkable relative
DICE improvement on MSLUB (24%), MSI (293%), and GBI (16%) and slightly worse on
MSISBI, WMH and BraTS, reconfirming the findings of (Baur et al., 2021a) that tumors
might be quite challenging since it might contain lesions that do not appear as hyperintensity
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Figure 4: Model Selection. We show quantitative and qualitative results on the healthy
validation set for multiple choices of β. We set β to 1e−3 and SNR to 16 for our experiments.

in FLAIR, and naive thresholding should be still considered as a strong baseline(Meissen
et al., 2021). Figure 3 gives more insight into the network’s predictions. Our method avoids
the reconstruction of pathology (best seen in the last columns) and delivers more accurate
segmentation masks.

Sensitivity to β values. Figure 4 shows quantitative and qualitative results of the effect
of β. Note that, high values of β enforce the posterior to match the prior atlas distribution,
however at the cost of the reconstruction accuracy. Setting β to lower values yields better
reconstructions, but the posterior diverges from the prior atlas distribution. Finding the
balance between the two is a tedious task and leads in most cases to either a compromise
on the reconstruction or regularization. The β values of 10−3 and SNR of 16 achieve the
best validation results in terms of reconstruction loss and KL divergence for all methods.

5. Discussion and future work

In this paper, we proposed Shape-Prior variational AEs (SPA), to combine traditional
modeling of pixel distribution of brain MR based on tissue probabilistic priors and the
representation and generalizability of VAEs. We generate the probabilistic shape prior
once, offline, from affine-registered healthy scans to avoid the requirement of good alignment
of input scans during inference. We have showed that our method provides interpretable
pixel-level latent tissue segmentation maps, enforces the anomalous pixels to be mapped
to the healthy pixel-wise distribution and considerably improves the results without post-
processing over sota unsupervised methods. However, post-processing steps are still critical
for better results and their effects should be studied in the future. We find that our method
performs best on datasets that follow the same distribution as the healthy training set and
plan to investigate and address the domain shift in data from multiple institutes and its
impact on generalization with the help of disentanglement and federated learning.

8



SPA

References

L. S. Aı̈t-Ali, S. Prima, P. Hellier, B. Carsin, G. Edan, and C. Barillot. Strem: A robust
multidimensional parametric method to segment ms lesions in mri. In James S. Duncan
and Guido Gerig, editors, Medical Image Computing and Computer-Assisted Intervention
– MICCAI 2005, pages 409–416, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.
ISBN 978-3-540-32094-4.

Brian B Avants, Nick Tustison, Gang Song, et al. Advanced normalization tools (ants).
Insight j, 2(365):1–35, 2009.

S Bakas, H Akbari, A Sotiras, M Bilello, M Rozycki, JS Kirby, JB Freymann, K Farahani,
and Davatzikos C. Advancing the cancer genome atlas glioma mri collections with expert
segmentation labels and radiomic features. Sci Data, 2017.

Spyridon Bakas, Mauricio Reyes, Andras Jakab, Stefan Bauer, Markus Rempfler, Weiwei
Zong, Jayashree Kalpathy-Cramer, Keyvan Farahani, Christos Davatzikos, Koen van
Leemput, and Bjoern Menze. Identifying the best machine learning algorithms for brain
tumor segmentation, progression assessment, and overall survival prediction in the brats
challenge, 2019.

Christoph Baur, Stefan Denner, Benedikt Wiestler, Nassir Navab, and Shadi Albarqouni.
Autoencoders for unsupervised anomaly segmentation in brain mr images: A comparative
study. Medical Image Analysis, page 101952, 2021a.

Christoph Baur, Benedikt Wiestler, Mark Muehlau, Claus Zimmer, Nassir Navab, and
Shadi Albarqouni. Modeling healthy anatomy with artificial intelligence for unsupervised
anomaly detection in brain mri. Radiology: Artificial Intelligence, 3(3):e190169, 2021b.

Cosmin I. Bercea, Benedikt Wiestler, Daniel Rueckert, and Shadi Albarqouni. Feddis:
Disentangled federated learning for unsupervised brain pathology segmentation, 2021a.

Cosmin I. Bercea, Benedikt Wiestler, Daniel Rueckert, and Shadi Albarqouni. Federated dis-
entangled representation learning for unsupervised brain anomaly detection. PREPRINT
(Version 1) available at Research Square, 2021b.

Aaron Carass, Snehashis Roy, Amod Jog, Jennifer L. Cuzzocreo, Elizabeth Magrath,
Adrian Gherman, Julia Button, James Nguyen, Pierre-Louis Bazin, Peter A. Calabresi,
Ciprian M. Crainiceanu, Lotta M. Ellingsen, Daniel S. Reich, Jerry L. Prince, and
Dzung L. Pham. Longitudinal multiple sclerosis lesion segmentation data resource. Data
in Brief, 12:346–350, 2017. ISSN 2352-3409.

Xiaoran Chen and Ender Konukoglu. Unsupervised detection of lesions in brain mri using
constrained adversarial auto-encoders. arXiv preprint arXiv:1806.04972, 2018.

Nat Dilokthanakul, Pedro A. M. Mediano, Marta Garnelo, Matthew C. H. Lee, Hugh
Salimbeni, Kai Arulkumaran, and Murray Shanahan. Deep unsupervised clustering with
gaussian mixture variational autoencoders, 2017.

9



SPA

Oren Freifeld, Hayit Greenspan, and Jacob Goldberger. Lesion detection in noisy mr brain
images using constrained gmm and active contours. In 2007 4th IEEE International
Symposium on Biomedical Imaging: From Nano to Macro, pages 596–599, 2007. doi:
10.1109/ISBI.2007.356922.
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Appendix A. Quantitative Metrics

Table 3 shows area under precision-recall curve for supervised U-Net (Ronneberger et al.,
2015) trained and evaluated on different datasets. Table 4 shows the best achievable DICE
and mean hausdorff distance (HD). Table 5 shows results with a simple post-processing
step, where we keep the positive residual, instead of the absolute error since pathology tends
to appear as hyper-intense regions in FLAIR sequences and apply median filtering of size 3
to the result.

Table 3: We show AUPRC to assess the anomaly detection performance on six different
datasets with pathology for supervised methods based on U-Net (Ronneberger et al., 2015)

Method → AUPRC ↑
Trained on Supervised

Task ↓ U-Net(Ronneberger et al., 2015)
MSLUB MSISBI MSKRI WMH GBKRI BraTS

MSLUB 0.420• 0.423 0.478 0.407 0.267 0.350

MSISBI 0.262 0.536• 0.162 0.480 0.136 0.156

MSI 0.328 0.158 0.656• 0.466 0.174 0.176

WMH 0.234 0.501 0.135 0.516• 0.145 0.191

GBI 0.102 0.015 0.264 0.060 0.551• 0.454

BraTS 0.049 0.020 0.094 0.147 0.463 0.751•

Table 4: We show the maximum DICE scores per dataset given by 2TP/(2TP +FP +FN)
and the mean hausdorff distance dHDe to assess the anomaly detection performance on six
datasets with pathology.

Dataset
dDicee ↑

VAE GMVAE SPA(Ours) Thresh.
MSLUB 0.133 0.185 0.136 0.219

MSISBI 0.022 0.029 0.055 0.208

MSI 0.210 0.306 0.275 0.157

WMH 0.073 0.204 0.241 0.327

GBI 0.260 0.281 0.313 0.386

BraTS 0.209 0.297 0.388 0.443

dHDe ↓
VAE GMVAE SPA (Ours) Thresh.
30.2 32.1 31.2 24.0

49.9 49.4 37.6 24.1

29.4 32.3 35.3 23.7

34.6 33.0 36.3 25.3

39.1 38.4 44.3 24.3

37.7 35.3 57.3 21.6
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Table 5: Results with simple post-processing (keeping just positive residuals and applying
median filtering of size 3). We show AUPRC, the maximum DICE scores per dataset given
by 2TP/(2TP + FP + FN) and the mean hausdorff distance dHDe to assess the anomaly
detection performance on six datasets with pathology.

Dataset
AUPRC ↑

VAE GMVAE SPA(Ours) Thresh.
MSLUB 0.051 0.128 0.132 0.135

MSISBI 0.006 0.015 0.019 0.119

MSI 0.162 0.312 0.389 0.091

WMH 0.087 0.098 0.167 0.278

GBI 0.165 0.384 0.453 0.432

BraTS 0.087 0.324 0.397 0.487

Dataset
dDicee ↑

VAE GMVAE SPA (Ours) Thresh.
MSLUB 0.110 0.190 0.217 0.175

MSISBI 0.027 0.036 0.044 0.176

MSI 0.242 0.376 0.437 0.111

WMH 0.160 0.201 0.224 0.318

GBI 0.258 0.395 0.496 0.427

BraTS 0.185 0.415 0.421 0.446

dHDe ↓
VAE GMVAE SPA (Ours) Thresh.
29.2 26.1 29.4 28.2

35.8 31.4 35.6 28.9

24.7 25.7 25.3 24.8

35.5 33.2 33.7 29.7

30.4 29.4 29.2 23.0

54.0 28.6 26.2 20.6
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