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ABSTRACT

Due to the high cost of communication, federated learning (FL) systems need to
sample a subset of clients that are involved in each round of training. As a result,
client sampling plays an important role in FL systems as it affects the convergence
rate of optimization algorithms used to train machine learning models. Despite its
importance, there is limited work on how to sample clients effectively. In this pa-
per, we cast client sampling as an online learning task with bandit feedback, which
we solve with an online stochastic mirror descent (OSMD) algorithm designed to
minimize the sampling variance. We then theoretically show how our sampling
method can improve the convergence speed of optimization algorithms. To handle
the tuning parameters in OSMD that depend on the unknown problem parameters,
we use the online ensemble method and doubling trick. We prove a dynamic regret
bound relative to any sampling sequence. The regret bound depends on the total
variation of the comparator sequence, which naturally captures the intrinsic diffi-
culty of the problem. To the best of our knowledge, these theoretical contributions
are new and the proof technique is of independent interest. Through both syn-
thetic and real data experiments, we illustrate advantages of the proposed client
sampling algorithm over the widely used uniform sampling and existing online
learning based sampling strategies. The proposed adaptive sampling procedure
is applicable beyond the FL problem studied here and can be used to improve
the performance of stochastic optimization procedures such as stochastic gradient
descent and stochastic coordinate descent.

1 INTRODUCTION

Modern edge devices, such as personal mobile phones, wearable devices, and sensor systems in
vehicles, collect large amounts of data that are valuable for training of machine learning models. If
each device only uses its local data to train a model, the resulting generalization performance will
be limited due to the number of available samples on each device. Traditional approaches where
data are transferred to a central server, which trains a model based on all available data, have fallen
out of fashion due to privacy concerns and high communication costs. Federated Learning (FL)
has emerged as a paradigm that allows for collaboration between different devices (clients) to train
a global model while keeping data locally and only exchanging model updates (McMahan et al.,
2017).

In a typical FL process, we have clients that contain data and a central server that orchestrates
the training process (Kairouz et al., 2021). The following process is repeated until the model is
trained: (i) the server selects a subset of available clients; (ii) the server broadcasts the current
model parameters and sometimes also a training program (e.g., a Tensorflow graph (Abadi et al.,
2016)); (iii) the selected clients make updates to the model parameters based on their local data; (iv)
the local model updates are uploaded to the server; (v) the server aggregates the local updates and
makes a global update of the shared model. In this paper, we focus on the first step and develop a
practical strategy for selecting clients with provable guarantees.
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To train a machine learning model in a FL setting with M clients, we would like to minimize the
following objective:1

min
w
F (w) :=

∑
m∈[M ]

λmϕ (w;Dm) , (1)

where ϕ(w;Dm) is the loss function used to assess the quality of a machine learning model param-
eterized by the vector w based on the local data Dm on the client m ∈ [M ]. The parameter λm
denotes the weight for client m. Typically, we have λm = nm/n, where nm = |Dm| is the number
of samples on the client m, and the total number of samples is n =

∑M
m=1 nm. At the beginning

of the t-th communication round, the server uses the sampling distribution pt = (pt1, . . . , p
t
M )⊤ to

choose K clients by sampling with replacement from [M ]2. Let St ⊆ [M ] denote the set of chosen
clients with |St| = K. The server transmits the current model parameter vector wt to each client
m ∈ St. The clientm computes the local update gtm and sends it back to the server.3 After receiving
local updates from clients in St, the server constructs a stochastic estimate of the global gradient as

gt =
1

K

∑
m∈St

λm
ptm

gtm, (2)

and makes the global update of the parameter wt using gt. For example, wt+1 = wt − µtg
t, if the

server is using stochastic gradient descent (SGD) with the stepsize sequence {µt}t≥1 (Bottou et al.,
2018). However, the global update can be obtained using other procedures as well.

The sampling distribution in FL is typically uniform over clients, pt = punif = (1/M, . . . , 1/M)⊤.
However, nonuniform sampling (also called importance sampling) can lead to faster convergence,
both in theory and practice, as has been illustrated in stochastic optimization (Zhao & Zhang, 2015;
Needell et al., 2016). While the sampling distribution can be designed based on prior knowledge
(Zhao & Zhang, 2015; Johnson & Guestrin, 2018; Needell et al., 2016; Stich et al., 2017), we cast
the problem of choosing the sampling distribution as an online learning task and need no prior
knowledge about equation 1.

Existing approaches to designing a sampling distribution using online learning focus on estimation
of the best sampling distribution under the assumption that it does not change during the training
process. However, the best sampling distribution changes with iterations during the training process,
and the target stationary distribution does not capture the best sampling distribution in each round.
In the existing literature, the best fixed distribution in hindsight is used as the comparator to measure
the performance of the algorithm used to design the sampling distribution. Here, we focus on mea-
suring the performance of the proposed algorithm against the best dynamic sampling distribution.
We use an online stochastic mirror descent (OSMD) algorithm to generate a sequence of sampling
distributions and prove a regret bound relative to any dynamic comparators that involve a total vari-
ation term that characterizes the intrinsic difficulty of the problem. To the best of our knowledge,
this is the first bound on the dynamic regret with intrinsic difficulty characterization in importance
sampling. Moreover, we theoretically show how our sampling method improves the convergence
guarantee of optimization method by reducing the dependency on the heterogeneity of the problem.

1.1 CONTRIBUTIONS

We develop an algorithm based on OSMD that generates a sequence of sampling distributions
{pt}t≥1 based on the partial feedback available to the server from the sampled clients. We prove a
bound on regret relative to the any dynamic comparators, which allows us to consider the best se-
quence of sampling distributions as they change over iterations. The bound includes a total variation

1We use [M ] to denote the set {1, . . . ,M}.
2In this paper, we assume that all clients are available in each round and the purpose of client sampling is

to reduce the communication cost, which is also the case considered by some previous research (Chen et al.,
2020). However, in practice, it is possible that only a subset of clients are available at the beginning of each
round due to physical constraint. In Appendix H.2, we discuss how to extend our proposed methods to deal
with such situations. Analyzing such an extension is highly non-trivial and we leave it for further study. See
detailed discussion in Appendix H.2.

3Throughout the paper we do not discuss how gtm is obtained. One possibility that the reader could keep
in mind for concreteness is the LocalUpdate algorithm Charles & Konečný (2020), which covers well-known
algorithms such as mini-batch SGD and FedAvg (McMahan et al., 2017).
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term that characterizes the intrinsic difficulty of the problem by capturing the difficulty of following
the best sequence of distributions. Such a characterization of problem difficulty is novel. Besides,
our theoretical result can recover the results in previous research as special cases and is thus strictly
more general. Moreover, we theoretically improve the convergence guarantee of optimization al-
gorithm by using our sampling scheme over uniform sampling. We show that adaptive sampling
can help reduce the dependency on the heterogeneity level of the problem. We also mkae contribu-
tions in experiments and practical parameter tuning strategy. See Appendix A.1 for more detailed
discussion of our contributions.

1.2 RELATED WORK

Our paper is related to client sampling in FL, importance sampling in stochastic optimization, and
online convex optimization. We summarize only the most relevant literature, without attempting
to provide an extensive survey. Due to space limit, we only summarize the first direction here,
and leave the discussion about importance sampling in stochastic optimization and online convex
optimization in Appendix B.

For client sampling, Chen et al. (2020) proposed to use the theoretically optimal sampling distribu-
tion to choose clients. However, their method requires all clients to compute local updates in each
round, which is impractical due to stragglers. Ribero & Vikalo (2020) modelled the parameters
of the model during training by an Ornstein-Uhlenbeck process, which was then used to derive an
optimal sampling distribution. Cho et al. (2020b) developed a biased client selection strategy and
analyzed its convergence property. As a result, the algorithm has a non-vanishing bias and is not
guaranteed to converge to optimum. Moreover, it needs to involve more clients than our method and
is thus communication and computational more expensive. Kim et al. (2020); Cho et al. (2020a);
Yang et al. (2020) considered client sampling as a multi-armed bandit problem, but provided only
limited theoretical results. Wang et al. (2020) used reinforcement learning for client sampling with
the objective of maximizing accuracy, while minimizing the number of communication rounds.

1.3 NOTATION

Let RM
+ = [0,∞)M and RM

++ = (0,∞)M . For M ∈ N+, let PM−1 := {x ∈ RM :
∑M

i=1 xi = 1}
be the (M − 1)-dimensional probability simplex. We use p = (p1, . . . , pM )⊤ to denote a sampling
distribution with support on [M ] := {1, . . . ,M}. We use p1:T to denote a sequence of sampling
distributions {pt}Tt=1. Let Φ : D ⊆ RM 7→ R be a differentiable convex function defined on D,
where D is a convex open set, and we use D̄ to denote the closure of D. The Bregman divergence
between any x, y ∈ D with respect to the function Φ is given as DΦ (x ∥ y) = Φ(x) − Φ(y) −
⟨∇Φ(y), x − y⟩. The unnormalized negative entropy is denoted as Φe(x) =

∑M
m=1 xm log xm −∑M

m=1 xm, x = (x1, . . . , xM )⊤ ∈ D = RM
+ , with 0 log 0 defined as 0. We use ∥ · ∥p to denote

the Lp-norm for 1 ≤ p ≤ ∞. For x ∈ Rn, we have ∥x∥p = (
∑n

i=1 x
p
i )

1/p when 1 < p < ∞,
∥x∥1 =

∑n
i=1 |xi|, and ∥x∥∞ = max1≤i≤n |xi|. Given any Lp-norm ∥ · ∥, we define its dual norm

as ∥z∥⋆ := sup{z⊤x : ∥x∥ ≤ 1}.
For two sequences {an} and {bn}, we use an = O(bn) or an ≲ bn if there exists C > 0 such that
|an/bn| ≤ C for all n large enough; an = Θ(bn) if an = O(bn) and bn = O(an) simultaneously.
Similarly, an = Õ(bn) if an = O(bn log

k bn) for some k ≥ 0; an = Θ̃(bn) if an = Õ(bn) and
bn = Õ(an) simultaneously.

1.4 ORGANIZATION OF THE PAPER

We motivate importance sampling in FL, introduce an adaptive client sampling algorithm, and es-
tablish a bound on the dynamic regret in Section 2. We derive optimization guarantee of mini-batch
SGD using our sampling scheme in Section 3.

Due to space limit, we leave additional contents in appendix. More specifically, we give additional
related work summary in Appendix B. In Appendix C.3 and Appendix C.4, we design two extensions
to the sampling algorithm that make it adaptive to the unknown problem parameters. We leave
detailed algorithm descriptions and theoretical properties of adaptive methods in Appendix C. We
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provide the experimental results on synthetic data in Appendix F and real-world data in Appendix G.
Sampling without replacement is discussed in Appendix C.5 and Appendix F.4. Finally, we give
conclusions and discussions about future directions in Appendix H.

2 ADAPTIVE CLIENT SAMPLING

We show how to cast the client sampling problem as an online learning task. Subsequently, we solve
the online learning problem using OSMD algorithm and provide a regret analysis for it.

2.1 CLIENT SAMPLING AS AN ONLINE LEARNING PROBLEM

Recall that at the beginning of the t-th communication round, the server uses a sampling distribution
pt to choose a set of clients St, by sampling with replacement K clients from [M ], to update the
parameter vectorwt. For a chosen clientm ∈ St, the local update is denoted as gtm. For example, the
local update gtm = ∇ϕ(wt;Dm) may be the full gradient; when mini-batch SGD/FedSGD is used,
then gtm = (1/B)

∑B
b=1∇ϕ(wt; ξtm,b), where ξtm,b

i.i.d.∼ Dm and B is the batch size; when FedAvg

is used, then gtm = (wt
m,B − wt)/ηlocal, where wt

m,b = wt
m,b−1 − ηlocal∇f

(
wt

m,b−1; ξ
t
m,b−1

)
,

b ∈ [B], wt
m,0 = wt, ξtm,b

i.i.d.∼ Dm, and ηlocal is the local stepsize. We define the aggregated oracle
update at the t-th communication round as

J t =

M∑
m=1

λmg
t
m.

The oracle update J t is constructed only for theoretical purposes and is not computed in practice.
The stochastic estimate gt, defined in equation 2, is an unbiased estimate of J t, that is, ESt [gt] = J t.
Note that we only consider the randomness of St and treat gtm as given.4 The variance of gt is

VSt [gt] =
1

K

(
M∑

m=1

λ2m∥gtm∥2

ptm
−
∥∥J t
∥∥2) . (3)

Our goal is to design the sampling distribution pt, used to sample St, so to minimize the variance in
equation 3. In doing so, we can ignore the second term as it is independent of pt.

Let atm = λ2m∥gtm∥2. For any sampling distribution q = (q1, . . . , qM )⊤, the variance reduction
loss5 is defined as

lt(q) =
1

K

M∑
m=1

atm
qm

. (4)

Given a sequence of sampling distributions q1:T , the cumulative variance reduction loss is defined
as L(q1:T ) :=

∑T
t=1 lt(q

t). When the choice of q1:T is random, the expected cumulative variance
reduction loss is defined as L̄(q1:T ) := E

[
L(q1:T )

]
.

The variance reduction loss appears in the bound on the sub-optimality of a stochastic optimization
algorithm. As a motivating example, suppose F (·) in equation 1 is σ-strongly convex. Furthermore,
suppose the local update gtm = ∇ϕ(wt;Dm) is the full gradient of the local loss and the global
update is made by SGD with stepsize µt = 2/(σt). Theorem 3 of Salehi et al. (2017) then states
that for any T ≥ 1:

E

[
F

(
2

T (T + 1)

T∑
t=1

t · wt

)]
− F (w⋆) ≤ 2

σT (T + 1)
L̄(p1:T ), (5)

4The randomness comes from two sampling processes. The first sampling happens on clients level, and the
second sampling happens locally when choosing samples. To ease the understanding, one may treat gtm as full
local gradient.

5The variance reduction loss lt(·) should be distinguished from the training loss ϕ(·). While the former is
always convex, ϕ(·) can be non-convex.

4



Under review as a conference paper at ICLR 2023

where w⋆ is the minimizer of the objective in equation 1. Therefore, by choosing the sequence of
sampling distributions p1:T to make the L̄(p1:T ) small, one can achieve faster convergence. This
observation holds in other stochastic optimization problems as well. We develop an algorithm that
creates a sequence of sampling distributions p1:T to minimize L̄(p1:T ) using only the norm of local
updates, and without imposing assumptions on the loss functions or how the local and global updates
are made. As a result, the algorithm can be applied to design sampling distributions for essentially
any stochastic optimization procedure. In Section 3, we show how our sampling method improves
the upper bound of mini-batch SGD of non-convex objectives.

Suppose that at the beginning of the t-th communication round we know all {atm}Mm=1. Then the
optimal sampling distribution

pt⋆ = (pt⋆,1, . . . , p
t
⋆,M )⊤ = arg min

p∈PM−1

lt(p)

is obtained as pt⋆,m =
√
atm/(

∑M
m=1

√
atm). Computing the distribution pt⋆ is impractical as it

requires local updates of all clients, which eradicates the need for client sampling. From the form of
pt⋆, we observe that clients with a large atm are more “important” and should have a higher probability
of being selected. Since we do not know {atm}Mm=1, we will need to explore the environment to
learn about the importance of clients before we can exploit the best strategy. Finally, we note that
the relative importance of clients will change over time, which makes the environment dynamic and
challenging.

Based on the above discussion, we cast the problem of creating a sequence of sampling distribu-
tions as an online learning task with bandit feedback, where a game is played between the server
and environment. Let p1 be the initial sampling distribution. At the beginning of iteration t, the
server samples with replacement K clients from [M ], denoted St, using pt. The environment re-
veals {atm}m∈St to the server, where atm = λ2m∥gtm∥2. The environment also computes lt(pt);
however, this loss is not revealed to the server. The server then updates pt+1 based on the feed-
back {{aum}m∈Su}tu=1 and sampling distributions {pu}tu=1. Note that in this game, the server only
gets information about the chosen clients and, based on this partial information, or bandit feedback,
needs to update the sampling distribution. On the other hand, we would like to be competitive with
an oracle that can calculate the cumulative variance reduction loss. We will design pt in a way that
is agnostic to the generation mechanism of {at}t≥1, and will treat the environment as deterministic,
with randomness coming only from {St}t≥1. We describe an OSMD-based approach to solve this
online learning problem.

2.2 OSMD SAMPLER

The variance-reduction loss function lt is a convex function on PM−1 and

∇lt(q) = −
1

K

(
at1

(q1)2
, . . . ,

atM
(qM )2

)⊤

∈ RM for all q = (q1, . . . , qM )⊤ ∈ RM
++.

Since we do not observe at, we cannot compute lt(·) or ∇lt(·). Instead, we can construct unbiased
estimates of them. For any q ∈ PM−1, let l̂t(q; pt) be an estimate of lt(q) defined as

l̂t(q; p
t) =

1

K2

M∑
m=1

atm
qmptm

N
{
m ∈ St

}
, (6)

and ∇l̂t(q; pt) ∈ RM has the m-th entry defined as[
∇l̂t(q; pt)

]
m

= − 1

K2
· atm
q2mp

t
m

N
{
m ∈ St

}
. (7)

The set St is sampled with replacement from [M ] using pt and N {m ∈ St} denote the number of
times that a client m is chosen in St. Thus, 0 ≤ N {m ∈ St} ≤ K. Given q and pt, l̂t(q; pt) and
∇l̂t(q; pt) are random variables in R and RM that satisfy

ESt

[
l̂t(q; p

t) | pt
]
= lt(q), ESt

[
∇l̂t(q; pt) | pt

]
= ∇lt(q).
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Algorithm 1 OSMD Sampler

1: Input: A sequence of learning rates {ηt}t≥1; parameter α ∈ (0, 1],A = PM−1∩ [α/M,∞)M ;
number of iterations T .

2: Output: p̂1:T .
3: Initialize: p̂1 = punif .
4: for t = 1, 2, . . . , T − 1 do
5: Sample St by p̂t.
6: Compute∇l̂t(p̂t; p̂t) via equation 7.
7: p̂t+1 = argmin

p∈A
ηt⟨p,∇l̂t(p̂t; p̂t)⟩+DΦ

(
p ∥ p̂t

)
.

8: end for

When St and pt ∈ RM
++ are given, l̂t(q; pt) is a convex function with respect to q on RM

++ and
satisfies l̂t(q; pt) − l̂t(q′; pt) ≤ ⟨∇l̂t(q; pt), q − q′⟩, for q, q′ ∈ RM

++. The constructed estimates
l̂t(q; p

t) and ∇l̂t(q; pt) are crucial for designing updates to the sampling distribution. To the best
of our knowledge, while similar estimators as l̂t(q; pt) in equation 6 was used in previous litera-
ture (Borsos et al., 2018), we are the first one to propose ∇l̂t(q; pt) in equation 7 and use it for
updating sampling distribution.

OSMD Sampler is an online stochastic mirror descent algorithm for updating the sampling dis-
tribution, detailed in Algorithm 1. The sampling distribution is restricted to lie in the space
A = PM−1 ∩ [α/M,∞)M , α ∈ (0, 1], to prevent the server from assigning small probabilities
to devices. Let Φ : D ⊆ RM 7→ R be a continuously differentiable convex function defined on D,
with A ⊆ D̄. The learning rates {ηt}t≥1 are positive and nonincreasing.6 Line 7 of Algorithm 1
provides an update to the sampling distribution using the mirror descent update. The available feed-
back is used to construct an estimate of the loss, while the Bregman divergence between the current
and next sampling distribution is used as a regularizer, ensuring that the updated sampling distribu-
tion does not change too much. The update only uses the most recent information, while forgetting
the history, which results in nonstationarity of the sequence of sampling distributions. In Line 5 of
Algorithm 1, we choose St by sampling with replacement. In Section C.5, we discuss how to extend
the results to sampling without replacement.

The mirror descent update in Line 7 is not available in a closed form in general and an iterative
solver may be needed. However, when Φ(·) is chosen as the negative entropy Φe(·) (we use this as
our default choice), a closed-form efficient solution can be obtained. An efficient implementation is
shown in Algorithm 2 in Appendix C.1. The main cost comes from sorting the sequence {p̃t+1

m }Mm=1,
which can be done with the computational complexity of O(M logM). However, note that we only
update a few entries of pt to get p̃t+1 and pt is sorted. Therefore, most entries of p̃t+1 are also
sorted. Using this observation, we can usually achieve a much faster running time, for example, by
using an adaptive sorting algorithm (Estivill-Castro & Wood, 1992). Next, we provide a bound on
the dynamic regret for OSMD Sampler.

2.3 DYNAMIC REGRET OF OSMD SAMPLER

We first describe the dynamic regret used to measure the performance of an online algorithm that
generates a sequence of sampling distributions {p̂}t≥1 in a non-stationary environment. Given any
comparator sequence q1:T ∈ PT

M−1, the dynamic regret is defined as

D-RegretT (q
1:T ) = L̄

(
p̂1:T

)
− L̄

(
q1:T

)
. (8)

In contrast, the static regret measures the performance of an algorithm relative to the best fixed
sampling distribution, that is, it restricts q1 = · · · = qT (Namkoong et al., 2017; Salehi et al., 2017;
Borsos et al., 2018; 2019). When using a fixed comparator q1 = · · · = qT = q, we write the regret
as D-RegretT (q); besides, we write D-RegretT to denote D-RegretT (p

1:T
⋆ ).

6We use the term learning rate when discussing an online algorithm that learns a sampling distribution,
while the term stepsize is used in the context of an optimization algorithm.
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The following quantity describes the dynamic complexity of a comparator sequence and will appear
in the regret bound below.
Definition 2.1 (Total Variation). The total variation of a comparator sequence q1:T with respect to
the norm ∥ · ∥ on RM is TV

(
q1:T

)
=
∑T−1

t=1 ∥qt+1 − qt∥.

The total variation measures how variable a sequence is. The larger the total variation TV(q1:T ), the
more variable q1:T is, and such a comparator sequence is harder to match. To give an upper bound
on the dynamic regret of OSMD Sampler, we need the following assumptions.
Assumption 1. The function Φ(·) is ρ-strongly convex, ρ > 0 with respect to ∥ · ∥:

Φ(x) ≥ Φ(y) + ⟨∇Φ(y), x− y⟩+ ρ

2
∥x− y∥2, x, y ∈ D.

Assumption 2. There exist positive functions H(M,α), {Qt(M,α)}t≥1, and Dmax(M,α), such
that ∥∇Φ(p)∥⋆ ≤ H(M,α), ∥∇l̂t(p; q)∥⋆ ≤ Qt(M,α) almost surely, and DΦ(q ∥ punif) ≤
Dmax(M,α) for all p, q ∈ A.

These assumptions are standard in the literature (Hall & Willett, 2015). When we choose Φ = Φe

and ∥ · ∥ = ∥ · ∥1, these assumptions hold (See Appendix D.3). Under Assumption 1, we have
DΦ (x ∥ y) ≥ (ρ2/2)∥x− y∥2. To simplify the notation, we will omit M and α from H , {Qt}t≥1,
and Dmax. We also need the following quantities that quantify how far qt is from A. Given qt ∈
PM−1 and α ∈ (0, 1], let

ψ(qt, α) :=

M∑
m=1

( α
M
− qtm

)
1
{
qtm <

α

M

}
, ω(qt, α) :=

∑M
m=1

(
α
M − q

t
m

)
1
{
qtm < α

M

}∑M
m=1

(
qtm − α

M

)
1
{
qtm ≥ α

M

} ,
ϕ(qt, α) :=

ω(qt, α)

1− ω(qt, α)
(
1− α

M

) .
(9)

We will use these quantities to characterize the projection error in the following theorem, which is
the main result of this section.
Theorem 1. Suppose Assumptions 1-2 hold and we use ∥ · ∥ = ∥ · ∥1 to define the total variation.
Assume that {ηt}t≥1 is a nonincreasing sequence. Let p̂1:T be a sequence generated by Algorithm 1.
For any comparator sequence q1:T , where qt is allowed to be deterministic or random, we have

D-RegretT (q
1:T ) ≤ Dmax

η1
+

2H

ηT
E
[
TV
(
q1:T

)]
+

2

ρ

T∑
t=1

ηtE
[
Q2

t

]
︸ ︷︷ ︸

Intrinsic Regret

+

8H

ηT

T∑
t=1

E
[
ψ(qt, α)

]
+

T∑
t=1

E
[
ϕ(qt, α)lt(q

t)
]

︸ ︷︷ ︸
Projection Error

.

Proof. The major challenge of the proof is to construct a projection of the comparator sequence q1:T
onto AT and bound the projection error. To the best of our knowledge, this bound on the projection
error of a dynamic sequence is novel. Another challenge is to deal with the dynamic compara-
tor, which requires us to connect the cumulative regret with the total variation of the comparator
sequence. See Appendix D.2 for more details.

From Theorem 1, we see that the bound on the dynamic regret consists of two parts. The first part is
the intrinsic regret, quantifying the difficulty of tracking a comparator sequence in AT ; the second
part is the projection error, arising from projecting the comparator sequence onto AT . Note that the
intrinsic regret depends on α through Dmax, H , and {Qt}t≥1. As shown in Appendix D.2, we have
0 ≤ ω(qt, α) ≤ 1 for all α ∈ [0, 1], which implies that ϕ(qt, α) ≤ M/α. Furthermore, ψ(qt, α) ≤∑M

m=1(α/M)1 {qtm < (α/M)} ≤ α. Therefore, the projection error can be upper bounded by
(8Hα)/ηT+(M/α)

∑T
t=1 lt(q

t). More importantly, when qtm ∈ A, we haveψ(qt, α) = ω(qt, α) =

7
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ϕ(qt, α) = 0. Thus, when the comparator sequence belongs toAT , the projection error vanishes and
we only have the intrinsic regret. As α decreases from one to zero, the intrinsic regret gets larger (it
often tends to infinity as shown in Corollary 3), while we are allowing a larger class of comparator
sequences; on the other hand, the projection error decreases to zero, since the gap between A and
PM−1 vanishes with α. An optimal choice of α balances the two sources of regret.

When ∥ · ∥ = ∥ · ∥1 and Φ is the unnormalized negative entropy, the Step 7 of Algorithm 1 has a
closed-form solution (see Proposition 1). By Pinsker’s inequality, the unnormalized negative entropy
Φe(x) is 1-strongly convex on PM−1 with respect to ∥ · ∥1. When q1:T is a deterministic sequence,
we have E

[
TV
(
q1:T

)]
= TV

(
q1:T

)
.

With Theorem 1, we have the following corollary.

Corollary 1. Suppose conditions of Theorem 1 hold and let p̂1:T be the sequence generated by
Algorithm 1. For any comparator sequence q1:T , we choose α such that qt ∈ A for all t ∈ [T ]. Let

η =
K2α3

M3

√
logM + 2 log(M/α)E [TV (q1:T )]

2
∑T

t=1 E [(āt)2]
. (10)

Then

D-RegretT (q
1:T ) ≤ 2

√
2M3

K2α3

√√√√[logM + 2 log (M/α)E [TV (q1:T )]]

T∑
t=1

E
[
(āt)

2
]
,

where āt := max1≤m≤M λ2m∥gtm∥2 = max1≤m≤M atm for all t ∈ [T ].

Proof. The proof follows directly from Corollary 3 in Appendix D.3.

Note that as the training proceeds, the norms of local updates are decreasing, thus {āt}Tt=1 is typ-
ically a decreasing sequence. Thus, a naive upper bound is

∑T
t=1 E[(āt)2] = O(T ). However,

in Appendix F.6, we empirically show that āt decreases fast and the cumulative square sum of
this sequence will converge to a constant, that is,

∑T
t=1 E[(āt)2] = O(1). This result further im-

plies that the static regret with respect to the best fixed sampling distribution in hindsight (where
TV (q1:T ) = 0) is empirically O(1), which is much better than the rates in previous research (Salehi
et al., 2017; Borsos et al., 2018). Besides, our regret analysis also allows for sampling distributions
that change over time (where TV (q1:T ) > 0), and thus is more general than previous results.

The choice of learning rate in equation 10 depends on unknown quantities prior to training, and is
thus impractical. In Appendix C.3 and Appendix C.4, we introduce practical automatic parameter
tuning strategies with the help of online ensemble method and doubling trick.

3 CONVERGENCE ANALYSIS OF MINI-BATCH SGD WITH OSMD SAMPLER

We illustrate how OSMD Sampler can be used to provably improve the convergence rate of the mini-
batch SGD. The detailed algorithm is given in Algorithm 3 in Appendix C.2. We use mini-batch
SGD as a motivating example to show how adaptive sampling improves the convergence guarantee
of an optimization algorithm. The analysis in this section can be extended to other optimization
algorithms as well.

To simplify the notation, we denote Fm(w) := ϕ (w;Dm) and let λm = 1/M for all m ∈ [M ]. We
assume that w ∈ W ⊂ Rd, whereW is a compact set. Besides, we assume that client objectives are
differentiable and L-smooth functions.

Assumption 3. For all m ∈ [M ], Fm(·) is differentiable and L-smooth, that is,

∥∇Fm(x)−∇Fm(y)∥ ≤ L∥x− y∥, for all x, y ∈ W.

Note that we allow Fm(·) to be non-convex. We also assume that the objective function F (·) is
lower-bounded, that is, we assume that F ⋆ := infw∈W F (w) > −∞. In addition, we make the
following assumption about the local stochastic gradient.

8
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Assumption 4. For all w ∈ W and m ∈ [M ], we have Eξ∼Dm
[∇ϕ(w; ξ)] = ∇Fm(w) and

Eξ∼Dm

[
∥∇ϕ(w; ξ)−∇Fm(w)∥2

]
≤ σ2.

Next, we introduce quantities that characterize heterogeneity of the optimization problem. Specifi-
cally, heterogeneity characterizes how objective functions of different clients differ from each other.
In a federated learning problem, heterogeneity can be large and it is important to understand its effect
on the convergence of algorithms. The following three quantities characterize the heterogeneity:

ζ20 := sup
w∈W

1

M

M∑
m=1

∥∇Fm(w)−∇F (w)∥2 = sup
w∈W

{
1

M

M∑
m=1

∥∇Fm(w)∥2 − ∥∇F (w)∥2
}
,

ζ21 := min
p∈PM−1

sup
w∈W

{
1

M2

M∑
m=1

1

pm
∥∇Fm(w)∥2 − ∥∇F (w)∥2

}
,

ζ22 := sup
w∈W


(

1

M

M∑
m=1

∥∇Fm(w)∥

)2

− ∥∇F (w)∥2
 .

By Jensen’s inequality we have that ζ0 ≥ ζ1 ≥ ζ2 and we assume that ζ0 <∞. The quantity ζ0 has
been commonly used to quantify first-order heterogeneity (Karimireddy et al., 2020a;b), while ζ1
and ζ2 are variants of ζ0 corresponding to different sampling schemes. More specifically, when we
use q⋆ and p1:T⋆ to sample clients, we will have the heterogeneity level to be ζ1 and ζ2 respectively,
where q⋆ = argminp∈PM−1

supw∈W
∑M

m=1(1/pm)∥∇Fm(w)∥2 is the best fixed sampling distri-
bution. Finally, the following quantities are useful in stating the convergence guarantee. Recall that
B is the local batch size in Algorithm 3 and K = |St|. Let DF := F (w0)− F ⋆,

R0 :=
DFL

T
+
σ
√
DFL√
TKB

+
ζ0
√
DFL√
TK

,

R1 :=
DFL

T
+
σ
√
DFL√

TKBα
+
ζ1
√
DFL√
TK

+

√
DFL

√
D-RegretT (q⋆))
T

,

R2 :=
DFL

T
+
σ
√
DFL√

TKBα
+
ζ2
√
DFL√
TK

+

√
DFL

√
D-RegretT (p1:T⋆ ))

T
.

We are now ready to give the convergence guarantee of Algorithm 3.
Theorem 2. Assume Assumption 3 and Assumption 4 hold. Let µt = µ, t ∈ [T ], where µ is
given in equation 33 in Appendix. Let {w0, . . . , wT−1} be the sequence of iterates generated by
Algorithm 3 and let wR denote an element of that sequence chosen uniformly at random. When q⋆ ∈
A, we have E

[∥∥∇F (wR)
∥∥2] ≲ R1; when pt⋆ ∈ A for all t ∈ [T ], we have E

[∥∥∇F (wR)
∥∥2] ≲ R2;

when q⋆ ∈ A and pt⋆ ∈ A both hold, we have E
[∥∥∇F (wR)

∥∥2] ≲ min{R1, R2}.

See proof in Appendix D.6. We derive different convergence rates R1 and R2 in Theorem 2 by
choosing different comparators. More specifically, R1 is derived by comparing against q⋆ and R2

is derived by comparing against p1:T⋆ . The different notions of heterogeneity reveal the fact that
different sampling schemes can change the convergence speed of optimization algorithms through
the change of heterogeneity level.

Note thatR0 is the rate of mini-batch SGD under uniform sampling (Ghadimi & Lan, 2013). OSMD
Sampler can obtain tighter rates than uniform sampling when R1 or R2 are smaller than R0. To
have R1 ≲ R0, we need (σ/

√
KB)(1/

√
α − 1) +

√
D-RegretT (q⋆)/T ≲ (1/

√
K)(ζ0 − ζ1). By

Corollary 1, we have a worst-case upper bound of D-RegretT (q
⋆) as O(

√
T ); empirical evidence in

Appendix F.6 suggests tighter rates O(1). With either rates, we always have D-RegretT (q
⋆)/T =

o(1). Thus, to have R1 ≲ R0, we only need (σ/
√
B)(1/

√
α − 1) ≪ ζ0 − ζ1 asymptotically. That

is, we want the gap between the heterogeneity under best fixed sampling distribution and uniform
sampling to be large, compared to (σ/

√
B)(1/

√
α − 1), which is always true when we use full

local gradient, i.e., when σ = 0. Similar arguments apply to when R2 ≲ R0. See a more detailed
discussion in Appendix A.2.
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A MORE DISCUSSIONS

In this section, we include additional discussions that is omitted from the main text due to space
limit.

A.1 DETAILED DISCUSSION ABOUT CONTRIBUTIONS

We develop an algorithm based on OSMD that generates a sequence of sampling distributions
{pt}t≥1 based on the partial feedback available to the server from the sampled clients. We prove a
bound on regret relative to the any dynamic comparators, which allows us to consider the best se-
quence of sampling distributions as they change over iterations. The bound includes a total variation
term that characterizes the intrinsic difficulty of the problem by capturing the difficulty of following
the best sequence of distributions. Such a characterization of problem difficulty is novel. Besides,
our theoretical result can recover the results in previous research as special cases and is thus strictly
more general. Moreover, we theoretically improve the convergence guarantee of optimization algo-
rithm by using our sampling scheme over uniform sampling. We show that adaptive sampling can
help reduce the dependency on the heterogeneity level of the problem.

We demonstrate the empirical superiority of the proposed algorithm through synthetic and real data
experiments. In addition to client sampling in FL, our proposed algorithm will have a broad impact
on stochastic optimization. Adapting our algorithm to any stochastic optimization procedure that
chooses samples, such as SGD, or coordinates, such as Stochastic Coordinate Descent, may improve
their performance. For example, Zhao et al. (2022) illustrated the practical benefits of our algorithm
to speed up L-SVRG and L-Katyusha.

The learning rate of the proposed algorithm depends on the total variation of the comparator se-
quence, which is generally unknown. Furthermore, it also depends on the total number of iterations
that can also be unknown. In appendix, we make the algorithm practical by addressing a few tech-
nical challenges. In particular, we adapt the follow-the-regularized-leader algorithm and doubling
trick to automatically choose the learning rate that performs as well as the best learning rate asymp-
totically.

A.2 DETAILED DISCUSSION ABOUT THEOREM 2

We derive different convergence rates R1 and R2 in Theorem 2 by choosing different comparators,
which rates can be applied shall depend on the tuning parameter α (or equivalently the space A).
More specifically, R1 is derived by comparing against q⋆ and R2 is derived by comparing against
p1:T⋆ . The different notions of heterogeneity reveals the fact that different sampling schemes can
change the convergence speed of optimization algorithms through the change of heterogeneity level.

It is worth noting that one can always choose other comparator sequences besides these two and
derived new upper bounds. When choosing a more flexible comparator, one can obtain a smaller
heterogeneity, but risk requiring higher regret and larger space A (which will require smaller α). A
good choice of comparator should keep a trade-off between these two concerns. We leave how to
choose the optimal comparator sequence as a future research direction.

Note that R0 is the rate of mini-batch SGD under uniform sampling (Ghadimi & Lan, 2013). To see
when OSMD Sampler can obtain tighter rates than uniform sampling, we only need R1 or R2 to be
smaller than R0.

When willR1 ≪ R0. To haveR1 ≲ R0, we need (σ/
√
KB)(1/

√
α−1)+

√
D-RegretT (q⋆)/T ≲

(1/
√
K)(ζ0−ζ1). By Corollary 1, we have a worst-case upper bound of D-RegretT (q

⋆) asO(
√
T );

empirical evidence in Appendix F.6 suggests tighter rates O(1). With either rates, we always have
D-RegretT (q

⋆)/T = o(1). Thus, to have R1 ≲ R0, we only need (σ/
√
B)(1/

√
α − 1) ≪ ζ0 −

ζ1 asymptotically. That is, we want the gap between the heterogeneity under best fixed sampling
distribution and uniform sampling be large, compared to (σ/

√
B)(1/

√
α − 1). When σ = 0, that

is, if we use full local gradient, then this is always true.

When will R2 ≪ R0. Similarly, to have R2 ≪ R0, we need (σ/
√
KB)(1/

√
α − 1) +√

D-RegretT (p⋆⋆)/T ≲ (1/
√
K)(ζ0 − ζ2).. A worst-case upper bound of D-RegretT (p

1:T
⋆ )

14



Under review as a conference paper at ICLR 2023

based on Corollary 1 is O(T ); however, as shown in Appendix F.6, the empirical evidence sug-
gests that we may have D-RegretT (p

1:T
⋆ ) to be O(

√
T ) or even O(1), which then implies that

D-RegretT (p
1:T
⋆ )/T = o(1). Given this is true, to have R1 ≲ R0, we need (σ/

√
B)(1/

√
α− 1)≪

ζ0−ζ1 asymptotically. That is, we want the gap between the heterogeneity under best dynamic sam-
pling distribution and uniform sampling be large, compared to (σ/

√
B)(1/

√
α − 1). When σ = 0,

that is, if we use full local gradient, then this is always true.

New characterization of heterogeneity. Let ∆ζi = ζ0 − ζi for i = 1, 2. Based on the previous
analysis, we see that ∆ζi, i = 1, 2, can also help measure the dissimilarity of the different clients.
Compared with ζ0, the new characterization reflects how much gain we can have by using non-
uniform sampling, where ∆ζ1 measures the advantage gained by fixed sampling distribution, and
∆ζ2 measures the advantage gained by dynamic sampling distribution.

B MORE RELATED WORK

Our paper is also closely related to importance sampling in stochastic optimization. Zhao & Zhang
(2015); Needell et al. (2016) illustrated that by sampling observations from a nonuniform distribu-
tion when using a gradient-based stochastic optimization method, one can achieve faster conver-
gence. They designed a fixed sampling distribution using prior knowledge on the upper bounds of
gradient norms. Csiba & Richtárik (2018) extended the importance sampling to mini-batches. Stich
et al. (2017); Johnson & Guestrin (2018); Gopal (2016) developed adaptive sampling strategies that
allow the sampling distribution to change over time. Nesterov (2012); Perekrestenko et al. (2017);
Zhu et al. (2016); Salehi et al. (2018) discussed importance sampling in stochastic coordinate de-
scent methods. Namkoong et al. (2017); Salehi et al. (2017); Borsos et al. (2018; 2019); Hanchi
& Stephens (2020) illustrated how to design the sampling distribution by solving an online learning
task with bandit feedback. Namkoong et al. (2017); Salehi et al. (2017) designed the sampling distri-
bution by solving a multi-armed bandit problem with the EXP3 algorithm (Lattimore & Szepesvári,
2020, Chapter 11). Borsos et al. (2018) used the follow-the-regularized-leader algorithm (Lattimore
& Szepesvári, 2020, Chapter 28) to solve an online convex optimization problem and make updates
to the sampling distribution. Borsos et al. (2019) restricted the sampling distribution to be a linear
combination of distributions in a predefined set and used an online Newton step to make updates
to the mixture weights. The above approaches estimate a stationary distribution, while the best
distribution is changing with iterations and, therefore, is intrinsically dynamic. In addition to hav-
ing suboptimal empirical performance, these papers provide theoretical results that only establish
a regret relative to a fixed sampling distribution in hindsight. To address this problem, Hanchi &
Stephens (2020) took a non-stationary approach where the most recent information for each client
was kept. A decreasing stepsize sequence is required to establish a regret bound. Furthermore, the
regret bound does not capture the intrinsic difficulty of the problem. In comparison, we establish
a regret bound relative to a dynamic comparator—a sequence of sampling distributions—without
imposing assumptions on the stepsize sequence, and this bound includes the dependence on the total
variation term characterizing the intrinsic difficulty of the problem.

Our paper also contributes to the literature on online convex optimization. We cast the client sam-
pling problem as an online learning problem (Hazan, 2016) and adapt algorithms from the dynamic
online convex optimization literature to solve it. Hall & Willett (2015); Yang et al. (2016); Daniely
et al. (2015) proposed methods that achieve sublinear dynamic regret relative to dynamic compara-
tor sequences. In particular, Hall & Willett (2015) used a dynamic mirror descent algorithm to
achieve sublinear dynamic regret with total variation characterizing the intrinsic difficulty of the
environment. However, the optimal tuning parameters depend on the unknown total variation. On
the other hand, van Erven & Koolen (2016); Zhang et al. (2018) proposed different online ensemble
approaches to automatically choose the tuning parameters for online gradient descent. Compared
with the problem settings in the above studies, there are two key new challenges that we need to
address. First, we only have partial information—bandit feedback—instead of the full information
about the loss functions. Second, the loss functions in our case are unbounded, which violates the
common boundedness assumption in the online learning literature. To overcome the first difficulty,
we construct an unbiased estimator of the loss function and its gradient, which are then used to make
an update to the sampling distribution. We address the second challenge by first bounding the regret
of our algorithm when the sampling distributions in the comparator sequence lie in a region of the
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simplex for which the loss is bounded, and subsequently analyze the additional regret introduced by
projecting the elements of the comparator sequence to this region.

C ADDITIONAL ALGORITHMS

C.1 ALGORITHM TO SOLVE STEP 7 OF ALGORITHM 1 WHEN Φ IS UNNORMALIZED
NEGATIVE ENTROPY

When Φ(·) is chosen as the negative entropy Φe(·), a closed-form efficient solution can be obtained
as shown in Proposition 1.

Proposition 1. Suppose Φ = Φe is the unnormalized negative entropy in Algorithm 1. Let

p̃t+1
m = ptm exp

{
N
{
m ∈ St

}
ηta

t
m/(K

2(ptm)3)
}
, m ∈ [M ].

Let π : [M ] 7→ [M ] be a permutation such that p̃t+1
π(1) ≤ p̃t+1

π(2) ≤ · · · ≤ p̃t+1
π(M). Let mt

⋆ be the
smallest integer m such that

p̃t+1
π(m)

(
1− m− 1

M
α

)
>

α

M

M∑
j=m

p̃t+1
π(j).

Then

p̂t+1
m =

{
α/M if π(m) < mt

⋆(
(1− ((mt

⋆ − 1)/M)α)p̃t+1
m

)
/
(∑M

j=mt
⋆
p̃t+1
π(j)

)
otherwise.

Proof. See Appendix D.1.

An efficient implementation is shown in Algorithm 2.

Algorithm 2 Solver of Step 7 of Algorithm 1 when Φ is unnormalized negative entropy

1: Input: p̂t, St, {atm}m∈St , and A = PM−1 ∩ [α/M,∞)M .
2: Output: p̂t+1.
3: Let p̃t+1

m = ptm exp
{
N {m ∈ St} ηtatm/(K2(ptm)3)

}
for m ∈ [M ].

4: Sort {p̃t+1
m }Mm=1 in a non-decreasing order: p̃t+1

π(1) ≤ p̃
t+1
π(2) ≤ · · · ≤ p̃

t+1
π(M).

5: Let vm = p̃t+1
π(m)

(
1− m−1

M α
)

for m ∈ [M ].

6: Let um = α
M

∑M
j=m p̃t+1

π(j) for m ∈ [M ].
7: Find the smallest m such that vm > um, denoted as mt

⋆.

8: Let p̂t+1
m =

{
α/M if π(m) < mt

⋆(
(1− ((mt

⋆ − 1)/M)α)p̃t+1
m

)
/
(∑M

j=mt
⋆
p̃t+1
π(j)

)
otherwise.

C.2 MIN-BATCH SGD WITH OSMD SAMPLER

In this section, we describe the Min-batch SGD with OSMD Sampler in Algorithm 3. Compared to
classical min-batch SGD, the key ingredient of Algorithm 3 is Line 13, where the server updates the
sampling distribution by OSMD Sampler, and Line 5, where the server samples the local mini-batch
from a non-uniform sampling distribution.

C.3 ADAPTIVE-OSMD SAMPLER

The choice of the sequence of learning rates {ηt}t≥1 has a large effect on the performance of OSMD
Sampler. Similar to Corollary 1, we can have the following Corollary.
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Algorithm 3 Min-batch SGD with OSMD Sampler

1: Input: Number of communication rounds T , number of clients chosen in each round K, local
batch size B, initial model parameter w0, stepsize {µt}T−1

t=0 .
2: Output: The final model parameter wT .
3: Initialize: p̂0 = punif .
4: for t = 0, 1, . . . , T − 1 do
5: Sample St with replacement from [M ] with probability p̂t, such that |St| = K.
6: for m ∈ St do
7: Download the current model parameter wt.
8: Locally sample a mini-batch Bt

m = {ξtm,1, . . . , ξ
t
m,B} i.i.d. uniformly random from [nm].

9: Locally compute and upload gtm = (1/B)
∑B

b=1∇ϕ(wt; ξtm,b) to the server.
10: end for
11: Server computes atm = λ2m∥gtm∥2 for m ∈ St and

gt =
1

K

∑
m∈St

λm
p̂tm

gtm.

12: Server makes update of the model parameter wt+1 ← wt − µtg
t.

13: Server obtains updated sampling distribution p̂t+1 by Algorithm 1.
14: end for

Corollary 2. Suppose conditions of Theorem 1 hold and let p̂1:T be the sequence generated by
Algorithm 1. We choose α such that pt⋆ ∈ A for all t ∈ [T ]. Let

η =
K2α3

M3
√
E [(ā1)2]

√
logM + 2 log(M/α)E [TV (p1:T⋆ )]

2T
. (11)

Then

D-RegretT (p
1:T
⋆ ) ≤

2
√
2M3

√
E [(ā1)2]

K2α3

√
[logM + 2 log (M/α)E [TV (p1:T⋆ )]]T , (12)

where āt := max1≤m≤M atm = max1≤m≤M λ2m∥gtm∥2.

The choice in equation 11 still depends on unknown quantities such as E[ā1], E[TV(p1:T⋆ )], and T .
To get E[ā1], we can add a pre-training phase where we broadcast the initial model parameter w0

to all devices before the start of the training, and collect the returned ∥g0m∥2 from all responsive
devices, which we denote as S0. Then ˆ̄a1 := maxm∈S0 λm∥g0m∥2. On the other hand, E[TV(p1:T⋆ )]
and T are hard to estimate in advance of the training. We discuss how to use an online ensemble
method to choose the learning rate without the knowledge of E[TV(p1:T⋆ )], and how to get rid of the
dependence on T using the doubling trick.

The main idea is to run a set of expert algorithms, each with a different learning rate for Algo-
rithm 1. We then use a prediction-with-expert-advice algorithm to track the best performing expert
algorithm.7 More specifically, we define the set of expert learning rates as

E :=

{
2e−1 · K2α3

M3
√
E [(ā1)2]

√
logM

2T

∣∣∣∣∣ e = 1, 2, . . . , E

}
, (13)

where

E = ⌊1
2
log2

(
1 +

4 log(M/α)

logM
(T − 1)

)
⌋+ 1. (14)

Then for each ηe ∈ E , Adaptive-OSMD Sampler algorithm runs an expert algorithm to gener-
ate a sequence of sampling distributions p̂1:Te . Meanwhile, it also runs a meta-algorithm that uses

7We refer the reader to Chapter 2 of Cesa-Bianchi & Lugosi (2006) for an overview of prediction-with-
expert-advice algorithms.
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Algorithm 4 Adaptive-OSMD Sampler

1: Input: Meta learning rate γ; the set of expert learning rates E = {η1 ≤ η2 ≤ · · · ≤ ηE} with
E = |E|; parameter α ∈ (0, 1], A = PM−1 ∩ [α/M,∞)M ; number of iterations T ; initial
distribution pinit.

2: Output: p̂1:T .
3: Set θ1e = (1 + 1/E)/(e(e+ 1)) and p̂1e = pinit, e ∈ [E].
4: for t = 1, 2, . . . , T − 1 do
5: Compute p̂t =

∑E
e=1 θ

t
ep̂

t
e.

6: Sample St by p̂t.
7: for e = 1, 2, . . . , E do
8: Compute l̂t(p̂te; p̂

t) via equation 6 and∇l̂t(p̂te; p̂t) via equation 7.
9: Solve p̂t+1

e = argminp∈A ηe⟨p,∇l̂t(p̂te; p̂t)⟩+DΦ (p ∥ p̂te) via Algorithm 2.
10: end for
11: Update the weight of each expert:

θt+1
e =

θte exp
{
−γl̂t(p̂te; p̂t)

}
∑E

e=1 θ
t
e exp

{
−γl̂t(p̂te; p̂t)

} , e ∈ [E].

12: end for

exponentially-weighted-average strategy to aggregate {p̂1:Te }Ee=1 into a single output p̂1:T , which
achieves performance close to the best expert.

Algorithm 4 details Adaptive-OSMD Sampler. Note that since we can compute l̂t(p̂te; p̂
t) and

∇l̂t(p̂te; p̂t) directly, there is no need to use a surrogate loss as in van Erven & Koolen (2016) and
Zhang et al. (2018).

From the computational perspective, the major cost comes from solving step 9 of Algorithm 4,
which needs to be run for a total number of T |E| = T ⌊log2 T ⌋ times. Compared with Algorithm 1,
the computational complexity only increases by a log(T ) factor. We have the following result on
Algorithm 4.

Theorem 3. Let Φ = Φe and we use ∥ · ∥ = ∥ · ∥1 to define total variation. Let α be small enough

such that pt⋆ ∈ A for all t ∈ [T ]. Let p̂1:T be the output of Algorithm 4 with γ = α
M

√
8K

TE[ā1] ,

pinit = punif and E as in equation 13. Then

D-RegretT ≤
3
√
2M3

√
E [(ā1)2]

K2α3

√
T [logM + 2 log (M/α)E [TV (p1:T⋆ )]]

+
M

α

√
TE [ā1]

8K
(1 + 2 logE) .

Proof. See Appendix D.4.

Since the additional regret term is Õ((M/α)
√
T/K), which is no larger than the first term asymp-

totically, the bound on the regret is of the same order as in equation 12. However, we do not need to
know the total variation E[TV(p1:T⋆ )] to set the learning rate.

Based on Theorem 3, the choice of α relies on prior knowledge about {pt⋆}t≥1. Specifically, we need
α to be small enough so that pt⋆ ∈ A for all t ∈ [T ]. While this prior knowledge is not generally
available, in Section F.3 we experimentally show that the proposed algorithm is robust to the choice
of α. As long as the chosen α is not too small or too large, we obtain a reasonable solution. We
always set α = 0.4 in experiments.
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C.4 ADAPTIVE-OSMD SAMPLER WITH DOUBLING TRICK (ADAPTIVE-DOUBLING-OSMD)

Algorithm 4 requires the total number of iterations T as input, which is not always available in
practice. In those cases, we use doubling trick (Cesa-Bianchi & Lugosi, 2006, Section 2.3) to avoid
this requirement. The basic idea is to restart Adaptive-OSMD Sampler at exponentially increasing
time points Tb = 2b−1, b ≥ 1. The learning rates of experts in Algorithm 4 are reset at the beginning
of each time interval, and the meta-algorithm learning rate γ is chosen optimally for the interval
length. We set āTb at the beginning of each time interval using the maximum environment feedback
from the previous interval.

More specifically, at the time point Tb, we let

Eb :=
{
2e−

b
2−1 · K

2α3
√
logM

M3âb

∣∣∣∣ e = 1, 2, . . . , Eb

}
, (15)

where

Eb = ⌊
1

2
log2

(
1 +

4 log(M/α)

logM
(2b−1 − 1)

)
⌋+ 1, (16)

and γb = α
M

√
8K

2b−1âb , b ≥ 1. We set ˆ̄aTb = maxm∈STb−1 aTb−1
m . In a practical implementation,

at the time point t = Tb, instead of initializing all expert algorithms using uniform distribution, we
can initialize them with the output of the meta-algorithm for t = Tb− 1. To get a0, the server uses a
pre-training phase where the initial model parameter w0 is broadcast to all devices before the start of
the training. Subsequently, the server collects the returned ∥g0m∥2 from all responsive devices, which
are denoted as S0. Then ˆ̄a1 := maxm∈S0 a0m where a0m = λm∥g0m∥2. Adaptive-Doubling-OSMD
Sampler is detailed in Algorithm 5.

From the computational perspective, by the proof of Theorem 4, Algorithm 5 needs to run Step 9 of
Algorithm 4 for a total number of O(T |E|2) = O(T ⌊log2 T ⌋) times. Therefore, the computational
complexity of Adaptive-Doubling-OSMD Sampler is asymptotically the same as that of Adaptive-
OSMD Sampler, while it increases by only a log(T ) factor compared to OSMD Sampler. The
following theorem provides a bound on the dynamic regret for Adaptive-Doubling-OSMD Sampler.
Theorem 4. Let Φ = Φe and we use ∥·∥ = ∥·∥1 to define the total variation. Let α be small enough
constant so that p1:T⋆ ∈ AT and the training is stopped after T iterations. Suppose that there exists
a constant C > 1 such that ˆ̄aTb ≤ CāTb for all b = 1, 2, . . . , B, where B = ⌊log2(T + 1)⌋. Let
p̂1:T be the output of Algorithm 5, where punif is used in Step 8. Then

D-RegretT

≤
√
2(T + 1)√
2− 1

{
(2C + 1)

√
2M3

√
E [(ā1)2]

K2α3

√
logM + 2 log (M/α)E [TV (p1:T⋆ ])+

M

α

√
E [ā1]

8K
(C + 2 logE)

}
.

Proof. See Appendix D.5.

From Theorem 4 we observe that the asymptotic regret bound has the same order as that of OSMD
Sampler and Adaptive-OSMD Sampler. However, Adaptive-Doubling-OSMD Sampler does not
need to know E

[
TV(p1:T⋆ )

]
or T in advance.

C.5 ADAPTIVE SAMPLING WITHOUT REPLACEMENT

In the discussion so far, we have assumed that the set St is obtained by sampling with replacement
from pt. However, whenK is relatively large compared toM and pt is far from uniform distribution,
sampling without replacement can be more efficient than sampling with replacement. However,
when sampling without replacement using pt, the variance reduction loss does not have a clean form
as in equation 4. As a result, an online design of the sampling distribution is more challenging. In
this section, we discuss how to use the sampling distribution obtained by Adaptive-OSMD Sampler
to sample clients without replacement, following the approach taken in Hanchi & Stephens (2020).
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Algorithm 5 Adaptive-OSMD Sampler with Doubling Trick (Adaptive-Doubling-OSMD)

1: Input: Paramter α.
2: Output: p̂t for t = 1, . . . , T .
3: Use w0 to get {a0m}m∈S0 , where S0 is the set of responsive clients in the pre-training phase.
4: Initialize ˆ̄a1 = maxm∈S0 a0m and set b = 1.
5: while True do
6: Set Eb as in equation 15.

7: Let γb = α
M

√
8K

2b−1 ˆ̄ab .

8: Obtain {p̂t}2
b−1

t=2b−1 from Algorithm 4 with parameters: γb, Eb, α, the number of iterations
2b−1, and the initial distribution punif or p̂2

b−1−1 (when b > 1).
9: if Training Process is Converged then

10: Break.
11: end if
12: Let b← b+ 1.
13: Let ˆ̄ab = maxm∈[M ] a

Tb
m .

14: end while

Algorithm 6 Adaptive sampling without replacement

1: Input: w1 and p̂1.
2: for t = 1, 2, . . . , T − 1 do
3: Let p̂t(1) = p̂t and sample mt

1 from [M ] by p̂t(1).
4: for k = 2, · · · ,K do
5: /* Design the sampling distribution for sampling the k-th client in the t-th round */
6: Construct p̂t(k) by letting

p̂t(k),m =

{ (
1−

∑k−1
l=1 p̂

t
mt

l

)−1

p̂tm if m ∈ [M ]\{mt
1, . . . ,m

t
k−1}

0 otherwise.

7: /* Sample the k-th client */
8: Sample mt

k from [M ]\{mt
1, . . . ,m

t
k−1} by p̂t(k).

9: end for
10: Let St = {mt

1, · · · ,mt
K}.

11: The server broadcasts the model parameter wt to clients in St.
12: The clients in St compute and upload the set of local gradients

{
gtmt

1
, · · · , gtmt

K

}
.

13: /* Construct global gradient estimate */
14: Let gt(1) = λtmt

1
gtmt

1
/p̂t(1),mt

1
.

15: for k = 2, · · · ,K do
16: Let gt(k) = λtmt

k
gtmt

k
/p̂t(k),mt

k
+
∑k−1

l=1 λ
t
mt

l
gtmt

l
.

17: end for
18: Let g̃t = K−1

∑K
k=1 g

t
(k).

19: /* Update the model weight based on the global gradient estimate */
20: Obtain the updated model parameter wt+1 using wt and g̃t.
21: /* Update sampling distribution */
22: Let atm = λ2m∥gtm∥2 for m ∈ St.
23: Input {atm}m∈St into Adaptive-OSMD Sampler to get p̂t+1.
24: end for

The detailed sampling procedure is described in Algorithm 6. We still use Adaptive-OSMD Sampler
to update the sampling distribution. However, we use the designed sampling distribution in a way
that no client is chosen twice. Furthermore, Step 18 of Algorithm 6 constructs the gradient estimate
with the following properties.
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Proposition 2 (Proposition 3 of Hanchi & Stephens (2020)). Let p̂t = p and let g̃t be as in Step 18
of Algorithm 6. Note that g̃t = g̃t(p) depends on p. Recall that J t =

∑M
m=1 λmg

t
m. We have

ESt

[
g̃t
]
= J t and arg min

p∈PM−1

ESt

[
∥g̃t − J t∥22

]
= arg min

p∈PM−1

lt(p),

where lt(·) is defined in equation 4 and the expectation is taken over St.

From Proposition 2, we see that g̃t is an unbiased stochastic gradient. Furthermore, the variance
of g̃t is minimized by the same sampling distribution that minimizes the variance reduction loss
in equation 4. Therefore, it is reasonable to use the sampling distribution generated by Adaptive-
OSMD Sampler to design g̃t.

D TECHNICAL PROOFS

D.1 PROOF OF PROPOSITION 1

First, we show that the solution p̂t+1 in Step 7 of Algorithm 1 can be found as

p̃t+1 = argmin
p∈D

ηt⟨p,∇l̂t(p̂t; p̂t)⟩+DΦe

(
p ∥ p̂t

)
,

p̂t+1 = argmin
p∈A

DΦe

(
p ∥ p̃t+1

)
.

The optimality condition for p̃t+1 implies that

ηt∇l̂t(p̂t; p̂t) +∇Φe(p̃
t+1)−∇Φe(p̂

t) = 0. (17)

By Lemma 1, the optimality condition for p̂t+1 implies that

⟨p− p̂t+1,∇Φe(p̂
t+1)−∇Φe(p̃

t+1)⟩ ≥ 0, for all p ∈ A.
Combining the last two displays, we have

⟨p− p̂t+1, ηt∇l̂t(p̂t; p̂t) +∇Φe(p̂
t+1)−∇Φe(p̂

t)⟩ ≥ 0, for all p ∈ A.
By Lemma 1, this is the optimality condition for p̂t+1 to be the solution in Step 7 of Algorithm 1.

Note that equation 17 implies that

− ηt
K2
· atm
(ptm)3

N
{
m ∈ St

}
+ log(p̃t+1

m )− log(p̂tm) = 0, m ∈ [M ].

Therefore,

p̃t+1
m = p̂tm exp

(
ηta

t
m

K2 (p̂tm)
3N

{
m ∈ St

})
, m ∈ [M ],

and the final result follows from Lemma 4.

D.2 PROOF OF THEOREM 1

We first state a proposition that will be used to prove Theorem 1. The key difference between
Theorem 1 and Proposition 3 is that in Proposition 3 the comparator sequence lies in A, and, as a
result, there is no projection error.
Proposition 3. Suppose the conditions of Theorem 1 hold. For any comparator sequence q1:T with
qt ∈ A, t ∈ [T ], we have

D-RegretT (q
1:T ) ≤ Dmax

η1
+

2H

ηT
E
[
TV
(
q1:T

)]
+

2

ρ

T∑
t=1

ηtE
[
Q2

t

]
.

Proof. By Lemma 1 and the definition of p̂t+1 in Step 7 of Algorithm 1, we have

⟨p̂t+1 − qt,∇l̂t(p̂t; p̂t)⟩ ≤
1

ηt
⟨∇Φ(p̂t)−∇Φ(p̂t+1), p̂t+1 − qt⟩. (18)
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By the convexity of l̂t(·; p̂t), we have

l̂t(p̂
t; p̂t)− l̂t(qt; p̂t) ≤ ⟨∇l̂t(p̂t; p̂t), p̂t− qt⟩ = ⟨∇l̂t(p̂t; p̂t), p̂t+1− qt⟩+ ⟨∇l̂t(p̂t; p̂t), p̂t− p̂t+1⟩.

Then, by equation 18, we further have

l̂t(p̂
t; p̂t)− l̂t(qt; p̂t) ≤

1

ηt
⟨∇Φ(p̂t)−∇Φ(p̂t+1), p̂t+1 − qt⟩+ ⟨∇l̂t(p̂t; p̂t), p̂t − p̂t+1⟩.

From the definition of D, we have

DΦ (x1 ∥x2) = DΦ (x3 ∥x2)+DΦ (x1 ∥x3)+⟨∇Φ(x2)−∇Φ(x3), x3−x1⟩, x1, x2, x3 ∈ D.

Then

l̂t(p̂
t; p̂t)− l̂t(qt; p̂t)

≤ 1

ηt

[
DΦ

(
qt∥p̂t

)
−DΦ

(
qt∥p̂t+1

)
−DΦ

(
p̂t+1∥p̂t

)]
+ ⟨∇l̂t(p̂t; p̂t), p̂t − p̂t+1⟩

=
1

ηt

[
DΦ

(
qt∥p̂t

)
−DΦ

(
qt+1∥p̂t+1

)]
+

1

ηt

[
DΦ

(
qt+1∥p̂t+1

)
−DΦ

(
qt∥p̂t+1

)]
− 1

ηt
DΦ

(
p̂t+1∥p̂t

)
+ ⟨∇l̂t(p̂t; p̂t), p̂t − p̂t+1⟩. (19)

We bound the second term in equation 19 as

DΦ

(
qt+1∥p̂t+1

)
−DΦ

(
qt∥p̂t+1

)
= Φ(qt+1)− Φ(qt)− ⟨∇Φ(p̂t+1), qt+1 − qt⟩
(a)

≤ ⟨∇Φ(qt+1)−∇Φ(p̂t+1), qt+1 − qt⟩
(b)

≤ ∥∇Φ(qt+1)−∇Φ(p̂t+1)∥⋆∥qt+1 − qt∥
(c)

≤ 2H∥qt+1 − qt∥, (20)

where (a) follows from the convexity of Φ(·), (b) follows from the definition of the dual norm, and
(c) follows from the definition of H . Since Φ(·) is ρ-strongly convex, we can bound the third and
fourth term in equation 19 as

− 1

ηt
DΦ

(
p̂t+1∥p̂t

)
+ ⟨∇l̂t(p̂t; p̂t), p̂t − p̂t+1⟩ ≤ − ρ

2ηt
∥p̂t+1 − p̂t∥2 + ∥∇l̂t(p̂t; p̂t)∥⋆∥p̂t − p̂t+1∥.

Since ab ≤ a2/(2ϵ) + b2ϵ/2, a, b, ϵ > 0, we further have

− 1

ηt
DΦ

(
p̂t+1∥p̂t

)
+ ⟨∇l̂t(p̂t; p̂t), p̂t − p̂t+1⟩ ≤ 2ηt

ρ
∥∇l̂t(p̂t; p̂t)∥2⋆ ≤

2ηt
ρ
Q2

t . (21)

Combining equation 19-equation 21, we have

l̂t(p̂
t; p̂t)− l̂t(qt; p̂t) ≤

DΦ (qt∥p̂t)
ηt

−
DΦ

(
qt+1∥p̂t+1

)
ηt

+ 2H
∥qt+1 − qt∥

ηt
+

2

ρ
ηtQ

2
t .

This implies that

T∑
t=1

l̂t(p̂
t; p̂t)−

T∑
t=1

l̂t(q
t; p̂t)

≤
DΦ

(
q1∥p̂1

)
η1

−
DΦ

(
qT+1∥p̂T+1

)
ηT+1

+ 2H

T∑
t=1

∥qt+1 − qt∥
ηt

+
2

ρ

T∑
t=1

ηtQ
2
t

≤
DΦ

(
q1∥p̂1

)
η1

+
2H

ηT

T∑
t=1

∥qt+1 − qt∥+ 2

ρ

T∑
t=1

ηtQ
2
t

≤ Dmax

η1
+

2H

ηT
TV
(
q1:T

)
+

2

ρ

T∑
t=1

ηtQ
2
t , (22)
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since p̂1 is the uniform distribution. Finally, note that

E

[
T∑

t=1

l̂t(p̂
t; p̂t)−

T∑
t=1

l̂t(q
t; p̂t)

]
=

T∑
t=1

E
[
ESt

[
l̂t(p̂

t; p̂t)
]
− ESt

[
l̂t(q

t; p̂t)
]]

=

T∑
t=1

E
[
lt(p̂

t)− lt(qt)
]

= D-RegretT (q
1:T ).

The conclusion follows by taking expectation on both sides of equation 22.

We are now ready to prove Theorem 1.

Proof of Theorem 1. For any comparator sequence q1:T with qt ∈ PM−1, t ∈ [T ], we have

D-RegretT (q
1:T ) = E

[
T∑

t=1

lt(p̂
t)−

T∑
t=1

lt(q̃
t) +

T∑
t=1

lt(q̃
t)−

T∑
t=1

lt(q
t)

]
. (23)

By Proposition 3, we further have that

E

[
T∑

t=1

lt(p̂
t)−

T∑
t=1

lt(q̃
t)

]

≤ Dmax

η1
+

2H

ηT
E
[
TV
(
q1:T

)]
+

2

ρ

T∑
t=1

ηtE
[
Q2

t

]
+

2H

ηT
E
[
TV
(
q̃1:T

)
− TV

(
q1:T

)]
. (24)

Therefore, to prove Theorem 1, we design a suitable sequence q̃1:T , where q̃t ∈ A, and bound the
terms

∑T
t=1 lt(q̃

t)−
∑T

t=1 lt(q
t) and TV

(
q̃1:T

)
− TV

(
q1:T

)
.

We define q̃t as

q̃tm =

{
α/M if qtm < α/M,

qtm − ω(qt, α)
(
qtm − α

M

)
if qtm ≥ α/M,

(25)

where ω(qt, α) is defined in equation 9. We now show that q̃t ∈ A, t ∈ [T ], by showing that
q̃tm ≥ α/M , m ∈ [M ], and

∑
m∈[M ] q̃

t
m = 1. For m ∈ [M ] such that qtm < α/M , we have

from equation 25 that q̃tm = α/M . For m ∈ [M ] such that qtm ≥ α/M , by equation 25, we have
q̃tm − α/M = (1− ω(qt, α)) (qtm − α/M). Thus, we proceed to show that ω(qt, α) ≤ 1. Since

1 =

M∑
m=1

qtm1
{
qtm <

α

M

}
+

M∑
m=1

qtm1
{
qtm ≥

α

M

}
≥

M∑
m=1

α

M
1
{
qtm <

α

M

}
+

M∑
m=1

α

M
1
{
qtm ≥

α

M

}
= α,

we have
M∑

m=1

(
qtm −

α

M

)
1
{
qtm ≥

α

M

}
≥

M∑
m=1

( α
M
− qtm

)
1
{
qtm <

α

M

}
.
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Therefore, 0 ≤ ω(qt, α) ≤ 1. Furthermore, ω(qt, 0) = 1 and ω(qt, 1) = 1. Finally, we show that∑M
m=1 q̃

t
m = 1. By equation 25 and the definition of ω(qt, α) in equation 9, we have

M∑
m=1

q̃tm =

M∑
m=1

α

M
1
{
qtm <

α

M

}
+

M∑
m=1

qtm1
{
qtm ≥

α

M

}
− ω(qt, α)

M∑
m=1

(
qtm −

α

M

)
1
{
qtm ≥

α

M

}
=

M∑
m=1

α

M
1
{
qtm <

α

M

}
+

M∑
m=1

qtm1
{
qtm ≥

α

M

}
−

M∑
m=1

( α
M
− qtm

)
1
{
qtm <

α

M

}
=

M∑
m=1

qtm1
{
qtm ≥

α

M

}
+

M∑
m=1

qtm1
{
qtm <

α

M

}
= 1.

Therefore, q̃t ∈ A for any t ∈ [T ].

We now bound
∑T

t=1 lt(q̃
t) −

∑T
t=1 lt(q

t). When qtm < α/M , then 1/q̃tm − 1/qtm < 0; and when
qtm ≥ α/M , then

1

q̃tm
− 1

qtm
=

1

qtm
·

 1

1− ω(qt, α)
(
1− α

Mqtm

) − 1

 =
1

qtm
·

ω(qt, α)
(
1− α

Mqtm

)
1− ω(qt, α)

(
1− α

Mqtm

) .
Since

ω(qt, α)

(
1− α

Mqtm

)
≤ ω(qt, α) and 1−ω(qt, α)

(
1− α

Mqtm

)
≥ 1−ω(qt, α)+ ω(qt, α)α

M

as qtm ≤ 1, we have

1

q̃tm
− 1

qtm
≤ 1

qtm
· ω(qt, α)

1− ω(qt, α)
(
1− α

M

) =
ϕ(qt, α)

qtm
.

Thus,

T∑
t=1

lt(q̃
t)−

T∑
t=1

lt(q
t) =

T∑
t=1

M∑
m=1

atm

(
1

q̃tm
− 1

qtm

)

≤
T∑

t=1

M∑
m=1

atm

(
1

q̃tm
− 1

qtm

)
1
{
qtm ≥

α

M

}
≤

T∑
t=1

ϕ(qt, α)

M∑
m=1

atm
qtm

1
{
qtm ≥

α

M

}
≤

T∑
t=1

ϕ(qt, α)lt(q
t). (26)
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Next, we bound TV
(
q̃1:T

)
− TV

(
q1:T

)
. Note that

TV
(
q̃1:T

)
=

T∑
t=2

∥∥q̃t − q̃t−1
∥∥
1

=

T∑
t=2

∥∥q̃t − qt + qt − qt−1 + qt−1 − q̃t−1
∥∥
1

≤
T∑

t=2

∥∥q̃t − qt∥∥
1
+

T∑
t=2

∥∥qt − qt−1
∥∥
1
+

T∑
t=2

∥∥qt−1 − q̃t−1
∥∥
1

≤ TV
(
q1:T

)
+ 2

T∑
t=1

∥∥q̃t − qt∥∥
1
.

We now upper bound
∑T

t=1 ∥q̃t − qt∥1. If qtm < α/M , then |q̃tm−qtm| = α/M−qtm. If qtm ≥ α/M ,
by equation 25, we have |q̃tm − qtm| = ω(qt, α) (qtm − α/M). Therefore, recalling the definition of
ψ(qt, α) in equation 9, we have

∥∥q̃t − qt∥∥
1
=

M∑
m=1

( α
M
− qtm

)
1
{
qtm <

α

M

}
+ ω(qt, α)

M∑
m=1

(
qtm −

α

M

)
1
{
qtm ≥

α

M

}
= 2

M∑
m=1

( α
M
− qtm

)
1
{
qtm <

α

M

}
= 2ψ(qt, α)

and

TV
(
q̃1:T

)
− TV

(
q1:T

)
≤ 4

T∑
t=1

ψ(qt, α). (27)

Combining equation 23, equation 24, equation 26, and equation 27, and taking expectation on both
sides, we obtain the result.

D.3 COROLLARY 3 AND ITS PROOF

Corollary 3. Suppose conditions of Theorem 1 hold and Φ = Φe. Then for any comparator se-
quence {q1:T }, we have

D-RegretT (q
1:T ) ≤ logM

η1
+

2 log(M/α)

ηT
TV
(
q1:T

)
+

2M6

K4α6

T∑
t=1

ηt
(
āt
)2

+
8H

ηT

T∑
t=1

ψ(qt, α) +

T∑
t=1

ϕ(qt, α)lt(q
t),

where āt := max1≤m≤M atm = max1≤m≤M λ2m∥gtm∥2.

Proof. When Φ = Φe, we have ρ = 1 from Pinsker’s inequality. Furthermore, ∥ · ∥⋆ = ∥ ·
∥∞, ∇Φe(p) = (log p1, . . . , log pM )⊤, and p̂t ∈ A = PM−1 ∩ [α/M,∞)M , t ∈ [T ]. Then
Qt = M3āt/(K2α3) and H = log(M/α) follows by checking the definition. Finally, to show that
DΦe

(q ∥ punif) ≤ logM for all q ∈ A, we note that DΦe
(q ∥ punif) = logM +

∑M
m=1 qm log qm ≤

logM .

D.4 PROOF OF THEOREM 3

The proof proceeds in two steps. First, we show that there exists an expert learning rate ηe ∈ E such
that the regret bound for p̂1:Te is close to equation 12. That is, we show that there exists ηe ∈ E such
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that

E

[
T∑

t=1

l̂t(p̂
t
e; p̂

t)−
T∑

t=1

lt(p
t
⋆)

]
≤

3
√
2M3

√
E [(ā1)2]

K2α3

√
T [logM + 2 log (M/α)E [TV (p1:T⋆ )]].

(28)
Note that St ∼ p̂t. Second, we show that the output of meta-algorithm can track the best expert with
small regret. That is, we show that

E

[
T∑

t=1

lt(p̂
t)

]
− E

[
T∑

t=1

l̂t(p̂
t
e; p̂

t)

]
≤ M

α

√
TE [ā1]

8K
(1 + 2 logE), e ∈ [E]. (29)

The theorem follows by combining equation 28 and equation 29.

We first prove equation 28. Since 0 ≤ E[TV
(
p1:T⋆

)
] ≤ 2(T − 1), we have

min E =
K2α3

M3ā1

√
logM

2T
≤ η⋆ ≤ K2α3

M3ā1

√
logM + 4 log(M/α)(T − 1)

2T
≤ max E ,

where η⋆ is defined as in equation 11. Thus, there exists ηe ∈ E , such that ηe ≤ η⋆ ≤ 2ηe. Repeating
the proof of equation 22 and proof of Corollary 3, we show that

T∑
t=1

l̂t(p̂
t
e; p̂

t)−
T∑

t=1

l̂t(p
t
⋆; p̂

t) ≤ logM

ηe
+

2 log(M/α)

ηe
TV
(
p1:T⋆

)
+

2ηeM
6

K4α6

T∑
t=1

(
āt
)2
,

which then implies that

E

[
T∑

t=1

l̂t(p̂
t
e; p̂

t)−
T∑

t=1

l̂t(p
t
⋆; p̂

t)

]
≤ logM

ηe
+

2 log(M/α)

ηe
E
[
TV
(
p1:T⋆

)]
+

2ηeM
6

K4α6

T∑
t=1

E
[(
āt
)2]

,

Since η⋆/2 ≤ ηe ≤ η⋆, we further have

E

[
T∑

t=1

l̂t(p̂
t
e; p̂

t)−
T∑

t=1

l̂t(p
t
⋆; p̂

t)

]

≤ 2 logM

η⋆
+

4 log(M/α)

η⋆
E
[
TV
(
p1:T⋆

)]
+

2η⋆M6

K4α6

T∑
t=1

E
[(
āt
)2]

≤ 2 logM

η⋆
+

4 log(M/α)

η⋆
E
[
TV
(
p1:T⋆

)]
+

2η⋆M6T

K4α6
E
[(
ā1
)2]

=
3
√
2M3

√
E [(ā1)2]

K2α3

√
T [logM + 2 log (M/α)E [TV (p1:T⋆ )]].

Now, equation 28 follows, since

E

[
T∑

t=1

l̂t(p
t
⋆; p̂

t)

]
=

T∑
t=1

E
[
ESt

[
l̂t(p

t
⋆; p̂

t)
]]

=

T∑
t=1

E
[
lt(p

t
⋆)
]
.

We prove equation 29 next. Let

L̂e
t =

t∑
s=1

l̂s(p̂
s
e; p̂

s) e ∈ [E], t ∈ [T ].

Recall the update for θte in Step 11 of Alg 4. We have

θte =
θ1e exp

(
−γL̂e

t−1

)
∑E

b=1 θ
1
b exp

(
−γL̂b

t−1

) , t = 2, . . . T.
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Let Θt =
∑E

b=1 θ
1
b exp

{
−γL̂b

t

}
. Then

logΘ1 = log

(
E∑

b=1

θ1b exp
{
−γL̂b

1

})
and, for t ≥ 2,

log

(
Θt

Θt−1

)
= log

∑E
b=1 θ

1
b exp

{
−γL̂b

t−1

}
exp

{
−γl̂t(p̂tb; p̂t)

}
∑E

b=1 θ
1
b exp

{
−γL̂b

t−1

}


= log

(
E∑

b=1

θtb exp
{
−γl̂t(p̂tb; p̂t)

})
.

We have

logΘT = logΘ1 +

T∑
t=1

log

(
Θt

Θt−1

)

=

T∑
t=1

log

(
E∑

b=1

θtb exp
{
−γl̂t(p̂tb; p̂t)

})

≤
T∑

t=1

(
−γ

E∑
b=1

θtb l̂t(p̂
t
b; p̂

t) +
γ2M2āt

8Kα2

)
(Lemma 3)

≤ −γ
T∑

t=1

l̂t(p̂
t; p̂t) +

γ2M2
(∑T

t=1 ā
t
)

8Kα2
(Jensen’s inequality)

and

log (ΘT ) = log

(
E∑

b=1

θ1b exp
{
−γL̂b

T

})

≥ log

(
max

1≤b≤E
θ1b exp

{
−γL̂b

T

})
= −γ min

1≤b≤E

{
L̂b
T +

1

γ
log

1

θ1b

}
.

Combining the last two displays, we have

−γ min
1≤b≤E

{
L̂b
T +

1

γ
log

1

θ1b

}
≤ −γ

T∑
t=1

l̂t(p̂
t; p̂t) +

γ2M2
(∑T

t=1 ā
t
)

8Kα2
,

which implies that

T∑
t=1

l̂t(p̂
t; p̂t)− L̂e

T ≤
γM2

(∑T
t=1 ā

t
)

8Kα2
+

1

γ
log

1

θ1e
≤ γM2T ā1

8Kα2
+

1

γ
log

1

θ1e
, e ∈ [E].

Taking expectation on both sides, we then have

E

[
T∑

t=1

l̂t(p̂
t; p̂t)− L̂e

T

]
≤
γM2TE

[
ā1
]

8Kα2
+

1

γ
log

1

θ1e

Since θ1e ≥ 1
E2 , log 1/θ1e ≤ 2 logE. Let γ =

√
8Kα2/(TM2E[ā1]) to minimize the right hand

side of the above inequality with log 1/θ1e substituted by 1. Then

E

[
T∑

t=1

l̂t(p̂
t; p̂t)− L̂e

T

]
= E

[
T∑

t=1

l̂t(p̂
t; p̂t)−

T∑
t=1

l̂t(p̂
t
e; p̂

t)

]

≤ M

α

√
TE [ā1]

8K
(1 + 2 logE) , e ∈ [E].
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D.5 PROOF OF THEOREM 4

Recall that Tb = 2b−1 and p̂Tb is reinitialized as the uniform distribution. Let

D-Regretb = E

Tb+1−1∑
t=Tb

lt(p̂
t)−

Tb+1−1∑
t=Tb

lt(p
t
⋆)

 .
Similar to the proof of equation 28 and equation 29, we have

D-Regretb

≤
(2C + 1)

√
2M3

√
E [(āTb)2]

K2α3

√[
logM + 2 log (M/α)E

[
TV
(
p
Tb:(Tb+1−1)
⋆

)]]
(Tb+1 − Tb)

+
M

α

√
(Tb+1 − Tb)E [āTb ]

8K
(C + 2 logEb)

≤
(2C + 1)

√
2M3

√
E [(ā1)2]

K2α3

√
[logM + 2 log (M/α)TV (p1:T⋆ )](

√
2)b−1

+
M

α

√
E [ā1]

8K
(C + 2 logE)(

√
2)b−1,

where E is defined in equation 14. Since B = ⌊log2(T +1)⌋, we have TB ≤ T ≤ TB+1− 1, which
implies that 1 ≤ T − TB + 1 ≤ TB+1 − TB = 2B . Thus, we can similarly obtain

E
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T∑
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The result follows combing the last two displays.

D.6 PROOF OF THEOREM 2

Our proof follows the similar technique used in the proof of Theorem 2.1 of Ghadimi & Lan (2013).
Our key novel technique is the construction of a ghost subset that is drawn from [M ] from the
comparator sampling distribution. The ghost subset is only constructed for theoretical purpose and
does not need to be computed in practice. We only show the proof of R1, R0 and R2 can be then
derived in a similar fashion.

Let δt = gt −∇F (wt). Under Assumption 3, by (1.6) of Ghadimi & Lan (2013), we have
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(30)

Note that E [gt | wt, p̂t] = ∇F (wt), thus we have E [δt | wt, p̂t] = 0, and

E
[〈
∇F

(
wt
)
, δt
〉]

= E
[
E
[〈
∇F

(
wt
)
, δt
〉
| wt, p̂t

]]
= 0. (31)
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On the other hand, we can assume that there is a ghost subset of clients S̃t with |S̃t| = K, which is
drawn from [M ] with sampling distribution q⋆. Besides, we let

g̃t :=
1

MK

∑
m∈S̃t

gtm
q⋆m

.

Then we have
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where the penultimate line follows that E
[
∥gtm −∇Fm(wt)∥2

]
≤ σ2/B and the definition of ζ1,

and the last line follows that q⋆m ≥ α/M .

Thus, we have
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Combine equation 30, equation 31 and equation 32, we have(
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Finally, let
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E USEFUL LEMMAS

Lemma 1. Suppose that f is a differentiable convex function defined on domf , and X ⊆ domf is a
closed convex set. Then x is the minimizer of f on X if and only if

∇f(x)⊤(y − x) ≥ 0 for all y ∈ X .

Proof. See Section 4.2.3 of Boyd et al. (2004).

Lemma 2. For q ∈ PM−1 we have DΦ(q ∥ punif) ≤ logM , where Φ is the unnormalized negative
entropy.

Proof. Since Φ(q) =
∑M

m=1 qm(log qm − 1) ≤ 0, Φ(punif) = − logM , and

⟨∇Φ(punif), q − punif⟩ =
M∑

m=1

(qm −
1

M
) log

1

M
= 0,

we have DΦ(q ∥ p) ≤ logM .
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Lemma 3 (Hoeffding’s Inequality). Let X be a random variable with a ≤ X ≤ b for a, b ∈ R.
Then for all s ∈ R, we have

logE
[
esX

]
≤ sE[X] +

s2(b− a)2

8
.

Proof. See Section 2 of Wainwright (2019).

Lemma 4 (Based on Exercise 26.12 of Lattimore & Szepesvári (2020)). Let α ∈ [0, 1], A =
PM−1 ∩ [α/M, 1]M , D = [0,∞)M , and Φ = Φe is the unnormalised entropy on D. For y ∈
[0,∞)M , let x = argminv∈ADΦ(v∥y). Suppose y1 ≤ y2 ≤ · · · ≤ yM . Let m⋆ be the smallest
value such that

ym⋆

(
1− m⋆ − 1

M
α

)
>

α

M

M∑
m=m⋆

ym.

Then

xm =

{ α
M if m < m⋆

(1−m⋆−1
M α)ym∑M

n=m⋆ yn
otherwise.

Proof. Consider the following constrained optimization problem:

min
u∈[0,∞)M

M∑
m=1

um log
um
ym

,

s.t.
M∑

m=1

um = 1,

um ≥
α

M
, m ∈ [M ].

Since x is the solution to this problem, by the optimality condition, there exists λ, ν1, . . . , νM ∈ R
such that

log
xm
ym

+ 1− λ− νm = 0, m ∈ [M ], (34)

M∑
m=1

xm = 1, (35)

xm −
α

M
≥ 0, m ∈ [M ], (36)

νm ≥ 0, m ∈ [M ], (37)

νm

(
xm −

α

M

)
= 0, m ∈ [M ]. (38)

By equation 34, we have xm = ym exp(−1 + λ + νm). By equation 37 and equation 38, when
xm = α/M , we have xm = ym exp(−1 + λ + νm) ≥ ym exp(−1 + λ); when xm > α/M , we
have xm = ym exp(−1 + λ). Assume that x1 = · · · = xm⋆−1 = α/M < xm⋆ ≤ · · · ≤ xM . Then

1 =

M∑
m=1

xm = (m⋆ − 1)
α

M
+ exp(−1 + λ) ·

M∑
m=m⋆

ym,

which implies that
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M∑M
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. (39)

Thus, we have

xm⋆ = ym⋆ exp(−1 + λ) = ym⋆
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>

α

M
,
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which implies that

ym⋆

(
1− m⋆ − 1

M
α

)
>

α

M

M∑
m=m⋆

ym. (40)

To complete the proof, we then only need to show that

ym′

(
1− m′ − 1

M
α

)
≤ α

M

M∑
m=m′

ym (41)

for all 1 ≤ m′ ≤ m⋆ − 1. The result then follows from equation 40 and equation 41. To provee-
quation 41, recall that for any 1 ≤ m′ ≤ m⋆ − 1, we have α/M = ym′ exp(−1 + λ + νm′), and
because y1 ≤ · · · ≤ yM , we have ν1 ≥ · · · ≥ νm⋆−1. This way, we have

(m⋆ −m′)
α

M
=

m⋆−1∑
m=m′

ym exp (−1 + λ+ νm) ≤ exp (−1 + λ+ νm′)

m⋆−1∑
m=m′

ym. (42)

On the other hand, by equation 39, we have
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α

M
= exp(−1 + λ)
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ym ≤ exp (−1 + λ+ νm′)

M∑
m=m⋆

ym. (43)

Combining equation 42 and equation 43, we have
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which then implies equation 41.

F SYNTHETIC EXPERIMENTS

In this section, we use synthetic data to demonstrate the performance of Adaptive-OSMD Sampler.
We compare our method against uniform sampling in Section F.1 and compare against other ban-
dit feedback online learning samplers in Section F.2. In addition, we examine the robustness of
Adaptive-OSMD Sampler to the choice of α in Section F.3, while in Section F.4, we compare it with
the sampling without replacement variant discussed in Section C.5. Finally, in Section F.6, we show
some empirical observation for regret analysis.

We generate data as follows. We set the number of clients as M = 100, and each client has
nm = 100 samples, m ∈ [M ]. Samples on each client are generated as

ym,i = ⟨w⋆, xm,i⟩+N(0, 0.12), i ∈ [nm], (44)

where the coefficient vector w⋆ ∈ Rd has elements generated as i.i.d. N(10, 3), and the feature
vector xm,i ∈ Rd is generated as xm,i ∼ N(0,Σm), where Σm = sm · Σ, Σ is a diagonal matrix
with Σjj = κ(j−1)/(d−1)−1 and κ > 0 is the condition number of Σ. We generate {sm}Mm=1

i.i.d. from eN(0,σ2) and rescale them as sm ← (sm/maxm∈[M ] sm) × 10 so that sm ≤ 10 for
all m ∈ [M ]. In this setting, κ controls the difficulty of each problem when solved separately,
while σ controls the level of heterogeneity across clients. In all experiments, we fix κ = 25, which
corresponds to a hard problem, and change σ to simulate different heterogeneity levels. We expect
that uniform sampling suffers when the heterogeneity level is high. The dimension d of the problem
is set as d = 10. The results are averaged over 10 independent runs.
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We use the mean squared error loss defined as

L(w) =
1

M

M∑
m=1

Lm(w), where Lm(w) =
1

2nm
(ym,i − ⟨w⋆, xm,i⟩)2.

We use the stochastic gradient descent to make global updates. At each round t, we choose a subset
of K = 5 clients, denoted as St. For each client m ∈ St, we choose a mini-batch of samples, Btm,
of size B̄ = 10, and compute the mini-batch stochastic gradient. The parameter w is updated as

wt+1 = wt +
µSGD

MKB̄

∑
m∈St

1

ptm

∑
i∈Bt

m

(ym,i − ⟨w⋆, xm,i⟩) · xm,i,

where µSGD is the learning rate, set as µSGD = 0.1 in simulations.

In all experiments, we set α in Adaptive-OSMD Sampler as α = 0.4. The tuning parameters for
MABS, VRB and Avare are set as in their original papers.

Computational resources and amount of compute. All the computation was done on a personal
laptop. The synthetic data experiments are computed by CPU (Intel(R) Core(TM) i7-9750H CPU
@ 2.60GHz 2.59 GHz). Each run of all experiments in this section took less than 10 minutes.

F.1 ADAPTIVE-OSMD SAMPLER VS UNIFORM SAMPLING

Figure 1: The training loss (top row) and the cumulative regret (bottom row) of Adaptive-OSMD
Sampler vs Uniform vs Optimal with σ = 1.0, σ = 3.0, and σ = 10.0. The solid line denotes the
mean and the shaded region covers mean± standard deviation across independent runs.
The results of the training process and the cumulative regret are shown in Figure 1. For the training
loss, we see that when the heterogeneity level is low (σ = 1.0), the uniform sampling performs as
well as Adaptive-OSMD Sampler and theoretically optimal sampling; however, as the heterogeneity
level increases, the performance of uniform sampling gradually suffers; when σ = 10.0, uniform
sampling performs poorly. On the other hand, Adaptive-OSMD Sampler performs well across all
levels of heterogeneity and is very close to the theoretically optimal sampling. Similarly, for the
cumulative regret, when the heterogeneity level is low, the cumulative regret of uniform sampling is
close to Adaptive-OSMD Sampler; however, when the heterogeneity level increases, the cumulative
regret of uniform sampling gets much larger than Adaptive-OSMD Sampler. Based on the above
results, we can conclude that while the widely used choice of uniform sampling may be reason-
able when heterogeneity is low, our proposed sampling strategy is robust across different levels of
heterogeneity, and thus should be considered as the default option.

F.2 ADAPTIVE-OSMD SAMPLER VS MABS VS VRB VS AVARE

We compare Adaptive-OSMD Sampler to other bandit feedback online learning samplers:
MABS (Salehi et al., 2017), VRB (Borsos et al., 2018) and Avare (Hanchi & Stephens, 2020).
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Figure 2: The training loss (top row) and the cumulative regret (bottom row) of Adaptive-OSMD
Sampler vs MABS vs VRB vs Avare with σ = 1.0, σ = 3.0 and σ = 10.0. The solid line denotes
the mean and the shaded region covers mean± standard deviation across independent runs.

Training loss and cumulative regret are shown in Figure 2. We see that while VRB and Avare per-
form better when the heterogeneity level is low and MABS performs better when the heterogeneity
level is high, Adaptive-OSMD Sampler always achieves the best in both training loss and cumula-
tive regret across all different levels of heterogeneity. Thus, we conclude that Adaptive-OSMD is a
better choice than other online learning samplers.

F.3 ROBUSTNESS OF ADAPTIVE-OSMD SAMPLER TO THE CHOICE OF α

We examine the robustness of Adaptive-OSMD Sampler to the choice of α. We run Adaptive-
OSMD Sampler separately for each α ∈ {0.01, 0.1, 0.4, 0.7, 0.9, 1.0}. Note that when α = 1.0,
the Adaptive-OSMD Sampler outputs a uniform distribution. Training loss and cumulative regret
are shown in Figure 3. We observe that Adaptive-OSMD Sampler is robust to the choice of α, and
performs well as long as α is not too close to zero or too close to one.

F.4 EXPERIMENTS ON SAMPLING WITH REPLACEMENT VS WITHOUT REPLACEMENT

We compare sampling with replacement and sampling without replacement when used together with
Adaptive-OSMD sampler. Sampling without replacement is described in Section C.5. Training loss
and cumulative regret are shown in Figure 4. We observe that using sampling with replacement
results in a slightly smaller cumulative regret and a slightly better training loss. However, these
differences are not significant.

F.5 DYNAMIC SAMPLING DISTRIBUTION V.S. FIXED SAMPLING DISTRIBUTION

In this paper, we allow both our sampling distribution and competitor sampling distribution to
change over time, while previous studies either use fixed sampling distribution (Zhao & Zhang,
2015; Needell et al., 2016) or they compare against fixed sampling distribution (Namkoong et al.,
2017; Salehi et al., 2017; Borsos et al., 2018; 2019). In this section, we show that under certain
settings, dynamic sampling distribution can achieve significant advantage over fixed sampling dis-
tribution. More specifically, we compare Adaptive-OSMD Sampler with the Lipschitz constant
based importance sampling distribution proposed by Zhao & Zhang (2015); Needell et al. (2016),
which we denote as pIS.

We still use the same model as in equation 44 to generate data. but we generate w⋆ and xm,i

differently. Motivated by Zhao et al. (2022), for each m ∈ [M ], we choose uniformly at random
one dimension among Rd, denoted as supp(m) ∈ [d], as the support of xm,i for all i ∈ [nm], while
the remaining dimensions of xm,i are set to be zero. The nonzero dimension of xm,i is generated
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Figure 3: The training loss (top row) and the cumulative regret (bottom row) of Adaptive-OSMD
Sampler with different choices of α under σ = 1.0, σ = 3.0 and σ = 10.0. The solid line denotes
the mean and the shaded region covers mean± standard deviation across independent runs.

Figure 4: The training loss (top row) and the cumulative regret (bottom row) of Adaptive-OSMD
Sampler with replacement vs without replacement across σ = 1.0, σ = 3.0 and σ = 10.0. The solid
line denotes the mean and the shaded region covers mean ± standard deviation across independent
runs.
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Figure 5: The training loss (top row) and the cumulative regret (bottom row) of Adaptive-OSMD
Sampler vs pIS across ν = 1.0, ν = 3.0 and ν = 10.0. The solid line denotes the mean and the
shaded region covers mean± standard deviation across independent runs.

from N(1.0, 0.12). The entries of w⋆ are generated i.i.d. from eN(0,ν2). Therefore, ν controls the
variance of entries of w⋆.

Besides, we choose the optimal stepsize from the set {1.0, 0.5, 0.1, 0.05, 0.01} for each method
separately. The final result is shown in Figure 5. We see that Adaptive-OSMD Sampler performs
better than pIS across all levels of ν. Note that in practice, in order to implement pIS, we need prior
information about Lipschitz constants of Lm(·)’s, while Adaptive-OSMD Sampler does not need
prior information. This way, our proposed method does not only have better practical performance,
but also requires less prior information.

F.6 EMPIRICAL OBSERVATION OF REGRET

In Corollary 1, we see that the upper bound for the regret of OSMD sampler with respect to any
comparator sequence q1:T depends on two important quantities:

∑T
t=1(ā

t)2 and TV(q1:T ). In this
section, we first empirically show how āt and

∑t
l=1(ā

l)2 grow with t in practice. Then, we use p1:T⋆

as the comparator and show how TV(p1:t⋆ ) grow with t empirically. Finally, we also empirically
show how the regret D-RegretT (p

1:T
⋆ ) grows. The experimental setting of this section is the same as

Section F.

In Figure 6, we plot both āt and
∑t

l=1(ā
l)2 over t. We see that āt drops to zero fastly. As a result∑t

l=1(ā
l)2 converges to a constant as t → ∞. This way, we empirically have

∑t
l=1(ā

l)2 = O(1).
In Figure 7, we show how TV(p1:t⋆ ) grows with t. We see that TV(p1:t⋆ ) = O(t) empirically,
which is consistent with the worst-case upper bound. Based on this result, the best upper bound of
D-RegretT (p

1:T
⋆ ) we can hope in practice is O(

√
T ). However, as shown in Figure 8, in practice,

we have D-RegretT (p
1:T
⋆ ) converge to constant. This observation indicates that the upper bound we

obtained might still be loose compared to practical result.

G REAL DATA EXPERIMENT

We compare Adaptive-OSMD Sampler with uniform sampling and other online learning samplers
including MABS (Salehi et al., 2017), VRB (Borsos et al., 2018) and Avare (Hanchi & Stephens,
2020) on real data. We use three commonly used computer vision data sets: MNIST (LeCun &
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Figure 6: Plots of how āt and
∑t

l=1(ā
l)2 grow with t.

Figure 7: Plots of how TV(p1:t⋆ ) grows with t.

Figure 8: Plots of how D-RegretT (p
1:T
⋆ ) grows with t.
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Cortes, 2010)8, KMINIST (Clanuwat et al., 2018)9, and FMINST (Xiao et al., 2017)10. We set
the number of devices to be M = 500. To better simulate the situation where our method brings
significant convergence speed improvement, we create a highly skewed sample size distribution of
the training set among clients: 65% of clients have only one training sample, 20% of clients have
5 training samples, 10% of clients have 30 training samples, and 5% of clients have 100 training
samples. This setting tries to illustrate a real-life situation where most of the data come from a small
fraction of users, while most of the users have only a small number of samples. The skewed sample
size distribution is common in other FL data sets, such as LEAF (Caldas et al., 2018). The sample
size distribution in the training set is shown in Figure 9. In addition, each client has 10 validation
samples used to measure the prediction accuracy of the model over the training process.

We use a multi-class logistic regression model. For a given gray scale picture with the label y ∈
{1, 2, . . . , C}, we unroll its pixel matrix into a vector x ∈ Rp. Given a parameter matrixW ∈ RC×p,
the training loss function defined in equation 1 is

ϕ(W ;x, y) := lCE (ς(Wx) ; y) ,

where ς(·) : RC → RC is the softmax function defined as

[ς(x)]i =
exp(xi)∑K
j=1 exp(xj)

, for all x ∈ RC ,

and lCE(x ; y) =
∑C

i=1 1(y = i) log xi, x ∈ RC , y ∈ {1, . . . , C}, is the cross-entropy function.

We use the same algorithms and tuning parameters as in Section F. Learning rate in SGD is set to
0.075 for MNIST and KMNIST, and is set to 0.03 for FMNIST. The total number of communication
rounds is to 1, 000. In each round of communication, we choose K = 10 clients to participate (2%
of total number of clients). For a chosen client m, we compute its local mini-batch gradient with the
batch size equal to min{5, nm}, where nm is the training sample size on the client m.

Figure 10 shows both the training loss and validation accuracy. Each figure shows the average per-
formance over 5 independent runs. We use the same random seed for both Adaptive-OSMD Sampler
and competitors, and change random seeds across different runs. The main focus is on minimizing
the training loss, and the validation accuracy is only included for completeness. We observe that
Adaptive-OSMD Sampler performs better than uniform sampling and other online learning sam-
plers across all data sets. Given the cheap computational cost and the significant practical advantage,
we recommend using Adaptive-OSMD Sampler as the default option in practice. Besides, for the
completeness of the paper, we also include the results under homogeneous setting where the sample
sizes are balanced across different clients. The result is shown in Figure 11, where we see that all
methods perform similarly.

Computational resources and amount of compute. All the computation was done on a personal
laptop. The real data experiments are computed by GPU (NVIDIA GeForce RTX 2070 with Max-Q
Design). Each run of all experiments in this section took less than 15 minutes.

H DISCUSSION

We studied the client sampling problem in FL. We proposed an online learning with bandit feedback
approach to tackle client sampling. We used online stochastic mirror descent to solve the online
learning problem and applied the online ensemble method with doubling trick to choose the tuning
parameters. We established an upper bound on the dynamic regret relative to the theoretically opti-
mal sequence of sampling distributions. The total variation of the comparator is explicitly included
in the upper bound as a measure of the difficulty of the problem. Extensive numerical experiments

8Yann LeCun and Corinna Cortes hold the copyright of MNIST dataset, which is a derivative work from
original NIST datasets. MNIST dataset is made available under the terms of the Creative Commons Attribution-
Share Alike 3.0 license.

9KMNIST dataset is licensed under a permissive CC BY-SA 4.0 license, except where specified within
some benchmark scripts.

10FMNIST dataset is under The MIT License (MIT) Copyright © [2017] Zalando SE,
https://tech.zalando.com
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Figure 9: The sample size distribution in the training set across clients.

Figure 10: Comparison between Adaptive-OSMD Sampler, uniform sampler and other online learn-
ing samplers on real data in terms of training loss (top row) and validation accuracy (bottom row).
Different columns correspond to different data sets. The solid line represents the mean and the
shadow area represents mean ± 0.5 × standard error. Adaptive-OSMD Sampler is both faster and
more stable. The result is the average performance over 5 independent runs.
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Figure 11: Comparison between Adaptive-OSMD Sampler, uniform sampler and other online learn-
ing samplers on real data in terms of training loss (top row) and validation accuracy (bottom row)
under balanced samples size. Different columns correspond to different data sets. We see that all
methods perform similarly.

demonstrated the benefits of our approach over both widely used uniform sampling and other com-
petitors.

In this paper, we have focused on sampling with replacement. However, sampling without replace-
ment would ideally be a more efficient approach. In Section C.5, we discussed a natural extension
of Adaptive-OSMD Sampler to a setting where sampling without replacement is used. However,
this approach does not directly minimize the variance of the gradient gt. When sampling without re-
placement is used, the variance function becomes more complicated and the design of an algorithm
to directly minimize the variance is an interesting future direction.

Besides, in federated learning, privacy is a major concern. In this paper, the non-uniform sampling
distribution may make the protection of clients’ privacy more challenging than uniform sampling.
One possible solution is to add noise to the gradient feedback and protect the clients’ privacy un-
der the Differential Privacy (DP) concept (Dwork, 2008). However, the added noise may hurt the
performance of our sampling design and increase the regret. Studying the trade-off between pri-
vacy protection and regret is an important direction for addressing societal concerns in real-world
application.

Other fruitful future directions include the design of sampling algorithms for minimizing personal-
ized FL objectives and sampling with physical constraint in FL system, which we discuss next.
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H.1 CLIENT SAMPLING WITH PERSONALIZED FL OBJECTIVE

Data distributions across clients are often heterogeneous. Personalized FL has emerged as one
effective way to handle such heterogeneity (Kulkarni et al., 2020). Hanzely et al. (2021) illustrated
how many existing approaches to personalization can be studied through a unified framework, and,
in this section, we discuss a natural extension of Adaptive-OSMD Sampler to this personalized
objective. Specifically, we study the following optimization problem

min
w,β

F (w, β) :=

M∑
m=1

λmϕ(w, βm;Dm), (45)

where w ∈ Rd0 corresponds to the shared parameter and β = (β1, . . . , βM ) with βm ∈ Rdm

corresponds to the local parameters. The objective in equation 45 coves a wide range of personalized
federated learning problems (Hanzely et al., 2021). We further generalize the approach and study
the following bilevel optimization problem:

min
w

h(w) :=

M∑
m=1

λmFm(w, β̂m(w)) :=

M∑
m=1

λmϕ(w, β̂m(w);Dm)

subject to β̂m(w) = argmin
βm

Gm(w, βm) := ϕ(w, βm; D̄m).

(46)

When Dm = D̄m, then equation 46 recovers equation 45. When D̄m ̸= Dm, we then optimize the
shared and local parameters on different datasets, which may prevent overfitting. The formulation
in equation 46 is closely related to the implicit MAML (Rajeswaran et al., 2019).

In the following, we use ∇w to denote a partial derivative with respect to w with βm fixed, ∇βm to
denote a partial derivative with respect to βm with w fixed, and∇ to denote a derivative with respect
to w where βm(w) is treated as a function of w. Let∇2

βmβm
Gm(w, βm) ∈ Rdm×dm be the Hessian

matrix ofGm with respect to βm where w is fixed, and∇2
wβm

Gm(w, βm) ∈ Rd0×dm be the Hessian
matrix of Gm with respect to w and βm, that is,[

∇2
βmβm

Gm(w, βm)
]
i,j

=
∂Gm(w, βm)

∂βm,iβm,j
for all i, j = 1, 2, . . . , dm,[

∇2
wβm

Gm(w, βm)
]
i,j

=
∂Gm(w, βm)

∂wiβm,j
for all i = 1, 2, . . . , d0, j = 1, 2, . . . , dm.

By the implicit function theorem, we have

∇h(w) = 1

M

M∑
m=1

λm∇1Fm(w, β̂m(w))︸ ︷︷ ︸
∇1h(w)

+
1

M

M∑
m=1

λm∇2Fm(w, β̂m(w))︸ ︷︷ ︸
∇2h(w)

(47)

where

∇1Fm(w, β̂m(w)) := ∇wFm(w, β̂m(w)),

∇2Fm(w, β̂m(w)) := −∇2
wβm

Fm(w, β̂m(w))
[
∇2

βmβm
Fm(w, β̂m(w))

]−1

∇βm
Fm(w, β̂m(w)).

There are two parts to ∇h(wt) and, therefore, instead of choosing a single subset of clients for
computing both parts, we decouple St into two subsets St

1 and St
2, St = St

1 ∪ St
2. We use clients

in St
1 to compute local updates of the first part, and clients in St

2 to compute the local updates of
the second part. To get an estimate of∇h(w), we can estimate∇1h(w) and∇2h(w) separably and
then combine. Assume that gt1,m is an estimate of ∇1Fm(w, β̂m(w)) and gt2,m is an estimate of
∇2Fm(w, β̂m(w)), we can then construct estimates of∇1h(w) and ∇2h(w) as

gt1 =
1

K1

∑
m∈St

1

λm
gt1,m
pt1,m

, gt2 =
1

K2

∑
m∈St

2

λm
gt2,m
pt2,m

,

where K1 = |St
1| and K2 = |St

2|. Then gt = gt1 + gt2 is an estimate of∇h(w).
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We design pt1 and pt2 to choose St
1 and St

2 by minimizing the variance of the gradients. Note that

min
pt
1

E1

[
ESt

1

[∥∥gt1 −∇1h(w
t)
∥∥2]]+min

pt
2

E2

[
ESt

2

[∥∥gt2 −∇2h(w
t)
∥∥2]]

≤ min
pt
1=pt

2=pt
E
[
ESt

[∥∥gt1 −∇1h(w
t) + gt2 −∇2h(w

t)
∥∥2]] ,

so that the decomposition allows us to better minimize the variance. We term this approach as doubly
variance reduction for personalized Federated Learning. The first part minimizes the variance of
updates to the shared global parameter, when the best local parameters are fixed; and the second part
minimizes the variance of updates to local parameters, when the global part is fixed. While these
two parts are related, any given machine will have different contributions to these two tasks.

Adaptive-OSMD Sampler can be used to minimize the variance for both parts of the gradient. We
note that this is a heuristic approach to solving the client sampling problem when minimizing a
personalized FL objective. Personalized FL objectives have additional structures that should be
used to design more efficient sampling strategies. Furthermore, designing sampling strategies that
improve the statistical performance of trained models, rather than improving computational speed,
is important in the heterogeneous setting. Addressing these questions is an important area for future
research.

H.2 SAMPLING WITH PHYSICAL CONSTRAINT IN FL SYSTEM

In this paper, we assume that all clients are available in each round. However, in practical FL
applications, a subset of the clients may be inactive due to physical constraints, thus we have to
assign zero probabilities to them. In this section, we propose a simple extension of our proposed
sampling method to such case.

Specifically, denote the subset of clients that are active at the beginning of round t as It ⊆ [M ].
If we have |It| ≤ K, we can then use all clients in It to make updates in round t; otherwise, we
would like to choose a smaller subset St ⊆ It to participate. This can be achieved by rescaling
the output sampling distribution of any of our proposed methods, which we denote as p̂t. We let
p̃tm = p̂tm/(

∑
i∈It p̂ti) and p̃tm = 0 for all m /∈ It. We can then use p̃tm to choose St from It.

However, analyzing such a method in terms of convergence and regret guarantee is highly non-
trivial. Typically, for general active clients sequence {It}Tt=1, the optimization algorithms are not
guaranteed to converge even if we involve all clients in It in each round. This can happen, for ex-
ample, if a client is active for only once in the whole training process. Thus, to ensure convergence,
we need additional assumptions about {It}Tt=1. Moreover, deriving regret bound is also very chal-
lenging, as assigning zero probability to any client will make the variance-reduction loss unbounded
and thus the regret can be arbitrarily large. To achieve such theoretical result, one may need to ap-
propriately redefine the regret concept. Such an analysis is beyond the scope of this paper and we
leave it for future research.
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