
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DYGMAMBA: EFFICIENTLY MODELING LONG-TERM
TEMPORAL DEPENDENCY ON CONTINUOUS-TIME DY-
NAMIC GRAPHS WITH STATE SPACE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning useful representations for continuous-time dynamic graphs (CTDGs) is
challenging, due to the concurrent need to span long node interaction histories
and grasp nuanced temporal details. In particular, two problems emerge: (1) En-
coding longer histories requires more computational resources, making it crucial
for CTDG models to maintain low computational complexity to ensure efficiency;
(2) Meanwhile, more powerful models are needed to identify and select the most
critical temporal information within the extended context provided by longer his-
tories. To address these problems, we propose a CTDG representation learning
model named DyGMamba, originating from the popular Mamba state space model
(SSM). DyGMamba first leverages a node-level SSM to encode the sequence of
historical node interactions. Another time-level SSM is then employed to exploit
the temporal patterns hidden in the historical graph, where its output is used to dy-
namically select the critical information from the interaction history. We validate
DyGMamba experimentally on the dynamic link prediction task. The results show
that our model achieves state-of-the-art in most cases. DyGMamba also maintains
high efficiency in terms of computational resources, making it possible to capture
long temporal dependencies with a limited computation budget.

1 INTRODUCTION

Dynamic graphs store node interactions in the form of links labeled with timestamps (Kazemi et al.,
2020). In recent years, learning dynamic graphs has gained increasing interest since it can be used
to facilitate various real-world applications. Dynamic graphs can be classified into two types, i.e.,
discrete-time dynamic graph (DTDG) and continuous-time dynamic graph (CTDG). A DTDG is
represented as a sequence of graph snapshots that are observed at regular time intervals, where all
the edges in a snapshot are taken as existing simultaneously, while a CTDG consists of a stream of
events where each of them is observed individually with its own timestamp. Previous work (Kazemi
et al., 2020) has indicated that CTDGs have an advantage over DTDGs in preserving temporal
details, and therefore, more attention is paid to developing novel CTDG modeling approaches for
dynamic graph representation learning.

Recent effort in CTDG modeling has resulted in a wide range of models. However, most of them are
unable to model long-term temporal dependencies of nodes. To solve this problem, Yu et al. (2023)
propose a CTDG model DyGFormer that can handle long-term node interaction histories based on
Transformer (Vaswani et al., 2017). Despite its ability in modeling longer histories, employing a
Transformer naturally introduces excessive usage of computational resources due to its quadratic
complexity. Another recent work CTAN (Gravina et al., 2024) tries to capture long-term temporal
dependencies by propagating graph information in a non-dissipative way over time with a graph
convolution-based model. Despite the model’s high efficiency, Gravina et al. (2024) show that CTAN
cannot capture very long histories and is surpassed by DyGFormer on the CTDGs where learning
from very far away temporal information is critical. Based on these observations, we summarize
the first challenge in CTDG modeling: How to develop a model that is scalable in modeling very
long-term historical interactions? Another point worth noting is that as longer histories introduce
more temporal information, more powerful models are needed to identify and select the most critical

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

parts. This reveals another challenge: How to effectively select critical temporal information with
long node interaction histories?

To address the first challenge, we propose to leverage a popular state space model (SSM), i.e.,
Mamba SSM (Gu & Dao, 2023) to encode the long sequence of historical node interactions. Since
Mamba is proven effective and efficient in long sequence modeling (Gu & Dao, 2023), it maintains
low computational complexity and is scalable in modeling long-term temporal dependencies. For the
second challenge, we address it by learning temporal patterns of node interactions and dynamically
selecting the critical temporal information based on them. The motivation can be explained by the
following example. Consider a CTDG with nodes as people or songs and edges representing a
person playing a song at a specific time. If a person u frequently plays a hit song v initially but
decreases the frequency later on, the time intervals between plays increase. Ignoring this pattern
can lead models to incorrectly predict that u will still play v at future timestamps due to their high
appearances in each other’s historical interactions. If a CTDG model recognizes this pattern, it can
prioritize other temporal information, such as u increasingly listening to a new song v′ before t,
instead of focusing on u, v interactions. Since each pattern corresponds to a specific edge, e.g.,
(u, v, t), we name these patterns as edge-specific temporal patterns.

To this end, we propose a new CTDG model named DyGMamba. DyGMamba first leverages a node-
level Mamba SSM to encode historical node interactions. Another time-level Mamba SSM is then
employed to exploit the edge-specific temporal patterns, where its output is used to dynamically se-
lect the critical information from the interaction history. To summarize: (1) We present DyGMamba,
the first model using SSMs for CTDG representation learning; (2) DyGMamba demonstrates high
efficiency and strong efectiveness in modeling long-term temporal dependencies in CTDGs; (3) Ex-
perimental results show that DyGMamba achieves new state-of-the-art on dynamic link prediction
over most commonly-used CTDG datasets.

2 RELATED WORK AND PRELIMINARIES

2.1 RELATED WORK

Dynamic Graph Representation Learning. Dynamic graph representation learning methods can
be categorized into two groups, i.e., DTDG and CTDG methods. DTDG methods (Pareja et al.,
2020; Goyal et al., 2020; Sankar et al., 2020; You et al., 2022; Li et al., 2024a) can only model
DTDGs where each of them is represented as a sequence of graph snapshots. Modeling a dynamic
graph as graph snapshots requires time discretization and will inevitably cause information loss
(Kazemi et al., 2020). To overcome this problem, recent works focus more on developing CTDG
methods that treat a dynamic graph as a stream of events, where each event has its own unique
timestamp. Some works (Trivedi et al., 2019; Chang et al., 2020) model CTDGs by using temporal
point process. Another line of works (Xu et al., 2020; Ma et al., 2020; Wang et al., 2021b; Gravina
et al., 2024) designs advanced temporal graph neural networks for CTDGs. Besides, some other
methods are developed based on memory networks (Rossi et al., 2020; Liu et al., 2022), temporal
random walk (Wang et al., 2021c; Jin et al., 2022) and temporal sequence modeling (Cong et al.,
2023; Yu et al., 2023; Tian et al., 2024). Since some real-world CTDGs heavily rely on long-term
temporal information for effective learning, a number of works start to develop CTDG models that
can do long range propagation of information over time (Yu et al., 2023; Gravina et al., 2024).

State Space Models. Transformer (Vaswani et al., 2017) is a de facto backbone architecture in
modern deep learning. However, its self-attention mechanism results in large space and time com-
plexity, making it unsuitable for extremely long sequence modeling (Duman Keles et al., 2023).
To address this, many works focus on building structured state space models that scale linearly or
near-linearly with input sequence length (Gu et al., 2021; 2022b;a; Smith et al., 2023; Peng et al.,
2023; Ma et al., 2023; Gu & Dao, 2023). Most structured SSMs exhibit linear time invariance (LTI),
meaning their parameters are not input-dependent and fixed for all time-steps. Gu & Dao (2023)
demonstrate that LTI prevents SSMs from effectively selecting relevant information from the input
context, which is problematic for tasks requiring context-aware reasoning. To solve this issue, Gu
& Dao (2023) proposes S6, also known as Mamba, which uses a selection mechanism to dynam-
ically choose important information from input sequence elements. Selection mechanism involves
learning functions that map input data to SSM’s parameters, making Mamba both efficient and ef-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

fective in modeling language, DNA sequences, and audio. Recently, there have been several works
employing Mamba SSM for representation learning on static graphs (Wang et al., 2024; Behrouz &
Hashemi, 2024) and spatial-temporal graphs (Li et al., 2024b). Unlike our work, they do not focus
on capturing the dynamic evolution of graph structure and are thus not suitable for CTDG modeling.

2.2 PRELIMINARIES

CTDG and Task Formulation. We define CTDG and dynamic link prediction as follows.

Definition 1 (Continuous-Time Dynamic Graph). Let N and T denote a set of nodes and times-
tamps, respectively. A CTDG is a sequence of |G| chronological interactions G = {(ui, vi, ti)}|G|i=1
with 0 ≤ t1 ≤ t2 ≤ ... ≤ t|G|, where ui, vi ∈ N are the source and destination node of the i-th in-
teraction happening at ti ∈ T , respectively. Each node u ∈ N can be equipped with a node feature
xu ∈ RdN , and each interaction (u, v, t) can be associated with a link (edge) feature etu,v ∈ RdE .
If G is not attributed, we set node and link features to zero vectors.

Definition 2 (Dynamic Link Prediction). Given a CTDG G, a source node u ∈ N , a destina-
tion node v ∈ N , a timestamp t ∈ T , and all the interactions before t, i.e., {(ui, vi, ti)|ti <
t, (ui, vi, ti) ∈ G}, dynamic link prediction aims to predict whether the interaction (u, v, t) exists.

S4 and Mamba SSM. S4 and Mamba (Gu et al., 2022b; Gu & Dao, 2023) are inspired by a
continuous system which can be described as z(τ)′ = Az(τ) + Bq(τ) and r(τ) = Cz(τ).
q(τ) ∈ R and r(τ) ∈ R are the 1-dimensional input and output over time τ 1, respectively.
A ∈ Rd1×d1 ,B ∈ Rd1×1,C ∈ R1×d1 are three parameters deciding the system. Based on it, both
S4 and Mamba include a time-scale parameter ∆ ∈ R and discretize all the parameters to adapt to a
discretized system

zτ = Āzτ−1 + B̄pτ , qτ = Czτ ; Ā = exp(∆A), B̄ = (∆A)−1exp((∆A)− I)∆B. (1)

Here, τ is also discretized to denote the position of a sequence element. Given Eq. 1, sequence
processing with S4 and Mamba can be written as computing an output sequence with convolution

q = p ∗ K̄SSM, where K̄SSM = [CB̄,CĀB̄, ...,CĀ|p|−1B̄] ∈ R|p|−1. (2)

p ∈ R|p| and q ∈ R|p| are input and output sequences, where |p| is the sequence length of p. ∗
denotes the element-wise multiplication. When the dimension size of each element pτ in p becomes
higher (i.e., pτ ∈ Rd2 is a vector and d2 > 1), both S4 and Mamba are in a Single-Input Single-
Output (SISO) fashion, processing each input dimension in parallel with the same set of parameters.
We follow Gu & Dao (2023) and denote the computation in Eq. 2 on the input sequences with vector
elements as a function SSMĀ,B̄,C(·)2. Different from S4 which uses same parameters to process
each element, Mamba changes its parameters into input-dependent by employing several trainable
linear layers to map input into B̄, C and ∆. The system is evolving as it processes different elements
in the input sequence, making Mamba time-variant and suitable for modeling temporal sequences.

3 DYGMAMBA

Fig. 1 illustrates the overview of DyGMamba. Given a potential interaction (u, v, t), CTDG mod-
els are asked to predict whether it exists or not. DyGMamba extracts the historical one-hop in-
teractions of node u and v before timestamp t from the CTDG G and gets two interaction se-
quences St

u = {(u, u′, t′)|t′ < t, (u, u′, t′) ∈ G} ∪ {(u′, u, t′)|t′ < t, (u′, u, t′) ∈ G} and
St
v = {(v, v′, t′)|t′ < t, (v, v′, t′) ∈ G} ∪ {(v′, v, t′)|t′ < t, (v′, v, t′) ∈ G} containing u’s

and v’s one-hop temporal neighbors Neitu = {(u′, t′)|(u, u′, t′) or (u′, u, t′) ∈ G, t′ < t} and
Neitv = {(v′, t′)|(v, v′, t′) or (v′, v, t′) ∈ G} (link features are omitted for clarity). Then it en-
codes the neighbors in Neitu and Neitv to get two sequences of encoded neighbor representations for
u and v. To learn the edge-specific temporal pattern of (u, v, t), we find the interactions between u

1We use τ rather than t to indicate time in a continuous system to distinguish from the time in CTDGs.
2Input and output of SSMĀ,B̄,C(·) are matrices where each row is a vector corresponding to an element.

See App. H for more details of SISO and the function.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: Model overview of DyGMamba.

and v before t, compute the time difference between each pair of neighboring interactions, and build
a sequence of time differences St

u,v . Finally, DyGMamba dynamically selects critical information
by assigning different weights to different encoded neighbors based on the learned temporal pattern,
and uses the selected information to achieve link prediction.

3.1 LEARNING ONE-HOP TEMPORAL NEIGHBORS

Encode Neighbor Features. Given one-hop temporal neighbors Neitu of the source node u, we
sort them in the chronological order and append (u, t) at the end to form a sequence of Neitu + 1
temporal nodes. We take their node features from the dataset and stack them into a feature ma-
trix X̃t

u ∈ R(|Neitu|+1)×dN . Similarly, we build a link feature matrix Ẽt
u ∈ R(|Neitu|+1)×dE . To

incorporate temporal information, we encode the time difference between u and each one-hop tem-
poral neighbor (u′, t′) using the time encoding function introduced in TGAT (Xu et al., 2020):√
1/dT [cos(ω1(t− t′) + ϕ1), . . . , cos(ωd(t− t′) + ϕdT

)]. dT is the dimension of time representa-
tion. ω1 . . . ωdT

and ϕ1 . . . ϕdT
are trainable parameters. The time feature of u’s temporal neighbors

are denoted as T̃t
u ∈ R(|Neitu|+1)×dT . We follow the same way to get X̃t

v ∈ R(|Neitv|+1)×dN , Ẽt
v ∈

R(|Neitv|+1)×dE and T̃t
v ∈ R(|Neitv|+1)×dT for v’s temporal neighbors. Following Tian et al. (2024),

we also consider the historical node interaction frequencies in the interaction sequences St
u and St

v of
source u and destination v. For example, assume the interacted nodes of u and v (arranged in chrono-
logical order) are {a, v, a} and {b, b, u, a}, the appearing frequencies of a, b in u/v’s historical inter-
actions are 2/1, 0/2, respectively. And the frequency of the interaction involving u and v is 1. Thus,
the node interaction frequency features of u and v are written as F̃ t

u = [[2, 1], [1, 1], [2, 1], [0, 1]]⊤

and F̃ t
v = [[0, 2], [0, 2], [1, 1], [2, 1], [0, 1]]⊤, respectively. Note that the last elements ([0, 1] and

[0, 1]) in F̃ t
u and F̃ t

v correspond to the appended (u, t) and (v, t) not existing in the observed histo-
ries. We initialize them with [0, number of historical interactions between u, v]. An encoding multi-
layer perceptron (MLP) f(·) : R → RdF is employed to encode these features into representations:
F̃t

u = f(F̃ t
u[:, 0]) + f(F̃ t

u[:, 1]) ∈ R(|Neitu|+1)×dF , F̃t
v = f(F̃ t

v [:, 0]) + f(F̃ t
v [:, 1]) ∈ R(|Neitv|+1)×dF .

Patching Neighbors. We employ the patching technique proposed by (Yu et al., 2023) to save
computational resources when dealing with a large number of temporal neighbors. We treat p
temporally adjacent neighbors as a patch and flatten their features. For example, with patching,
X̃t

u ∈ R(|Neitu|+1)×dN results in a new patched feature matrix Xt
u ∈ R⌈(|Neitu|+1)/p⌉×(p·dN) (we

pad X̃t
u with zero-valued features when |Neitu| + 1 cannot be divided by p). Similarly, we get

Et
θ ∈ R⌈(|Neitθ|+1)/p⌉×(p·dE), Tt

θ ∈ R⌈(|Neitθ|+1)/p⌉×(p·dT) and Ft
θ ∈ R⌈(|Neitθ|+1)/p⌉×(p·dF) (θ is ei-

ther u or v). Each row of a feature matrix corresponds to an element of the input sequence sent into
an SSM later. Recall that SSMs process sequences in a recurrent way. Patching decreases the length
of the sequence by roughly p times, making great contribution in saving computational resources.

Node-Level SSM Block. We first map the padded features of u’s and v’s one-hop temporal neigh-
bors to the same dimension d, i.e., Xt

θ := fN (Xt
θ), E

t
θ := fE(E

t
θ), T

t
θ := fT (T

t
θ), F

t
θ := fF (F

t
θ).

fN (·) : Rp·dN → Rd, fE(·) : Rp·dE → Rd, fT (·) : Rp·dT → Rd, fF (·) : Rp·dF → Rd are four
MLPs for different types of neighbor features. We take the concatenation of them as the encoded
representations of the temporal neighbors, i.e., Ht

θ = Xt
θ∥Et

θ∥Tt
θ∥Ft

θ ∈ R⌈(|Neitθ|+1)/p⌉×4d. We
input Ht

u and Ht
v separately into a node-level SSM block to learn the temporal dependencies of

temporal neighbors. The node-level SSM block consists of lN layers, where each layer is defined as

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

follows (Eq. 3-4). First, we input Ht
θ into a Mamba SSM

B1 = Ht
θWB1 ∈ R⌈(|Neitθ|+1)/p⌉×dSSM , C1 = Ht

θWC1 ∈ R⌈(|Neitθ|+1)/p⌉×dSSM ; (3a)

∆1 = Softplus(Broadcast4d(Ht
θW∆1

) + Param∆1
) ∈ R⌈(|Neitθ|+1)/p⌉×4d; (3b)

Ā1 = exp(∆1A1), B̄1 = (∆1A1)
−1exp((∆1A1)− I)∆1B1; (3c)

Ht
θ := Ht

θ + SSMĀ1,B̄1,C1
(Ht

θ). (3d)

WB1
,WC1

∈ R4d×dSSM and W∆1
∈ R4d×1. Ā1, B̄1 ∈ R⌈(|Neitθ|+1)/p⌉×4d×dSSM are discretized pa-

rameters. Param∆1
∈ R⌈(|Neitθ|+1)/p⌉×4d is a parameter defined by Gu & Dao (2023). Broadcast4d(·)

is a function that copies its vector input for 4d times to form a matrix with 4d identical columns
(following the definition in Gu & Dao (2023)). I is an identity matrix. Then we use an MLP
fnode(·) : R4d → R4d on SSM’s output

Ht
θ := Ht

θ + fnode
(
LayerNorm(Ht

θ)
)
. (4)

After lN layers, we have Ht
u and Ht

v that contain the encoded information of all one-hop temporal
neighbors for the entities u and v as well as the information of themselves. Since we sort temporal
neighbors chronologically, our node-level SSM block can directly learn the temporal dynamics for
graph forecasting.

3.2 LEARNING FROM EDGE-SPECIFIC TEMPORAL PATTERNS

Time-Level SSM Block. To capture edge-specific temporal patterns, we use another time-level
SSM block consisting of lT layers. We first find out k temporally nearest historical interactions be-
tween u and v before t and sort them in the chronological order, i.e., {(u, v, t0), ..., (u, v, tk−1)|t0 <
... < tk−1 < t}. Then we construct a timestamp sequence {t0, t1, ..., tk−1, t} based on these inter-
actions and the prediction timestamp t. We compute the time difference between each neighboring
pair of them and further get a time difference sequence {t1 − t0, t2 − t1, ..., t− tk−1}, representing
the change of time interval between two identical interactions. Each element in this sequence is in-
put into the time encoding function stated above to get a edge-specific (specific to the edge (u, v, t))
time feature. The features are stacked into a feature matrix Ht

u,v ∈ Rk×dT and mapped by an MLP
fmap1(·) : RdT → Rγd (γ ∈ [0, 1] is a hyperparameter), i.e., Ht

u,v := fmap1(H
t
u,v). A time-level

SSM layer takes Ht
u,v as input and computes

B2 = Ht
u,vWB2

∈ Rk×dSSM , C2 = Ht
u,vWC2

∈ Rk×dSSM ; (5a)

∆2 = Softplus(Broadcastγd(Ht
u,vW∆2) + Param∆2) ∈ Rk×γd; (5b)

Ā2 = exp(∆2A2), B̄2 = (∆2A2)
−1exp((∆2A2)− I)∆2B2; (5c)

Ht
u,v := Ht

u,v + SSMĀ2,B̄2,C2
(Ht

u,v). (5d)

WB2
,WC2

∈ Rγd×dSSM and W∆2
∈ Rγd×1. Ā2, B̄2 ∈ Rk×γd×dSSM are discretized parameters.

Param∆2
∈ Rk×γd is a parameter defined as same as Param∆1

. In practice, we set k to a number
much smaller than |Neitθ|, e.g., 10. This ensures that time-level SSM will not incur huge computa-
tional burden and the model focuses more on the recent histories. Note that we cannot always find k
recent historical interactions between each pair of nodes, leading to varying lengths of time differ-
ence sequences for different (u, v, t) in a batch of data. To enable batch processing, we set the time
difference without a found historical interaction to a very large number 1010. For example, if k = 2,
and for (u, v, t) we can only find (u, v, t0). The time difference sequence will be {1010, t − t0}.
1010 is much larger than t− t0, indicating that u and v have not had an interaction for an extremely
long time, same as existing no historical interaction. We further explain why we use SSM to learn
temporal patterns in App. I.

Dynamic Information Selection with Temporal Patterns. After the time-level SSM block, we
compute a compressed representation to represent the edge-specific temporal pattern by averaging
over k encoded time intervals: ht

u,v = MeanPooling(Ht
u,v). As a result, we have ht

u,v ∈ Rγd to
represent the temporal pattern specific to the edge (u, v, t). To leverage learned temporal pattern,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

we use it to dynamically select the information from the encoded temporal neighbors Ht
θ

ĥt
u,v = fmap2(h

t
u,v) ∈ R4d; (6a)

ĥt
θ = wagg

⊤Ht
θ ∈ R4d, where wagg = fmap3(H

t
θ) ∈ R⌈(|Neitθ|+1)/p⌉; (6b)

αu = f ′(ĥt
v) ∗ ĥt

u,v ∈ R4d, αv = f ′(ĥt
u) ∗ ĥt

u,v ∈ R4d; (6c)

ht
θ = βθ

⊤Ht
θ, where βθ = Softmax(Ht

θαθ) ∈ R⌈(|Neitθ|+1)/p⌉. (6d)

fmap2(·) : Rγd → R4d and fmap3(·) : R4d → R1 are two mapping MLPs. f ′(·) : R4d → R4d is
another MLP introducing training parameters. Note that αu/αv is computed by considering both
the edge-specific temporal pattern and the opposite node v/u. In the node-level SSM block, we
separately model the one-hop temporal neighbors of each node θ, making it hard to connect u and
v. Computing αθ as Eq. 6c helps to strengthen the connection between both nodes and meanwhile
incorporates the learned temporal pattern. βθ is derived by transforming the queried results based on
αθ into weights. It is then used to compute a weighted-sum of all temporal neighbors for represent-
ing θ at t, i.e., ht

θ. The neighbors assigned with greater weights from βθ are selected as more critical
and will contribute more to ht

θ. Finally, we output the representations of u, v and the edge-specific
temporal pattern by employing two output MLPs fout1(·) : R4d → RdN and fout2(·) : Rγd → RdN ,
i.e., ht

θ := fout1(h
t
θ) ∈ RdN , ht

u,v := fout2(h
t
u,v) ∈ RdN .

3.3 LEVERAGING LEARNED REPRESENTATIONS FOR LINK PREDICTION

We leverage ht
θ and ht

u,v for dynamic link prediction. We employ a prediction MLP, i.e., fLP(·) :

R3dN → R, as the predictor. The probability of existing a link (u, v, t) is computed as y′(u, v, t) =
Sigmoid(fLP(h

t
u∥ht

v∥ht
u,v)). For model parameter learning, we use the following loss function

L = − 1

2M

∑
2M

(y(u, v, t) log(y′(u, v, t)) + (1− y(u, v, t)) log(1− y′(u, v, t))) . (7)

y(u, v, t) is the ground truth label denoting the existence of (u, v, t) (1/0 means existing/non-
existing). M is the total number of edges existing in the training data (positive edges). We fol-
low previous work (Yu et al., 2023) and randomly sample one negative edge for each positive edge
during training. Therefore, in total we have 2M edges considered in our loss L.

4 EXPERIMENTS

In Sec. 4.2, we validate DyGMamba’s ability in CTDG representation learning by comparing it with
baseline methods on dynamic link prediction3. We do further analysis to show the effectiveness of
model components. In Sec. 4.3, we show DyGMamba’s efficiency. We also show that it achieves
much stronger scalability in modeling long-term temporal information compared with DyGFormer.

4.1 EXPERIMENTAL SETTING

CTDG Datasets and Baselines. We consider seven real-world CTDG datasets collected by (Pour-
safaei et al., 2022), i.e., LastFM, Enron, MOOC, Reddit, Wikipedia, UCI and Social Evo.. Dataset
statistics are presented in App. A.1. Among them, we take LastFM, Enron and MOOC as long-range
temporal dependent datasets because according to Yu et al. (2023), much longer histories are needed
for optimal representation learning on them. We compare DyGMamba with ten recent CTDG base-
line models, i.e., JODIE (Kumar et al., 2019), DyRep (Trivedi et al., 2019), TGAT (Xu et al., 2020),
TGN (Rossi et al., 2020), CAWN (Wang et al., 2021c), EdgeBank (Poursafaei et al., 2022), TCL
(Wang et al., 2021a), GraphMixer (Cong et al., 2023), DyGFormer (Yu et al., 2023) and CTAN
(Gravina et al., 2024). Among them, only DyGFormer and CTAN are designed for long-range tem-
poral information propagation. Detailed descriptions of baseline methods are presented in App. B.
We also implemented FreeDyG (Tian et al., 2024) by using its official code repository, however, on
LastFM, we find that FreeDyG’s loss cannot converge and the reported results are not reproducible.
So we do not report its performance in our paper.

3To supplement, we also validate on the dynamic node classification task. Since current mainstream datasets
of this task requires no long-term temporal reasoning, we put the discussion in App. F

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Implementation Details and Evaluation Settings. We use the implementations and the best hy-
perparameters provided by Yu et al. (2023) for all baseline models except CTAN. For CTAN, we
use its official implementation, fixing the number of layers to 5. All models are trained with a batch
size of 200 for fair efficiency analysis. For DyGMamba, we report the number of sampled one-hop
temporal neighbors ρ and the patch size p here. On Wikipedia, Social Evo., and UCI, ρ & p = 32
& 1. On Reddit, ρ & p = 64 & 2. On MOOC, ρ & p = 128 & 4. On Enron, ρ & p =256 & 8. On
LastFM, ρ & p = 512 & 16. Note that to fairly compare DyGMamba’s efficiency with DyGFormer,
we keep the sequence length ρ/p input into the SSM as same as the length input into Transformer
in Yu et al. (2023), i.e., ρ/p = 32. All experiments are implemented with PyTorch (Paszke et al.,
2019) on a server equipped with an AMD EPYC 7513 32-Core Processor and a single NVIDIA
A40 with 45GB memory. We run each experiment for five times with five random seeds and report
the mean results together with error bars. Further implementation details including complete hy-
perparamter configurations are presented in App. C. We employ two evaluation settings following
previous works: the transductive and inductive settings. As suggested in (Poursafaei et al., 2022),
we do link prediction evaluation using three negative sampling strategies (NSSs): random, historical
and inductive. Historical NSS is only considered under the transductive setting. See App. D for de-
tailed explanations. We employ two metrics, i.e., average precision (AP) and area under the receiver
operating characteristic curve (AUC-ROC)

Table 1: AP of transductive dynamic link prediction. The best and the second best results are marked
as bold and underlined, respectively. CTAN cannot be trained before 120 hours timeout on Social
Evo. so is ranked bottom on this dataset.

NSS Datasets JODIE DyRep TGAT TGN CAWN EdgeBank TCL GraphMixer DyGFormer CTAN DyGMamba

R
an

do
m

LastFM 70.95 ± 2.94 71.85 ± 2.44 73.30 ± 0.18 75.31 ± 5.62 86.60 ± 0.11 79.29 ± 0.00 76.62 ± 1.83 75.56 ± 0.19 92.95 ± 0.14 86.44 ± 0.80 93.35 ± 0.20
Enron 84.85 ± 3.13 79.80 ± 2.28 70.76 ± 1.05 86.98 ± 1.05 89.50 ± 0.10 83.53 ± 0.00 85.41 ± 0.71 82.13 ± 0.30 92.42 ± 0.11 92.52 ± 1.20 92.65 ± 0.12

MOOC 81.04 ± 0.83 81.50 ± 0.77 85.71 ± 0.20 89.15 ± 1.69 80.30 ± 0.43 57.97 ± 0.00 83.89 ± 0.86 82.80 ± 0.15 87.66 ± 0.48 84.71 ± 2.85 89.21 ± 0.08
Reddit 98.31 ± 0.06 98.18 ± 0.03 98.57 ± 0.01 98.65 ± 0.04 99.11 ± 0.01 94.86 ± 0.00 97.78 ± 0.02 97.31 ± 0.01 99.22 ± 0.01 97.21 ± 0.84 99.32 ± 0.01

Wikipedia 96.51 ± 0.22 94.88 ± 0.29 96.88 ± 0.06 98.45 ± 0.10 98.77 ± 0.01 90.37 ± 0.00 97.75 ± 0.04 97.22 ± 0.02 99.03 ± 0.03 96.61 ± 0.79 99.15 ± 0.02
UCI 89.28 ± 1.02 66.11 ± 2.75 79.40 ± 0.61 92.33 ± 0.64 95.13 ± 0.23 76.20 ± 0.00 86.63 ± 1.30 93.15 ± 0.41 95.74 ± 0.17 76.64 ± 4.11 95.91 ± 0.15

Social Evo. 89.88 ± 0.40 88.39 ± 0.69 93.33 ± 0.06 93.45 ± 0.29 84.90 ± 0.11 74.95 ± 0.00 93.82 ± 0.19 93.36 ± 0.06 94.63 ± 0.07 Timeout 94.77 ± 0.01
Avg. Rank 8.29 9.29 7.00 4.29 6.00 9.43 5.57 6.43 2.43 6.29 1.00

H
is

to
ri

ca
l

LastFM 74.38 ± 6.27 71.85 ± 2.91 71.60 ± 0.36 75.03 ± 6.90 69.93 ± 0.33 73.03 ± 0.00 71.02 ± 2.07 72.28 ± 0.37 81.51 ± 0.14 82.29 ± 0.94 83.02 ± 0.16
Enron 69.13 ± 1.66 72.58 ± 1.83 64.24 ± 1.24 74.31 ± 0.99 65.40 ± 0.36 76.53 ± 0.00 72.39 ± 0.61 77.35 ± 1.22 76.93 ± 0.76 77.24 ± 1.53 77.77 ± 1.32

MOOC 78.62 ± 2.43 75.14 ± 2.86 82.83 ± 0.71 85.46 ± 2.32 74.46 ± 0.53 60.71 ± 0.00 78.51 ± 1.24 77.09 ± 0.83 85.65 ± 0.89 67.73 ± 2.08 85.89 ± 0.94
Reddit 79.96 ± 0.30 79.40 ± 0.30 79.78 ± 0.25 81.05 ± 0.32 80.96 ± 0.28 73.59 ± 0.00 77.38 ± 0.20 78.39 ± 0.40 81.63 ± 1.08 89.77 ± 2.28 81.80 ± 1.52

Wikipedia 81.16 ± 0.73 79.46 ± 0.95 87.31 ± 0.36 87.31 ± 0.25 66.77 ± 6.62 73.35 ± 0.00 86.12 ± 1.69 90.74 ± 0.06 70.13 ± 11.02 95.91 ± 0.10 81.77 ± 1.20
UCI 74.77 ± 5.35 55.89 ± 2.83 66.78 ± 0.77 81.32 ± 1.26 64.69 ± 1.78 65.50 ± 0.00 74.62 ± 2.70 83.88 ± 1.06 80.44 ± 1.16 76.62 ± 0.33 81.03 ± 1.09

Social Evo. 91.26 ± 2.47 92.86 ± 0.90 95.31 ± 0.30 93.84 ± 1.68 85.65 ± 0.11 80.57 ± 0.00 95.93 ± 0.63 95.30 ± 0.34 97.05 ± 0.16 Timeout 97.35 ± 0.52
Avg. Rank 6.57 8.14 6.57 4.14 9.29 8.71 7.00 4.71 4.00 4.71 2.14

In
du

ct
iv

e

LastFM 62.63 ± 6.89 62.49 ± 3.04 71.16 ± 0.33 65.09 ± 7.05 67.38 ± 0.57 75.49 ± 0.00 62.76 ± 0.81 67.87 ± 0.37 72.60 ± 0.06 80.06 ± 0.85 73.63 ± 0.54
Enron 69.51 ± 1.06 66.78 ± 2.21 63.16 ± 0.59 73.27 ± 0.58 75.08 ± 0.81 73.89 ± 0.00 70.98 ± 0.96 74.12 ± 0.65 78.22 ± 0.80 72.02 ± 2.64 80.86 ± 1.24

MOOC 66.56 ± 1.49 61.48 ± 0.96 76.96 ± 0.89 77.59 ± 1.83 73.55 ± 0.36 49.43 ± 0.00 76.35 ± 1.41 74.24 ± 0.75 80.99 ± 0.88 64.93 ± 3.31 81.11 ± 0.63
Reddit 86.93 ± 0.21 86.06 ± 0.36 89.93 ± 0.10 88.12 ± 0.13 91.89 ± 0.18 85.48 ± 0.00 86.97 ± 0.26 85.37 ± 0.26 91.06 ± 0.60 90.99 ± 2.19 91.15 ± 0.54

Wikipedia 74.78 ± 0.56 70.55 ± 1.22 86.77 ± 0.29 85.80 ± 0.15 69.27 ± 7.07 80.63 ± 0.00 72.54 ± 4.69 88.54 ± 0.20 62.00 ± 14.00 94.15 ± 0.08 79.86 ± 2.18
UCI 66.02 ± 1.28 54.64 ± 2.52 67.63 ± 0.51 70.34 ± 0.72 64.08 ± 1.06 57.43 ± 0.00 73.49 ± 2.21 79.57 ± 0.61 70.51 ± 1.83 66.25 ± 0.51 71.95 ± 2.51

Social Evo. 91.08 ± 3.29 92.84 ± 0.98 95.20 ± 0.30 94.58 ± 1.52 88.50 ± 0.13 83.69 ± 0.00 96.14 ± 0.63 95.11 ± 0.32 97.62 ± 0.12 Timeout 97.68 ± 0.42
Avg. Rank 8.29 9.57 5.43 5.43 6.57 7.57 6.00 5.00 4.00 5.71 2.43

Table 2: AP of inductive dynamic link prediction. EdgeBank cannot do inductive link prediction so
is not reported.

NSS Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer CTAN DyGMamba

R
an

do
m

LastFM 83.13 ± 1.19 83.47 ± 1.06 78.40 ± 0.30 81.18 ± 3.27 89.33 ± 0.06 81.38 ± 1.53 82.07 ± 0.31 94.17 ± 0.10 60.40 ± 3.01 94.42 ± 0.21
Enron 78.97 ± 1.59 73.97 ± 3.00 66.67 ± 1.07 78.76 ± 1.69 86.30 ± 0.56 82.61 ± 0.61 75.55 ± 0.81 89.62 ± 0.27 74.61 ± 1.64 89.67 ± 0.27

MOOC 80.57 ± 0.52 80.50 ± 0.68 85.28 ± 0.30 88.01 ± 1.48 81.32 ± 0.42 82.28 ± 0.99 81.38 ± 0.17 87.05 ± 0.51 64.99 ± 2.24 88.64 ± 0.08
Reddit 96.43 ± 0.16 95.89 ± 0.26 97.13 ± 0.04 97.41 ± 0.12 98.62 ± 0.01 95.01 ± 0.10 95.24 ± 0.08 98.83 ± 0.02 80.07 ± 2.53 98.97 ± 0.01

Wikipedia 94.91 ± 0.32 92.21 ± 0.29 96.26 ± 0.12 97.81 ± 0.18 98.27 ± 0.02 97.48 ± 0.06 96.61 ± 0.04 98.58 ± 0.01 93.58 ± 0.65 98.77 ± 0.03
UCI 79.73 ± 1.48 58.39 ± 2.38 79.10 ± 0.49 87.81 ± 1.32 92.61 ± 0.35 84.19 ± 1.37 91.17 ± 0.29 94.45 ± 0.13 49.78 ± 5.02 94.76 ± 0.19

Social Evo. 91.72 ± 0.66 89.10 ± 1.90 91.47 ± 0.10 90.74 ± 1.40 79.83 ± 0.14 92.51 ± 0.11 91.89 ± 0.05 93.05 ± 0.10 Timeout 93.13 ± 0.05
Avg. Rank 6.29 8.00 7.00 5.14 4.43 5.57 5.86 2.14 9.57 1.00

In
du

ct
iv

e

LastFM 71.37 ± 3.45 69.75 ± 2.73 76.26 ± 0.34 68.47 ± 6.07 71.28 ± 0.43 68.79 ± 0.93 76.27 ± 0.37 75.07 ± 1.45 55.60 ± 3.91 76.76 ± 0.43
Enron 66.99 ± 1.15 62.64 ± 2.33 59.95 ± 1.00 64.51 ± 1.66 60.61 ± 0.63 68.93 ± 1.34 71.71 ± 1.33 67.21 ± 0.72 68.66 ± 2.31 68.77 ± 0.60

MOOC 64.67 ± 1.18 62.05 ± 2.11 77.43 ± 0.81 76.81 ± 2.83 74.36 ± 0.78 75.95 ± 1.46 73.87 ± 0.99 80.66 ± 0.94 57.49 ± 1.34 80.75 ± 1.00
Reddit 62.54 ± 0.52 61.07 ± 0.86 63.96 ± 0.25 65.27 ± 0.57 64.10 ± 0.22 61.45 ± 0.25 64.82 ± 0.30 65.03 ± 1.20 78.35 ± 5.03 65.30 ± 1.05

Wikipedia 68.22 ± 0.36 61.07 ± 0.82 84.19 ± 0.96 81.96 ± 0.62 62.34 ± 6.79 71.46 ± 4.95 87.47 ± 0.25 57.90 ± 11.05 92.61 ± 0.90 71.14 ± 2.44
UCI 63.57 ± 2.15 52.63 ± 1.87 69.77 ± 0.43 69.94 ± 0.50 63.44 ± 1.52 74.39 ± 1.81 81.40 ± 0.52 70.25 ± 2.02 52.31 ± 2.67 72.17 ± 2.20

Social Evo. 89.06 ± 1.23 87.30 ± 1.55 94.24 ± 0.36 90.67 ± 2.41 80.30 ± 0.21 95.94 ± 0.37 94.56 ± 0.24 96.73 ± 0.11 Timeout 96.83 ± 0.56
Avg. Rank 6.86 8.57 5.29 5.43 7.43 4.86 3.14 4.43 6.57 2.43

4.2 PERFORMANCE ANALYSIS

Comparative Study on Benchmark Datasets. We report the AP of transductive and inductive
link prediction in Table 1 and 2 (AUC-ROC reported in Table 12 and 13 in App. E). We find that:
(1) DyGMamba constantly ranks top 1 under the random NSS, showing a superior performance; (2)
Under the historical and inductive NSS, DyGMamba can achieve the best average rank compared
with all baselines. More importantly, it shows more superiority on the datasets where encoding
longer-term temporal dependencies is necessary, e.g., on LastFM, Enron and MOOC. (3) Among
the models that can do long range propagation of information over time (i.e., DyGFormer, CTAN

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

and DyGMamba), DyGMamba achieves the best average rank under any NSS setting in both trans-
ductive and inductive link prediction. On the long-range temporal dependent datasets, DyGMamba
outperforms DyGFormer and CTAN in most cases; (4) CTAN achieves much better results in trans-
ductive than in inductive link prediction. This is because CTAN requires multi-hop temporal neigh-
bors to learn node representations, which is difficult for unseen nodes. By contrast, DyGMamba
and DyGFormer require only one-hop temporal neighbors, thus performing much better in inductive
link prediction.

Table 3: Ablation studies under transductive setting. R/H/I means random/historical/inductive NSS.
Metric is AP.

Datasets LastFM Enron MOOC Reddit Wikipedia UCI Social Evo.
Models R H I R H I R H I R H I R H I R H I R H I

Variant A 93.14 80.30 71.29 91.35 70.07 75.44 87.78 83.25 77.04 99.19 81.60 90.70 98.99 80.99 79.26 94.88 79.37 70.43 94.59 96.97 97.42
Variant B 93.07 82.53 72.97 92.46 76.88 78.87 86.95 83.78 75.81 97.97 73.47 84.16 94.17 81.37 79.24 91.69 71.13 60.45 92.90 96.61 97.14
Variant C 92.71 82.85 72.36 92.49 76.99 78.64 88.80 85.23 81.02 99.27 81.74 91.05 99.06 79.14 73.49 95.85 81.00 71.86 94.71 96.71 97.25
Variant D 92.74 82.87 72.68 92.52 77.07 78.05 88.71 85.76 81.09 99.27 82.10 91.07 99.08 81.75 79.79 95.87 82.35 72.98 94.74 97.17 97.60

DyGMamba 93.35 83.02 73.63 92.65 77.77 80.86 89.21 85.89 81.11 99.32 81.80 91.15 99.15 81.77 79.86 95.91 81.03 71.95 94.77 97.35 97.68

Table 4: Ablation studies under inductive setting. R/I means random/inductive NSS. Metric is AP.

Datasets LastFM Enron MOOC Reddit Wikipedia UCI Social Evo.
Models R I R I R I R I R I R I R I

Variant A 94.12 73.03 85.97 61.43 84.25 76.16 98.84 65.19 98.49 70.98 93.23 70.84 92.99 96.54
Variant B 94.25 75.26 89.13 67.87 86.21 75.08 97.32 58.22 92.41 70.76 90.42 60.43 91.11 96.32
Variant C 94.18 76.44 89.40 68.33 88.59 80.39 98.90 64.07 98.65 69.82 94.47 72.05 93.07 96.20
Variant D 94.21 76.64 89.44 67.91 88.29 80.86 98.91 65.10 98.69 71.10 94.51 73.50 93.10 96.75

DyGMamba 94.42 76.76 89.67 68.77 88.64 80.75 98.97 65.30 98.77 71.14 94.76 72.17 93.13 96.83

Ablation Study. We conduct four ablation studies to study the effectiveness of model components.
In study A, we make a model variant (Variant A) by removing the time-level SSM block and restrain
our model from learning temporal patterns (information selection is substituted by mean pooling
over the output of Eq. 4). In study B, we make a model variant (Variant B) by removing the
Mamba SSM layers (Eq. 3) in the node-level SSM block. In study C, we switch the computation
of the selection weights βθ in Eq. 6d to βθ = Softmax(fsel(H

t
θ)) (fsel(·) : R4d → R4d) to create

Variant C. In study D, we base on Variant C and develop Variant D that further enables information
selection from opposite nodes, i.e., βu = Softmax(fsel(H

t
v))/ βv = Softmax(fsel(H

t
u)). Both abla-

tion C and D do information selection without learning temporal patterns. From Table 3 and 4, we
find that: (1) Variant A is constantly beaten by DyGMamba, showing the effectiveness of dynamic
information selection based on edge-specific temporal patterns; (2) DyGMamba always outperforms
Variant B, indicating the importance of encoding the one-hop temporal neighbors with SSM layers
for capturing graph dynamics; (3) Variant C and D perform better than Variant A in most cases,
implying that selecting temporal information is generally contributive; (4) Variant C generally lags
behind Variant D, meaning that information selection from opposite node is beneficial; (5) DyG-
Mamba performs better than both Variant C and D in almost all cases, proving that information
selection based on temporal patterns is more effective.

A Closer Look into Temporal Pattern Modeling. We observe from ablation studies that dy-
namic information selection based on temporal patterns contributes to better model performance on
real-world datasets. To better quantify its benefits, we construct three synthetic datasets, i.e., S1, S2
and S3, that follow different patterns and compare our model with DyGFormer, CTAN as well as
Variant A on them. Each synthetic dataset contains 7 nodes, where the interactions of each pair of
two nodes follow a certain pattern along time. And for each node, we generate interactions with all
the other nodes. Assume we have a pair of node u and v and they have interactions at {ti}Ni=0, in S1,
the time intervals between neighboring interactions {t1 − t0, ..., tN − tN−1} follow an increasing
trend with a constant velocity of 0.05, i.e., (ti+2 − ti+1) − (ti+1 − ti) = 0.05 . In S2, we set
the time intervals to a decreasing trend with the same velocity, i.e., (ti+1 − ti) − (ti+2 − ti+1) =
0.05. And in S3, we modify S1 by repeating several periods of increasing patterns taken from
S1 to form a periodic dataset. In this way, we have three datasets demonstrating diverse temporal
patterns: increasing/decreasing/periodic time intervals between neighboring interactions. Details
of dataset construction and statistics are provided in App. A.2. From Table 5, we observe that
DyGMamba greatly outperforms DyGFormer and CTAN. More importantly, Variant A, C and D
show similar performance to DyGFormer, meaning that our time-level SSM block is able to capture

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Performance (Random NSS) on synthetic datasets.

(a) AP on synthetic datasets.
Datasets DyGFormer CTAN Variant A Variant C Variant D DyGMamba

S1 55.19 ± 0.98 51.25 ± 2.11 53.72 ± 0.04 55.45 ± 0.32 54.52 ± 0.71 81.58 ± 1.31
S2 57.80 ± 4.61 51.17 ± 0.93 60.16 ± 2.20 64.71 ± 2.33 61.51 ± 3.00 85.36 ± 2.55
S3 79.20 ± 0.60 51.46 ± 0.19 77.61 ± 2.31 77.61 ± 2.31 79.41 ± 2.13 86.59 ± 0.09

(b) AUC-ROC on synthetic datasets.
Datasets DyGFormer CTAN Variant A Variant C Variant D DyGMamba

S1 56.27 ± 0.54 51.25 ± 2.38 53.16 ± 0.39 57.41 ± 0.04 55.83 ± 1.03 86.61 ± 1.30
S2 59.06 ± 6.07 51.46 ± 0.91 62.50 ± 2.28 64.93 ± 2.59 62.06 ± 3.40 89.94 ± 2.70
S3 82.89 ± 1.34 52.12 ± 0.44 81.78 ± 0.40 82.73 ± 1.97 84.20 ± 3.57 91.72 ± 0.11

Figure 2: Efficiency comparison on four datasets among DyGMamba and five baselines in terms
of number (#) of parameters, training time per epoch and GPU memory. The performance met-
ric here is AP of transductive link prediction under random NSS. The greener, the better perfor-
mance/efficiency. In contrast to other methods, DyGMamba consistently shows strong overall capa-
bility across different datasets. More explanations in Sec. 4.3.

temporal patterns and modeling such patterns for dynamic information selection is important in
CTDG reasoning. For more implementation details on synthetic datasets, please refer to App. C.2.

4.3 EFFICIENCY ANALYSIS

Model Size, Per Epoch Training Time and GPU Memory. Fig. 2 compares DyGMamba with
five baselines in terms of number of parameters (model size), per epoch training time and GPU mem-
ory consumption during training4. We find that: (1) DyGMamba uses very few parameters while
maintaining the best performance, showing a strong parameter efficiency. Only CTAN constantly
uses fewer parameters than DyGMamba, however, its performance is much worse; (2) DyGMamba
is much more efficient than DyGFormer with the same length of input sequence (ρ/p =32); (3) Al-
though DyGMamba generally consumes more GPU memory and per epoch training time compared
with most baselines, the gap of consumption is not very large in most cases. To model more tem-
poral neighbors for long-range temporal dependent datasets, DyGMamba naturally requires more
computational resources, thus enlarging the consumption gap. DyGFormer shows the same trend as
DyGMamba since it also captures long-term temporal dependencies by considering more temporal
neighbors; (4) CTAN requires very few computational resources. However, on long-range tempo-
ral dependent datasets, it is beaten by DyGFormer and DyGMamba with a great margin. Besides,
CTAN is also hard to converge. Although it requires very little per epoch training time, it requires
much more epochs to reach the best performance, leading to a long total training time. See App.
G.2 and G.3 for details.

Impact of Patch Size on Scalability and Performance. Patching treats p temporal neighbors as
one patch and thus decreases the sequence length by p times. This is very helpful in cutting the
consumption of GPU memory and training/evaluation time. However, patching introduces exces-
sive parameters because it is done through fN , fE , fT and fF whose sizes increase as the patch
size grows. Fig. 3b shows the numbers of parameters of DyGFormer and DyGmamba with different
patch sizes on a long-term temporal dependent dataset Enron. We find that patching greatly affects
model sizes. To further study how patching affects DyGMamba, we decrease the patch size gradu-
ally from 8 to 1 and track DyGMamba’s performance (Fig. 3a) as well as efficiency (Fig. 3b to 3d)
on Enron. Meanwhile, we also keep track on DyGFormer under the same patch size for comparison.
We have several findings: (1) Whatever the patch size is, DyGMamba always consumes fewer pa-

4The baselines not included here are either extremely inefficient (e.g., CAWN) or inferior in performance
(e.g., DyRep). Complete statistics of all baseline models presented in App. G

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Enron performance. (b) Enron # params. (c) Enron GPU memory. (d) Enron train time/epoch.

Figure 3: Impact of patch size on DyGFormer, DyGMamba and Variant A, given a fixed number of
sampled temporal neighbors ρ on Enron. Patch size p varies from 8, 4, 2, 1. Sequence length ρ/p
increases as patch size decreases. Performance is the transductive AP under random NSS.

rameters, less GPU memory and per epoch training time, showing its high efficiency; (2) While both
models require increasing computational budgets as the patch size decreases, the speed of increase
is much lower for DyGMamba, demonstrating its strong scalability in modeling longer sequences;
(3) Different trends in performance change are observed between two models. While DyGFormer
performs worse, DyGMamba can benefit from a smaller patch size, indicating its strong ability to
capture nuanced temporal details even if the sequence becomes much longer. Note that the models
use fewer parameters under smaller patch size. This also shows that DyGMamba can achieve much
stronger parameter efficiency by reducing patch sizes. To further study the reason for finding (3),
we plot the performance of Variant A under different patch sizes in Fig. 3a. We find that Variant A’s
performance degrades when sequence length is more than 64. This means that dynamic information
selection based on edge-specific temporal patterns is essential for DyGMamba to optimally process
long sequences. We provide more explanations and additional analysis on MOOC in App. J.

Scalability in Modeling Increasing Number of Temporal Neighbors. Sequence length is de-
cided by the sampled temporal neighbors ρ and the patch size p. If we want to model a huge

Figure 4: GPU memory consumption
on Enron with increasing neighbors.
For clarity, memory is shown only when
neighbors are more than 512.

number of temporal neighbors, e.g., ρ =4096, keeping
the sequence length unchanged as 32 means we need to
set p to 128. This will greatly increase model parameters
and cause burden in parameter optimization. Besides, as
shown in Fig. 3a, bigger p does not necessarily lead to
better performance. Therefore, it is also important to see
if a model is scalable to ρ, with a fixed p. In Fig. 4,
we show the consumed GPU memory of DyGMamba and
DyGFormer with ρ varying from 64, 128, 256, 512, 1024,
2048, 4096 and 8192 on Enron, under a fixed patch size
p =8. We find that DyGMamba shows superior scalabil-
ity over DyGFormer. While DyGFormer can only process
2048 nodes, DyGMamba can deal with more than 8192
(at least 4 times) on a single 45GB NVIDIA A40 GPU.
This implies our model’s potential to process a huge num-
ber of temporal neighbors with a limited GPU memory budget. We provide the complexity analysis
of DyGMamba and DyGFormer in App. G.4 to further explain DyGMamba’s scalability.

5 CONCLUSION

We propose DyGMamba, an efficient CTDG representation learning model that can capture long-
term temporal dependencies. DyGMamba first leverages a node-level SSM to encode long se-
quences of historical node interactions. It then employs a time-level SSM to learn edge-specific
temporal patterns. The learned patterns are used to select the critical part of the encoded temporal
information. DyGMamba achieves superior performance on dynamic link prediction, and moreover,
it shows high efficiency and strong scalability compared with previous CTDG methods, implying
a great potential in modeling huge amounts of temporal information with a limited computational
budget. To supplement, we discuss the limitation of our work in App. K.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ali Behrouz and Farnoosh Hashemi. Graph mamba: Towards learning on graphs with state space
models. CoRR, abs/2402.08678, 2024. doi: 10.48550/ARXIV.2402.08678. URL https://
doi.org/10.48550/arXiv.2402.08678.

Xiaofu Chang, Xuqin Liu, Jianfeng Wen, Shuang Li, Yanming Fang, Le Song, and Yuan Qi.
Continuous-time dynamic graph learning via neural interaction processes. In Mathieu d’Aquin,
Stefan Dietze, Claudia Hauff, Edward Curry, and Philippe Cudré-Mauroux (eds.), CIKM ’20: The
29th ACM International Conference on Information and Knowledge Management, Virtual Event,
Ireland, October 19-23, 2020, pp. 145–154. ACM, 2020. doi: 10.1145/3340531.3411946. URL
https://doi.org/10.1145/3340531.3411946.

Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, and
Mehrdad Mahdavi. Do we really need complicated model architectures for temporal networks?
In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/pdf?
id=ayPPc0SyLv1.

Feyza Duman Keles, Pruthuvi Mahesakya Wijewardena, and Chinmay Hegde. On the computational
complexity of self-attention. In Shipra Agrawal and Francesco Orabona (eds.), Proceedings of
The 34th International Conference on Algorithmic Learning Theory, volume 201 of Proceedings
of Machine Learning Research, pp. 597–619. PMLR, 20 Feb–23 Feb 2023. URL https://
proceedings.mlr.press/v201/duman-keles23a.html.

Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. dyngraph2vec: Capturing net-
work dynamics using dynamic graph representation learning. Knowl. Based Syst., 187, 2020.
doi: 10.1016/J.KNOSYS.2019.06.024. URL https://doi.org/10.1016/j.knosys.
2019.06.024.

Alessio Gravina, Giulio Lovisotto, Claudio Gallicchio, Davide Bacciu, and Claas Grohnfeldt. Long
range propagation on continuous-time dynamic graphs. In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=gVg8V9isul.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. CoRR,
abs/2312.00752, 2023. doi: 10.48550/ARXIV.2312.00752. URL https://doi.org/10.
48550/arXiv.2312.00752.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Com-
bining recurrent, convolutional, and continuous-time models with linear state space layers. In
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wort-
man Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pp. 572–585, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
05546b0e38ab9175cd905eebcc6ebb76-Abstract.html.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization
and initialization of diagonal state space models. In Sanmi Koyejo, S. Mohamed,
A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022a. URL http://papers.nips.cc/paper_files/paper/2022/hash/
e9a32fade47b906de908431991440f7c-Abstract-Conference.html.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022b. URL https://openreview.
net/forum?id=uYLFoz1vlAC.

Ming Jin, Yuan-Fang Li, and Shirui Pan. Neural temporal walks: Motif-aware repre-
sentation learning on continuous-time dynamic graphs. In Sanmi Koyejo, S. Mohamed,

11

https://doi.org/10.48550/arXiv.2402.08678
https://doi.org/10.48550/arXiv.2402.08678
https://doi.org/10.1145/3340531.3411946
https://openreview.net/pdf?id=ayPPc0SyLv1
https://openreview.net/pdf?id=ayPPc0SyLv1
https://proceedings.mlr.press/v201/duman-keles23a.html
https://proceedings.mlr.press/v201/duman-keles23a.html
https://doi.org/10.1016/j.knosys.2019.06.024
https://doi.org/10.1016/j.knosys.2019.06.024
https://openreview.net/forum?id=gVg8V9isul
https://doi.org/10.48550/arXiv.2312.00752
https://doi.org/10.48550/arXiv.2312.00752
https://proceedings.neurips.cc/paper/2021/hash/05546b0e38ab9175cd905eebcc6ebb76-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/05546b0e38ab9175cd905eebcc6ebb76-Abstract.html
http://papers.nips.cc/paper_files/paper/2022/hash/e9a32fade47b906de908431991440f7c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/e9a32fade47b906de908431991440f7c-Abstract-Conference.html
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
7dadc855cef7494d5d956a8d28add871-Abstract-Conference.html.

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and
Pascal Poupart. Representation learning for dynamic graphs: A survey. J. Mach. Learn. Res., 21:
70:1–70:73, 2020. URL http://jmlr.org/papers/v21/19-447.html.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in tem-
poral interaction networks. In Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evi-
maria Terzi, and George Karypis (eds.), Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, Au-
gust 4-8, 2019, pp. 1269–1278. ACM, 2019. doi: 10.1145/3292500.3330895. URL https:
//doi.org/10.1145/3292500.3330895.

Jintang Li, Ruofan Wu, Xinzhou Jin, Boqun Ma, Liang Chen, and Zibin Zheng. State space models
on temporal graphs: A first-principles study. arXiv preprint arXiv:2406.00943, 2024a.

Lincan Li, Hanchen Wang, Wenjie Zhang, and Adelle Coster. Stg-mamba: Spatial-temporal graph
learning via selective state space model. CoRR, abs/2403.12418, 2024b. doi: 10.48550/ARXIV.
2403.12418. URL https://doi.org/10.48550/arXiv.2403.12418.

Yunyu Liu, Jianzhu Ma, and Pan Li. Neural predicting higher-order patterns in temporal networks.
In Frédérique Laforest, Raphaël Troncy, Elena Simperl, Deepak Agarwal, Aristides Gionis, Ivan
Herman, and Lionel Médini (eds.), WWW ’22: The ACM Web Conference 2022, Virtual Event,
Lyon, France, April 25 - 29, 2022, pp. 1340–1351. ACM, 2022. doi: 10.1145/3485447.3512181.
URL https://doi.org/10.1145/3485447.3512181.

Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan
May, and Luke Zettlemoyer. Mega: Moving average equipped gated attention. In The Eleventh
International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net, 2023. URL https://openreview.net/pdf?id=qNLe3iq2El.

Yao Ma, Ziyi Guo, Zhaochun Ren, Jiliang Tang, and Dawei Yin. Streaming graph neural networks.
In Jimmy X. Huang, Yi Chang, Xueqi Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong Wen,
and Yiqun Liu (eds.), Proceedings of the 43rd International ACM SIGIR conference on research
and development in Information Retrieval, SIGIR 2020, Virtual Event, China, July 25-30, 2020,
pp. 719–728. ACM, 2020. doi: 10.1145/3397271.3401092. URL https://doi.org/10.
1145/3397271.3401092.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi,
Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. Evolvegcn: Evolving graph convolutional
networks for dynamic graphs. In The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020, pp. 5363–5370. AAAI Press, 2020. doi: 10.1609/
AAAI.V34I04.5984. URL https://doi.org/10.1609/aaai.v34i04.5984.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
8024–8035, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

12

http://papers.nips.cc/paper_files/paper/2022/hash/7dadc855cef7494d5d956a8d28add871-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/7dadc855cef7494d5d956a8d28add871-Abstract-Conference.html
http://jmlr.org/papers/v21/19-447.html
https://doi.org/10.1145/3292500.3330895
https://doi.org/10.1145/3292500.3330895
https://doi.org/10.48550/arXiv.2403.12418
https://doi.org/10.1145/3485447.3512181
https://openreview.net/pdf?id=qNLe3iq2El
https://doi.org/10.1145/3397271.3401092
https://doi.org/10.1145/3397271.3401092
https://doi.org/10.1609/aaai.v34i04.5984
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huanqi Cao, Xin Cheng, Michael Chung, Leon Derczynski, Xingjian Du, Matteo Grella, Kran-
thi Kiran GV, Xuzheng He, Haowen Hou, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong, Bart-
lomiej Koptyra, Hayden Lau, Jiaju Lin, Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito,
Guangyu Song, Xiangru Tang, Johan S. Wind, Stanislaw Wozniak, Zhenyuan Zhang, Qinghua
Zhou, Jian Zhu, and Rui-Jie Zhu. RWKV: reinventing rnns for the transformer era. In Houda
Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association for Computational
Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, pp. 14048–14077. Association
for Computational Linguistics, 2023. doi: 10.18653/V1/2023.FINDINGS-EMNLP.936. URL
https://doi.org/10.18653/v1/2023.findings-emnlp.936.

Farimah Poursafaei, Shenyang Huang, Kellin Pelrine, and Reihaneh Rabbany. To-
wards better evaluation for dynamic link prediction. In Sanmi Koyejo, S. Mohamed,
A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Infor-
mation Processing Systems 35: Annual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/
hash/d49042a5d49818711c401d34172f9900-Abstract-Datasets_and_
Benchmarks.html.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and
Michael M. Bronstein. Temporal graph networks for deep learning on dynamic graphs. CoRR,
abs/2006.10637, 2020. URL https://arxiv.org/abs/2006.10637.

Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat: Deep neural represen-
tation learning on dynamic graphs via self-attention networks. In James Caverlee, Xia (Ben) Hu,
Mounia Lalmas, and Wei Wang (eds.), WSDM ’20: The Thirteenth ACM International Conference
on Web Search and Data Mining, Houston, TX, USA, February 3-7, 2020, pp. 519–527. ACM,
2020. doi: 10.1145/3336191.3371845. URL https://doi.org/10.1145/3336191.
3371845.

Jimmy T. H. Smith, Andrew Warrington, and Scott W. Linderman. Simplified state space lay-
ers for sequence modeling. In The Eleventh International Conference on Learning Represen-
tations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https:
//openreview.net/pdf?id=Ai8Hw3AXqks.

Yuxing Tian, Yiyan Qi, and Fan Guo. Freedyg: Frequency enhanced continuous-time dynamic graph
model for link prediction. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=82Mc5ilInM.

Ilya O. Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic,
and Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision. In Marc’Aurelio
Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pp. 24261–24272, 2021. URL https://proceedings.neurips.cc/paper/2021/
hash/cba0a4ee5ccd02fda0fe3f9a3e7b89fe-Abstract.html.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning
representations over dynamic graphs. In 7th International Conference on Learning Represen-
tations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL
https://openreview.net/forum?id=HyePrhR5KX.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

13

https://doi.org/10.18653/v1/2023.findings-emnlp.936
http://papers.nips.cc/paper_files/paper/2022/hash/d49042a5d49818711c401d34172f9900-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/d49042a5d49818711c401d34172f9900-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/d49042a5d49818711c401d34172f9900-Abstract-Datasets_and_Benchmarks.html
https://arxiv.org/abs/2006.10637
https://doi.org/10.1145/3336191.3371845
https://doi.org/10.1145/3336191.3371845
https://openreview.net/pdf?id=Ai8Hw3AXqks
https://openreview.net/pdf?id=Ai8Hw3AXqks
https://openreview.net/forum?id=82Mc5ilInM
https://proceedings.neurips.cc/paper/2021/hash/cba0a4ee5ccd02fda0fe3f9a3e7b89fe-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/cba0a4ee5ccd02fda0fe3f9a3e7b89fe-Abstract.html
https://openreview.net/forum?id=HyePrhR5KX
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Chloe Wang, Oleksii Tsepa, Jun Ma, and Bo Wang. Graph-mamba: Towards long-range graph
sequence modeling with selective state spaces. CoRR, abs/2402.00789, 2024. doi: 10.48550/
ARXIV.2402.00789. URL https://doi.org/10.48550/arXiv.2402.00789.

Lu Wang, Xiaofu Chang, Shuang Li, Yunfei Chu, Hui Li, Wei Zhang, Xiaofeng He, Le Song, Jingren
Zhou, and Hongxia Yang. TCL: transformer-based dynamic graph modelling via contrastive
learning. CoRR, abs/2105.07944, 2021a. URL https://arxiv.org/abs/2105.07944.

Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang, Xinguang Wang, Ping
Cui, Yupu Yang, Bowen Sun, and Zhenyu Guo. APAN: asynchronous propagation attention
network for real-time temporal graph embedding. In Guoliang Li, Zhanhuai Li, Stratos Idreos,
and Divesh Srivastava (eds.), SIGMOD ’21: International Conference on Management of Data,
Virtual Event, China, June 20-25, 2021, pp. 2628–2638. ACM, 2021b. doi: 10.1145/3448016.
3457564. URL https://doi.org/10.1145/3448016.3457564.

Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation
learning in temporal networks via causal anonymous walks. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021c. URL https://openreview.net/forum?id=KYPz4YsCPj.

Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, and Kannan Achan. Inductive repre-
sentation learning on temporal graphs. In 8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=rJeW1yHYwH.

Jiaxuan You, Tianyu Du, and Jure Leskovec. ROLAND: graph learning framework for dynamic
graphs. In Aidong Zhang and Huzefa Rangwala (eds.), KDD ’22: The 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18,
2022, pp. 2358–2366. ACM, 2022. doi: 10.1145/3534678.3539300. URL https://doi.
org/10.1145/3534678.3539300.

Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. Towards better dynamic graph learn-
ing: New architecture and unified library. In Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neu-
ral Information Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
d611019afba70d547bd595e8a4158f55-Abstract-Conference.html.

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision
mamba: Efficient visual representation learning with bidirectional state space model. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024. URL https://openreview.net/forum?id=YbHCqn4qF4.

A CTDG DATASET DETAILS

A.1 REAL-WORLD BENCHMARK DATASETS

We present the dataset statistics of all considered CTDG datasets in Table 6. All the datasets in our
experiments are taken from Yu et al. (2023). We chronologically split each dataset with the ratio of
70%/15%/15% for training/validation/testing. Please refer to it for detailed dataset descriptions.

A.2 SYNTHETIC DATASETS

For all of our three synthetic datasets, node and link features are not involved during dataset con-
struction. The construction details are as follows:

• S1: For each interaction pair u and v, their first interaction is at timestamp 0 and the second
interaction is generated randomly. Thus, the first time interval is also determined. Starting
from the second interval, they follow an increasing trend with a constant velocity of 0.05,

14

https://doi.org/10.48550/arXiv.2402.00789
https://arxiv.org/abs/2105.07944
https://doi.org/10.1145/3448016.3457564
https://openreview.net/forum?id=KYPz4YsCPj
https://openreview.net/forum?id=rJeW1yHYwH
https://doi.org/10.1145/3534678.3539300
https://doi.org/10.1145/3534678.3539300
http://papers.nips.cc/paper_files/paper/2023/hash/d611019afba70d547bd595e8a4158f55-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/d611019afba70d547bd595e8a4158f55-Abstract-Conference.html
https://openreview.net/forum?id=YbHCqn4qF4

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 6: Dataset statistics. # N&E Feat means the numbers of node and edge features.

Datasets # Nodes # Edges # N&E Feat Bipartite Duration # Timestamps Time Granularity

LastFM 1,980 1,293,103 0 & 0 True 1 month 1,283,614 Unix timestamps
Enron 184 125,235 0 & 0 False 3 years 22,632 Unix timestamps

MOOC 7,144 411,749 0 & 4 True 17 months 345,600 Unix timestamps
Reddit 10,984 672,447 0 & 172 True 1 month 669,065 Unix timestamps

Wikipedia 9,227 157,474 0 & 172 True 1 month 152,757 Unix timestamps
UCI 1,899 59,835 0 & 0 False 196 days 58,911 Unix timestamps

Social Evo. 74 2,099,519 0 & 2 False 8 months 565,932 Unix timestamps

i.e., (ti+2 − ti+1) − (ti+1 − ti)= 0.05. The number of interactions for each node pair is
randomly determined and the interaction numbers of all node pairs sum up to 100000.

• S2: For each interaction pair u and v, their first interaction is at timestamp 0 and the second
interaction is generated randomly. However, it should be large enough so that the interval
will not drop to zero or negative afterwards. Starting from the second interval, they follow
a decreasing trend with a constant velocity of 0.05, i.e., (ti+1− ti)− (ti+2− ti+1) = 0.05.
The number of interactions for each node pair is randomly determined and the interaction
numbers of all node pairs sum up to 100000.

• S3: S3 contains 8 periods. In each period, the interactions of each node pair u and v are
generated following the same pattern in S1. The number of interactions for each node pair
is randomly determined and the interaction numbers of all node pairs sum up to 12000 in
the period.

We present the statistics of all synthetic datasets in Table 7. We chronologically split each dataset
with the ratio of 70%/15%/15% for training/validation/testing. To better visualize the temporal
patterns in each dataset, we pick one pair of interacting nodes and plot the time intervals between
neighboring interactions in each dataset in Figure 5. Note that for the periodic dataset S3 (Figure
5c), each of the train, validation and test sets contains at least one start of a new period. This ensures
that models have to capture periodic temporal patterns in order to achieve good performance during
evaluation, rather than only learning the increasing time intervals as specified in S1.

Furthermore, we provide the information about the numbers of interactions regarding interacting
node pairs in Table 8. We show that each node pair is equipped with a substantial number of inter-
actions, meaning that temporal patterns in our synthetic datasets span across long time periods. This
encourages models to consider long-term temporal dependencies for better graph reasoning.

Table 7: Synthetic dataset statistics.

Datasets # Nodes # Edges # Timestamps Time Range

S1 7 100,000 96,869 0 - 163241.65
S2 7 100,000 98,004 0 - 1573561.52
S3 7 95,657 95,370 0 - 1771300.40

Table 8: Interaction information of node pairs in synthetic datasets. Complete Dataset includes the
numbers of interactions across the whole datasets, including training, validation and testing.

Datasets Avg. # Interactions Min # Interactions Max # Interactions

Training Set
S1 1,428.57 1,205 1,663
S2 1,428.57 1,424 1,433
S3 1,367.91 1,364 1,372

Complete Dataset

S1 2,010.20 1,879 2,150
S2 2,010.20 1,921 2,097
S3 1,952.18 1,721 2,193

S3 (each period) 244.02 215 274

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) Synthetic dataset S1. (b) Synthetic dataset S2. (c) Synthetic dataset S3.

Figure 5: Time intervals of a node pair u, v in synthetic datasets S1, S2 and S3.

B BASELINE DETAILS

We provide the detailed descriptions of all baselines here. The baselines can be split into two groups:
the methods designed/not designed for long-range temporal information propagation.

B.1 BASELINES NOT DESIGNED FOR LONG-RANGE TEMPORAL INFORMATION
PROPAGATION

• JODIE (Kumar et al., 2019): JODIE employs a recurrent neural network (RNN) for each
node and uses a projection operation to learn the future representation trajectory of each
node.

• DyRep (Trivedi et al., 2019): DyRep updates node representations as events appear. It
designs a two-time scale deep temporal point process approach for source and destination
nodes and couples the structural and temporal components with a temporal-attentive aggre-
gation module.

• TGAT (Xu et al., 2020): TGAT computes the node representations by aggregating each
node’s temporal neighbors based on a self-attention module. A time encoding function is
proposed to learn functional representations of time.

• TGN (Rossi et al., 2020): TGN leverages an evolving memory for each node and updates
the memory when a node-relevant interaction occurs by using a message function, a mes-
sage aggregator, and a memory updater. An embedding module is used to generate the
temporal representations of nodes.

• CAWN (Wang et al., 2021c): CAWN is a random walk-based method. It does multiple
causal anonymous walks for each node and extracts relative node identities from the walk
results. RNNs are then introduced to encode the anonymous walks. The aggregated walk
information forms the final node representation.

• EdgeBank (Poursafaei et al., 2022): EdgeBank is a non-parametric method purely based on
memory. It stores the observed interactions in its memory and updates the memory through
various strategies. An interaction, i.e., link, will be predicted as existing if it is stored in
the memory, and non-existing otherwise. EdgeBank uses four memory update strategies:
(1) EdgeBank∞, where all the observed edges are stored in the memory; (2) EdgeBanktw-ts,
where only the edges within the duration of the test set from the immediate past are kept in
the memory; (3) EdgeBanktw-re, where only the edges within the average time intervals of
repeated edges from the immediate past are kept in the memory; (4) EdgeBankth, where the
edges with appearing counts higher than a threshold are stored in the memory. The results
reported in our paper correspond to the best results achieved among the four memory update
strategies.

• TCL (Wang et al., 2021a): TCL first extracts temporal dependency interaction sub-graphs
for source and interaction nodes and then presents a graph transformer to aggregate node
information from the sub-graphs. A cross-attention operation is implemented to enable
information communication between two source and destination nodes.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

• GraphMixer (Cong et al., 2023): GraphMixer designs a link-encoder based on MLP-
Mixer (Tolstikhin et al., 2021) to learn from the temporal interactions. A mean pooling-
based node-encoder is used to aggregate the node features. Link prediction is done with a
link classifier that leverages the representations output by link-encoder and node-encoder.

Note that TGN uses a memory network to store the whole graph history, making it able to preserve
long-range temporal information. However, as discussed in Yu et al. (2023), it faces a problem of
vanishing/exploding gradients, preventing it from optimally capturing long-term temporal depen-
dencies. EdgeBank can also preserve a very long graph history, but we can observe from the experi-
mental results (Table 1, 12) that without learnable parameters, it is not strong enough on long-range
temporal dependent datasets.

B.2 BASELINES DESIGNED FOR LONG-RANGE TEMPORAL INFORMATION PROPAGATION

• DyGFormer (Yu et al., 2023): DyGFormer is a Transformer-based CTDG model. It takes
the long-term one-hop temporal interactions of source and destination nodes and uses a
Transformer to encode them. A patching technique is developed to cut the computational
consumption and a node co-occurrence encoding scheme is used to exploit the correlations
of nodes in each interaction. DyGFormer achieves long-range temporal information prop-
agation by increasing the number of sampled one-hop historical interactions. The patching
technique ensures that even with a huge number of sampled interactions, the length of the
sequence input into Transformer will not be too long, making it possible to implement
DyGFormer with a limited computational budget.

• CTAN (Gravina et al., 2024): CTAN is deep graph network for learning CTDGs based on
non-dissipative ordinary differential equations. CTAN’s formulation allows for a scalable
long-range temporal information propagation in CTDGs because its non-dissipative layer
can retain the information from a specific event indefinitely, ensuring that the historical
context of a node is preserved despite the occurrence of additional events involving this
node.

C IMPLEMENTATION DETAILS

We train every CTDG model except for CTAN for a maximum number of 200 epochs. Maximum
epochs for CTAN training is 1000. We evaluate each model on the validation set at the end of
every training epoch and adopt an early stopping strategy with a patience of 20. We take the model
that achieves the best validation result for testing. We use the implementations5 provided by Yu
et al. (2023) for all baseline models except CTAN. For CTAN, we use its official implementation6.
All models are trained with a batch size of 200 for fair efficiency analysis. All experiments are
implemented with PyTorch (Paszke et al., 2019) on a server equipped with an AMD EPYC 7513
32-Core Processor and a single NVIDIA A40 with 45GB memory. We run each experiment for five
times with five random seeds and report the mean results together with error bars.

C.1 HYPERPARAMETER CONFIGURATIONS ON REAL-WORLD DATASETS

For all the baselines except CTAN, please refer to Yu et al. (2023) for the hyperparameter config-
urations on real-world datasets. For CTAN, we present its hyperparameter configurations in Table
9. We keep its hyperparameters unchanged for all real-world datasets. Note that we set the num-
ber of graph convolution layers (GCLs) in CTAN to its maximum, i.e., 5, in order to maximize its
performance in capturing long-term temporal dependencies.

We report the hyperparameter searching strategy of DyGMamba on real-world datasets and the
best hyperparameters in Table 10. To achieve fair efficiency comparison with DyGFormer, we fix
the length of the input sequence into the node-level SSM to 32, i.e., ρ & p = 32. The results
reported in Table 1, 2, 12, 13 are all achieved by DyGMamba with ρ & p = 32. In practice, we can
decrease p to have a better performance given more computational resources (as discussed in Sec.
4.3). DyGMamba keeps the embedding size as same as DyGFormer on all real-world datasets, i.e.,

5https://github.com/yule-BUAA/DyGLib
6https://github.com/gravins/non-dissipative-propagation-CTDGs

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 9: Hyperparameter configurations of CTAN on all real-world datasets. γ here denotes the
discretization step size introduced in Gravina et al. (2024), different from the one in DyGMamba.

Model # GCL ϵ γ Embedding Dim

CTAN 5 0.5 0.5 128

dN = dE = 172, dT = 100, dF = 50. We also set γ = 0.5 for all experiments of DyGMamba.
The dimension of SSMs dSSM = 16 remains the default value of mamba SSM’s official repository7.
For all experiments, we set the numbers of layers in both node-level and time-level SSMs as 2. We
also set γ to 0.5 for all datasets. A smaller γ lowers the computational resource consumption in
time-level SSM, potentially at the cost of performance. Raising γ’s value does not necessarily lead
to better performance but will lower efficiency. We search γ’s value in {0.1, 0.5, 0.7, 1} and find
that 0.5 brings a good balance between performance and efficiency.

Table 10: DyGMamba hyperparameter searching strategy on real-world datasets. The best settings
are marked as bold.

Datasets Dropout ρ & p k

LastFM {0.0, 0.1, 0.2} {1024 & 32, 512 & 16, 256 & 8} {30, 10, 5}
Enron {0.0, 0.1, 0.2} {512 & 16, 256 & 8, 128 & 4} {30, 10, 5}
MOOC {0.0, 0.1, 0.2} {512 & 16, 256 & 8, 128 & 4} {30, 10, 5}
Reddit {0.0, 0.1, 0.2} {128 & 4, 64 & 2, 32 & 1} {30, 10, 5}
Wikipedia {0.0, 0.1, 0.2} {64 & 2, 32 & 1} {30, 10, 5}
UCI {0.0, 0.1, 0.2} {64 & 2, 32 & 1} {30, 10, 5}
Social Evo. {0.0, 0.1, 0.2} {64 & 2, 32 & 1} {30, 10, 5}

Table 11: DyGFormer and DyGMamba hyperparameter searching strategy on synthetic datasets.
The best settings are marked as bold.

Models DyGFormer DyGMamba
Datasets ρ & p ρ & p k

S1 {512 & 16, 256 & 8, 128 & 4, 64 & 2, 32 & 1} {512 & 16, 256 & 8, 128 & 4, 64 & 2, 32 & 1} {30, 10, 5}
S2 {512 & 16, 256 & 8, 128 & 4, 64 & 2, 32 & 1} {512 & 16, 256 & 8, 128 & 4, 64 & 2, 32 & 1} {30, 10, 5}
S3 {512 & 16, 256 & 8, 128 & 4, 64 & 2, 32 & 1} {512 & 16, 256 & 8, 128 & 4, 64 & 2, 32 & 1} {30, 10, 5}

C.2 HYPERPARAMETER CONFIGURATIONS ON SYNTHETIC DATASETS

We use the same settings of CTAN on real-world datasets when we experiment it on synthetic
datasets. For DyGFormer and DyGMamba, we fix the length of the input sequence into the Trans-
former and the node-level SSM to 32, i.e., ρ/p = 32. For DyGFormer, we set the hyperparameters
except ρ and p to the same default values as on real-world datasets, and search for the best ρ & p
within {512 & 16, 256 & 8, 128 & 4, 64 & 2, 32 & 1}. For DyGMamba, we search for the best ρ& p
within the same search range and further search for the best k. All the other hyperparameters are set
as same as the setting on LastFM. We report the hyperparameter searching strategy as well as the
best settings of DyGFormer and DyGMamba on synthetic datasets in Table 11. For all experiments
with DyGMamba, we set the numbers of layers in both node-level and time-level SSMs as 2.

D NEGATIVE EDGE SAMPLING STRATEGIES DURING EVALUATION

We justify why we do not do historical NSS for inductive link prediction. As described in Pour-
safaei et al. (2022), historical NSS focuses on sampling negative edges from the set of edges that
have been observed during previous timestamps but are absent in the current step. In the setting
of inductive link prediction, models are asked to predict the links between the nodes unseen in the

7https://github.com/state-spaces/mamba

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 12: AUC-ROC of transductive dynamic link prediction.

NSS Datasets JODIE DyRep TGAT TGN CAWN EdgeBank TCL GraphMixer DyGFormer CTAN DyGMamba

R
an

do
m

LastFM 70.89 ± 1.97 71.40 ± 2.12 71.47 ± 0.14 76.64 ± 4.66 85.92 ± 0.16 83.77 ± 0.00 71.09 ± 1.48 73.51 ± 0.14 93.03 ± 0.11 85.12 ± 0.77 93.31 ± 0.18
Enron 87.77 ± 2.43 83.09 ± 2.20 68.57 ± 1.46 88.72 ± 0.95 90.34 ± 0.23 87.05 ± 0.00 83.33 ± 0.93 84.16 ± 0.34 93.20 ± 0.12 87.09 ± 1.51 93.34 ± 0.23

MOOC 84.50 ± 0.60 84.50 ± 0.87 87.01 ± 0.16 91.91 ± 0.82 80.48 ± 0.41 60.86 ± 0.00 84.02 ± 0.59 84.04 ± 0.12 88.08 ± 0.50 85.40 ± 2.67 89.58 ± 0.12
Reddit 98.29 ± 0.05 98.13 ± 0.04 98.50 ± 0.01 98.61 ± 0.05 99.02 ± 0.00 95.37 ± 0.00 97.67 ± 0.01 97.17 ± 0.02 99.15 ± 0.01 97.24 ± 0.75 99.27 ± 0.01

Wikipedia 96.36 ± 0.14 94.43 ± 0.32 96.60 ± 0.07 98.37 ± 0.10 98.54 ± 0.01 90.78 ± 0.00 97.27 ± 0.06 96.89 ± 0.04 98.92 ± 0.03 97.00 ± 0.21 99.08 ± 0.02
UCI 90.35 ± 0.51 69.46 ± 2.66 78.76 ± 1.10 92.03 ± 0.69 93.81 ± 0.23 77.30 ± 0.00 85.49 ± 0.82 91.62 ± 0.52 94.45 ± 0.22 76.25 ± 2.83 94.77 ± 0.18

Social Evo. 92.13 ± 0.20 90.37 ± 0.52 94.93 ± 0.06 95.31 ± 0.27 87.34 ± 0.10 81.60 ± 0.00 95.45 ± 0.21 95.21 ± 0.07 96.25 ± 0.04 Timeout 96.38 ± 0.02
Avg. Rank 7.14 8.86 7.14 3.86 4.86 9.14 7.29 7.14 2.14 7.29 1.14

H
is

to
ri

ca
l

LastFM 75.65 ± 4.43 70.63 ± 2.56 64.23 ± 0.45 78.00 ± 2.97 67.92 ± 0.32 78.09 ± 0.00 60.53 ± 2.54 64.06 ± 0.34 78.80 ± 0.02 79.50 ± 0.82 79.82 ± 0.27
Enron 75.21 ± 1.27 76.36 ± 1.42 62.36 ± 1.07 76.75 ± 1.40 65.62 ± 0.49 79.59 ± 0.00 71.72 ± 1.24 74.82 ± 2.04 77.35 ± 0.64 81.95 ± 1.64 77.73 ± 0.61

MOOC 82.38 ± 1.75 80.71 ± 2.08 81.53 ± 0.79 86.59 ± 2.03 71.74 ± 0.88 61.90 ± 0.00 73.22 ± 1.21 77.09 ± 0.83 87.26 ± 0.83 73.87 ± 2.77 87.91 ± 0.93
Reddit 80.70 ± 0.20 79.96 ± 0.23 79.60 ± 0.09 81.04 ± 0.23 80.42 ± 0.20 78.58 ± 0.00 76.83 ± 0.12 77.83 ± 0.33 80.61 ± 0.48 90.63 ± 2.28 81.71 ± 0.49

Wikipedia 80.71 ± 0.64 77.49 ± 0.72 82.83 ± 0.27 83.28 ± 0.26 65.74 ± 3.46 77.27 ± 0.00 85.55 ± 0.47 87.47 ± 0.20 72.78 ± 6.65 95.43 ± 0.07 78.99 ± 1.24
UCI 78.21 ± 3.18 58.65 ± 3.58 57.12 ± 0.98 78.48 ± 1.79 57.67 ± 1.11 69.56 ± 0.00 65.42 ± 2.62 77.46 ± 1.63 75.71 ± 0.57 75.05 ± 0.13 75.43 ± 1.99

Social Evo. 91.83 ± 1.52 92.81 ± 0.60 93.63 ± 0.48 94.27 ± 1.33 87.61 ± 0.06 85.81 ± 0.00 95.03 ± 0.82 94.65 ± 0.28 97.16 ± 0.06 Timeout 97.27 ± 0.30
Avg. Rank 5.29 7.14 7.86 3.71 9.14 7.43 7.71 6.29 4.29 4.29 2.86

In
du

ct
iv

e

LastFM 61.59 ± 5.72 60.62 ± 2.20 63.96 ± 0.41 65.48 ± 4.13 67.90 ± 0.44 77.37 ± 0.00 54.75 ± 1.31 59.98 ± 0.20 67.87 ± 0.53 78.70 ± 0.87 68.74 ± 0.55
Enron 70.75 ± 0.69 67.37 ± 2.21 59.78 ± 1.12 73.22 ± 0.42 75.29 ± 0.66 75.00 ± 0.00 69.74 ± 1.19 70.72 ± 1.08 74.67 ± 0.80 75.40 ± 1.92 75.47 ± 1.41

MOOC 67.53 ± 1.76 62.60 ± 1.27 74.44 ± 0.81 76.89 ± 2.13 70.08 ± 0.33 48.18 ± 0.00 71.80 ± 1.09 72.25 ± 0.57 80.78 ± 0.89 68.17 ± 3.73 81.08 ± 0.82
Reddit 83.40 ± 0.33 82.75 ± 0.36 87.46 ± 0.10 84.57 ± 0.19 88.19 ± 0.20 85.93 ± 0.00 84.41 ± 0.18 82.24 ± 0.24 86.25 ± 0.64 91.42 ± 2.18 86.35 ± 0.52

Wikipedia 70.41 ± 0.39 67.57 ± 0.94 81.54 ± 0.31 81.21 ± 0.30 68.48 ± 3.64 81.73 ± 0.00 73.51 ± 1.88 84.20 ± 0.36 64.09 ± 9.75 93.67 ± 0.11 75.64 ± 2.42
UCI 64.14 ± 1.25 54.10 ± 2.74 59.60 ± 0.61 63.76 ± 0.99 57.85 ± 0.59 58.03 ± 0.00 65.46 ± 2.07 74.25 ± 0.71 64.92 ± 0.83 66.51 ± 0.25 66.83 ± 2.83

Social Evo. 91.81 ± 1.69 92.77 ± 0.64 93.54 ± 0.48 94.86 ± 1.25 90.10 ± 0.11 87.88 ± 0.00 95.13 ± 0.83 94.50 ± 0.26 95.01 ± 0.15 Timeout 97.37 ± 0.26
Avg. Rank 7.86 9.57 6.14 5.43 6.29 6.43 6.71 6.00 5.14 3.86 2.57

Table 13: AUC-ROC of inductive dynamic link prediction. EdgeBank cannot do inductive link
prediction so is not reported.

NSS Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer CTAN DyGMamba

R
an

do
m

LastFM 82.49 ± 0.94 82.82 ± 1.17 76.76 ± 0.22 82.61 ± 2.62 87.92 ± 0.15 76.95 ± 1.34 80.34 ± 0.14 94.10 ± 0.09 61.49 ± 2.78 94.37 ± 0.13
Enron 80.16 ± 1.50 75.82 ± 3.14 64.25 ± 1.29 79.40 ± 1.77 86.84 ± 0.89 81.03 ± 0.93 76.08 ± 0.92 89.59 ± 0.10 75.23 ± 2.24 89.76 ± 0.21

MOOC 83.82 ± 0.30 83.42 ± 0.77 86.67 ± 0.24 91.58 ± 0.74 81.76 ± 0.46 82.42 ± 0.71 82.76 ± 0.13 87.75 ± 0.42 66.38 ± 1.59 89.34 ± 0.12
Reddit 96.42 ± 0.13 95.87 ± 0.21 97.02 ± 0.04 97.30 ± 0.12 98.42 ± 0.01 94.63 ± 0.08 94.95 ± 0.08 98.70 ± 0.02 82.35 ± 4.03 98.88 ± 0.01

Wikipedia 94.43 ± 0.28 91.31 ± 0.40 95.93 ± 0.19 97.71 ± 0.19 98.05 ± 0.03 97.03 ± 0.08 96.26 ± 0.04 98.49 ± 0.02 92.59 ± 0.70 98.72 ± 0.03
UCI 78.78 ± 1.11 58.84 ± 2.54 77.41 ± 0.65 86.27 ± 1.49 90.27 ± 0.40 81.67 ± 1.01 89.26 ± 0.42 92.43 ± 0.20 48.58 ± 6.02 92.70 ± 0.19

Social Evo. 93.62 ± 0.36 90.20 ± 2.05 93.52 ± 0.05 93.21 ± 0.90 84.73 ± 0.20 94.63 ± 0.06 94.09 ± 0.03 95.30 ± 0.05 Timeout 95.36 ± 0.04
Avg. Rank 6.00 7.43 7.00 4.57 4.71 6.14 6.14 2.14 9.71 1.14

In
du

ct
iv

e

LastFM 69.85 ± 1.70 68.14 ± 1.61 69.89 ± 0.41 67.01 ± 5.77 67.72 ± 0.20 63.15 ± 1.17 69.93 ± 0.17 69.86 ± 0.80 57.85 ± 3.67 70.59 ± 0.57
Enron 65.95 ± 1.27 62.20 ± 2.15 56.52 ± 0.84 64.21 ± 0.94 62.07 ± 0.72 67.56 ± 1.34 67.39 ± 1.33 66.07 ± 0.65 68.70 ± 1.82 68.98 ± 1.00

MOOC 65.37 ± 0.96 62.97 ± 2.05 74.94 ± 0.80 76.36 ± 2.91 71.18 ± 0.54 71.30 ± 1.21 72.15 ± 0.65 80.42 ± 0.72 58.06 ± 0.89 81.12 ± 0.63
Reddit 61.84 ± 0.44 60.35 ± 0.53 64.92 ± 0.08 65.24 ± 0.08 65.37 ± 0.12 61.85 ± 0.11 64.56 ± 0.26 64.80 ± 0.53 81.70 ± 4.71 64.93 ± 0.89

Wikipedia 61.66 ± 0.30 56.34 ± 0.67 78.40 ± 0.77 75.86 ± 0.50 59.00 ± 4.33 71.45 ± 2.23 82.76 ± 0.11 58.21 ± 8.78 91.12 ± 0.13 67.92 ± 2.23
UCI 60.66 ± 1.82 51.50 ± 2.08 61.27 ± 0.78 62.07 ± 0.67 55.60 ± 1.22 65.87 ± 1.90 75.72 ± 0.70 64.37 ± 0.98 51.68 ± 2.60 66.95 ± 2.22

Social Evo. 88.98 ± 0.81 86.43 ± 1.48 92.37 ± 0.50 91.66 ± 2.14 83.84 ± 0.21 95.50 ± 0.31 93.88 ± 0.22 94.97 ± 0.36 Timeout 96.65 ± 0.29
Avg. Rank 7.00 8.71 5.14 5.14 7.14 5.14 3.57 4.71 6.14 2.29

training dataset. This means when doing historical NSS, models only need to care about the previ-
ously observed edges in the test set (or validation set during validation) for choosing negative edges.
This makes historical NSS the same as inductive NSS in the inductive link prediction, where induc-
tive NSS samples negative edges that have been observed only in the test set, but not training set.
Empirical results shown in Appendix C.2 Table 13 and 14 of Yu et al. (2023) also prove that there
is no difference between historical and inductive NSS in inductive link prediction. So we omit the
results of historical NSS in our paper.

E AUC-ROC RESULTS ON REAL-WORLD DATASETS

Table 12 and 13 presents the AUC-ROC results of all baselines and DyGMamba on real-world
datasets. We have similar observations as the AP results shown in Table 1 and 2. DyGMamba still
demonstrates superior performance and can achieve the best average rank under any NSS setting in
both transductive and inductive link prediction.

F DYNAMIC NODE CLASSIFICATION

We first give the definition of the dynamic node classification task.
Definition 3 (Dynamic Node Classification). Given a CTDG G, a source node u ∈ N , a desti-
nation node v ∈ N , a timestamp t ∈ T , and all the interactions before t, i.e., {(ui, vi, ti)|ti <
t, (ui, vi, ti) ∈ G}, dynamic node classification aims to predict the state (e.g., dynamic node label)
of u or v at t in the condition that the interaction (u, v, t) exists.

We follow Rossi et al. (2020); Xu et al. (2020); Yu et al. (2023) to conduct dynamic node classifica-
tion by estimating the state of a node in a given interaction at a specific timestamp. A classification

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

MLP is employed to map the node representations as well as the learned temporal patterns to the
labels. AUC-ROC is used as the evaluation metric and we follow the dataset splits introduced in
Yu et al. (2023) (70%15%/15% for training/validation/testing in chronological order) for node clas-
sification. Table 14 shows the node classification results on Wikipedia and Reddit (the only two
CTDG datasets for dynamic node classfication), we observe that DyGMamba can achieve the best
average rank, showing its strong performance. Note that both Wikipedia and Reddit are not long-
range temporal dependent datasets, therefore we do not include this part into the main body of the
paper. Nonetheless, DyGMamba’s great results on these datasets further prove its strength in CTDG
modeling, regardless of the type of the dataset (whether long-range temporal dependent or not).

Table 14: AUC-ROC of dynamic node classification.

Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer CTAN DyGMamba
Wikipedia 88.10 ± 1.57 87.41 ± 1.94 83.42 ± 2.92 85.51 ± 3.28 84.59 ± 1.16 79.03 ± 1.18 85.60 ± 1.73 86.35 ± 2.19 87.38 ± 0.14 87.44 ± 0.82

Reddit 59.53 ± 3.18 63.12 ± 0.51 69.31 ± 2.18 63.21 ± 3.00 65.22 ± 0.79 68.04 ± 2.00 64.42 ± 1.15 67.67 ± 1.39 67.29 ± 0.15 67.70 ± 1.32

Avg. Rank 5.50 6.00 5.00 7.50 7.00 6.00 6.50 4.50 4.50 2.50

G EFFICIENY ANALYSIS COMPLETE RESULTS

We first provide the efficiency analysis results of all baselines in this section. We then provide a
comparison of total training time among DyGFormer, CTAN and DyGMamba.

G.1 EFFICIENCY STATISTICS FOR ALL BASELINES

We provide the efficiency statistics for all baselines in Table 15.

Table 15: Efficiency statistics for all baselines. EdgeBank is non-parameterized and not a machine
learning model so we omit it here. # Params means number of parameters (MB). Time and Mem
denote per epoch training time (min) and GPU memory (GB), respectively. The numbers in this
table are the average results of five runs with different random seeds.

Datasets LastFM Enron MOOC UCI
Models # Params Time Mem # Params Time Mem # Params Time Mem # Params Time Mem

JODIE 0.75 4.4 2.28 0.75 0.07 1.30 0.75 0.78 2.36 0.75 0.03 1.44
DyRep 2.64 6.6 2.29 2.64 0.10 1.34 2.64 0.88 2.38 2.64 0.05 1.51
TGAT 4.02 22.75 4.15 4.02 1.28 3.46 4.02 4.08 3.64 4.02 0.60 3.42
TGN 3.68 12.14 2.21 3.68 0.15 1.45 3.68 1.03 2.54 3.68 0.08 1.51

CAWN 15.35 99.00 14.92 15.35 2.62 4.03 15.35 13.45 8.02 15.35 1.95 9.40
TCL 3.37 6.23 3.04 3.37 0.30 2.51 3.37 1.00 2.49 3.37 0.13 2.00

GraphMixer 2.45 16.35 2.78 2.45 1.20 2.23 2.45 4.02 2.40 2.45 0.73 2.19
DyGFormer 5.56 47.00 7.57 4.80 2.73 3.23 4.80 8.32 3.35 4.15 0.62 2.30

CTAN 0.45 3.33 1.44 0.47 0.50 1.33 0.68 3.22 2.30 0.50 0.38 1.30
DyGMamba 2.78 28.45 4.17 2.03 2.05 2.74 1.65 4.88 2.48 1.37 0.60 1.93

Table 16: Comparison among DyGFormer, CTAN and DyGMamba on per epoch training time (Tep
(min)), number of epochs until the best performance (# Epoch) and the total training time (Ttot
(min)). Ttot = Tep× # Epoch. The numbers in this table are the average results of five runs with
different random seeds.

Datasets LastFM Enron MOOC UCI
Models Tep # Epoch Ttot Tep # Epoch Ttot Tep # Epoch Ttot Tep # Epoch Ttot

DyGFormer 47.00 49.60 2331.20 2.73 32.80 89.54 8.32 64.20 534.14 0.62 34.80 21.58
CTAN 3.33 635.00 2114.55 0.50 173.00 86.50 3.22 138.00 444.36 0.38 236.00 89.68

DyGMamba 28.45 11.80 335.71 2.05 33.00 67.65 4.88 38.00 185.44 0.60 28.00 16.80

G.2 TOTAL TRAINING TIME COMPARISON AMONG DYGFORMER, CTAN AND DYGMAMBA

We present the per epoch training time, number of epochs until the best performance and the total
training time in Table 16. Total training time computes the total amount of time a model requires to

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 6: Performance comparison among TGN, CAWN, DyGFormer, CTAN and DyGMamba on
Enron, with an increasing number of encoded temporal neighbors. The metric is AP under random
NSS on transductive link prediction. The time limit for training is 120 min. If a model fails to
complete training within this limit, a cross × is used to mark the data point. Dashed lines indicate
that models start to exceed time limit as neighbor number increases.

reach its maximum performance, without considering the patience during training. We observe that
CTAN requires much more epochs to converge, e.g., on LastFM it uses almost 54 times of epochs
than DyGMamba to reach its best performance.

G.3 MODELING AN INCREASING NUMBER OF TEMPORAL NEIGHBORS WITH LIMITED
TOTAL TRAINING TIME

To further show DyGMamba’s superior efficiency against baseline methods, we do the following
experiments. We train five best performing models (as shown in Table 1) on Enron with a gradually
increasing number of temporal neighbors8 and report their performance. The number of sampled
neighbors spans from 8, 16, 32, 64, 128 to 256 (Note that these numbers are different from the
best hyperparameters reported in Yu et al. (2023)). We fix the patch size p of DyGFormer and
DyGMamba to 1 in order to maximize their input sequence lengths. We set a time limit of 120
minutes for the total training time. We let all the experiments finish the complete training process
and note down the ones that exceed the time limit. In this way, we not only care about the per epoch
training time, but also pay attention to how long it takes for models to converge. The experimental
results are reported in Fig. 6. The points marked with crosses (×) mean that the training process
cannot finish within the time limit (although we still plot their corresponding performance). We find
that only TGN and DyGMamba can successfully converge within the time limit when the number of
considered neighbors increases to 256. DyGMamba can constantly achieve performance gain from
modeling more temporal neighbors while TGN cannot. CAWN is extremely time consuming so it
cannot finish training within the time limit even when it is asked to model 16 temporal neighbors. As
for the methods designed for long-range temporal information propagation, DyGFormer and CTAN
consume much longer total training time than DyGMamba. They fail to converge within 120 minutes
when the number of considered neighbors reaches 128 and 256, respectively. We also observe that
CTAN’s performance fluctuates greatly with the increasing temporal neighbors, indicating that it
is not stable to model a large number of temporal neighbors. This also implies that increasing the
amount of historical information will gradually make CTAN harder to converge, which might cause
trouble in modeling long range temporal dependent datasets.

G.4 DYGMAMBA VS. DYGFORMER ON COMPLEXITY.

Sequence length is the key factor affecting the consumption of computational resources in DyG-
Former and DyGMamba. Following the computation of previous work Zhu et al. (2024), the com-

8For CTAN, by number of temporal neighbors we mean the sampler size in each graph convolutional layer,
i.e., the size of the sampled temporal neighborhood for each node at a timestamp.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

plexity of Transformer and Mamba in DyGFormer and DyGMamba can be written as

Ω(Transformer) = 4(ρ/p)(4d)2 + 2(ρ/p)2(4d) = 64(ρ/p)d2 + 8d(ρ/p)2, (8a)
Ω(Mamba) = 3(ρ/p)(4d)dSSM + (ρ/p)(4d)dSSM = 16dSSMd(ρ/p). (8b)

This means that DyGMamba holds a computational complexity linear to ρ/p, while DyGFormer’s
complexity is quadratic to ρ/p. As a result, as the sequence length grows (either ρ increases or p
decreases), DyGFormer is less scalable compared with DyGMamba.

H DETAILS OF S4 AND MAMBA OPERATIONS

Single-Input Single-Output. Given a sequence of vector elements as input, SISO means that the
SSM processes each input dimension in parallel with the same set of parameters. For example, a
sequence of d2-dimensional vectors will be split into d2 1-dimensional sequences with the same
sequence length. Each of them will be computed in parallel as in Eq. 2 with a shared set of SSM
parameters. After computation, all these d2 sequences will be rearranged back into a sequence of d2-
dimensional vectors. SISO fails to mix the information across dimensions of each vector. To address
this, S4 and Mamba employs a mixing linear layer fmix(·) : Rd2 → Rd2 on each d2-dimensional
vector to mix the information across d2 dimensions. For more details, please refer to (Gu et al.,
2022b), (Smith et al., 2023) and (Gu & Dao, 2023).

SSM Function. SSMĀ,B̄,C(·) takes a matrix as input. The input matrix can be considered as a
sequence of vector elements, where each row of the matrix corresponds to an element. The output of
SSMĀ,B̄,C(·) is also a matrix, where each row of the output matrix is the output of its corresponding
input vector element. SSMĀ,B̄,C(·) can be viewed as using S4 or Mamba to process a sequence of
vectors in the SISO fashion, based on their parameters Ā, B̄,C.

I MOTIVATION OF USING SSM FOR TEMPORAL PATTERN MODELING

The biggest motivation of using SSM for temporal pattern modeling is that it helps to maintain good
efficiency. if in the future we want to deploy DyGMamba on larger datasets that really require much
longer historical histories for modeling, the value of k will also increase accordingly and the time
difference sequence will not be short anymore. Besides, as we have chosen SSM to model historical
one-hop temporal neighbors in the node-level SSM, it is natural to employ another SSM for temporal
pattern modeling.

J MORE DETAILS REGARDING THE IMPACT OF PATCH SIZE

More Explanations about Different Performance Trends. Patching decreases sequence length
by applying linear transformation on a patch of node embeddings, giving a model much more pa-
rameters to tune (as indicated in Fig. 3b). Larger patch size mixes more sampled neighbors in each
patch, introducing more training parameters while losing nuanced temporal details brought by the
temporal order of the neighbors within each patch. For DyGFormer, the negative influence brought
by mixing neighbors within patches is smaller than the positive influence brought by more train-
able parameters, so the performance constantly increases with a growing patch size in Fig. 3a. By
contrast, for DyGMamba, the negative influence brought by mixing neighbors is much greater than
the positive influence brought by more trainable parameters, so it shows better performance when
the patch size is smaller. For Variant A, given an increasing patch size, it follows the trend of DyG-
Former when the patch size is below a threshold and shows degrading performance after that. This
means that there is a trade-off between the lost temporal details and the additional parameters when
we modify patch size. Also, by comparing Variant A and DyGMamba, we can tell that the differ-
ence in performance trend roots from the dynamic information selection module. Smaller patch size

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

leads to longer sequences with more temporal details. The strong capability of the dynamic informa-
tion selection module in long-range temporal reasoning let DyGMamba benefit from more nuanced
temporal details, which is more influential than increasing training parameters.

(a) MOOC performance. (b) MOOC # params. (c) MOOC GPU memory. (d) MOOC train
time/epoch.

Figure 7: Impact of patch size on DyGFormer, DyGMamba and Variant A, given a fixed number
of sampled temporal neighbors ρ on MOOC. Patch size p varies from 4, 2, 1. Sequence length ρ/p
increases as patch size decreases. Performance is the transductive AP under random NSS.

Impact of Patch Size on MOOC Apart from the analysis on Enron, we further analyze the impact
of patch size on another long-term temporal dependent dataset MOOC. Fig. 7b shows the numbers
of parameters of DyGFormer and DyGmamba with different patch sizes on MOOC. We confirm that
patching greatly affects model sizes. We decrease the patch size gradually from 4 to 1 (the optimal
value of DyGMamba’s hyperparameter ρ & p is 128 & 4) and track DyGMamba’s performance (Fig.
7a) as well as efficiency (Fig. 7b to 7d) on MOOC. Meanwhile, we also keep track on DyGFormer
under the same patch size for comparison. Same as our analysis on Enron, we plot the performance
of Variant A under different patch sizes in Fig. 7a as well. We can draw the same conclusions as
in our analysis on Enron.

K LIMITATION

One limitation of our work is that DyGMamba is designed to only model CTDGs. DTDGs are rep-
resented as a sequence of graph snapshots, where all the edges in a snapshot are taken as existing
simultaneously. This poses a challenge to DyGMamba because it can only encode edges sequen-
tially, which are not suitable for modeling concurrent edges. A possible solution is to first employ
methods such as graph neural networks (GNN) to encode each graph snapshot and then use SSM to
model the temporal graph dynamics. However, the introduction of GNNs inevitably requires more
computational resources, which would lower model efficiency.

L PERFORMANCE OF DYGMAMBA ON DISCRETE-TIME DYNAMIC GRAPHS

To better benchmark DyGMamba, we test the performance of DyGMamba on 6 DTDG datasets col-
lected in (Yu et al., 2023) (i.e., Flights, Can. Parl, US Legis., UN Trade, UN Vote and Contact) and
compare it with DyGFormer9. The value of the hyperparameter ρ & p of DyGMamba is set as same
as the one for DyGFormer. The optimal ρ & p for Flights, Can. Parl, US Legis., UN Trade, UN Vote
and Contact is {256 & 8, 2048 & 64, 256 & 8, 256 & 8, 256 & 8, 128 & 4, 32 & 1}. We report the
best hyperparameter k of DyGMamba for each dataset in Table 17. We report the AP of both models
on DTDG datasets in the transductive and inductive settings in Table 18 and Table 19, respectively.
In addition, Table 20 and Table 21 present the AUC-ROC of both models in the transductive and

9Although we have discussed in App. K that DyGMamba is not suitable to reason over DTDGs, we still
benchmark our model on them to show its effectiveness.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

inductive settings, respectively. All the results of DyGFormer are directly taken from the original
paper Yu et al. (2023).

We find that DyGMamba outperforms DyGFormer on DTDGs in almost all cases. We also find that
on the long-range temporal dependent dataset Can. Parl which requires sampling 2048 neighbors for
modeling, DyGMamba can benefit from such long neighbor sequence, indicating the importance of
modeing long-term temporal information as well as the strong capability of our model in capturing
it. More importantly, we find that DyGMamba can benefit from greater value of k as the number of
the sampled neighbors ρ increases. For example, on Can. Parl, as shown in Table 17, the optimal
value of k is 100. This makes our selection of using Mamba for temporal pattern modeling more
reasonable since Mamba can better demonstrate its advantage in efficiency when there is a growing
time difference sequence corresponding to the temporal pattern.

Table 17: DyGMamba hyperparameter searching strategy on DTDG datasets. The best settings are
marked as bold.

Datasets k

Flights {30, 10, 5}
Can. Parl. {200, 100, 30}
US Legis. {30, 10, 5}
UN Trade {30, 10, 5}
UN Vote {30, 10, 5}
Contact {30, 10, 5}

Table 18: AP of DyGFormer and DyGMamba on DTDGs under the transductive setting.

NSS Datasets DyGFormer DyGMamba

R
an

do
m

Flights 98.91 ± 0.01 98.95 ± 0.05
Can. Parl. 97.36 ± 0.45 99.57 ± 0.08
US Legis. 71.11 ± 0.59 71.75 ± 0.26
UN Trade 66.46 ± 1.29 67.50 ± 0.24
UN Vote 55.55 ± 0.42 56.39 ± 0.18
Contact 98.29 ± 0.01 98.43 ± 0.12

H
is

to
ri

ca
l Flights 66.59 ± 0.49 67.80 ± 2.17

Can. Parl. 97.00 ± 0.31 99.77 ± 0.12
US Legis. 85.30 ± 3.88 82.15 ± 1.02
UN Trade 64.41 ± 1.40 65.10 ± 0.02
UN Vote 60.84 ± 1.58 61.07 ± 1.39
Contact 97.57 ± 0.06 97.61 ± 0.04

In
du

ct
iv

e

Flights 70.92 ± 1.78 73.79 ± 5.69
Can. Parl. 95.44 ± 0.57 98.32 ± 0.34
US Legis. 81.25 ± 3.62 81.67 ± 2.16
UN Trade 55.79 ± 1.02 58.89 ± 0.98
UN Vote 51.91 ± 0.84 52.24 ± 0.95
Contact 94.75 ± 0.28 95.43 ± 0.17

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 19: AP of DyGFormer and DyGMamba on DTDGs under the inductive setting.

NSS Datasets DyGFormer DyGMamba

R
an

do
m

Flights 97.79 ± 0.02 97.85 ± 0.22
Can. Parl. 87.74 ± 0.71 93.46 ± 2.62
US Legis. 54.28 ± 2.87 55.95 ± 1.16
UN Trade 64.55 ± 0.62 70.55 ± 0.04
UN Vote 55.93 ± 0.39 56.61 ± 0.13
Contact 98.03 ± 0.02 98.16 ± 0.03

In
du

ct
iv

e

Flights 57.11 ± 0.20 57.76 ± 2.06
Can. Parl. 87.22 ± 0.82 92.68 ± 0.97
US Legis. 56.31 ± 3.46 57.85 ± 0.23
UN Trade 52.56 ± 1.70 52.81 ± 0.18
UN Vote 52.61 ± 1.25 53.70 ± 2.40
Contact 93.55 ± 0.52 94.05 ± 0.32

Table 20: AUC-ROC of DyGFormer and DyGMamba on DTDGs under the transductive setting.

NSS Datasets DyGFormer DyGMamba

R
an

do
m

Flights 98.93 ± 0.01 98.98 ± 0.05
Can. Parl. 97.76 ± 0.41 99.69 ± 0.06
US Legis. 77.90 ± 0.58 79.03 ± 0.26
UN Trade 70.20 ± 1.44 71.41 ± 0.21
UN Vote 57.12 ± 0.62 58.48 ± 0.12
Contact 98.53 ± 0.01 98.68 ± 0.02

H
is

to
ri

ca
l Flights 68.09 ± 0.43 68.98 ± 1.81

Can. Parl. 97.61 ± 0.40 99.82 ± 0.10
US Legis. 90.77 ± 1.96 88.36 ± 1.78
UN Trade 73.86 ± 1.13 74.10 ± 2.02
UN Vote 64.27 ± 1.78 65.17 ± 1.24
Contact 97.17 ± 0.05 97.27 ± 0.06

In
du

ct
iv

e

Flights 69.53 ± 1.17 71.16 ± 3.24
Can. Parl. 96.70 ± 0.59 99.56 ± 0.21
US Legis. 87.96 ± 1.80 86.08 ± 2.27
UN Trade 62.56 ± 1.51 67.60 ± 0.64
UN Vote 53.37 ± 1.26 54.09 ± 0.06
Contact 95.01 ± 0.15 95.68 ± 0.20

Table 21: AUC-ROC of DyGFormer and DyGMamba on DTDGs under the inductive setting.

NSS Datasets DyGFormer DyGMamba

R
an

do
m

Flights 97.80 ± 0.02 97.98 ± 0.25
Can. Parl. 89.33 ± 0.48 94.02 ± 3.42
US Legis. 53.21 ± 3.04 57.17 ± 0.20
UN Trade 67.25 ± 1.05 68.26 ± 0.26
UN Vote 56.73 ± 0.69 56.91 ± 0.12
Contact 98.30 ± 0.02 98.44 ± 0.05

In
du

ct
iv

e

Flights 56.05 ± 0.22 56.58 ± 2.12
Can. Parl. 88.51 ± 0.73 92.37 ± 0.18
US Legis. 56.57 ± 3.22 57.91 ± 3.41
UN Trade 57.28 ± 3.06 57.58 ± 0.20
UN Vote 53.87 ± 2.01 54.83 ± 2.17
Contact 94.14 ± 0.26 94.35 ± 0.29

25

	Introduction
	Related Work and Preliminaries
	Related Work
	Preliminaries

	DyGMamba
	Learning One-Hop Temporal Neighbors
	Learning from Edge-Specific Temporal Patterns
	Leveraging Learned Representations for Link Prediction

	Experiments
	Experimental Setting
	Performance Analysis
	Efficiency Analysis

	Conclusion
	CTDG Dataset Details
	Real-World Benchmark Datasets
	Synthetic Datasets

	Baseline Details
	Baselines Not Designed for Long-Range Temporal Information Propagation
	Baselines Designed for Long-Range Temporal Information Propagation

	Implementation Details
	Hyperparameter Configurations on Real-World Datasets
	Hyperparameter Configurations on Synthetic Datasets

	Negative Edge Sampling Strategies during Evaluation
	AUC-ROC Results on Real-World Datasets
	Dynamic Node Classification
	Efficieny Analysis Complete Results
	Efficiency Statistics for all baselines
	Total Training Time Comparison among DyGFormer, CTAN and DyGMamba
	Modeling an Increasing Number of Temporal Neighbors with Limited Total Training Time
	DyGMamba vs. DyGFormer on Complexity.

	Details of S4 and Mamba Operations
	Motivation of Using SSM for Temporal Pattern Modeling
	More Details Regarding the Impact of Patch Size
	Limitation
	Performance of DyGMamba on Discrete-Time Dynamic Graphs

