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ABSTRACT

The recent rise of distributed diffusion models has been driven by the explosive
growth of data and the increasing demand for data generation. However, dis-
tributed diffusion models face unique challenges in resource-constrained environ-
ments. Existing approaches lack theoretical support, particularly with respect to
generation error in such settings. In this paper, we are the first to derive the gen-
eration error bound for distributed diffusion models with arbitrary pruning, not
assuming perfect score approximation. By analyzing the convergence of the score
estimation model trained with arbitrary pruning in a distributed manner, we high-
light the impact of complex factors such as model evolution dynamics and arbi-
trary pruning on the generation performance. This theoretical generation error
bound is linear in the data dimension d, aligning with state-of-the-art results in the
single-worker paradigm.

1 INTRODUCTION

Recently, distributed diffusion models have gained significant attention due to the explosive growth
of data and the growing interest in data generation (Vora et al., 2024; de Goede et al., 2024). Specif-
ically, in federated settings, diffusion models are trained collaboratively across multiple workers
without the need to share personal sensitive data, such as images and audio, directly. This dis-
tributed approach enables large-scale data generation while avoiding the privacy risks and practical
costs of centralizing data (Tun et al., 2023).

In real-world scenarios, workers typically possess limited computational and communication re-
sources, which significantly hinder the performance (Zhang et al., 2021). When training a
parametrized neural network in the reverse process of diffusion models, it would be unaffordable
for resource-constrained workers to operate model updates. Some efforts have been made to ad-
dress this challenge. For example, Li et al. (2024) propose DistriFusion, a method that divides the
model input into multiple patches, each assigned to a GPU. This approach tackles the high computa-
tional costs involved in generating high-resolution images with diffusion models. Additionally, Lai
et al. (2024) introduce an on-demand quantized energy-efficient distributed approach for training
diffusion-based models in mobile edge networks. Despite the efforts made by these studies, they
primarily focus on improving empirical performance, leaving the theoretical behavior as an open
problem.

The theoretical lack in the generation performance of distributed diffusion models is driven by the
increased complexity in training dynamics resulting from limited resources. The generation error
bound of the diffusion model heavily depends on the loss value of the neural network trained in the
reverse process (Benton et al., 2024; Chen et al., 2023). And the coupling between the loss and the
gradient often reflects the convergence rate of the neural network (Zhou et al., 2024). As a result,
accurately bounding the generation error requires describing the convergence rate of the parame-
terized neural network trained in the reverse process. However, resource limitations in distributed
systems may lead to insufficient training or incomplete transmission of local models (Zhou et al.,
2024; Qiao et al., 2023), which exacerbates global error accumulation and complicates the analysis
of convergence rates during the reverse process.

In this paper, we provide formal theoretical support for distributed diffusion models in resource-
constrained scenarios. To address the performance degradation caused by resource constraints, we
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consider introducing pruning operations when training score estimation model in a distributed man-
ner during the reverse process, and using coordinate-aware model aggregation (Zhou et al., 2024)
to reduce global error accumulation. To obtain the convergence rate during the reverse process, we
utilize the smoothness assumption to measure the inconsistency between the local and global gradi-
ents. We also implement a refined treatment of pruning errors and utilize the relationship between
iterative model updates to explore their cumulative entanglement. By analyzing the convergence of
the score estimation model and exploring the error between local and global training losses, we re-
veal the impact of complex factors such as the number of communication rounds and the number of
workers on the local score estimation error. Using this actual error, rather than the assumed constant
error in the single-worker paradigm (Benton et al., 2024; Chen et al., 2023; 2022), we derive the
generation error bound for distributed learning diffusion models in resource-constrained scenarios.
Specifically, our main contributions can be summarized as follows:

• To the best of our knowledge, we are the first to incorporate the distributed learning dynamic
of the score estimation model during the reverse process into the analysis of the final genera-
tion error. We theoretically assess the discrepancy between the generated sample distribution and
the actual distribution for each worker using KL divergence. This generation error bound aligns
with the best-known results in the single-worker paradigm (Benton et al., 2024), exhibiting a linear
dependence on the data dimension d. Notably, our framework can be seamlessly integrated with
the theoretical error bounds of any diffusion model based on the single-worker paradigm under
the perfect fractional approximation assumption. This integration ensures that the theoretical error
bounds of similar distributed training architectures progress in tandem with advancements in the
theoretical error bounds of the single-worker paradigm.

• We also derive convergence bounds for distributed learning of the score estimation model under
arbitrary pruning, without relying on the bounded gradient assumption. It shows that the average
gradient norm can converge at a rate of O( 1√

Γ∗SQ
), showing the critical roles of the number of

local training steps S and the minimum parallel training degree Γ∗ in enhancing convergence
efficiency.

2 RELATED WORK

In recent research, diffusion models (Song et al., 2020) have garnered widespread attention due
to their remarkable achievements across multiple fields, including computer vision (Harvey et al.,
2022), natural language processing (Li et al., 2022), temporal data modeling (Tashiro et al., 2021),
and multi-modal learning (Ramesh et al., 2022; Ho et al., 2022). Particularly, some studies highlight
that diffusion models not only generate high-quality data but also surpass traditional Generative
Adversarial Networks in terms of stability and generation efficiency (Dhariwal & Nichol, 2021).

Recent works have extensively explored the theoretical performance of diffusion models. This pro-
vides a robust theoretical foundation for refining the model architecture and optimizing the training
process. Initial studies on the convergence of diffusion models often requires restrictive assumptions
about the data distribution, such as adherence to a log-Sobolev inequality (Yang & Wibisono, 2022),
or results in bounds that are either non-quantitative (Pidstrigach, 2022) or exponential (Block et al.,
2020) with respect to the problem parameters. Subsequent research has made significant improve-
ments. For instance, some studies have achieved polynomial convergence rates for diffusion models
without restrictive assumptions on the data distribution. Specifically, Chen et al. (2022) obtain poly-
nomial error bounds in total variation (TV) distance, assuming that the score function is Lipschitz.
They employ the Girsanov change of measure framework to analyze the discrepancy between the
true and approximate reverse processes. Further advances are made by the work (Chen et al., 2023),
which develop the Girsanov methodology further and introduce two important theorems: Theorem
2.1 shows that the KL divergence is linear in the data dimension but requires that ∇ log qt be Lips-
chitz; Theorem 2.2 demonstrates that, under an early-stopping setting and with any data distribution
having a finite second moment, the error is quadratic in the data dimension. Moreover, Benton et al.
(2024) further improve the results under the early-stopping setting described in the work (Chen et al.,
2023), achieving the current state-of-the-art error bound that is linear in the data dimension without
smoothness assumptions on the data distribution.

However, most current research on diffusion models focuses on a single worker, primarily enhancing
empirical performance or exploring theoretical attributes. With the advent of the big data era, dis-
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tributed training (Qiao et al., 2023; Yuan et al., 2024) is emerging as a new trend, offering potential
solutions to the scalability challenges posed by increasing data volumes. In response, DistriFusion
is introduced in the work (Li et al., 2024), a method designed to run diffusion models across multiple
devices in parallel, significantly reducing the latency associated with generating individual samples
without compromising the quality of the generated images. Despite its practical effectiveness, the
theoretical performance of DistriFusion (Li et al., 2024) is not explored. Additionally, Zhao et al.
(2023) proposes FedDDA, a data augmentation-based federated learning architecture that utilizes
diffusion models to generate data conforming to the global class distribution, thereby alleviating the
non-IID data problem. However, theoretical exploration of this approach is also lacking.

In summary, there is a theoretical gap in collaboratively training diffusion models with resource
constrains. To the best of our knowledge, we are the first to derive both convergence rate of the
collaboratively trained score estimation model and error evaluation of locally generated samples.

3 PRELIMINARIES

3.1 DIFFUSION MODELS

The initial phase of the diffusion model is designed to progressively transform the given data dis-
tribution q0, into a known prior distribution. This is referred to as the forward process, and it can
be described using the Ornstein-Uhlenbeck (OU) process via the stochastic differential equation
(SDE) (Pedrotti et al., 2023; Benton et al., 2024):

dXt = −Xtdt+
√
2dBt, X0 ∼ q0 (1)

where (Bt)t∈[0,T ] denotes a standard Brownian motion on Rd. Equation (1) aligns with a method-
ology known as Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020), and is also
referred to as Variance Preserving SDE in (Song et al., 2020). The OU process is favored for its
analytically tractable transition densities, and it holds that Xt|X0 ∼ N (X0e

−t, (1− e−2t)Id).

We use qt(Xt), t ∈ [0, T ] to denote the marginals of the forward process and then the reverse process
satisfies the SDE:

dXt = −{Xt + 2∇ log qt(Xt)}dt+
√
2dB̃t, X0 ∼ q0 (2)

where (B̃t)t∈[0,T ] is another standard Brownian motion on Rd. By inverting the time direction t
with T − t and setting Xt = YT−t, the reverse process (2) can be transformed to a forward one:

dYt = {Yt + 2∇ log qT−t(Yt)}dt+
√
2dB

′

t, Y0 ∼ qT (3)

where (B
′

t)t∈[0,T ] is the standard Brownian motion on Rd. The process (Yt)t∈[0,T ] can thus generate
samples from the distribution q0 by sampling Y0 ∼ qT .

Nevertheless, Benton et al. (2024) pointed out that practical simulation of (3) necessitates overcom-
ing certain challenges, which we also consider in this paper:
(1) Score function estimation: Since the score function ∇qt(Xt) is unavailable, it is necessary to
learn an estimation sθ(Xt, t) of it. Specifically, the goal is to minimize the following loss function:∫ T

0

Eqt(Xt)[∥ ∇ log qt(Xt)− sθ(Xt, t) ∥2]dt (4)

While direct computation of (4) poses challenges, numerous score matching techniques (Hyvärinen
& Dayan, 2005; Vincent, 2011) offer equivalent objectives that are more tractable. Among these,
denoising score matching (Vincent, 2011) is utilized in this paper. Typically, we parameterize the
score function sθ(Xt, t), where sθ represents the score, using a neural network with a parameter
vector θ ∈ RD. To optimize these parameters, we minimize the loss function through traditional
SGD method over θ, effectively training the neural network to accurately estimate the score function
based on the input data Xt and time t.
(2) Unknown distribution approximation: Sampling from the distribution qT is challenging due
to the inaccessibility of qT . Instead, sampling from the standard Gaussian presents a feasible alter-
native, as the OU process converges exponentially quickly to the standard Gaussian (Bakry et al.,
2014; Chen et al., 2023).
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(3) Time discretization: Given that equation (3) characterizes a continuous-time process, practical
simulation requires the time variable to be discretized. This involves dividing the continuous time
into a sequence of discrete points 0 = t0 < t1 < t2 < · · · < tK ≤ T . Subsequently, we can
initiate the process by sampling Ŷ0 from the standard Gaussian and then concentrate on solving the
SDE (also known as the exponential integrator Zhang & Chen (2022); De Bortoli (2022); Chen et al.
(2023)) for each interval [tk, tk+1] and k = 0, · · · ,K − 1:

dŶt = {Ŷt + 2sθ(Ŷtk , T − tk)}dt+
√
2dB̂t (5)

where (B̂t)t∈[0,T ] is a standard Brownian motion. It allows for the approximation of the continuous-
time dynamics of the process within each discrete interval, facilitating the practical simulation of
the model. And we denote the marginals of the process (5) by pts.
(4) Early stopping requirement: Instead of running (5) to approximate the initial data distribution
q0, we opt to approximate the distribution qδ as an early-stopping measure (Song et al., 2020). This
strategy is deemed acceptable because, for a sufficiently small δ, the discrepancy between q0 and qδ
remains minimal. It is employed due to the potential for ∇ log qt to rapidly increase, or “explode”,
as time t approaches zero in non-smooth data distributions.

3.2 DISTRIBUTED LEARNING WITH ARBITRARY PRUNING

In the distributed learning framework, we consider a setup involving N workers and a central server.
These workers jointly undertake the task of learning a unified global model characterized by the
parameter θ. The objective is to optimize the following function:

min
θ∈RD

F (θ) :=
1

N

N∑
n=1

Eξn∼Dn
[fn(θ, ξn)]︸ ︷︷ ︸

:=Fn(θ)

(6)

where Fn(θ) is a loss function defined on the dataset Dn based on the worker-n specified fn(θ, ξn),
and ξn signifies a data point sampled from the dataset Dn.

In this learning framework , each worker keeps its own local dataset and conducts training operations
with arbitrary pruning locally (Zhou et al., 2024). Communication with the server is restricted to
the exchange of size-reduced model parameters (or gradients). More specifically, for the q-th round
of the process, each worker-n performs model pruning θq,n,0 = θq ⊙mq,n after receiving the latest
global model parameter θq ∈ RD from the server, where mq,n ∈ {0, 1}D is a local mask generated
based on mask policy P . And then S steps of local training is performed to update pruned model
parameters. The update rule can be described as follows:

θq,n,s = θq,n,s−1 − η∇fn(θq,n,s−1, ξn,s−1)⊙mq,n (7)
Here, s ranges from 1 to S, with θq,n,0 representing the starting parameter for each round of updates
at worker-n, and η denotes the local learning rate used for the updates.

Upon completion of a round of training (encompassing S steps) by all workers, the server aggregates
all local parameters to form a new global model for the forthcoming round:

θ
(i)
q+1 =

1

|N (i)
q |

∑
n∈N

(i)
q

θq,n,S , for each coordinate i = 1, 2, · · · , D (8)

where N
(i)
q = {n : mi

q,n = 1} and we denote Γ∗ = minq,i |N (i)
q | ≥ 1.

4 DISTRIBUTED LEARNING OF DIFFUSION MODELS WITH ARBITRARY
PRUNING

When considering training a diffusion model across multiple workers in a distributed manner, the
first objective is to optimize the function described in equation (6) to obtain the score estimation
SθQ(·). By employing denoising score matching (Vincent, 2011) (see Appendix B for details), the
term Fn(θ) in equation (6) can be expressed as

Fn(θ) =

K−1∑
k=0

γkEXn,0,q(Yn,tk
|Xn,0)[∥ sθ(Yn,tk , T − tk)−∇ log q(Yn,tk |Xn,0) ∥2] (9)
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where γk = tk+1 − tk is the length of the k-th discretized time interval, and qn,t, t ∈ [0, T ] denotes
the marginal of the forward process of worker-n. Therefore, Xn,0 is sampled from qn,0 by worker-
n, and Yn,tk = Xn,T−tk ∼ qn,T−k. However, due to the randomness in actual training, such
as sampling and noise randomness, we use fn(θ, ξn) to represent the local loss with randomness
during training. Specially, we assume the unbiasedness of fn(θ, ξn), which is common in distributed
scenarios, meaning that E[fn(θ, ξn)] = Fn(θ).

As described in Section 3.2, after completing Q rounds of distributed training (each with S steps), we
obtain the score function estimation sθQ(·). Starting from a pure noise state, the noise is gradually
transformed into a form that approximates the original data. For each worker n, this process follows
Equation (10), which incorporates the worker indicator into Equation (5).

dỸn,t = {Ỹn,t + 2sθQ(Ỹn,tk , T − tk)}dt+
√
2dB̃n,t (10)

where (B̃n,t)t∈[0,T ] is a standard Brownian motion, and we denote the marginals of the process (10)
by pn,ts. Specifically, the equation (10) can be solved explicitly by

Ỹn,tk+1
= eγk Ỹn,tk + 2[eγk − 1]sθQ(Ỹn,tk , T − tk) +

√
e2γk − 1 · ϵn,k

where ϵn,k ∼ N (0, Id). Further details can be found in Appendix C.

To obtain the main theoretical results, we rely on the following core assumptions.

Assumption 1 (Lipschitzian gradient). Loss function Fn(·)s are with Lipschitzian gradients. i.e.,
For ∀θ, ϕ ∈ RD, it holds that

∥ ∇Fn(θ)−∇Fn(ϕ) ∥≤ L ∥ θ − ϕ ∥

Assumption 2 (Pruning-induced Error). For an arbitrary mask mn,q ∈ {0, 1}D and an arbitrary
model θ ∈ RD, we assume that there exists w2 ∈ [0, 1):

∥ θ − θ ⊙mn,q ∥2≤ w2 ∥ θ ∥2

Assumption 3 (Bounded Variance). For any model θ and sample ξ, there exist σ1 > 0 and σ2 > 0:
E ∥ ∇fn(θ, ξ)−∇Fn(θ) ∥2≤ σ2

1 , E ∥ ∇Fn(θ)−∇F (θ) ∥2≤ σ2
2

Assumption 4 (Data Distribution). The data distribution qn,0 of each worker-n has finite second
moments, and is normalized so that Cov(qn,0) = Id.

These assumptions (Assumptions 1 to 4) are widely used in studies on diffusion models and dis-
tributed learning. Assumption 1 (Lian et al., 2017) is typically employed to ensure the stability and
solvability of optimization problems, as it guarantees that the changes in gradients will not increase
without bound. Assumption 2 (Zhou et al., 2024) guarantees that pruning operations do not de-
grade performance beyond a certain threshold, ensuring algorithm robustness. Assumption 3 Lian
et al. (2017) restricts the influence of randomness on the optimization process. For Assumption 4,
its first part ensures the convergence of the forward process, while the second part simplifies result
descriptions, though it is not required for the analysis (Benton et al., 2024).

Building on Assumptions 1-3 mentioned above, we can establish the convergence bound for dis-
tributed learning of score estimation with arbitrary pruning.

Theorem 1 Under Assumptions 1-3, the following convergence result holds for distributed learn-
ing of score estimation with arbitrary pruning, provided that the step size η satisfies η ≤
min{ 1

27SL ,
√

1

3(8L2S2+ 16S2L2w2

1−2w2 )
, 1} where Γ∗ = minq,i |N (i)

q | ≥ 1, and pruning factor satisfies

w ∈ [0,
√
2
2 ):

1

Q

Q−1∑
q=0

E ∥ ∇F (θq) ∥2

≤6(F (θ0)− F (θQ))

ηSQ
+ (

54ηSL3w4

Q(1− 2w2)
+

18L2w4

Q(1− 2w2)
)E ∥ θ0 ∥2 +

9ηLNσ2
1

(Γ∗)2
+

(
9ηSL

2
+

3

2
)(σ2

1 + σ2
2)
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Theorem 1 describes the rate at which the average gradient norm converges over all training rounds,
which serves one of our main bounds. The term 6(F (θ0)−F (θQ))

ηSQ reflects the impact of iterative
updates on the convergence behavior, while the remaining terms capture the combined effects of
pruning operations, randomness, and local errors.

Specially, by tuning the appropriate step size η in Theorem 1, we can directly derive the following
result:

Corollary 1 Under Assumptions 1-3, if the step size η satisfies η =
√

Γ∗

SQ , and pruning factor

satisfies w ∈ [0,
√
2
2 ), and we can further set Q ≥ max{729Γ∗SL2,Γ∗S, 3Γ∗(8SL2 + 16SL2w2

1−2w2 )}
to further derive the convergence result of Theorem 1:

1

Q

Q−1∑
q=0

E ∥ ∇F (θq) ∥2

≤6(F (θ0)− F (θQ))√
Γ∗SQ

+ (
2L2w4

Q(1− 2w2)
+

18L2w4

Q(1− 2w2)
)E ∥ θ0 ∥2 +

9LNσ2
1

Γ∗√Γ∗SQ
+

5

3
(σ2

1 + σ2
2)

Corollary 1 suggests that with an appropriately chosen step size η and a sufficient number of training
rounds Q, the convergence rate of distributed learning for score estimation with arbitrary pruning
can be effectively dominated by O( 1√

Γ∗SQ
). Increasing key hyperparameters—such as the number

of training rounds Q, the number of local training steps S, and the minimum occurrences Γ∗ of any
dimension parameter in the local model—results in tighter bounds on the average gradient norm.
However, convergence can still be negatively affected by factors such as pruning-induced error, the
gradient variance introduced by randomness, and discrepancies between local and global gradients.

When exploring the discrepancy between the distribution of the generated data and the true dis-
tribution of the original data, the following assumption is required for traditional single-worker
architecture (Benton et al., 2024):

K−1∑
k=0

γkE ∥ sθ(Yn,tk , T − tk)−∇ log q(Yn,tk) ∥2≤ ϵ2score

However, this assumption may not fully capture the requirements of distributed diffusion model
training, as it overlooks the complexity of training score estimation models in practice. By carefully
addressing this, we clarify the influence of distributed training dynamics on the generated error
bound, as detailed in Corollary 2.

Corollary 2 Suppose Assumptions 1-4 hold, T ≥ 1, and there exists a constant C > 0, and some
κ > 0 such that for each discretized time point k = 0, · · · ,K − 1 we have γk ≤ κmin{1, T −
tk+1}. Then under the same settings of η and Q as in Corollary 1, for each worker-n, using the
collaboratively learned model θQ aforementioned, it yields the following result when approximating
the initial data distribution:

KL(qn,δ ∥ pn,tK )

=O
(
F (θ0) + (

√
Γ∗SQL2w4

3Q(1− 2w2)
+

3
√
Γ∗SQL2w4

Q(1− 2w2)
)E ∥ θ0 ∥2 +

3LNσ2
1

2Γ∗ +
5
√
Γ∗SQ

18
(σ2

1 + σ2
2)

+ ∥ Fn(θ0)− F (θ0) ∥ +σ2 ∥ θQ − θ0 ∥ +C(T − δ) + κdT + κ2dK + de−2T
)

In Corollary 2, the term ∥ Fn(θ0) − F (θ0) ∥ +σ2 ∥ θQ − θ0 ∥ captures the local-global error dis-
crepancy. The term C(T − δ) arises from using denoising score matching to address the discretized
form of Equation (4), while κdT + κ2dK is due to time discretization approximations, and de−2T

governs the convergence of the forward process. The remaining terms are interpreted as the global
loss associated with θQ which results from the distributed learning of score estimation with arbitrary
pruning. Corollary 2 highlights how the training dynamics of the score estimation model affect the
final generation error. This further demonstrates that the ideal constant error assumption on score
approximation (Benton et al., 2024) is inadequate for practical distributed training scenarios.
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Remark 1 (Suitable choice of Q, T and K).Consider the most extreme case when σ2
1 = σ2

2 = 0,
which means that the target loss function of all workers is the same and the error caused by random
sampling is negligible. We introduce ϵ2 to rewrite the KL error in Corollary 2 as KL(qn,δ ∥ pn,tK ) =

O(ϵ2+(
√
Γ∗SQL2w4

3Q(1−2w2) + 3
√
Γ∗SQL2w4

Q(1−2w2) )E ∥ θ0 ∥2 +
3LNσ2

1

2Γ∗ +C(T − δ)+κdT +κ2dK+de−2T ). At

this point, for T ≥ 1, δ < 1, K ≥ log(1/δ), and some κ = Θ
(

T+log(1/δ)
K

)
, if we set Q = Θ(Γ

∗S
ϵ4 ),

T = Θ(min{ 1
2 log(

d
ϵ2 ),

ϵ2

C }) and K = Θ(d(T+log(1/δ))2

ϵ2 ), we have KL(qn,δ ∥ pn,tK ) = O(ϵ2).

5 THEORETICAL GUARANTEE

In this section, we outline the proofs of the main theoretical results, with a focus on Theorem 1 and
Corollary 2.

5.1 PROOF SKETCH OF THEOREM 1

Utilizing the Lipschitzian gradient assumption, we start the proof by analyzing the change in the
loss function during one round as the model transitions from θq to θq+1:

E[F (θq+1)]− E[F (θq)] ≤ E⟨∇F (θq), θq+1 − θq⟩︸ ︷︷ ︸
B

(q)
1

+
L

2
E ∥ θq+1 − θq ∥2︸ ︷︷ ︸

B
(q)
2

(11)

The first challenge in the theoretical analysis is bounding the terms B(q)
1 and B

(q)
2 . Based on the local

update (7) and the global model aggregation (8), the key to analyzing these terms lies in measuring
the inconsistency B

(q)
3 between the workers’ and the server’s gradients:

B
(q)
1 ≤ −Sη

2
E ∥ ∇F (θq) ∥2 +

1

2Sη
B

(q)
3

B
(q)
2 ≤ 3NLSη2σ2

1

2(Γ∗)2
+

3LS2η2

2
E ∥ ∇F (θq) ∥2 +

3L

2
B

(q)
3

B
(q)
3 =

D∑
i=1

E ∥ η

|N (i)
q |

∑
n∈N

(i)
q

S∑
s=1

[∇F (i)
n (θq,n,s−1)−∇F (i)

n (θq)] ∥2

Since each worker trains on its own data, differences in local update direction naturally arise, and
multiple local steps further exacerbate these discrepancies. Moreover, the arbitrary pruning oper-
ations of local models introduce dimensional inconsistencies in the submodels trained by different
workers, necessitating a more refined analysis, which significantly increases the complexity.

Measuring Inconsistency Between the Local and Global Gradients Utilizing the Cauchy-
Schwarz inequality and the Lipschitzian gradient assumption, we aim to transform the gradient
deviation, represented by B

(q)
3 , into a corresponding deviation in the model parameters:

B
(q)
3 =

D∑
i=1

E ∥ η

|N (i)
q |

∑
n∈N

(i)
q

S∑
s=1

[∇F (i)
n (θq,n,s−1)−∇F (i)

n (θq)] ∥2

≤
D∑
i=1

Sη2

|N (i)
q |

∑
n∈N

(i)
q

S∑
s=1

E ∥ ∇F (i)
n (θq,n,s−1)−∇F (i)

n (θq) ∥2

≤η2SL2 · 1

|N (i)
q |

∑
n∈N

(i)
q

S∑
s=1

E ∥ ∇θq,n,s−1 −∇θq ∥2 (12)

Note that the term E ∥ θq,n,s−1 − θq ∥2 above satisfies the following inequality:

E ∥ θq,n,s−1 − θq ∥2=E ∥ θq,n,s−1 − θq,n,0 + θq,n,0 − θq ∥2

7
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≤ 2E ∥ θq,n,s−1 − θq,n,0 ∥2︸ ︷︷ ︸
B

(q)
4

+2E ∥ θq ⊙mn,q − θq ∥2︸ ︷︷ ︸
B

(q)
5

(13)

The B
(q)
4 term reflects the model evolution caused by local multistep iterative training, while the

B
(q)
5 term represents the error resulting from local arbitrary pruning. Collectively, these two terms

lead to the difference between the local model θq,n,s−1 at any step s − 1 (s = 1, · · · , S) and the
global model θq at the beginning of the current round q.

Exploring the Cumulative Entanglement of Arbitrary Pruning Operations and Local Multi-
step Training Local multistep training causes the gradient to cumulatively affect the model update
trajectory. Although the common bounded gradient assumption simplifies the analysis, it overlooks
the cumulative impact of factors like random sampling noise. Relying solely on Assumption 2
to describe the pruning error neglects the model evolution dynamics, introducing additional non-
deterministic dependencies in the final convergence result and making it less intuitive (Zhou et al.,
2024). Based on the above considerations, we deal with B

(q)
4 and B

(q)
5 as follows:

B
(q)
4 =2E ∥ −η

s−2∑
j=0

∇fn(θq,n,j , ξn,j)⊙mq,n ∥2

≤2η2(s− 1)

s−1∑
j=1

E ∥ ∇fn(θq,n,j−1, ξn,j−1)−∇Fn(θq,n,j−1) +∇Fn(θq,n,j−1)−∇Fn(θq)

+∇Fn(θq)−∇F (θq) +∇F (θq) ∥2

≤8η2(s− 1)2(σ2
1 + σ2

2) + 8η2L2(s− 1)

s−1∑
j=1

E ∥ θq,n,j−1 − θq ∥2 +8η2(s− 1)2E ∥ ∇F (θq) ∥2

B
(q)
5 ≤2w2E ∥ θq ∥2

=2w2E ∥ 1

|N (i)
q−1|

∑
n∈N

(i)
q−1

θq−1,n,S ∥2

≤ 2w2

|N (i)
q−1|

∑
n∈N

(i)
q−1

E ∥ θq−1,n,0 − η

S−1∑
j=0

∇fn(θq−1,n,j , ξn,j)⊙mq−1,n ∥2

≤2w2(
2

|N (i)
q−1|

∑
n∈N

(i)
q−1

E ∥ θq−1 ⊙mq−1,n ∥2 +
2η2

|N (i)
q−1|

∑
n∈N

(i)
q−1

E ∥
S−1∑
j=0

∇fn(θq−1,n,j , ξn,j) ∥2)

When bounding the term B
(q)
4 , we avoid the bounded gradient assumption used by Zhou et al. (2024)

due to the complexity of the model evolution trajectory in practice. Instead, we utilize the existing
Lipschitzian gradient and bounded variance assumptions, also proposed in their work, to derive the
bound. Additionally, we have made a more refined treatment of the bound of B(q)

5 , relaxing it to the
scaled sum of the accumulation of B(q)

2 over rounds and the norm of the initial model. This treatment
makes the final result independent of the average model norm throughout training, improving upon
the work of Zhou et al. (2024). This improvement played a key role in the subsequent revelation of
the impact of complex factors on the local score estimation error.

Next, we further bound
∑Q−1

q=0 B
(q)
3 as follows:

Q−1∑
q=0

B
(q)
3 ≤η2SL2 ·

Q−1∑
q=0

1

|N (i)
q |

∑
n∈N

(i)
q

S∑
s=1

E ∥ ∇θq,n,s−1 −∇θq ∥2

≤η2S2Q

2
(σ2

1 + σ2
2) +

6η2S2L2w4

1− 2w2
E ∥ θ0 ∥2 +

η2S2

2

Q−1∑
q=0

E ∥ ∇F (θq) ∥2 (14)

8
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By summing B
(q)
1 and B

(q)
2 from q = 0 to Q− 1, and substituting B

(q)
3 into both terms, we can then

select an appropriate step size η to obtain the final convergence result.

5.2 PROOF SKETCH OF COROLLARY 2

According to Corollary 1, we can obtain the following result:

F (θQ)

=O
(
F (θ0) + (

√
Γ∗SQL2w4

3Q(1− 2w2)
+

3
√
Γ∗SQL2w4

Q(1− 2w2)
)E ∥ θ0 ∥2 +

3LNσ2
1

2Γ∗ +
5
√
Γ∗SQ

18
(σ2

1 + σ2
2)
)

(15)

where F (θQ) = 1
N

N∑
n=1

K−1∑
k=0

γkE ∥ sθQ(Yn,tk , T − tk) − ∇ log q(Yn,tk |Xn,0) ∥2 represents the

global loss on the trained score estimation model θQ.

Therefore, to relax the constant assumption on the local score estimation error (Benton et al., 2024),

which is
K−1∑
k=0

γkE ∥ sθQ(Yn,tk , T−tk)−∇ log q(Yn,tk) ∥2≤ ϵ2score, we must additionally account for

two types of errors: the loss error introduced by denoising score matching, and the discrepancy
between the global loss F (θQ) and the local loss Fn(θQ).

The former is discussed in detail in Appendix B, and we only list the result, which is

K−1∑
k=0

γkE ∥ sθQ(Yn,tk , T − tk)−∇ log q(Yn,tk) ∥2

≤
K−1∑
k=0

γkE ∥ sθQ(Yn,tk , T − tk)−∇ log q(Yn,tk |Xn,0) ∥2 +

K−1∑
k=0

γkC = Fn(θQ) + C(T − δ)

where C is a constant. As for the latter, through the constructor h(t) = θ0+ t(θQ−θ0), it holds that

F (θQ)− F (θ0) =

∫ 1

0

∇F (h(t))T (θQ − θ0)dt (16)

Fn(θQ)− Fn(θ0) =

∫ 1

0

∇Fn(h(t))
T (θQ − θ0)dt (17)

By subtracting the two equations, applying the norm and the bounded variance assumption, we
obtain

∥ Fn(θQ)− F (θQ) ∥≤∥ Fn(θ0)− F (θ0) ∥ +σ2 ∥ θQ − θ0 ∥ (18)

By utilizing the aforementioned inequalities, we derive Corollary 2, which extends the theoreti-
cal results of Benton et al. (2024) on diffusion models in the single-worker paradigm to resource-
constrained distributed scenarios.

6 CONCLUSION

In this paper, we provide the first generation error bound for distributed diffusion models, without
assuming perfect score approximation. This theoretical bound is linear in the data dimension d,
aligning with state-of-the-art results from the single-worker paradigm. Furthermore, it theoretically
demonstrates how distributed training dynamics affect generation performance.

Our work enhances theoretical understanding of distributed diffusion models, it also reveals some
interesting phenomena. For example, as discussed in Remark 1, suitable Q helps tighten the bound
on O(ϵ2). This depends on the specific scenario, i.e., the target loss function of all workers is the
same and the error caused by random sampling is negligible. This also shows that the diffusion
model training has low tolerance for errors.

9
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A NOTATION TABLE

In Table 1, we summarize the main notations in this paper.

Table 1: Notations and Descriptions

Notations Descriptions
T The total time of noise scheduling
t The current time of noise scheduling
K The total number of discretized time interval of noise scheduling
tk The k-th discretized time point of noise scheduling, and it holds 0 = t0 < t1 < t2

< · · · < tK ≤ T
Xn,t The data of worker-n at time t of noise scheduling, such as image data
Yn,t The data of worker-n, which satisfies Yn,t = Xn,T−t

qt, t ∈ [0, T ] The marginals of the forward process
d The dimension of data
(Bt)t∈[0,T ] The standard Brownian motion on Rd

(B̃t)t∈[0,T ] The standard Brownian motion on Rd

(B
′

t)t∈[0,T ] The standard Brownian motion on Rd

sθ(Xt, t) The score approximation which can be parameterized by a neural network with
a parameter vector θ ∈ RD

D The dimension of model parameter θ, θ ∈ RD

Q The total communication round for training the score approximation sθ
q The current communication round for training the score approximation sθ
S The number of local steps during two communication rounds
N The total number of workers
N

(i)
q The set of workers for which the value of coordinate-i in the mask is non-zero,

and N
(i)
q = {n : mi

q,n = 1}
Γ∗ The minimum occurrences of any dimension parameter in the local model,

and Γ∗ = minq,i |N (i)
q | ≥ 1

fn(θq,n,s, ξn,s) The loss of worker-n on data sample ξn,s in the step s of round q
Fn(θ) The loss function of worker-n, and Fn(θ) = Eξn∼Dn

[fn(θ, ξn)]
mq,n The local mask of worker-n generated by mask policy, and mq,n ∈ {0, 1}D
η The step size for training the score approximation sθ

B EQUIVALENT OBJECTIVE WITH DENOISING SCORE MATCHING

First, we considered the following loss function:

1

N

N∑
n=1

K−1∑
k=0

γkE ∥ sθ(Yn,tk , T − tk)−∇ log q(Yn,tk) ∥2 (19)

where
∑K−1

k=0 γkE ∥ sθ(Yn,tk , T − tk)−∇ log q(Yn,tk) ∥2 can be considered as the time-discretized
version of the loss function (4). Since the score function ∇ log qn,t(·), we alternatively consider a
denoising score matching objective, which is derived following:

E ∥ sθ(Xn,t, t)−∇ log q(Xn,t) ∥2

=E ∥ sθ(Xn,t, t) ∥2 +E ∥ ∇ log q(Xn,t) ∥2 −2E⟨sθ(Xn,t, t),∇ log q(Xn,t)⟩
=E ∥ sθ(Xn,t, t) ∥2 +E ∥ ∇ log q(Xn,t) ∥2 −2Eqn,0Eqn,t|0⟨sθ(Xn,t, t),∇ log qn,t|0(Xn,t|Xn,0)⟩

=E ∥ sθ(Xn,t, t) ∥2 +E ∥ ∇ log q(Xn,t) ∥2 +2Eqn,0Eqn,t|0⟨sθ(Xn,t, t),
Xn,t − e−tXn,0

1− e−2t
⟩

=E ∥ sθ(Xn,t, t) +
Xn,t − e−tXn,0

1− e−2t
∥2 +E ∥ ∇ log q(Xn,t) ∥2 − d

1− e−2t

12
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=E ∥ sθ(Xn,t, t) +
Xn,t − e−tXn,0

1− e−2t
∥2 +Ct

=E ∥ sθ(Xn,t, t)−∇ log qn,t|0(Xn,t|Xn,0) ∥2 +Ct (20)

where Ct is a constant independent of θ. Let C = max
t

Ct, then it holds that

1

N

N∑
n=1

K−1∑
k=0

γkE ∥ sθ(Yn,tk , T − tk)−∇ log q(Yn,tk) ∥2

≤ 1

N

N∑
n=1

K−1∑
k=0

γkE ∥ sθ(Yn,tk , T − tk)−∇ log q(Yn,tk |Xn,0) ∥2 +
1

N

N∑
n=1

K−1∑
k=0

γkC

=
1

N

N∑
n=1

(
Fn(θ) + C(T − δ)

)
(21)

Therefore, as measures of learning loss, Equations (9) and (19) are equivalent because the only
difference between them is a constant.

C SOLUTION TO EQUATION (10)

Consider the Equation (10):

dỸn,t = {Ỹn,t + 2sθQ(Ỹn,tk , T − tk)}dt+
√
2dB̃n,t

And we multiply both sides of the Equation (10) by e−t to get

d(e−tỸn,t) = −2sθQ(Ỹn,tk , T − tk)}d(e−t) +
√
2e−tdB̃n,t (22)

For each time interval [tk, tk+1], we perform an integration operation to derive the following result:

e−tk+1 Ỹn,tk+1
= e−tk Ỹn,tk + 2sθQ(Ỹn,tk , T − tk)}(e−tk − e−tk+1) +

√
2

∫ tk+1

tk

e−tdB̃n,t (23)

And then the following Equation (24) can be derived by multiplying both sides of the Equation (23)
by etk+1 :

Ỹn,tk+1
= eγk Ỹn,tk + 2(eγk − 1)sθQ(Ỹn,tk , T − tk) +

√
e2γk − 1ϵn,k (24)

where γk = tk+1 − tk and ϵn,k ∼ N (0, Id). And Equation (24) is exactly the solution to Equation
(10).

D PROOF OF THEOREM 1

Building on Assumption 1, we can straightforwardly deduce that the function F (·) is also L-smooth,
satisfying the following inequality:

E[F (θq+1)]− E[F (θq)] ≤ E⟨∇F (θq), θq+1 − θq⟩︸ ︷︷ ︸
B

(q)
1

+
L

2
E ∥ θq+1 − θq ∥2︸ ︷︷ ︸

B
(q)
2

(25)

Now, we consider the situation where Γ∗ ≥ 1, and we first discuss the bound of B(q)
1 :

B
(q)
1 =E⟨∇F (θq), θq+1 − θq⟩

=

D∑
i=1

E⟨∇F (i)(θq), θ
(i)
q+1 − θ(i)q ⟩

13
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=

D∑
i=1

E⟨∇F (i)(θq),−
1

|N (i)
q |

∑
n∈N

(i)
q

S∑
s=1

η∇f (i)
n (θq,n,s−1, ξn,s−1)⟩

=

D∑
i=1

E⟨∇F (i)(θq),−
1

|N (i)
q |

∑
n∈N

(i)
q

S∑
s=1

η∇F (i)
n (θq,n,s−1)⟩

=−
D∑
i=1

E⟨∇F (i)(θq),
1

|N (i)
q |

∑
n∈N

(i)
q

S∑
s=1

η[∇F (i)
n (θq,n,s−1)−∇F (i)

n (θq)]⟩

+

D∑
i=1

E⟨∇F (i)(θq),−ηS∇F (i)(θq)⟩

≤ η

2S

D∑
i=1

E ∥ 1

|N (i)
q |

∑
n∈N

(i)
q

S∑
s=1

[∇F (i)
n (θq,n,s−1)−∇F (i)

n (θq)] ∥2

− SηE ∥ ∇F (θq) ∥2 +
Sη

2

D∑
i=1

E ∥ ∇F (i)(θq) ∥2

=− Sη

2
E ∥ ∇F (θq) ∥2 +

η

2S

D∑
i=1

E ∥ 1

|N (i)
q |

∑
n∈N

(i)
q

S∑
s=1

[∇F (i)
n (θq,n,s−1)−∇F (i)

n (θq)] ∥2

=− Sη

2
E ∥ ∇F (θq) ∥2 +

1

2Sη
B

(q)
3 (26)

where

B
(q)
3 =

D∑
i=1

E ∥ η

|N (i)
q |

∑
n∈N

(i)
q

S∑
s=1

[∇F (i)
n (θq,n,s−1)−∇F (i)

n (θq)] ∥2

And we next consider how to bound B
(q)
2 :

B
(q)
2 =

L

2

D∑
i=1

E ∥ θ
(i)
q+1 − θ(i)q ∥2

=
L

2

D∑
i=1

E ∥ 1

|N (i)
q |

∑
n∈N

(i)
q

θ
(i)
q,n,S − θ(i)q ∥2

=
L

2

D∑
i=1

E ∥ 1

|N (i)
q |

∑
n∈N

(i)
q

(
θ
(i)
q,n,S−1 − η∇f (i)

n (θq,n,S−1, ξn,S−1) ·m(i)
q,n

)
− θ(i)q ∥2

=
L

2

D∑
i=1

E ∥ − 1

|N (i)
q |

∑
n∈N

(i)
q

S∑
s=1

η∇f (i)
n (θq,n,s−1, ξn,s−1) +

1

|N (i)
q |

∑
n∈N

(i)
q

θ
(i)
q,n,0 − θ(i)q ∥2

=
L

2

D∑
i=1

E ∥ − 1

|N (i)
q |

∑
n∈N

(i)
q

S∑
s=1

η∇f (i)
n (θq,n,s−1, ξn,s−1) ∥2

=
L

2

D∑
i=1

E ∥ − 1

|N (i)
q |

∑
n∈N

(i)
q

S∑
s=1

η
(
∇f (i)

n (θq,n,s−1, ξn,s−1)−∇F (i)
n (θq,n,s−1) +∇F (i)

n (θq,n,s−1)

−∇F (i)
n (θq) +∇F (i)

n (θq) ∥2

≤3Lη2

2

D∑
i=1

E ∥ 1

|N (i)
q |

∑
n∈N

(i)
q

S∑
s=1

[∇f (i)
n (θq,n,s−1, ξn,s−1)−∇F (i)

n (θq,n,s−1)] ∥2
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+
3L

2

D∑
i=1

E ∥ η

|N (i)
q |

∑
n∈N

(i)
q

S∑
s=1

(
∇F (i)

n (θq,n,s−1)−∇F (i)
n (θq)

)
∥2

+
3L

2

D∑
i=1

E ∥ 1

|N (i)
q |

∑
n∈N

(i)
q

S∑
s=1

η∇F (i)
n (θq) ∥2

≤3NLSη2σ2
1

2(Γ∗)2
+

3LS2η2

2
E ∥ ∇F (θq) ∥2 +

3L

2
B

(q)
3 (27)

Therefore, discussing the bound of B(q)
3 will help us explore B

(q)
1 and B

(q)
2 :

B
(q)
3 =

D∑
i=1

E ∥ η

|N (i)
q |

∑
n∈N

(i)
q

S∑
s=1

[∇F (i)
n (θq,n,s−1)−∇F (i)

n (θq)] ∥2

≤
D∑
i=1

Sη2

|N (i)
q |

∑
n∈N

(i)
q

S∑
s=1

E ∥ ∇F (i)
n (θq,n,s−1)−∇F (i)

n (θq) ∥2

≤η2SL2 · 1

|N (i)
q |

∑
n∈N

(i)
q

S∑
s=1

E ∥ ∇θq,n,s−1 −∇θq ∥2 (28)

And it holds that

E ∥ θq,n,s−1 − θq ∥2≤2E ∥ θq,n,s−1 − θq,n,0 ∥2 +2E ∥ θq,n,0 − θq ∥2

=2E ∥ θq,n,s−1 − θq,n,0 ∥2 +2E ∥ θq ⊙mn,q − θq ∥2

=2E ∥ θq,n,s−1 − θq,n,0 ∥2︸ ︷︷ ︸
B

(q)
4

+2w2E ∥ θq ∥2︸ ︷︷ ︸
B

(q)
5

We bound B
(q)
4 and B

(q)
5 separately:

B
(q)
4 =2E ∥ −η

s−2∑
j=0

∇fn(θq,n,j , ξn,j)⊙mq,n ∥2

≤2η2(s− 1)
s−1∑
j=1

E ∥ ∇fn(θq,n,j−1, ξn,j−1)−∇Fn(θq,n,j−1) +∇Fn(θq,n,j−1)−∇Fn(θq)

+∇Fn(θq)−∇F (θq) +∇F (θq) ∥2

≤8η2(s− 1)2(σ2
1 + σ2

2) + 8η2L2(s− 1)

s−1∑
j=1

E ∥ θq,n,j−1 − θq ∥2 +8η2(s− 1)2E ∥ ∇F (θq) ∥2

E ∥ θq ∥2

=E ∥ 1

|N (i)
q−1|

∑
n∈N

(i)
q−1

θq−1,n,S ∥2

≤ 1

|N (i)
q−1|

∑
n∈N

(i)
q−1

E ∥ θq−1,n,0 − η

S−1∑
j=0

∇fn(θq−1,n,j , ξn,j)⊙mq−1,n ∥2

≤ 2

|N (i)
q−1|

∑
n∈N

(i)
q−1

E ∥ θq−1 ⊙mq−1,n ∥2 +
2η2

|N (i)
q−1|

∑
n∈N

(i)
q−1

E ∥
S−1∑
j=0

∇fn(θq−1,n,j , ξn,j) ∥2
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≤2w2E ∥ θq−1 ∥2 +
2η2S

|N (i)
q−1|

∑
n∈N

(i)
q−1

S−1∑
j=0

E ∥ ∇fn(θq−1,n,j , ξn,j) ∥2

≤2w2E ∥ θq−1 ∥2 +
2η2S

|N (i)
q−1|

∑
n∈N

(i)
q−1

S−1∑
j=0

E ∥ ∇fn(θq−1,n,j , ξn,j)−∇Fn(θq−1,n,j)+

∇Fn(θq−1,n,j)−∇Fn(θq−1) +∇Fn(θq−1)−∇F (θq−1) +∇F (θq−1) ∥2

≤2w2E ∥ θq−1 ∥2 +8η2S2(σ2
1 + σ2

2) +
8η2SL2

|N (i)
q−1|

∑
n∈N

(i)
q−1

S−1∑
j=0

E ∥ θq−1,n,j − θq−1 ∥2

+ 8η2S2E ∥ ∇F (θq−1) ∥2

Summing from q = 1 to Q for E ∥ θq ∥2 yields

Q∑
q=1

E ∥ θq ∥2

≤2w2

Q∑
q=1

E ∥ θq−1 ∥2 +8η2S2

Q∑
q=1

(σ2
1 + σ2

2) +

Q∑
q=1

8η2SL2

|N (i)
q−1|

∑
n∈N

(i)
q−1

S−1∑
j=0

E ∥ θq−1,n,j − θq−1 ∥2

+ 8η2S2

Q∑
q=1

E ∥ ∇F (θq−1) ∥2

Therefore, we have

(1− 2w2)

Q∑
q=1

E ∥ θq ∥2

≤2w2E ∥ θ0 ∥2 +8η2S2

Q∑
q=1

(σ2
1 + σ2

2) +

Q−1∑
q=0

8η2SL2

|N (i)
q |

∑
n∈N

(i)
q

S−1∑
j=0

E ∥ θq,n,j − θq ∥2

+ 8η2S2

Q−1∑
q=0

E ∥ ∇F (θq) ∥2 (29)

Summing from s = 1 to S for Eq. (29) yields

(1− 2w2)

Q∑
q=1

S∑
s=1

E ∥ θq ∥2

≤2w2SE ∥ θ0 ∥2 +8η2S3

Q∑
q=1

(σ2
1 + σ2

2) +

Q−1∑
q=0

8η2S2L2

|N (i)
q |

∑
n∈N

(i)
q

S−1∑
s=0

E ∥ θq,n,s − θq ∥2

+ 8η2S3

Q−1∑
q=0

E ∥ ∇F (θq) ∥2 (30)

Next summing from s = 1 to S and q = 1 to Q for E ∥ θq,n,s−1 − θq ∥2, then substituting Eq.(30)
into it yields

Q∑
q=1

S∑
s=1

E ∥ θq,n,s−1 − θq ∥2
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≤2E ∥ θq,n,s−1 − θq,n,0 ∥2 +2E ∥ θq,n,0 − θq ∥2

≤
Q∑

q=1

S∑
s=1

B
(q)
4 +

Q∑
q=1

S∑
s=1

B
(q)
5

=

Q∑
q=1

S∑
s=1

B
(q)
4 + 2w2

Q∑
q=1

S∑
s=1

E ∥ θq ∥2

≤8η2S3

Q∑
q=1

(σ2
1 + σ2

2) + 8η2L2S2

Q∑
q=1

S∑
s=1

E ∥ θq,n,s−1 − θq ∥2 +8η2S3

Q∑
q=1

E ∥ ∇F (θq) ∥2

+
2w2

1− 2w2
(2w2SE ∥ θ0 ∥2 +8η2S3

Q∑
q=1

(σ2
1 + σ2

2) +

Q−1∑
q=0

8η2S2L2

|N (i)
q |

∑
n∈N

(i)
q

S−1∑
s=0

E ∥ θq,n,s − θq ∥2

+ 8η2S3

Q−1∑
q=0

E ∥ ∇F (θq) ∥2) (31)

Summing all n ∈ N
(i)
q for Eq. (31) yields

Q∑
q=1

∑
n∈N

(i)
q

S∑
s=1

E ∥ θq,n,s−1 − θq ∥2

≤8η2S3

Q∑
q=1

|N (i)
q |(σ2

1 + σ2
2) + 8η2L2S2

Q∑
q=1

S∑
s=1

∑
n∈N

(i)
q

E ∥ θq,n,s−1 − θq ∥2 +8η2S3

Q∑
q=1

|N (i)
q |E ∥ ∇F (θq) ∥2

+
4w4S

1− 2w2
|N (i)

q |E ∥ θ0 ∥2 +
16η2S3w2

∑Q
q=1 |N

(i)
q |(σ2

1 + σ2
2)

1− 2w2
+

16

η2S3w2

Q−1∑
q=0

|N (i)
q |E ∥ ∇F (θq) ∥2

+
16η2S2L2w2

1− 2w2

Q−1∑
q=0

∑
n∈N

(i)
q

S∑
s=1

E ∥ θq,n,s−1 − θq ∥2 (32)

Let H0 = 1− 8η2L2S2 − 16η2S2L2w2

1−2w2 , then Eq. (32) can be rewritten as

H0

Q∑
q=1

∑
n∈N

(i)
q

S∑
s=1

E ∥ θq,n,s−1 − θq ∥2

≤(8η2S3 +
16η2S3w2

1− 2w2
)

Q∑
q=1

|N (i)
q |(σ2

1 + σ2
2) +

4w4S

1− 2w2
|N (i)

q |E ∥ θ0 ∥2

+ (8η2S3 +
16η2S3w2

1− 2w2
)

Q−1∑
q=0

|N (i)
q |E ∥ ∇F (θq) ∥2

Let H0 = 1− 8η2L2S2 − 16η2S2L2w2

1−2w2 ≥ 2
3 ⇐ η2 ≤ 1

3(8L2S2+ 16S2L2w2

1−2w2 )
, then it holds

1

H0
≤ 3

2

8η2L2S2 +
16η2S2L2w2

1− 2w2
≤ 1

3

Then we can further derive
Q∑

q=1

∑
n∈N

(i)
q

S∑
s=1

E ∥ θq,n,s−1 − θq ∥2
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≤ S

2L2

Q∑
q=1

|N (i)
q |(σ2

1 + σ2
2) +

6w4S

1− 2w2
|N (i)

q |E ∥ θ0 ∥2 +
S

2L2

Q−1∑
q=0

|N (i)
q |E ∥ ∇F (θq) ∥2 (33)

According to Eq. (28)

Q−1∑
q=0

B
(q)
3 ≤η2SL2 ·

Q−1∑
q=0

1

|N (i)
q |

∑
n∈N

(i)
q

S∑
s=1

E ∥ ∇θq,n,s−1 −∇θq ∥2

Substitute Eq. (33) into the above inequality, and we have

Q−1∑
q=0

B
(q)
3 ≤η2SL2 ·

Q−1∑
q=0

1

|N (i)
q |

∑
n∈N

(i)
q

S∑
s=1

E ∥ ∇θq,n,s−1 −∇θq ∥2

≤η2S2Q

2
(σ2

1 + σ2
2) +

6η2S2L2w4

1− 2w2
E ∥ θ0 ∥2 +

η2S2

2

Q−1∑
q=0

E ∥ ∇F (θq) ∥2 (34)

Then it holds that for Eq. (27)

L

2

Q−1∑
q=0

E ∥ θq+1 − θq ∥2

=

Q−1∑
q=0

B
(q)
2

≤3η2SLQNσ2
1

2(Γ∗)2
+

3η2S2L

2

Q−1∑
q=0

E ∥ ∇F (θq) ∥2 +
3L

2

Q−1∑
q=0

B
(q)
3

≤3η2SLQNσ2
1

2(Γ∗)2
+

3η2S2L

2

Q−1∑
q=0

E ∥ ∇F (θq) ∥2 +
3η2S2LQ

4
(σ2

1 + σ2
2) +

9η2S2L3w4

1− 2w2
E ∥ θ0 ∥2

+
3η2S2L

4

Q−1∑
q=0

E ∥ ∇F (θq) ∥2

≤3η2SLQNσ2
1

2(Γ∗)2
+

3η2S2LQ

4
(σ2

1 + σ2
2) +

9η2S2L3w4

1− 2w2
E ∥ θ0 ∥2 +

9η2S2L

4

Q−1∑
q=0

E ∥ ∇F (θq) ∥2

(35)

And it holds for Eq. (26)

Q−1∑
q=0

E⟨∇F (θq), θq+1 − θq⟩

=

Q−1∑
q=0

B
(q)
1

≤− Sη

2

Q−1∑
q=0

E ∥ ∇F (θq) ∥2 +
1

2Sη

Q−1∑
q=0

B
(q)
3

≤− ηS

2

Q−1∑
q=0

E ∥ ∇F (θq) ∥2 +
ηSQ

4
(σ2

1 + σ2
2) +

3ηSL2w4

1− 2w2
E ∥ θ0 ∥2 +

ηS

4

Q−1∑
q=0

E ∥ ∇F (θq) ∥2

(36)
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Then summing from q = 0 to Q− 1 for Eq. (25) and substituting Eq. (35)-(36) yields

F (θQ)− F (θ0)

≤
Q−1∑
q=0

E⟨∇F (θq), θq+1 − θq⟩+
L

2

Q−1∑
q=0

E ∥ θq+1 − θq ∥2

≤(−ηS

4
+

9η2S2L

4
)

Q−1∑
q=0

E ∥ ∇F (θq) ∥2 +
3η2SLQNσ2

1

2(Γ∗)2
+ (

3η2S2LQ

4
+

ηSQ

4
)(σ2

1 + σ2
2)

+ (
9η2S2L3w4

1− 2w2
+

3ηSL2w4

1− 2w2
)E ∥ θ0 ∥2

Let H1 = −ηS
4 + 9η2S2L

4 ≤ −ηS
6 ⇐ η ≤ 1

27SL , and multiply both sides of the inequality sign in
the above inequality by 6

ηSQ and rearrange the terms around to get

1

Q

Q−1∑
q=0

E ∥ ∇F (θq) ∥2

≤6(F (θ0)− F (θQ))

ηSQ
+ (

54ηSL3w4

Q(1− 2w2)
+

18L2w4

Q(1− 2w2)
)E ∥ θ0 ∥2 +

9ηLNσ2
1

(Γ∗)2
+

(
9ηSL

2
+

3

2
)(σ2

1 + σ2
2)

where w ∈ [0,
√
2
2 ) and η ≤ min{ 1

27SL ,
√

1

3(8L2S2+ 16S2L2w2

1−2w2 )
, 1}. This completes the proof of

Theorem 1.

E PROOF OF COROLLARY 1

If η =
√

Γ∗

SQ , it must satisfy the following inequalities:√
Γ∗

SQ
≤ 1

27SL
⇒ Q ≥ 729Γ∗SL2

√
Γ∗

SQ
≤

√
1

3(8L2S2 + 16S2L2w2

1−2w2 )
⇒ Q ≥ 3Γ∗(8SL2 +

16SL2w2

1− 2w2
)

And if we further make Q ≥ Γ∗S, we have
√
Γ∗S ≤

√
Q.

Using the relationship 54ηSL3w4

Q(1−2w2) = 54SL3w4

Q(1−2w2) ·
1

27SL = 2L2w4

Q(1−2w2) and 9ηSL
2 = 9SL

2 · 1
27SL = 1

6 , we
have

1

Q

Q−1∑
q=0

E ∥ ∇F (θq) ∥2

≤6(F (θ0)− F (θQ))√
Γ∗SQ

+ (
2L2w4

Q(1− 2w2)
+

18L2w4

Q(1− 2w2)
)E ∥ θ0 ∥2 +

9LNσ2
1

Γ∗√Γ∗SQ
+

5

3
(σ2

1 + σ2
2)

where 1√
Γ∗SQ

dominates the convergence rate.

F PROOF OF COROLLARY 2

According to Corollary 1, we can obtain the following result:

F (θQ)
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=O
(
F (θ0) + (

√
Γ∗SQL2w4

3Q(1− 2w2)
+

3
√
Γ∗SQL2w4

Q(1− 2w2)
)E ∥ θ0 ∥2 +

3LNσ2
1

2Γ∗ +
5
√
Γ∗SQ

18
(σ2

1 + σ2
2)
)

(37)

Now we need to bound the discrepancy between local and global errors ∥ F (θQ) − Fn(θQ) ∥.
Consider function h(t) = θ0 + t(θQ − θ0), then it holds that

F (θQ)− F (θ0) =

∫ 1

0

∇F (h(t))T (θQ − θ0)dt (38)

Fn(θQ)− Fn(θ0) =

∫ 1

0

∇Fn(h(t))
T (θQ − θ0)dt (39)

Subtract the two equations and take the norm to get

∥ Fn(θQ)− F (θQ) ∥≤∥ Fn(θ0)− F (θ0) ∥ +σ2 ∥ θQ − θ0 ∥ (40)

Then based on (21), (37) and (40), we can describe the score estimation error as

K−1∑
k=0

γkE ∥ sθQ(Yn,tk , T − tk)−∇ log q(Yn,tk) ∥2

≤
K−1∑
k=0

γkE ∥ sθQ(Yn,tk , T − tk)−∇ log q(Yn,tk |Xn,0) ∥2 +

K−1∑
k=0

γkC

=Fn(θQ) + C(T − δ)

≤F (θQ)+ ∥ Fn(θQ)− F (θQ) ∥ +C(T − δ)

=O
(
F (θ0) + (

√
Γ∗SQL2w4

3Q(1− 2w2)
+

3
√
Γ∗SQL2w4

Q(1− 2w2)
)E ∥ θ0 ∥2 +

3LNσ2
1

2Γ∗ +
5
√
Γ∗SQ

18
(σ2

1 + σ2
2)

+ ∥ Fn(θ0)− F (θ0) ∥ +σ2 ∥ θQ − θ0 ∥ +C(T − δ)
)

(41)

And according to the Theorem 1 in the work Benton et al. (2024), the Corollary 2 holds.

G EXPERIMENTS

G.1 EXPERIMENTAL SETUP

We conduct experiments using the Cifar-10 (Krizhevsky et al., 2009) SVHN (Netzer et al., 2011),
and Fashion-MNIST (Xiao et al., 2017) datasets. To simulate a distributed learning scenario, we
partition the training data among 10 workers. As described in Section 3.1, DDPM (Ho et al.,
2020) can be viewed as a special case of our work, so we consider its distributed version (known as
FedDM (Vora et al., 2024)) under resource-constrained conditions. In the experiments, we mainly
consider two pruning techniques: Random Pruning (R) and Top-k Pruning (T) based on model
weight. In particular, in order to explore the heterogeneity of pruning policy caused by resource dif-
ferences among workers, we set for different pruning levels named F (Full), L (Large), M (Medium)
and S (Small):

• F: All workers with full model;

• L: 80% workers with full model, and 20% workers with 75% model parameters;

• M: 60% workers with full model, 20% workers with 80% model parameters, and 20%
workers with 75% model parameters;

• S: 60% workers with full model, and 40% workers with 75% model parameters.

We utilize multiple metrics to evaluate the performance of distributed training diffusion models with
different pruning levels: Training loss is used to assess the convergence for distributed learning of
score estimation. Additionally, the Inception Score (IS) and Fréchet Inception Distance (FID) are
employed to evaluate the quality of data generation.
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Figure 1: Training loss of FedDM under the random pruning with different pruning levels
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Figure 2: Training loss of FedDM under the Top-k pruning with different pruning levels

In the training stage of obtaining a score estimation, we use the U-Net backbone containing residual
blocks (Tun et al., 2023). And we use the following settings unless otherwise stated: The number
of communication rounds Q is set as 300, the local training steps S are configured as 5 epochs for
Cifar-10 and 2 epochs for both SVHN and Fashion-MNIST, and the step size η is 0.0001.

All the experiments s are implemented in PyTorch 2.5.1, Python 3.12, Cuda 12.1. And we run them
on a Cloud Server with Intel(R) Xeon(R) Platinum 8358P CPU and total 10 RTX 3090 GPUs in
Ubuntu 22.04.

G.2 MODEL CONVERGENCE FOR DISTRIBUTED LEARNING OF SCORE ESTIMATION

We assess the convergence for distributed learning of score estimation on the above three datasets,
using Random (R) and Top-k (T) pruning techniques. Specifically, we establish four pruning lev-
els (F, L, M, and S) to observe the effects on convergence behavior. This series of experiments
is designed to systematically evaluate how various levels of model sparsity influence the training
dynamics.

Figures 1 and 2 illustrate the impact of different pruning strategies and pruning levels on the conver-
gence rate of the distributed training diffusion model across three datasets. Overall, the training loss
in all settings is effectively reduced as the number of communication rounds increases, verifying
the effectiveness of the coordinate-wise aggregation method. Under both pruning strategies, as the
degree of pruning increases (denoted by F, L, M, S), the training loss requires more communication
rounds to decrease effectively, and the total reduction diminishes. This is because the reduced model
introduces additional errors, which slows the convergence rate to a certain extent.

G.3 DATA GENERATION QUALITY

We assess the performance of distributed training DDPM (known as FedDM) with different pruning
levels on the above three datasets. Specifically, we establish four pruning levels (F, L, M, and S) and
utilize two indicators, IS and FID, to observe and compare the average data generation quality.

As shown in Table 2, the experimental results demonstrate that pruning significantly impacts the per-
formance of diffusion models in distributed learning, with the effects closely related to the pruning
strategy, dataset complexity, and model heterogeneity. On complex datasets such as CIFAR-10 and
SVHN, the full model (FedDM-F) achieves the best performance, while increased pruning levels
lead to a substantial decline in the quality of random pruning (R-FedDM), as indicated by decreased
IS scores and increased FID values, particularly at high pruning levels (e.g., S). In contrast, Top-k
pruning (T-FedDM) better preserves model performance by retaining critical parameters, resulting
in smaller increases in FID and performance closer to the full model, especially at moderate prun-
ing levels (e.g., M). For simpler datasets like Fashion-MNIST, where the data distribution is less
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Table 2: IS and FID comparison of FedDM with different pruning levels.

Method
Cifar-10 SVHN Fashion-MNIST

IS (↑) FID (↓) IS (↑) FID (↓) IS (↑) FID (↓)

FedDM-F 4.59± 0.13 73.73 2.79± 0.04 163.36 3.58± 0.08 87.59

R-FedDM-L 3.95± 0.12 103.59 2.76± 0.04 93.78 3.47± 0.04 53.70

R-FedDM-M 4.01± 0.08 104.53 2.60± 0.04 127.47 3.32± 0.08 52.31

R-FedDM-S 3.60± 0.07 111.21 2.53± 0.05 120.57 3.46± 0.07 49.94

T-FedDM-L 4.39± 0.08 83.75 2.72± 0.04 157.19 3.59± 0.07 87.85

T-FedDM-M 4.54± 0.10 80.42 2.55± 0.05 146.27 3.54± 0.06 100.69

T-FedDM-S 4.31± 0.13 84.98 2.51± 0.06 193.84 3.63± 0.07 109.83

complex, pruning has a relatively smaller impact, and the performance difference between random
pruning and Top-k pruning is minimal. Additionally, on Fashion-MNIST, higher pruning levels
unexpectedly improve FID values. This phenomenon can be attributed to the lower capacity re-
quirements of simple data distributions, where high pruning reduces redundant parameters, acting
as a regularization effect to prevent overfitting, thus smoothing the generated distribution and mak-
ing it closer to the real distribution. Model heterogeneity introduced by pruning is another critical
factor affecting global performance, with random pruning more likely to cause aggregation errors,
while Top-k pruning alleviates this issue to some extent. Overall, Top-k pruning proves more advan-
tageous for complex datasets, while random pruning is better suited for resource-constrained scenar-
ios involving simpler tasks. Future work can focus on optimizing pruning strategies and aggregation
algorithms to further balance model efficiency and performance across various data distributions and
task requirements.

H SOME ADDITIONAL DISCUSSION

Relaxed Assumptions and Improved Convergence Result: In deriving the convergence rate for
training the score estimation model in a distributed manner, our proof builds on the work of Zhou
et al., with the following key differences: 1) We eliminate their reliance on the bounded gradient
assumption by modeling the iteration relationship. 2) By carefully handling the pruning error, we
achieve the ultimate goal of gradient descent-based methods, allowing the final average gradient
norm to converge to a little constant. Compared to their result, which converges only to a scaled
version of 1

Q

∑Q
q=1 E ∥ θq ∥2, our approach transforms the uncertain dependency in the conver-

gence result into a deterministic one. 3) We achieve a convergence rate of O( 1√
Γ∗SQ

) by adjusting
parameters such as the step size η, improving upon their result of O( 1√

Q
).

Error Bound Refinement and Controllable Convergence: Directly using our analytical frame-
work to integrate the theoretical results of Zhou et al. (2024) (Theorem 1 in their paper) with the
single-worker diffusion model generation error bound, we obtain the following error bound:

KL(qn,δ ∥ pn,tK ) =O
(
F (θ0) +

3LN(σ2
1 + σ2

2)

2S(Γ)2
+

L2NG

2Γ
√
Q

+
3L2w2N

√
Q

Γ∗ · 1

Q

Q∑
q=1

E ∥ θq ∥2 +

∥ Fn(θ0)− F (θ0) ∥ +σ2 ∥ θQ − θ0 ∥ +C(T − δ) + κdT + κ2dK + de−2T
)

The above error bound includes an uncertainty term 1
Q

∑Q
q=1 E ∥ θq ∥2, which prevents the bound

from being tightened by adjusting Q. This limitation restricts their ability to improve the error
bound in collaborative training. In contrast, our approach eliminates this uncertainty by leveraging
the model iteration relationship, transforming it into a deterministic dependency. We also show that
the error bound can be effectively tightened by adjusting Q, as discussed in our Remark 1. This
offers a clear advantage over their results.
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Unified Analytical Framework to Bridge Diffusion Models and Distributed Learning: We pro-
pose a novel framework that bridges these two areas of diffusion models and distributed learning,
providing the first unified approach to connect their theoretical foundations. Specifically, we pro-
pose a simple yet effective analytical approach based on function construction (Lines 460-465) to
bridge the theoretical error bounds between distributed diffusion model training and single-worker
diffusion model training. Notably, this analytical approach is applicable to any generation error
bound obtained under the assumption on perfect score approximation in a single-worker paradigm.
We chose to integrate with the work of Benton et al. (2024) as their results represent the current
state-of-the-art results in a single-worker paradigm. In fact, as long as the theoretical generation er-
ror bound in the single-worker mode based on the perfect score assumption is developed into a better
result, our analytical framework allows for an immediate extension to the corresponding distributed
training error bound.

Limitations and Future Work: There are still some limitations in our work, which inspire some
future research directions. As discussed in Remark 1, smaller w2 helps tighten the bound on O(ϵ2),
which limits the level of pruning. Therefore, in practice, how to directly strike a balance between
resource consumption and error tolerance is still worth exploring. Therefore, it is necessary to
design a suitable pruning strategy according to the specific task to balance model performance and
resource consumption. Additionally, resource constraints are only considered when training the
score estimation model during the reverse process. However, noise schedule during the forward
process may still encounter similar constraints, which we will leave for the future.
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