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ABSTRACT

We consider a stochastic sparse linear bandit problem where only a sparse sub-
set of context features affects the expected reward function, i.e., the unknown
reward parameter has a sparse structure. In the existing Lasso bandit literature,
the compatibility conditions, together with additional diversity conditions on the
context features are imposed to achieve regret bounds that only depend logarith-
mically on the ambient dimension d. In this paper, we demonstrate that even
without the additional diversity assumptions, the compatibility condition on the
optimal arm is sufficient to derive a regret bound that depends logarithmically on
d, and our assumption is strictly weaker than those used in the lasso bandit lit-
erature under the single-parameter setting. We propose an algorithm that adapts
the forced-sampling technique and prove that the proposed algorithm achieves
O(poly log dT ) regret under the margin condition. To our knowledge, the pro-
posed algorithm requires the weakest assumptions among Lasso bandit algorithms
under the single-parameter setting that achieve O(poly log dT ) regret. Through
numerical experiments, we confirm the superior performance of our proposed al-
gorithm.

1 INTRODUCTION

Linear contextual bandits (Abe & Long, 1999; Auer, 2002; Chu et al., 2011; Lattimore & Szepesvári,
2020) are a generalization of the classical Multi-Armed Bandit problem (Robbins, 1952; Lai &
Robbins, 1985). In this sequential decision-making problem, the decision-making agent is provided
with a context in the form of a feature vector for each arm in each round, and the expected reward
of the arm is a linear function of the context vector for the arm and the unknown reward parameter.
To be specific, in each round t ∈ [T ] := {1, ..., T}, the agent observes feature vectors of the arms
{xt,k ∈ Rd : k ∈ [K]}. Then, the agent selects an arm at ∈ [K] and observes a sample of
a stochastic reward with mean x⊤

t,at
β∗, where β∗ ∈ Rd is a fixed parameter that is unknown to

the agent. Linear contextual bandits are applicable in various problem domains, including online
advertising, recommender systems, and healthcare applications (Chu et al., 2011; Li et al., 2016;
Zeng et al., 2016; Tewari & Murphy, 2017). In many applications, the feature space may exhibit
high dimensionality (d ≫ 1); however, only a small subset of features typically affects the expected
reward, while the remainder of the features may not influence the reward at all. Specifically, the
unknown parameter vector β∗ is said to be sparse when only the elements corresponding to pertinent
features possess non-zero values. The sparsity of β∗ is represented by the sparsity index s0 =
∥β∗∥0 < d, where ∥x∥0 denotes the number of non-zero entries in the vector x. Such a problem
setting is called the sparse linear contextual bandit.

There has been a large body of literature addressing the sparse linear contextual bandit prob-
lem (Abbasi-Yadkori et al., 2012; Gilton & Willett, 2017; Wang et al., 2018; Kim & Paik, 2019;
Bastani & Bayati, 2020; Hao et al., 2020b; Li et al., 2021; Oh et al., 2021; Ariu et al., 2022; Chen
et al., 2022; Li et al., 2022; Chakraborty et al., 2023). To efficiently take advantage of the sparse
structure, the Lasso (Tibshirani, 1996) estimator is widely used to estimate the unknown parame-
ter vector. Utilizing the ℓ1-error bound of the Lasso estimation, many Lasso-based linear bandit
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algorithms achieve sharp regret bounds that only depend logarithmically on the ambient dimension
d. Furthermore, a margin condition (see Assumption 2) is often utilized to derive an even poly-
logarithmic regret in the time horizon, thereby achieving (poly-)logarithmic dependence on both d
and T simultaneously (Bastani & Bayati, 2020; Wang et al., 2018; Li et al., 2021; Ariu et al., 2022;
Li et al., 2022; Chakraborty et al., 2023).

While these algorithms attain sharper regret bounds, there is no free lunch. The analysis of the
existing results achieving O(poly log dT ) regret heavily depends on various stochastic assumptions
on the context vectors, whose relative strengths often remain unchecked. The regret analysis of the
Lasso-based bandit algorithms necessitates satisfaction of the compatibility condition (Van De Geer
& Bühlmann, 2009) for the empirical Gram matrix

∑
t xt,at

x⊤
t,at

constructed from previously se-
lected arms. Ensuring this compatibility—or an alternative form of regularity, such as the restricted
eigenvalue condition—for the empirical Gram matrices requires an underlying assumption about the
compatibility of the theoretical Gram matrix, e.g., 1

KE[
∑

k xt,kx
⊤
t,k]. Moreover, to establish regret

bounds, additional assumptions regarding the diversity of context vectors — e.g., anti-concentration,
relaxed symmetry, and balanced covariance — are made (refer to Table 1 for a comprehensive com-
parison). Many of these assumptions are needed solely for technical purposes, and their complexity
often obscures the relative strength of one assumption over another. Thus, the following research
question arises:

Question: Is it possible to construct weaker conditions than those in existing conditions to achieve
O(poly log dT ) regret in the sparse linear contextual bandit (under the single-parameter setting)?

In this paper, we provide an affirmative answer to the above question. We show that (i) the compati-
bility condition on the optimal arm is strictly weaker than the existing stochastic conditions imposed
on context vectors for O(poly log dT ) regret in the sparse linear bandit literature (under the single-
parameter setting). That is, the existing conditions in the relevant literature imply our proposed
compatibility condition on the optimal arm, but the converse does not hold (refer to Figure 1). Ad-
ditionally, (ii) we propose an algorithm that achieves O(poly log dT ) regret under the compatibility
condition on the optimal arm combined with the margin condition. Therefore, to the best of our
knowledge, the compatibility condition on the optimal arm that we study in this work — combined
with the margin condition — is the mildest condition that allows O(poly log dT ) regret for sparse
linear contextual bandits (Oh et al., 2021; Li et al., 2021; Ariu et al., 2022; Chakraborty et al., 2023).

Our contributions are summarized as follows:

• We propose a forced-sampling-based algorithm for sparse linear contextual bandits:
FS-WLasso. The proposed algorithm utilizes the Lasso estimator for dependent data based
on the compatibility condition on the optimal arm. FS-WLasso explores for a number of
rounds by uniformly sampling context features and then exploits the Lasso estimated ob-
tained by weighted mean squared error with ℓ1-penalty. We establish that the regret bound
of our proposed algorithm is O(poly log dT ).

• One of the key challenges in the regret analysis for bandit algorithms using Lasso is en-
suring that the empirical Gram matrix satisfies the compatibility condition. Most existing
sparse bandit algorithms based on Lasso not only assume the compatibility condition on
the expected Gram matrix, but also impose an additional diversity condition for context
features (e.g., anti-concentration, relaxed symmetry, and balanced covariance), facilitating
automatic feature space exploration. However, we show that the compatibility condition
on the optimal arm is sufficient to achieve O(poly log dT ) regret under the margin condi-
tion, and demonstrate that our assumption on the context distribution is strictly weaker than
those used in the existing sparse linear bandit literature that achieve O(poly log dT ) regret.
We believe that the compatibility condition on the optimal arm studied in our work can be
of interest in future Lasso bandit research.

• To establish the regret bounds in Theorems 2 and 3, we introduce a novel analysis technique
based on high-probability analysis that utilizes mathematical induction, which captures the
cyclic structure of optimal arm selection and the resulting small estimation errors. We
believe that this new technique can be applied to the analysis of other bandit algorithms
and therefore can be of independent interest (See discussions in Section 3.3).

• We evaluate our algorithms through numerical experiments and demonstrate its consistent
superiority over existing methods. Specifically, even in cases where the context features of
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Table 1: Comparisons with the existing high-dimensional linear bandits with a single parameter
setting. For algorithms using the margin condition, we present regret bounds for the 1-margin (for
simple exposition). We define Σ := 1

KE[
∑K

k=1 xt,kx
⊤
t,k], Σk := E[xt,kx

⊤
t,k] for each k ∈ [K],

Σ∗
Γ := E[xt,a∗

t
x⊤
t,a∗

t
| x⊤

t,a∗
t
β∗ ≥ maxk ̸=a∗

t
x⊤
t,kβ

∗ +∆∗], and Σ∗ := E[xt,a∗
t
x⊤
t,a∗

t
].

Paper Compatibility or Eigenvalue Margin Additional Diversity Regret

Kim & Paik (2019) Compatibility on Σ ✗ ✗ O(s0
√
T log(dT ))

Hao et al. (2020b) Minimum eigenvalue of Σ ✗ ✗ O((s0T log d)
2
3 )

Oh et al. (2021) Compatibility on Σ ✗
Relaxed symmetry &
balanced covariance O(s0

√
T log(dT ))

Li et al. (2021) Bounded sparse eigenvalue of Σ∗
Γ ✓ Anti-concentration O(s20(log(dT )) log T )

Ariu et al. (2022) Compatibility on Σ ✓
Relaxed symmetry &
Balanced covariance O(s20 log dT )

†

Chakraborty et al. (2023) Maximum sparse eigenvalue of Σk ✓ Anti-concentration O(s20(log(dT )) log T )

This work Compatibility on Σ∗ ✓ ✗ O(s20(log(dT )) log T )

† Ariu et al. (2022) show a regret bound of O(s20 log d+s0(log s0)
3
2 log T ), but they implicitly assume that the

ℓ2 norm of feature is bounded by sA when applying the Cauchy-Schwarz inequality in their proof of Lemma
5.8. We display the regret bound when only the ℓ∞ norms of features are bounded.

all arms except for the optimal arm are fixed (thus, assumptions such as anti-concentration
are not valid), our proposed algorithms outperform the existing algorithms.

1.1 RELATED LITERATURE

Although significant research has been conducted on linear bandits (Abe & Long, 1999; Auer, 2002;
Dani et al., 2008; Rusmevichientong & Tsitsiklis, 2010; Abbasi-Yadkori et al., 2011; Chu et al.,
2011; Agrawal & Goyal, 2013; Abeille & Lazaric, 2017; Kveton et al., 2020a) and generalized lin-
ear bandits (Filippi et al., 2010; Li et al., 2017; Faury et al., 2020; Kveton et al., 2020b; Abeille
et al., 2021; Faury et al., 2022), applying them to high-dimensional linear contextual bandits poses
challenges in leveraging the sparse structure within the unknown reward parameter. Consequently,
it might lead to a regret bound that scales with the ambient dimension d rather than the sparse set
of features with cardinality s0. To overcome such challenges, high-dimensional linear contextual
bandits have been investigated under the sparsity assumption and have attracted significant attention
under different problem settings. Bastani & Bayati (2020) consider a multiple-parameter setting
where each arm has its own underlying parameter and only one context vector is generated per round.
Bastani & Bayati (2020) propose Lasso Bandit that uses the forced sampling technique (Golden-
shluger & Zeevi, 2013) and the Lasso estimator (Tibshirani, 1996). They establish a regret bound
of O(Ks20(log dT )

2) where K is the number of arms. Under the same problem setting as Bas-
tani & Bayati (2020), Wang et al. (2018) propose MCP-Bandit that uses uniform exploration for
O(s20 log(dT )) rounds and the minimax concave penalty (MCP) estimator (Zhang, 2010). They
show the improved regret bound of O(s20(log d+ s0) log T ).

On the other hand, there has also been an amount of work in the single-parameter setting where
K different contexts are generated for each arm at each round and the rewards of all arms are
determined by one shared parameter. Kim & Paik (2019) leverage a doubly-robust technique (Bang
& Robins, 2005) from the missing data literature to develop DR Lasso Bandit, achieving a regret
upper bound of O(s0

√
T log(dT )). Oh et al. (2021) present SA LASSO BANDIT, which requires

neither knowledge of the sparsity index nor an exploration phase, enjoying the regret upper bound
of O(s0

√
T log(dT )). Ariu et al. (2022) design TH Lasso Bandit, adapting the idea of Lasso with

thresholding, originally proposed by Zhou (2010). This algorithm estimates the unknown reward
parameter along with its support, achieving a regret bound of O(s20 log dT ) under the 1-margin
condition (Assumption 2). All the aforementioned algorithms rely on the compatibility condition of
the expected Gram matrix for the averaged arm, denoted by Σ := 1

KE[
∑

k∈[K] xkx
⊤
k ]. Moreover,

Oh et al. (2021); Ariu et al. (2022) impose strong conditions on the context distribution, such as
relaxed symmetry and balanced covariance (Assumptions 7 and 8). There is another line of work that
combines the Lasso estimator with exploration techniques in the linear bandit literature, such as the
upper confidence bound (UCB) or Thompson sampling (TS). Li et al. (2021) introduce an algorithm
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that constructs an ℓ1-confidence ball centered at the Lasso estimator, then selects an optimistic arm
from the confidence set. Chakraborty et al. (2023) propose a Thompson sampling algorithm that
utilizes the sparsity-inducing prior suggested by Castillo et al. (2015) for posterior sampling. Under
assumptions such as the general margin condition, bounded sparse eigenvalues of the expected Gram
matrix for each arm, and anti-concentration conditions on context features, both Li et al. (2021) and
Chakraborty et al. (2023) achieve a O(poly log dT ) regret bound. Hao et al. (2020b) propose ESTC,
an explore-then-commit paradigm algorithm that achieves a regret bound of O((s0T log d)

2
3 ) under

the fixed arm set setting. Li et al. (2022) introduce a unified algorithm framework named Explore-
the-Structure-Then-Commit for various high-dimensional stochastic bandit problems. Li et al. (2022)
establish a regret bound of O(s

1
3
0 T

2
3

√
log(dT )) for the Lasso bandit problem. Chen et al. (2022)

propose SPARSE-LINUCB algorithm, which estimates the reward parameter using the best subset
selection method based on generalized support recovery.

2 PRELIMINARIES

Notations. For a positive number N , we denote [N ] as a set containing positive integers up to N ,
i.e., [N ] := {1, . . . , N}. For a vector v ∈ Rd, we denote its j-th component by vj for j ∈ [d], its
transpose by v⊤, its ℓ0-norm by ∥v∥0 =

∑
j∈[d] 1{vj ̸= 0}, its ℓ2-norm by ∥v∥2 =

√
v⊤v, and its

ℓ∞-norm by ∥v∥∞ = maxj∈[d] |vj |. For each I ⊂ [d] and v ∈ Rd, vI = [v1,I , . . . , vd,I ]
⊤ where

for all j ∈ [d], vj,I = vj1{j ∈ I}. Refer to Appendix A for a more detailed explanation of the
notations.

Problem Setting. We consider a stochastic linear contextual bandit problem where T is the number
of rounds and K(≥ 3) is the number of arms. In each round t ∈ [T ], the learning agent observes a
set of context features for all arms {xt,i ∈ X : i ∈ [K]} ⊂ Rd drawn i.i.d. from an unknown joint
distribution, chooses an arm at ∈ [K], and receives a reward rt,at . We assume that rt,at = x⊤

t,at
β∗+

ηt where β∗ ∈ Rd is the unknown reward parameter and ηt is an independent σ-sub-Gaussian
random variable such that E[ηt|Ft−1] = 0 for the sigma-algebra Ft generated by ({xτ,i}τ∈[t],i∈[K],
{aτ}τ∈[t], {rτ,aτ }τ∈[t−1]), i.e., E [esηt |Ft] ≤ es

2σ2/2 for all s ∈ R. We assume {xt,1, . . . ,xt,K}t≥1

is a sequence of i.i.d. samples from some unknown distribution DX on the Lebesgue measurable
sets. Note that dependency across arms in a given round is allowed. We also define the active set
S0 = {j : β∗

j ̸= 0} as the set of indices j for which β∗
j is non-zero. Let s0 := |S0| denote the

cardinality of the active set S0, which satisfies s0 ≪ d.

Define a∗t := argmaxk∈[K] x
⊤
t,kβ

∗ as the optimal arm in round t. Then, the goal of the agent is to
minimize the following cumulative regret:

R(T ) =

T∑
t=1

(
x⊤
t,a∗

t
β∗ − x⊤

t,at
β∗
)
.

2.1 ASSUMPTIONS

We present a list of assumptions used for the regret analysis later in Section 3.2.
Assumption 1 (Boundedness). For absolute constants xmax, b > 0, we assume ∥x∥∞ ≤ xmax for
all x ∈ X , and ∥β∗∥1 ≤ b, where b may be unknown.
Assumption 2 (α-margin condition). Let ∆t = x⊤

t,a∗
t
β∗ − maxk ̸=a∗

t
x⊤
t,kβ

∗ be the instantaneous
gap in round t. For α > 0, there exists a constant ∆∗ > 0 such that for any h > 0 and for all

t ∈ [T ], P (∆t ≤ h) ≤
(

h
∆∗

)α
.

Assumption 3 (Compatibility condition on the optimal arm). For a matrix M ∈ Rd×d and a set
I ⊆ [d], the compatibility constant ϕ(M, I) is defined as

ϕ2(M, I) := min
β

{
|I|β⊤Mβ

∥βI∥21
: ∥βIc∥1 ≤ 3∥βI∥1 ̸= 0

}
.

Let us denote the context feature for the optimal arm in round t by xt,a∗
t

. Then, we assume that the
expected Gram matrix of the optimal arm Σ∗ := E[xt,a∗

t
x⊤
t,a∗

t
] satisfies the compatibility condition
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Figure 1: Illustration of relationships among distributional assumptions on context used in the sparse
linear contextual bandit literature. The blue arrows represent implication relationships while the red
arrows represent infeasible implication relationships. The conditions written in blue with the check
bullet ✓ in the figure imply the compatibility on the optimal arm (Assumption 3), serving as suffi-
cient conditions, while the conditions written in orange indicate additional assumptions necessary to
achieve the existing methods’ regret guarantees, but not needed in our analysis. The case where all
sub-optimal arms are fixed serves as a counter-example for the infeasible implication relationships.
We provide the proofs of the implication relationship in Appendix B which may be of independent
interest.

with ϕ∗ > 0, i.e., ϕ2(Σ∗, S0) ≥ ϕ2
∗. Note that Σ∗ is time-invariant since the set of features is drawn

i.i.d. for each round.

Discussion of assumptions. Assumption 1 is a standard regularity assumption commonly used
in the sparse linear bandit literature (Bastani & Bayati, 2020; Hao et al., 2020b; Ariu et al., 2022;
Li et al., 2022; Chakraborty et al., 2023). It indicates that both the context features and the true
parameter are bounded.

Assumption 2 restricts the probability that the expected reward of the optimal arm is close to those
of the sub-optimal arms. To our best knowledge, the margin condition in the bandit setting was
first introduced in Goldenshluger & Zeevi (2013) and is widely used in linear contextual bandit
literature (Wang et al., 2018; Bastani & Bayati, 2020; Papini et al., 2021; Li et al., 2021; Bastani
et al., 2021; Ariu et al., 2022; Chakraborty et al., 2023). Unlike the minimum gap condition (Abbasi-
Yadkori et al., 2011; Papini et al., 2021), which prohibits the instantaneous gap from being smaller
than a fixed constant, the margin condition allows a probability of a small gap. The case where
α = 0 imposes no additional constraints, while α = ∞ is equivalent to the minimum gap condition.
The margin condition with general α smoothly bridges the cases with and without the minimum gap.

Assumption 3 is related to the compatibility condition used to guarantee the convergence property of
the Lasso estimator in the high-dimensional statistics literature (Bühlmann & Van De Geer, 2011).
Since the compatibility condition ensures that the Lasso estimator approaches its true value as the
number of samples grows large, many pieces of high-dimensional linear contextual bandit literature
assume the condition (Wang et al., 2018; Kim & Paik, 2019; Bastani & Bayati, 2020; Oh et al., 2021;
Ariu et al., 2022). Kim & Paik (2019); Oh et al. (2021); Ariu et al. (2022) assume the compatibility
condition on Σ := 1

KE[
∑

k xt,kx
⊤
t,k]. Li et al. (2021) assume the minimum sparse eigenvalue of

the expected Gram matrix of the optimal arm when the instantaneous gap is greater than a constant
∆∗, whose definition slightly differs from ours. Unlike previous works, we assume the compatibility
condition on the optimal arm without any constraints. Under this assumption, a theoretical guarantee
about the convergence of the Lasso estimator can be derived only if sufficient selections of the
optimal arms are guaranteed, which necessitates more technical analysis. On the other hand, most
of the previous work in sparse linear bandit that achieves poly-logarithmic regret under the margin
condition implicitly assumes Assumption 3, indicating that our assumptions are strictly weaker than
others.
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Algorithm 1 FS-WLasso (Forced-Sampling then Weighted Loss Lasso)

1: Input: Number of exploration M0, Weight w, Regularization parameters {λt}t≥1

2: for t = 1, 2, ..., T do
3: Observe {xt,k}Kk=1
4: if t ≤ M0 then ▷ Forced sampling stage
5: Choose at ∼ Unif(A) and observe rt,at

6: else ▷ Greedy selection stage

7: Compute β̂t−1 = argmin
β

w

M0∑
i=1

(x⊤
i,ai

β−ri,ai)
2+

t−1∑
i=M0+1

(x⊤
i,ai

β−ri,ai)
2+λt−1∥β∥1

8: Select at = argmaxk∈[K] x
⊤
t,kβ̂t−1 and observe rt,at

9: end if
10: end for

Theorem 1. The compatibility condition on the optimal arm (Assumption 3) is strictly weaker than
the assumptions made in previous Lasso bandit works under the single-parameter setting (Oh et al.,
2021; Li et al., 2021; Ariu et al., 2022; Chakraborty et al., 2023), as illustrated in Figure 1.

Discussion of Theorem 1 Oh et al. (2021); Ariu et al. (2022) assume the relaxed symmetry and
balanced covariance of the context features, while other works in the literature, such as Li et al.
(2021); Chakraborty et al. (2023) assume an anti-concentration condition for the feature vectors.
These conditions imply that estimation error is reduced when data is obtained by a greedy policy, or,
in some cases, by any policy. Since choosing the optimal arm is also a greedy policy with respect to
the true parameter, the assumptions in prior works imply ours. The case where the context feature
vectors of sub-optimal arms are fixed and only the feature vector of the optimal arm has randomness
indicates that the converse does not hold. For a detailed proof of Theorem 1, refer to Appendix B.

Remark 1. Under the multiple-parameter setting, Bastani & Bayati (2020); Wang et al. (2018)
assume the compatibility condition on the feature vectors whose instantaneous gaps are lower-
bounded by h. On the other hand, we impose no such constraint in Assumption 3 for the single-
parameter setting. Further direct comparisons of the compatibility conditions are not possible since
compatibility conditions do not translate directly across the two different settings. However, we
show that Assumption 3 is weaker than those of Bastani & Bayati (2020); Wang et al. (2018) when
compared within the problem instances that are convertible to both settings through a certain con-
version (Kim & Paik, 2019; Oh et al., 2021). Refer to Appendix C for more details. It is important
to note that we mainly compare our results with the Lasso bandit results under the single-parameter
setting (Oh et al., 2021; Li et al., 2021; Ariu et al., 2022; Chakraborty et al., 2023), which is the pre-
dominant setup in linear contextual bandits (Abbasi-Yadkori et al., 2011; Abeille & Lazaric, 2017;
Chakraborty et al., 2023; Filippi et al., 2010; Hao et al., 2020b; Kim & Paik, 2019; Li et al., 2021;
Oh et al., 2021).

3 FORCED SAMPLING THEN WEIGHTED LOSS LASSO

3.1 ALGORITHM: FS-WLasso

In this section, we present FS-WLasso (Forced Sampling then Weighted Loss Lasso) that adapts the
forced-sampling technique (Goldenshluger & Zeevi, 2013; Bastani & Bayati, 2020). FS-WLasso
consists of two stages: Forced sampling stage & Greedy selection stage. First, during the Forced
sampling stage the agent chooses an arm uniformly at random for M0 rounds. Then, for t in the
Greedy selection stage, the agent computes the Lasso estimator given by

β̂t−1 = argmin
β

wL0(β) + Lt−1(β) + λt−1∥β∥1 , (1)

where L0(β) :=
∑M0

i=1(x
⊤
i,ai

β − ri,ai
)2 is the sum of squared errors over the samples acquired

through random sampling, Lt−1(β) :=
∑t−1

i=M0+1(x
⊤
i,ai

β−ri,ai)
2 is the sum of squared errors over

the samples observed in the Greedy selection stage, w is the weight between the two loss functions,
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and λt−1 > 0 is the regularization parameter. The agent chooses the arm that maximizes the inner
product of the feature vector and the Lasso estimator. FS-WLasso is summarized in Algorithm 1.
Remark 2. Both FS-WLasso and ESTC (Hao et al., 2020b) have exploration stages, where the
agent randomly selects arms for some initial rounds. However, the commit stages are very different.
ESTC estimates the reward parameter only using the samples obtained during the exploration stage
and does not update the parameters during the commit stage, whereas FS-WLasso continues to
update the parameter using the samples obtained during the greedy selection stage. Therefore, our
algorithm demonstrates superior statistical performance, achieving lower regret (and thus higher
reward) by fully utilizing all accessible data.
Remark 3. The minimization problem (1) takes the sum of squared errors, whereas the standard
Lasso estimator takes the average. While λt is typically chosen to be proportional to

√
1/t in the

existing literature (Bastani & Bayati, 2020; Oh et al., 2021; Ariu et al., 2022; Li et al., 2021), this
slight difference leads to λt being proportional to

√
t in Theorems 2 and 3.

3.2 REGRET BOUND OF FS-WLasso

Definition 1 (Compatibility constant ratio). Let Σ := 1
KE[

∑
k∈[K] xt,kx

⊤
t,k] be the expected Gram

matrix of the averaged arm. We define the constant ρ := ϕ2
∗/ϕ

2(Σ, S0) as the ratio of the compati-
bility constant for Σ∗ to the compatibility constant for Σ.

By the definition of Σ, it holds that Σ = 1
KE[xt,a∗

t
,x⊤

t,a∗
t
] + 1

KE[
∑

k ̸=a∗
t
xt,kx

⊤
t,k] ⪰

1
KE[xt,a∗

t
,x⊤

t,a∗
t
], which implies ϕ2(Σ, S0) ≥ ϕ2(Σ∗, S0)/K ≥ ϕ2

∗/K > 0. Hence, ρ is well-
defined with 0 < ρ ≤ K.
Remark 4. When comparing the compatibility conditions only, the compatibility condition on the
optimal arm implies the compatibility condition on the averaged arm. However, that is not the
essence of what we compare between our work and the existing works. Note that under the margin
condition, the entire set of stochastic context assumptions (e.g., the compatibility condition along
with additional diversity assumptions) in the previous literature implies the compatibility condition
on the optimal arm, as illustrated in Figure 1 and demonstrated in Appendix B.

We present the regret upper bound of Algorithm 1. A formal version of the theorem and its proof
are deferred to Appendix E.2.
Theorem 2 (Regret Bound of FS-WLasso). Suppose Assumptions 1-3 hold. For δ ∈ (0, 1], let τ
be a constant that depends on xmax, s0, ϕ∗, σ, α,∆∗, log d, log δ. If we set the input parameters of
Algorithm 1 by

M0 = C̄1 max
{
ρ2x4

maxs
2
0ϕ

−4
∗ log(d/δ) , ρ2σ2x

4+ 4
α

max s
2+ 2

α
0 ∆−2

∗ ϕ
−4− 4

α∗ (log log τ + log(d/δ))
}
,

λt = C̄2σxmax

(√
(t−M0) log (d(log(t−M0))2/δ) +

√
w2M0 log(d/δ)

)
, w =

√
τ/M0 ,

for some universal constants C̄1, C̄2 > 0, then with probability at least 1− δ, Algorithm 1 achieves
the following cumulative regret:

R(T ) ≤ 2xmaxbM0 + Iτ + IT ,

where Iτ = O
(
σ2∆−1

∗
(
x2
maxs0/ϕ

2
∗
)1+ 1

α log(d/δ)
)

and

IT =



O
(
(σx2

maxs0/ϕ
2
∗)

1+α

∆α
∗ (1−α) T

1−α
2

(
log d+ log log T

δ

) 1+α
2

)
for α ∈ (0, 1) ,

O
(
(σx2

maxs0/ϕ
2
∗)

2

∆∗
log T

(
log d+ log log T

δ

))
for α = 1 ,

O
(

α
(α−1)2 · σ2(x2

maxs0/ϕ
2
∗)

1+ 1
α

∆∗

(
log d+ log 1

δ

))
for 1 < α ≤ ∞ .

Discussion of Theorem 2 In terms of key problem instances (s0, d, and T ), Theorem 2 establishes
the regret bounds that scale poly-logarithmically on d and T , specifically, O(sα+1

0 T
1−α
2 (log d +
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log log T )
α+1
2 ) for α ∈ (0, 1), O(s20 log T (log d + log log T )) for α = 1, and O(s

2+ 2
α

0 log d) for

α > 1. Li et al. (2021) construct a regret lower bound of O(T
1−α
2 (log d)

α+1
2 + log T ) when

α ∈ [0, 1], which our algorithm achieves up to a log T factor. The expected regret for Algorithm 1
can also be obtained by taking δ = 1/T . For the T -agnostic setting, we derive FS-Lasso, which
uses forced samples adaptively, and establish the same regret bound as in Theorem 2 (Appendix F).
Existing Lasso bandit literature that achieves O(poly log dT ) regret under the single parameter set-
ting necessitates stronger assumptions on the context distribution (e.g., relaxed symmetry & bal-
anced covariance or anti-concentration), which are non-verifiable in practical scenarios. In addition,
when context distributions do not satisfy the strong assumptions employed in the previous literature,
the existing algorithms can critically undermine regret performance, with no recourse for adjustment
nor guarantees provided. That is, there is nothing one can do when such strong context assumptions
are not satisfied in the existing literature. However, we show that the compatibility condition on the
optimal arm is sufficient to achieve poly-logarithmic regret under the margin condition, and demon-
strate that our assumption is strictly weaker than those used in other Lasso bandit literature under
the single-parameter setting.

Our result also improves the known regret bound for the low-dimensional setting, where s0 may be
replaced with d. In this case, Assumption 3 becomes equivalent to the HLS condition (Hao et al.,
2020a; Papini et al., 2021). Under the HLS condition and the minimum gap condition, Papini et al.
(2021) show that OFUL (Abbasi-Yadkori et al., 2011) achieves a constant regret bound independent
of T with high probability (Lemma 2 in (Papini et al., 2021)). However, when the margin condition
(Assumption 2) is assumed, the result of Papini et al. (2021) guarantees O(log T ) regret bound only
when α > 2. Our algorithm achieves a constant regret bound with high probability when α > 1,
expanding the range of α that the constant regret is attainable.
Remark 5. Theorem 2 requires the value of s0 when determining M0, the length of the forced sam-
pling stage. On the other hand, there are sparsity-agnostic Lasso bandit algorithms (Oh et al., 2021;
Ariu et al., 2022; Chakraborty et al., 2023). However, these sparsity-agnostic algorithms require
stronger diversity assumptions on the context distribution that are not verifiable in practice. Even
when the sparsity is known, other works in the literature still either incorporate extra stochastic
conditions (Li et al., 2021) or apply specific optimality criteria for context distributions (Bastani
& Bayati, 2020; Wang et al., 2018). As discussed earlier, these additional assumptions may pose
obstacles in practical applications. Regardless of sparsity-awareness, our work focuses on alleviat-
ing these stringent stochastic assumptions on context distributions, providing the weakest conditions
known to achieve poly-logarithmic regret. Furthermore, by tuning M0 as a whole, not knowing the
sparsity does not worsen the complexity nor the performance of the algorithm in practice. M0 does
not solely depend on s0, but also on other problem-dependent factors that may be unknown to the
algorithm in practice and hence M0 should be regarded as a tunable parameter. Note that all Lasso
bandit including the sparsity agnostic ones and parametric bandit algorithms also have parameters
that must be tuned in practice, such as the ones that depend on the sub-Gaussian parameter of the
noise σ. Refer to Appendix D for more details.

In most regret analyses of sparse linear bandit algorithms under the single-parameter setting (Kim &
Paik, 2019; Li et al., 2021; Oh et al., 2021; Ariu et al., 2022; Chakraborty et al., 2023), the maximum
regret is incurred during the burn-in phase, where the compatibility condition of the empirical Gram
matrix is not guaranteed. The compatibility condition after the burn-in phase is ensured by additional
diversity assumptions on context features (e.g., anti-concentration (Li et al., 2021; Chakraborty et al.,
2023), relaxed symmetry & balanced covariance (Oh et al., 2021; Ariu et al., 2022)), rather than by
explicit exploration within the algorithms. Therefore, the Lasso estimator calculation (Oh et al.,
2021; Ariu et al., 2022) or explicit exploration (UCB in Li et al. (2021) or TS in Chakraborty et al.
(2023)) during their burn-in phases does not contribute to the regret bound.
On the other hand, our forced sampling stage does not compute parameters but acquires diverse
samples without requiring diversity assumptions on context features beyond the compatibility con-
dition on the optimal arm, making it more efficient during the burn-in phases. If additional diversity
assumptions (Li et al., 2021; Oh et al., 2021; Ariu et al., 2022; Chakraborty et al., 2023) are also
applied to our algorithm, we show that O(poly log T ) regret is achieved without the forced sampling
stage in Algorithm 1.
Theorem 3. Suppose that Assumptions 1-3 hold, and further assume either the anti-concentration
(Assumption 4) or relaxed symmetry & balanced covariance (Assumption 6-8) assumptions. Let ϕG
be an appropriate constant that is determined by the employed assumptions, and τ be a constant
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that depends on σ, xmax, s0, ∆∗, ϕ∗, ϕG, α, log d, and log δ. If we set the input parameters of
Algorithm 1 by M0 = 0, i.e. no forced-sampling stage, and λt = C̄2σxmax

√
t log (d(log t)2/δ),

where C̄2 is the same universal constant as in Theorem 2, then with probability at least 1 − δ,
Algorithm 1 achieves the following cumulative regret with probability at least 1− δ:

R(T ) ≤
{
Ib + I2(T ) T ≤ τ

Ib + I2(τ) + IT T > τ ,

where

Ib = O
(
x5
maxbs

2
0ϕ

−4
G

(
log(xmaxs0ϕ

−1
G ) + log d− log δ

))
,

I2(T ) =



O
(
(σx2

maxs0/ϕ
2
G)

1+α

∆α
∗ (1−α) T

1−α
2

(
log d+ log log T

δ

) 1+α
2

)
for α ∈ [0, 1) ,

O
(
(σx2

maxs0/ϕ
2
G)

2

∆∗
log T

(
log d+ log log T

δ

))
for α = 1 ,

O
(

α2

(α−1)2 · (σx
2
maxs0/ϕ

2
G)

2

∆∗

(
log d+ log 1

δ

))
for 1 < α ≤ ∞ ,

and IT takes the same value as in Theorem 2.

Discussion of Theorem 3 Theorem 3 offers that random exploration of Algorithm 1 may not be
necessary if the additional diversity assumptions on context features are given. This result indicates
that the number of exploration may be tuned according to the specific problem instance. The as-
sumptions of the Theorem 3 are still weaker than, or equally strong as Oh et al. (2021); Li et al.
(2021); Chakraborty et al. (2023), while the regret bounds are no greater than theirs. We slightly
improve the regret bound of Li et al. (2021) when 1 < α ≤ ∞. Specifically, a term proportional
to s20/(∆∗ϕ4

∗) in Li et al. (2021) is sharpened to s
1+ 1

α
0 /(∆∗ϕ

2+ 2
α∗ ) in our result. We also achieve

a tighter regret bound than Chakraborty et al. (2023), which is proportional to K4. Our result is
proportional to at most K2 since ϕ2

∗ ≥ Ω( 1
K ) holds under their assumptions, as shown in Lemma 1.

3.3 TECHNICAL CHALLENGES AND SKETCH OF PROOFS

Under Assumption 3, a small estimation error of β̂t is ensured when the optimal arms have been
chosen a sufficient number of times. Specifically, if the optimal arms have been selected sufficiently
many times up to round t, it ensures the compatibility constant of the empirical Gram matrix is
Ω(ϕ2

∗t). Then, the Lasso estimation error can be controlled via the oracle inequality for the weighted
squared Lasso estimator (Lemma 19). A well-estimated estimator, in turn, leads to the selection
of the optimal arm in the next round. This observation highlights the cyclic relationship between
estimation error and the selection of optimal arms. However, this is not a case of circular reasoning;
rather, it is a domino-like phenomenon that propagates forward in time.

On the other hand, such cyclic structure has not been observed in previous Lasso bandit litera-
ture (Bastani & Bayati, 2020; Oh et al., 2021; Li et al., 2021; Ariu et al., 2022; Chakraborty et al.,
2023). This is because existing methods rely on diversity assumptions on the context distribution,
which ensure that samples obtained by the agent’s policy automatically explore the feature space,
resulting in a positive compatibility constant for the empirical Gram matrix regardless of the pre-
viously selected arms. However, since such convenience is no longer available in our setting, we
meticulously analyze the cyclic structure between the estimation error and the selection of optimal
arms by deriving a novel mathematical induction argument.

There are three main difficulties that lie in the way of constructing the induction argument. First, the
initial condition of the induction must be satisfied, in other words, the cycle must begin. We guaran-
tee the initial condition through random exploration (Theorem 2) or additional diversity assumptions
(Theorem 3). We show that after the initial stages, the algorithm attains a sufficiently accurate es-
timator, which starts the cycle. Second, the algorithm must be able to propagate such favorable
events to the next round. A small estimation error does not always guarantee the selection of the
optimal arm. Instead, we show that it leads to a bounded ratio of sub-optimal selections over time.
The compatibility condition on the optimal arm implies that if the optimal arms constitute a large
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Figure 2: The evaluations of Lasso bandit algorithms are presented. Figure 2a shows results where
all context feature vectors are sampled from a correlated Gaussian distribution. Figure 2b shows
results where the context feature vectors of sub-optimal arms are fixed throughout time, and only
the feature vector of the optimal arm has randomness. We plot the mean and standard deviation of
cumulative regret across 100 runs for each algorithm.

portion of the observed data, the algorithm attains a small estimation error. We build an induction
argument upon these relationships. Lastly, due to the stochastic nature of the problem, the algorithm
suffers a small probability of failing to propagate the good events in every round. Without careful
analysis, the sum of such probabilities easily exceeds 1, invalidating the whole proof. We bound
the sum to be small by carefully constructing high-probability events that occur independently of
the induction argument, then prove that the induction argument always holds under the events. The
complete proof is illustrated in Appendix E.

4 NUMERICAL EXPERIMENTS

We perform numerical evaluations on synthetic datasets. We compare our algorithms, FS-WLasso
and FS-Lasso, with sparse linear bandit algorithms including DR Lasso Bandit (Kim & Paik,
2019), SA Lasso BANDIT (Oh et al., 2021), TH Lasso Bandit (Ariu et al., 2022), ℓ1-Confidence
Ball Based Algorithm (L1-CB-Lasso) (Li et al., 2021), and ESTC (Hao et al., 2020b). We plot the
mean and standard deviation of cumulative regret across 100 runs for each algorithm.

The results clearly demonstrate that our proposed algorithms outperform the existing sparse linear
bandit methods we evaluated. In particular, even in cases where the context features of all arms,
except for the optimal arm, are fixed (rendering assumptions such as anti-concentration invalid),
our proposed algorithms surpass the performance of existing ones. More details are presented in
Appendix I.

5 CONCLUSION

In this work, we study the stochastic context conditions under which the Lasso bandit algorithm
can achieve a poly-logarithmic regret. We present rigorous comparisons on the relative strengths
of the conditions utilized in the sparse linear bandit literature, which provide insights that can be
of independent interest. Our regret analysis shows that the proposed algorithms establish a poly-
logarithmic dependency on the feature dimension and time horizon.
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6 REPRODUCIBILITY STATEMENT

For each theoretical result, we provide the full set of assumptions in the main paper (Section 2.1),
and the complete proofs of the main results are provided in Appendix E and F. We have also in-
cluded the data and code, along with instructions to reproduce the main experimental results, in the
supplementary material.
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Ismaël Castillo, Johannes Schmidt-Hieber, and Aad Van der Vaart. Bayesian linear regression with
sparse priors. The Annals of Statistics, 2015.

11



Published as a conference paper at ICLR 2025

Sunrit Chakraborty, Saptarshi Roy, and Ambuj Tewari. Thompson sampling for high-dimensional
sparse linear contextual bandits. In International Conference on Machine Learning, pp. 3979–
4008. PMLR, 2023.

Yi Chen, Yining Wang, Ethan X Fang, Zhaoran Wang, and Runze Li. Nearly dimension-independent
sparse linear bandit over small action spaces via best subset selection. Journal of the American
Statistical Association, pp. 1–13, 2022.

Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff func-
tions. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, pp. 208–214. JMLR Workshop and Conference Proceedings, 2011.

Varsha Dani, Thomas P. Hayes, and Sham M. Kakade. Stochastic linear optimization under bandit
feedback. In Annual Conference Computational Learning Theory, 2008.
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Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Ke Li, Yun Yang, and Naveen N Narisetty. Regret lower bound and optimal algorithm for high-
dimensional contextual linear bandit. Electronic Journal of Statistics, 15(2):5652–5695, 2021.

12



Published as a conference paper at ICLR 2025

Lihong Li, Yu Lu, and Dengyong Zhou. Provably optimal algorithms for generalized linear contex-
tual bandits. In International Conference on Machine Learning, pp. 2071–2080. PMLR, 2017.

Shuai Li, Alexandros Karatzoglou, and Claudio Gentile. Collaborative filtering bandits. In Proceed-
ings of the 39th International ACM SIGIR conference on Research and Development in Informa-
tion Retrieval, pp. 539–548, 2016.

Wenjie Li, Adarsh Barik, and Jean Honorio. A simple unified framework for high dimensional
bandit problems. In International Conference on Machine Learning, pp. 12619–12655. PMLR,
2022.

Min-hwan Oh, Garud Iyengar, and Assaf Zeevi. Sparsity-agnostic lasso bandit. In International
Conference on Machine Learning, pp. 8271–8280. PMLR, 2021.

Roberto Imbuzeiro Oliveira. The lower tail of random quadratic forms with applications to ordinary
least squares. Probability Theory and Related Fields, 166:1175–1194, 2016.

Matteo Papini, Andrea Tirinzoni, Marcello Restelli, Alessandro Lazaric, and Matteo Pirotta. Lever-
aging good representations in linear contextual bandits. In International Conference on Machine
Learning, pp. 8371–8380. PMLR, 2021.

Herbert Robbins. Some aspects of the sequential design of experiments. Bulletin of the American
Mathematical Society, 1952.

Paat Rusmevichientong and John N Tsitsiklis. Linearly parameterized bandits. Mathematics of
Operations Research, 35(2):395–411, 2010.

Ambuj Tewari and Susan A Murphy. From ads to interventions: Contextual bandits in mobile health.
Mobile health: sensors, analytic methods, and applications, pp. 495–517, 2017.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 58(1):267–288, 1996.
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A NOTATIONS AND DEFINITIONS

We introduce notations that are necessary for the analysis.

Linear Bandit

• β∗ ∈ Rd: True reward parameter
• xt,k ∈ Rd: Context feature vector in round t, arm k

• X : Set of all possible context feature vectors
• DX : Distribution of context vectors tuple {xt,k}Kk=1

• at: Chosen arm in round t

• a∗t : Optimal arm in round t

• ηt: Zero-mean sub-Gaussian noise in round t

• σ: Variance proxy of ηt
• rt,at = x⊤

t,at
β∗ + ηt: Observed reward in round t
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• regt = x⊤
t,a∗

t
β∗ − x⊤

t,at
β∗: Instantaneous regret in round t

• d: Dimension of feature and true parameter vectors
• K: Number of arms
• T : Time horizon

High-Dimensional Statistics

• S0 :=
{
j ∈ [d] : (β∗)j ̸= 0

}
: Active set

• s0 := |S0| Sparsity index
• vj,S0

:= vj1 {j ∈ S0}
• vS0 := [v1,S0 , . . . , vd,S0 ]

⊤

• vSc
0
= v[d]\S0

• C(S0) =
{
v ∈ Rd : ∥vSc

0
∥1 ≤ 3∥vS0∥1

}
• ϕ2 (M, S0): Compatibility constant of matrix M over set S0

Note that the definition of compatibility constant in Assumption 3 can be rewritten as ϕ2(M, I) =

infv∈C(I)\{0d}
s0v

⊤Mv
∥vI∥2

1
.

Assumptions

• xmax: ℓ∞-norm upper bound of x ∈ X
• b: ℓ1-norm upper bound of β∗

• ∆t := maxa̸=a∗
t
x⊤
t,a∗

t
β∗ − x⊤

t,aβ
∗: Instantaneous gap

• ∆∗: Margin constant, or relaxed minimum gap
• α: Margin condition parameter
• x∗: Optimal arm feature as random vector
• Σ∗ := E

[
x∗x⊤

∗
]
: Expected Gram matrix of optimal arm

• ϕ∗: Lower bound of ϕ2 (Σ∗, S0)

Algorithm

• M0: Number of random exploration rounds
• w: Weight between square errors of random samples and greedy samples
• λt: Lasso regularization parameter

• β̂t: Lasso estimate of β∗

Analysis

• δ: Probability of failure

• Σ := 1
KE

[∑K
k=1 xt,kx

⊤
t,k

]
: Theoretical Gram matrix of all arms

• Σ∗
Γ := E [x∗x∗ | ∆t > ∆∗]: Theoretical Gram matrix of optimal arm with large gap

• Σk := E
[
xt,kx

⊤
t,k

]
: Theoretical Gram matrix of arm k

• ρ: Compatibility constant ratio

• V̂M0+τ :=
∑M0

t=1 wxt,at
x⊤
t,at

+
∑M0+τ

t=M0+1 xt,at
x⊤
t,at

: (Weighted) Empirical Gram matrix

• Nτ1(t
′): Number of sub-optimal selections during t = M0 + τ1 + 1 to M0 + τ1 + t′

• ∆t: Upper bound of 2xmax∥β∗ − β̂t∥1
• Ft: σ-algebra generated by {xτ,i}τ∈[t],i∈[K], {aτ}τ∈[t], {rτ,aτ

}τ∈[t−1]

• F+
t : σ-algebra generated by {xτ,i}τ∈[t],i∈[K], {aτ}τ∈[t], {rτ,aτ }τ∈[t]

15
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Generic notations

• N0 = N ∪ {0}
• [N ] := {1, 2, . . . , N}: Set of natural numbers up to N

• R≥0: Set of non-negative real numbers

• 1: Indicator function

• ∥ · ∥0: ℓ0-norm of a vector, i.e. number of non-zero elements

• ∥ · ∥2: ℓ2-norm of a vector

• ∥ · ∥∞: ℓ∞-norm of a vector or a matrix, i.e., maximum of absolute values of elements

• (·)j : j-th element of a vector

• (·)ij : ij-th element of a matrix

• 0d: Zero vector in Rd

• Id: Identity matrix in Rd×d

• (Ω,F ,P): Probability space

B DISCUSSION ON ASSUMPTION 3 AND PROOF OF THEOREM 1

We introduce some of the assumptions made in related works about sparse linear bandit. We show
that these assumptions imply Assumption 3, proving that our assumptions are strictly weaker than
others.

Assumption 4 (Anti-concentration (Li et al., 2021; Chakraborty et al., 2023)). There exists a pos-
itive constant ξ such that for each k ∈ [K], t ∈ [T ], v ∈

{
u ∈ Rd | ∥u∥0 ≤ Cd

}
, and h > 0,

P((x⊤
t,kv)

2 ≤ h∥v∥22) ≤ ξh. Cd equals d in Li et al. (2021) and is a big enough constant that
depends on ξ, K, s0, and more in Chakraborty et al. (2023).

Assumption 5 (Sparse eigenvalue of the optimal arm (Li et al., 2021)). Let Γ ={
ω ∈ Ω : ∆t ≥ 2−

1
α∆∗

}
be the event that the instantaneous gap is large enough, and Σ∗

Γ =

E
[
x∗
tx

∗
t
⊤ | Γ

]
be the expected Gram matrix of the optimal arm conditioned on the event Γ. Then,

there exists a constant ϕ1 > 0 such that

inf
v∈Rd\{0d}

∥v∥0≤C∗s0+1

v⊤Σ∗
Γv

∥v∥22
≥ ϕ2

1 ,

where C∗ is a big enough constant that depends on ξ (in Assumption 4), K, and more.

Assumption 6 (Compatibility condition on the averaged arm (Oh et al., 2021; Ariu et al., 2022)).
Let Σ = E{xt,k}K

k=1
∼DX

[
1
K

∑K
k=1 xt,kx

⊤
t,k

]
be the expected Gram matrix of the averaged arm.

Then, there exists a constant ϕ2 > 0 such that ϕ2 (Σ, S0) ≥ ϕ2.

Assumption 7 (Relaxed symmetry (Oh et al., 2021; Ariu et al., 2022)). For the context distribution
PX , there exists a constant 1 ≤ ν < ∞ such that 0 < PX (−x)

PX (x) ≤ ν for any x ∈ X with PX (x) ̸= 0.

Assumption 8 (Balanced covariance (Oh et al., 2021; Ariu et al., 2022)). There exists 0 < CX < ∞
such that for any permutation (i1, . . . , iK) of (1, . . . ,K), any k ∈ {2, . . . ,K − 1}, and any fixed
β ∈ Rd, it holds that

E
[
xikx

⊤
ik
1{x⊤

i1β < . . . < x⊤
iKβ}

]
⪯ CXE

[
(xi1x

⊤
i1 + xiKx⊤

iK )1{x⊤
i1β < . . . < x⊤

iKβ}
]
.

We show that some of the assumptions imply the following property, which we name the greedy
diversity.

Definition 2 (Greedy diversity). For any fixed β ∈ Rd, define the greedy policy with respect to
an estimator β as πβ

(
{xk}Kk=1

)
= argmaxk∈[K] x

⊤
k β. Denote the chosen feature vector with
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respect to the greedy policy by xβ = xπβ({xk}K
k=1)

. The context distribution DX satisfies the greedy

diversity if there exists a constant ϕG > 0 such that for any β ∈ Rd,

ϕ2
(
E{xk}K

k=1∼DX

[
xβxβ

⊤] , S0

)
≥ ϕ2

G .

Remark 6. Note that xβ∗ = x∗. Under the greedy diversity, Assumption 3 holds with ϕ∗ = ϕG
by plugging in β = β∗. Therefore, the greedy diversity implies the compatibility condition on the
optimal arm.

Anti-concentration to ours:

The following lemma shows that anti-concentration implies the greedy diversity, hence it implies
Assumption 3. While Li et al. (2021); Chakraborty et al. (2023) use ϵ-net argument to ensure the
compatibility condition of the empirical Gram matrix, we follow a slightly different approach to
ensure the compatibility condition of the expected Gram matrix. Another point to note is that Li
et al. (2021); Chakraborty et al. (2023) employ additional assumptions, such as sub-Gaussianity of
feature vectors and maximum sparse eigenvalue condition, to upper bound the diagonal elements of
the empirical Gram matrix. To make the analysis simpler, we replace the upper bound by x2

max.
Lemma 1. If Assumption 4 holds with Cd ≥ 64x2

maxξKs0+1, then the greedy diversity is satisfied
with ϕ2

G ≥ 1
4ξK .

Proof of Lemma 1. We first show that E
[
xβx

⊤
β

]
has a a positive minimum sparse eigenvalue, then

use the Transfer principle (Lemma 31) adopted in Li et al. (2021); Chakraborty et al. (2023). Let
v ∈ Rd be a vector with ∥v∥2 = 1 and ∥v∥0 ≤ Cd. For a fixed value of h ≥ 0,

(
xβ

⊤v
)2 ≤ h

implies that there exists at least one k ∈ [K] such that (x⊤
k v)

2 ≤ h holds. Then, we infer that

P
((

xβ
⊤v
)2 ≤ h

)
≤ P

(
∃k ∈ [K] : (x⊤

k v)
2 ≤ h

)
≤

K∑
k=1

P
(
(x⊤

k v)
2 ≤ h

)
≤ ξKh ,

where the second inequality is the union bound, and the last inequality is from Assumption 4. Then,
using that

(
xβ

⊤v
)2

= v⊤ (xβxβ
⊤)v, we bound the minimum sparse eigenvalue of the expected

Gram matrix.

E
[
v⊤ (xβxβ

⊤)v] = ∫ ∞

0

P
(
v⊤ (xβxβ

⊤)v ≥ x
)
dx

≥
∫ 1

ξK

0

P
(
v⊤ (xβxβ

⊤)v ≥ x
)
dx

≥
∫ 1

ξK

0

(1− ξKx) dx

=
1

2ξK
. (2)

Now, we use the Transfer principle. Let Σ̂ = E
[
xβx

⊤
β

]
and Σ̄ = 1

ξK Id. Inequality (2) shows that
for ∥v∥0 ≤ Cd, it holds that

v⊤Σ̂v ≥ 1

2
v⊤Σ̄v .

For any j ∈ [d], we have Σ̂jj = E
[
(xβ)

2
j

]
≤ x2

max. Then, the conditions of Lemma 31 hold with

η = 1
2 , D = x2

maxId, and m = Cd. Suppose u ∈ C(S0). By Lemma 31, we have

u⊤E
[
xβx

⊤
β

]
u ≥ 1

2ξK
∥u∥22 −

∥∥∥D 1
2u
∥∥∥2
1

Cd − 1
. (3)
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The first term is lower bounded as the following:

1

2ξK
∥u∥22 ≥ 1

2ξK
∥uS0

∥22

≥ 1

2ξKs0
∥uS0

∥21 , (4)

where the second inequality is the Cauchy-Schwarz inequality. The second term is upper bounded
as the following: ∥∥∥D 1

2u
∥∥∥2
1

Cd − 1
=

∥xmaxu∥21
64x2

maxξKs0
=

∥u∥21
64ξKs0

≤ ∥uS0∥21
4ξKs0

, (5)

where the inequality holds by ∥u∥1 = ∥uS0
∥1 + ∥uSc

0
∥1 ≤ 4 ∥uS0

∥1 when u ∈ C(S0). Putting
inequalities (3), (4), and (5) together, we obtain

u⊤E
[
xβx

⊤
β

]
u ≥ ∥uS0

∥21
4ξKs0

,

which implies ϕ2(E
[
xβx

⊤
β

]
, S0) ≥ 1

4ξK .

Sparse eigenvalue to ours :

Assumption 5 does not imply the greedy diversity, but still implies the compatibility condition on
the optimal arm. As in the previous subsection, we replace the upper bound of the diagonal entries
of the Gram matrix obtained in Li et al. (2021) with x2

max for simpler analysis.

Lemma 2. Suppose Assumptions 2, 4, and 5 hold with C∗ = 64x2
maxξK. Then, Assumption 3 holds

with ϕ2
∗ ≥ ϕ2

1

3 .

Proof of Lemma 2. Lemma 1 shows that Assumption 4 implies compatibility condition on the opti-
mal arm with ϕ2

∗ ≥ 1
4ξK . If ϕ2

1

3 ≤ 1
4ξK , then the proof is complete. Suppose ϕ2

1

3 ≥ 1
4ξK .

By the margin condition, the probability of the event Γ is at least P (Γ) = 1−P
(
∆t < 2−

1
α∆∗

)
≥

1−
(
2−

1
α

)α
= 1

2 . Then, we have

ϕ2 (Σ∗, S0) = ϕ2
(
E
[
x∗x

⊤
∗ 1 {Γ}

]
+ E

[
x∗x

⊤
∗ 1 {Γc}

]
, S0

)
≥ ϕ2

(
E
[
x∗x

⊤
∗ 1 {Γ}

]
, S0

)
= ϕ2

(
E
[
x∗x

⊤
∗ | Γ

]
P (Γ) , S0

)
≥ 1

2
ϕ2 (Σ∗

Γ, S0) , (6)

where the first inequality holds by concavity of the compatibility constant (Lemma 20) and
ϕ2
(
E
[
x∗x⊤

∗ 1 {Γc}
]
, S0

)
≥ 0 (Lemma 21). By Assumption 5, for all v ∈ Rd with ∥v∥0 ≤

C∗s0 + 1, it holds that
v⊤Σ∗

Γv ≥ v⊤ (ϕ2
1Id
)
v .

By invoking Lemma 31 with Σ̂ = Σ∗
Γ, (1 − η)Σ̄ = ϕ2

1Id, D = x2
maxId, and m = C∗s0 + 1, we

obtain

∀u ∈ C (S0) ,u
⊤Σ∗

Γu ≥ ϕ2
1 ∥u∥22 −

∥∥∥D 1
2u
∥∥∥2
1

C∗s0
.

Following the proof of Lemma 1, especially inequalities (4) and (5), we derive that for all u ∈
C (S0),

u⊤Σ∗
Γu ≥ ϕ2

1

s0
∥uS0

∥21 −
1

4ξKs0
∥uS0

∥21 .
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Since we supposed that 1
4ξK ≤ ϕ2

1

3 , we deduce that

s0u
⊤Σ∗

Γu

∥uS0∥21
≥ ϕ2

1 −
1

4ξK

≥ 2ϕ2
1

3
,

which proves ϕ2 (Σ∗
Γ, S0) ≥ 2ϕ2

1

3 . Together with inequality (6), we obtain ϕ2 (Σ∗, S0) ≥ ϕ2
1

3 .

Relaxed symmetry & Balanced covariance to ours:

The following lemma shows that assumptions from Oh et al. (2021); Ariu et al. (2022) imply the
greedy diversity, hence they imply Assumption 3.

Lemma 3. If Assumption 6-8 hold, then the greedy diversity holds with ϕ2
G =

ϕ2
2

2νCX
.

Proof of Lemma 3. See Lemma 10 of Oh et al. (2021) and the paragraph followed by its statement.

C COMPARISONS WITH MULTIPLE-PARAMETER SETTING

In this section, we compare the assumptions for the multiple-parameter setting (Bastani & Bayati,
2020; Wang et al., 2018) with our Assumption 3.

In the multiple-parameter setting, there are K true parameter vectors, one for each arm, denoted
by β1,β2, . . . ,βK ∈ Rd. The active sets of the parameters may differ, and they are denoted by
S1, S2, . . . , SK ⊂ [d]. In each round t ∈ [T ], a single context vector xt ∈ X is sampled from a
fixed distribution and revealed to the agent, and the mean reward of arm i ∈ [K] is given by x⊤

t βi.

We first note that direct comparisons of the assumptions defined for these two different problem
settings are not possible. For instance, there is no “feature vector for optimal arm” in the multiple-
parameter setting to start with, as every feature vector is optimal for some arm. Therefore, the
algorithms and the assumptions defined for one specific setting must be converted into the other
setting; only then it would be possible to make comparisons.

A method that converts a single-parameter bandit instance into a multiple-parameter one was intro-
duced by Kim & Paik (2019); Oh et al. (2021); Ariu et al. (2022), although it has only been used for
experimental comparisons, and theoretical comparisons between the two settings have never been
made. We explain the procedure for the conversion for completeness. Suppose one has a single-
parameter bandit instance and an algorithm that operates in the multiple-parameter setting. The con-
version concatenates K feature vectors of the single-parameter setting, xt,1,xt,2, . . . ,xt,K ∈ Rd,
into one Kd-dimensional vector, xt :=

(
x⊤
t,1 x⊤

t,2 · · · x⊤
t,K

)⊤ ∈ RKd and provide it to the
algorithm as the context vector. If the true parameter is β, then the hidden parameters the arms
that the algorithm must learn are βi =

(
1{i = 1}β⊤ 1{i = 2}β⊤ · · · 1{i = K}β⊤)⊤ for

i = 1, 2, . . . ,K. Formally, we introduce a conversion that maps a single-parameter bandit instance
to a multiple-parameter bandit instance.
Definition 3 (Conversion mapping single-parameter to multiple-parameter). Let
(β, {xt,1, . . . ,xt,K}) be a single-parameter bandit instance where β ∈ Rd and xt,k ∈ Rd

for k ∈ [K]. Then, a conversion mapping C from a single-parameter bandit instance to a
multiple-parameter bandit instance is defined as follows:

C (β, {xt,1, . . . ,xt,K}) = (β1, . . . ,βK ,xt) ,

where

βi =
(
1{i = 1}β⊤ · · · 1{i = K}β⊤

)⊤
∈ RKd for i ∈ [K] , x =

(
x⊤
t,1 · · ·x⊤

t,K

)⊤ ∈ RKd .

We will show that under this conversion, the converted assumptions of Bastani & Bayati (2020)
and Wang et al. (2018) are stronger than ours. We first recall the assumptions for the multiple-
parameter setting.

19



Published as a conference paper at ICLR 2025

Assumption 9 (Arm optimality, Assumptions 3 in Bastani & Bayati (2020)). There exist constants
h, p∗ > 0 such that P(x ∈ Ui) ≥ p∗ for all i ∈ [K], where

Ui :=

{
x ∈ X | x⊤βi > max

j ̸=i
x⊤βj + h

}
.

Assumption 10 (Compatibility condition on the constrained optimal arm, Assumption 4 in Bastani
& Bayati (2020)). There exists a constant ϕ0 > 0 such that for all i ∈ [K], ϕ(Σi, Si) ≥ ϕ0, where
Σi := E[xx⊤|x ∈ Ui].

Assumption 10 imposes the compatibility condition on the set of features that are optimal for the
i-th arm with large gaps. Although the original statements impose the conditions on a subset of
arms Kopt ⊂ [K], following the proof of Proposition 2 in Bastani & Bayati (2020) reveals that
Kopt = [K] must hold, and we replace it with [K] for simpler comparisons. We define another
set for comparison, which is constructed in the same way as Ui but without the instantaneous gap
condition as follows:

Wi :=

{
x ∈ X | x⊤βi > max

j ̸=i
x⊤βj

}
.

Clearly, Ui ⊂ Wi. Intuitively, Assumption 3 is translated into the converted multiple-parameter
instances as imposing the compatibility condition on a principal sub-matrix of the Gram matrix
generated by the features in Wi, which is weaker than Assumption 10 demonstrated in two steps:
the compatibility condition is imposed on a sub-matrix corresponding to the i-th arm, and the Gram
matrix of interest is generated on a larger set. We rigorously demonstrate the relationship between
the assumptions under the conversion by the following lemma.

Lemma 4. Suppose that Assumption 9 and 10 hold for a multiple-parameter bandit instance that
is converted from a single-parameter instance by a conversion mapping C (Definition 3). Then, for
those multiple-parameter instances, Assumption 3 holds with ϕ2

∗ ≥ Kp∗ϕ2
0 in the original single-

parameter setting.

Proof of Lemma 4. Let (β, {x1, . . . ,xK}) be a single-parameter bandit instance and
C (β, {x1, . . . ,xK}) = (β1, . . . ,βK ,x) be the converted multiple-parameter bandit instance. Note
that for fixed i ∈ [K], if x ∈ Ui, then xi is the optimal arm in the original setting. Let x∗ ∈ Rd be
the optimal feature vector in the single-parameter setting, i.e., x∗ = argmaxi∈[K] x

⊤
i β. Then, we

have

E[x∗x
⊤
∗ ] =

K∑
i=1

E[xix
⊤
i ,x ∈ Wi]

⪰
K∑
i=1

E[xix
⊤
i ,x ∈ Ui]

⪰
K∑
i=1

p∗E[xix
⊤
i | x ∈ Ui] ,

where the first equality holds by the definition of Wi, the first inequality is due to that Ui ⊂ Wi,
and the last inequality holds by Assumption 9. Note that E[xix

⊤
i | x ∈ Ui] is a d × d principal

submatrix of Σi ∈ RKd×Kd. Since Σi satisfies the compatibility condition with constant ϕ0 by
Assumption 10, the compatibility constant for E[xix

⊤
i | x ∈ Ui] must be at least ϕ0. Formally, we
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Figure 3: Illustration of the results of Lemma 4 and Lemma 5. Let C be a conversion mapping
that converts a single-parameter bandit instance into a multiple-parameter one by Kd-dimensional
context vector construction, M1 a set of multiple-parameter instances converted by C satisfying
Assumption 9 and 10, M2 a set of multiple-parameter instances converted by C satisfying Assump-
tion 11, and S a set of single-parameter instances satisfying Assumption 3. By the definition C(S)
denotes the image of S under C which is the set of multiple-parameter instances converted from S
by C. Similarly, C−1(M1) is the inverse image of M1 under C which is the set of single-parameter
instances that map to a member of M1. By Lemma 4, we ensure that C−1(M1) ⊂ S, which means
that our compatibility condition on the optimal arm (Assumption 3) is weaker than those of Bas-
tani & Bayati (2020); Wang et al. (2018) through the conversion mapping C. On the other hand,
Lemma 5 ensures that M1 ⊂ M2.

let Σd×d
i = E[xix

⊤
i |x ∈ Ui] and prove the claim by the following argument:

ϕ2
0 ≤ ϕ2(Σi, Si)

= inf
β∈C(Si)\{0Kd}

s0β
⊤Σiβ

∥βSi
∥21

≤ inf
β∈C(Si)\{0Kd}

βSc
i
=0Kd

s0β
⊤Σiβ

∥βSi
∥21

= inf
β∈C(S0)\{0d}

s0β
⊤Σd×d

i β

∥βS0
∥21

= ϕ2(Σd×d
i , S0) .

Therefore, by the concavity of compatibility constants (Lemma 20), we conclude that Assumption 3
holds with ϕ2

∗ ≥ Kp∗ϕ2
0.

Lemma 4 should be interpreted with particular care. We note that the comparison is possible only
between bandit instances that are converted using the conversion mapping C, and Lemma 4 states
that for those instances, our assumption (Assumption 3) is weaker than those of Bastani & Bayati
(2020); Wang et al. (2018) (Assumptions 9 and 10). However, it does not imply that our analysis
holds for any multiple-parameter instances that satisfy Assumptions 9 and 10. This is trivial given
that our algorithm and assumptions are presented only under the single-parameter setting and there
are multiple-parameter bandit instances that satisfy Assumptions 9 and 10 but do not have corre-
sponding single-parameter instances. If the whole algorithm and analysis were to be transferred to
the multiple-parameter setting, we would require a multiple-parameter counterpart of Assumption 3
that validates the analysis. We introduce such an assumption and compare it with the assumptions
in Bastani & Bayati (2020); Wang et al. (2018).
Assumption 11 (Compatibility condition for the optimal feature). There exists p∗ > 0 such that
P(x ∈ Wi) ≥ p∗ for all i ∈ [K]. There exists ϕ∗ > 0 such that for all i ∈ [K], ϕ(Σ′

i, Si) ≥ ϕ∗,
where Σ′

i := E[xx⊤|x ∈ Wi].
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Assumption 11 does not impose the constraints regarding the gap h in Assumptions 9 and 10, and
hence it is strictly weaker than those. Formally, we introduce the following lemma.
Lemma 5. In the multiple-parameter setting, Assumption 9 and 10 imply Assumption 11.

Proof of Lemma 5. Since Ui ⊂ Wi for all i ∈ [K], we have that P(x ∈ Wi) ≥ P(x ∈ Ui).
Therefore P(x ∈ Ui) ≥ p∗ implies P(x ∈ Wi) ≥ p∗. We also have that E[xx⊤,x ∈ Wi] ⪰
E[xx⊤,x ∈ Ui]. Then, we derive that

E[xx⊤|x ∈ Wi] ⪰ E[xx⊤,x ∈ Wi]

⪰ E[xx⊤,x ∈ Ui]

⪰ p∗E[xx⊤|x ∈ Ui] ,

which implies that ϕ2(Σ′
i, Si) ≥ p∗ϕ2

0.

D ADDITIONAL DISCUSSION ON SPARSITY-AWARENESS

In this section, we provide additional discussion on the sparsity-awareness of our algorithm in com-
parison to sparsity-agnostic algorithms (Oh et al., 2021; Ariu et al., 2022).

Although M0 theoretically depends on s0, s0 does not need to be precisely specified (as long as
it is within a constant factor of s0). For instance, if an upper bound on s0 smaller than the trivial
ambient dimension d exists, this information can be leveraged. Besides, it is essential to note that
M0 does not solely depend on s0 but is a tunable parameter that depends on s0 combined with
other problem-dependent factors that are unknown to the algorithm. Tuning parameters that depend
on unknown factors applies not only to ours, but also to almost all Lasso bandit and parametric
bandit algorithms — such as parameters that depend on the sub-Gaussian parameter of the noise σ
and the upper bound of the norm of the context vector xmax. We do not need to specify each of
those problem parameters separately in practice. Rather, M0 is tuned as a whole. We observe that
our algorithm is not sensitive to the choice of M0 in numerical experiments. Figure 4 shows the
cumulative regret of FS-WLasso under the setting of Experiment 2 with different values of M0 and
shows the robust performances under different values of M0.
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Figure 4: Evaluations of FS-WLasso with various lengths of forced-sampling stage under the setting
of Experiment 2

There is a clear distinction between knowing sparsity and assuming stronger context distributions.
Sparsity is about the unknown parameter β∗, not about context distribution. Whether or not s0
is known in practice, one still needs to tune hyper-parameters — and even if the algorithm is
sparsity-agnostic, there are still hyper-parameters to be tuned anyway with other unknown problem-
dependent factors such as the sub-Gaussian parameter of the noise. Hence, not knowing s0 does not
lead to any increased complexity in practice.
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On the other hand, stronger context distributions employed in the existing literature (e.g., relaxed
symmetry & balanced covariance) are about xt. When context distributions do not satisfy the strong
assumptions in previous literature, algorithms can critically undermine regret performance, with no
recourse for adjustment or guarantees. What is even worse is that such stochastic assumptions on
the context distributions are NOT verifiable in practice, particularly in high dimensions. Our work
primarily focuses on alleviating these stochastic assumptions on context, providing the weakest
conditions on context distribution known to achieve the poly-logarithmic regret.

Besides, there are other works that still incorporate extra stochastic conditions despite knowing
sparsity (Li et al., 2021) or specific optimality criteria for context distributions also under sparsity-
awareness (Bastani & Bayati, 2020; Wang et al., 2018). Even with sparsity-awareness, our work
is the first Lasso bandit result that achieves the poly-logarithmic regret bound without additional
context distributional assumptions after compatibility condition. In this regard, we still provide a
new insight that the previous literature did not know.

To conclude this section, we introduce the fundamental challenges of making our algorithms
sparsity-agnostic. Regret analysis in Lasso bandits necessitates satisfying the compatibility con-
dition of the empirical Gram matrix constructed from previously selected arms. Ensuring this re-
quires (i) an underlying assumption about the compatibility of the expected Gram matrix and (ii) a
sufficient number of samples to guarantee that the empirical Gram matrix concentrates around the
expected Gram matrix. We note that the number of required samples depends on s0 because the
matrix concentration inequality we use (Lemma 30) depends on s0. Therefore, in most sparse linear
bandit algorithms (Kim & Paik, 2019; Li et al., 2021; Oh et al., 2021; Ariu et al., 2022; Chakraborty
et al., 2023), including ours, the maximum regret is incurred during the burn-in phase, where the
compatibility condition of the empirical Gram matrix is not guaranteed, and the length of the burn-in
phase depends on s0 if one would like the tightest bound.

As we demonstrate in Appendix B, the diversity assumptions employed by the previous works (As-
sumptions 4, 7,and 8) are designed to ensure that samples obtained by greedy selections (or even any
other policies) automatically explore the feature space, allowing the algorithm to employ a single
exploitative policy, regardless of which phase it is in. For example, in Oh et al. (2021), the length
of the burn-in phase, denoted by T0, clearly depends on s0 as T0 = O(s20), but their algorithm only
makes greedy selection without explicitly specifying T0. In contrast, in our case (Theorem 2), we
only assume the compatibility condition on the optimal arm. Without the diversity assumptions on
the context distribution, a greedy policy or other exploitative policies no longer ensure the compat-
ibility condition on the empirical Gram matrix. Therefore, our algorithm runs in two phases: the
Forced sampling stage and the Greedy selection stage. At the end of the forced sampling stage,
we expect the compatibility condition on the empirical Gram matrix to be ensured. As a result, the
length of the forced sampling stage depends on s0. We again note that a possible range of s0 is
sufficient to set M0 theoretically, instead of its precise value.

E REGRET BOUND OF FS-WLasso

In this section, we provide proofs for Theorems 2 and 3. We briefly mention some trivial impli-
cations of Assumptions 1 and 2. Under Assumption 1, we have regt = x⊤

t,a∗
t
β∗ − x⊤

t,at
β∗ ≤

∥xt,a∗
t
− xt,at∥∞∥β∗∥1 ≤ 2xmaxb, where the Cauchy-Schwarz inequality and the triangle inequal-

ity are used. The fact that the instantaneous regret is at most 2xmaxb implies that ∆∗ ≤ 2xmaxb,
since otherwise P(∆t > 2xmaxb) ≥ 1 − (2xmaxb/∆∗)α > 0 by Assumption 2, which contradicts
∆t ≤ 2xmaxb.

E.1 PROPOSITION 1

We introduce a proposition that establishes the core parts of the proofs for Theorem 2 and 3.

Proposition 1. Suppose Assumptions 1-3 hold. Let δ ∈ (0, 1] and τ1 ∈ N0 be given. Let τ2 be a
constant that satisfies

τ2 ≥ max

{
C2 log

7d

δ
+ 2C2 log log

28dC2
2

δ
, τ1 +

2048x4
maxs

2
0

ϕ4∗

(
log

d2

δ
+ 2 log

64x2
maxs0
ϕ2∗

)
, 2τ1, w

2M0

}
,
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where C2 = max

{
2,
(

400σx2
maxs0

∆∗ϕ2
∗

)2 (
80x2

maxs0
ϕ2
∗

) 2
α

}
. Suppose the agent runs Algorithm 1 with λt

as follows:

λt = 4σxmax

(√
2w2M0 log

2d

δ
+ 2

3
4

√
(t−M0) log

7d(log 2(t−M0))2

δ

)
.

Define the (weighted) empirical Gram matrix as V̂M0+n =
∑M0

t=1 wxt,atx
⊤
t,at

+∑M0+n
t=M0+1 xt,atx

⊤
t,at

. If the compatibility constant of V̂M0+τ1 satisfies

ϕ2
(
V̂M0+τ1 , S0

)
≥ max

{
4xmaxs0

∆∗

(
80x2

maxs0
ϕ2∗

) 1
α

λM0+τ2 , 64x
2
maxs0 log

1

δ

}
,

then with probability 1−4δ, the estimation error of β̂t satisfies the following for all t ≥ M0+τ2+1:

∥∥∥β∗ − β̂t

∥∥∥
1
≤ 200σxmaxs0

ϕ2∗

√
2 log log 2(t−M0) + log 7d

δ

t−M0
.

Furthermore, under the same event, the cumulative regret from t = M0 + τ1 + 1 to T with T ≥
M0 + τ2 is bounded as the following:

T∑
t=M0+τ1+1

regt ≤ Iτ2 + IT

where

Iτ2 =
5∆∗
4

(
80x2

maxs0
ϕ2∗

)−1− 1
α

(τ2 − τ1 + 1) + 4∆∗ log
1

δ
,

IT =



O
(

1
∆α

∗ (1−α)

(
σx2

maxs0
ϕ2
∗

)1+α

T
1−α
2

(
log d+ log log T

δ

) 1+α
2

)
α ∈ (0, 1) ,

O
(

1
∆∗

(
σx2

maxs0
ϕ2
∗

)2
(log T )

(
log d+ log log T

δ

))
α = 1 ,

O
(

α
(α−1)2 · σ2

∆∗

(
x2
maxs0
ϕ2
∗

)1+ 1
α (

log d+ log 1
δ

))
α > 1 .

Proof of Proposition 1. Let Nτ1(t
′) =

∑M0+τ1+t′

i=M0+τ1+1 1 {ai ̸= a∗i } be the number of sub-optimal
arm selections during the first t′ greedy selections, starting from t = M0 + τ1 + 1. Define the
following events :

Ee =
{
ω ∈ Ω : max

j∈[d]

∣∣∣∣∣
M0∑
i=1

ηi (xi,ai)j

∣∣∣∣∣ ≤ σxmax

√
2M0 log

d

δ

}
,

Eg =

ω ∈ Ω : ∀n ≥ 1,max
j∈[d]

∣∣∣∣∣
M0+n∑

i=M0+1

ηi (xi,ai
)j

∣∣∣∣∣ ≤ 2
3
4σxmax

√
n log

7d (log 2n)
2

δ

 ,

EN (τ1) =

ω ∈ Ω : ∀t′ ≥ 0, Nτ1(t
′) ≤ 5

4

M0+τ1+t′∑
i=M0+τ1+1

min

{
1,

(
2xmax

∆∗

∥∥β∗ − βi−1

∥∥
1

)α}
+ 4 log

1

δ

 ,

E∗(τ1, τ2) =

ω ∈ Ω : ∀t′ ≥ τ2 − τ1 + 1, ϕ2

 M0+τ1+t′∑
t=M0+τ1+1

xt,a∗
t
x⊤
t,a∗

t

 ≥ ϕ2
∗t

′

2

 .

The first two events are concentration inequalities of the noise, which are necessary to guarantee
the error bound of the Lasso estimator. The third event is upper boundedness of the number of
sub-optimal arm selections conditioned on the estimation errors, and the event occurs with high
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probability by the margin condition. The last event is that the compatibility constant of the empirical
Gram matrix of the optimal feature vectors from round t = M0 + τ1 + 1 being bounded below,
which holds with high probability by concentration inequality of matrices and Assumption 3. In
Appendix E.4.1, we show that each event happens with probability at least 1 − δ. By the union
bound, all the events happens with probability at least 1 − 4δ, and we assume that these events are
valid for the rest of the proof.
We first present a lemma that bounds the estimation errors in rounds t = M0 + τ1 + 1 . . .M0 + τ2.

Lemma 6. For each t′ = 0, . . . τ2 − τ1, the estimation error of β̂M0+τ1+t′ is bounded as the
following: ∥∥∥β∗ − β̂M0+τ1+t′

∥∥∥
1
≤ ∆∗

2xmax

(
ϕ2
∗

80x2
maxs0

) 1
α

.

Define N(t′) =
∑M0+τ1+t′

t=M0+τ1+1

(
2xmax

∆∗

∥∥∥β∗ − β̂t−1

∥∥∥
1

)α
. N(t′) is determined by the errors of the

estimators from round M0 + τ1 + 1 to round M0 + τ1 + t′. The following lemma shows that small
N(t′) implies small estimation error in round M0 + τ1 + t′ + 1 when t′ ≥ τ2 − τ1 + 1.

Lemma 7. Suppose t′ ≥ τ2 − τ1 + 1 and N(t′) ≤ ϕ2
∗

80x2
maxs0

t′. Then, the following holds:

∥∥∥β∗ − β̂M0+τ1+t′

∥∥∥
1
≤ 200σxmaxs0

ϕ2∗

√
2 log log 2(τ1 + t′) + log 7d

δ

τ1 + t′
.

Combining the two lemmas and using mathematical induction leads to the following lemma :

Lemma 8. N(t′) ≤ ϕ2
∗

80x2
maxs0

t′ holds for all t′ ≥ 0.

Combining Lemma 7 and Lemma 8, and by setting t = M0 + τ1 + t′, we obtain that for all
t ≥ M0 + τ2 + 1, it holds that

∥∥∥β∗ − β̂t

∥∥∥
1
≤ 200σxmaxs0

ϕ2∗

√
2 log log 2(t−M0) + log 7d

δ

t−M0
,

which proves the first part of the proposition.

To prove the second part of the proposition, define ∆t as the following:

∆t =

∆∗
(

ϕ2
∗

80x2
maxs0

) 1
α

t ≤ M0 + τ2

400σx2
maxs0

ϕ2
∗

√
2 log log 2(t−M0)+log 7d

δ

t−M0
t ≥ M0 + τ2 + 1

.

Note that by Lemmas 6, 7 and 8, for all t ≥ M0 + τ1, it holds that 2xmax

∥∥∥β∗ − β̂t

∥∥∥
1
≤ ∆t. We

utilize the following lemma.

Lemma 9. Let τ ∈ N0 be given. Suppose
{
∆t

}∞
t=0

is a non-increasing sequence of real numbers
that satisfies 2xmax

∥∥β∗ − β̂t

∥∥
1
≤ ∆t for all t ≥ τ . Then, under the event EN (τ), the cumulative

regret from t = τ + 1 to T is bounded as follows:

T∑
t=τ+1

regt ≤ 4∆τ log
1

δ
+

5

4

T−1∑
t=τ

∆t min

{
1,

(
∆t

∆∗

)α
}

.

By Lemma 9 with τ = M0 + τ1, we have

T∑
t=M0+τ1+1

regt ≤ 4∆M0+τ1 log
1

δ
+

5

4

T−1∑
t=M0+τ1

∆
1+α

t

∆α∗
. (7)
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We are left to bound
∑T−1

t=M0+τ1
∆

1+α

t . We separately bound the summation for cases where t ≤
M0 + τ2 and t ≥ M0 + τ2 + 1. For M0 + τ1 ≤ t ≤ M0 + τ2, we have

M0+τ2∑
t=M0+τ1

∆
1+α

t =

M0+τ2∑
t=M0+τ1

∆1+α
∗

(
ϕ2
∗

80x2
maxs0

) 1+α
α

= ∆1+α
∗

(
ϕ2
∗

80x2
maxs0

) 1+α
α

(τ2 − τ1 + 1) .

Note that ∆M0+τ1 = ∆∗
(

ϕ2
∗

80x2
maxs0

) 1
α ≤ ∆∗ by Lemma 21. If we set Iτ2 = 4∆∗ log 1

δ +

5∆∗
4

(
80x2

maxs0
ϕ2
∗

)−1− 1
α

(τ2 − τ1 + 1), then we have

4∆M0+τ1 log
1

δ
+

5

4

M0+τ2∑
t=M0+τ1

∆
1+α

t

∆α∗
≤ Iτ2 . (8)

For t = M0 + τ2 + 1, . . . , T − 1, we have
T−1∑

t=M0+τ2+1

∆
1+α

t =

T−1∑
t=M0+τ2+1

(
400σx2

maxs0
ϕ2∗

)1+α
(
2 log log 2(t−M0) + log 7d

δ

t−M0

) 1+α
2

=

(
400σx2

maxs0
ϕ2∗

)1+α T−M0−1∑
n=τ2+1

(
2 log log 2n+ log 7d

δ

n

) 1+α
2

. (9)

By Lemma 26, we have

T−M0−1∑
n=τ2+1

(
2 log log 2n+ log 7d

δ

n

) 1+α
2

≤


2

1−αT
1−α
2

(
2 log log 2T + log 7d

δ

) 1+α
2 α ∈ (0, 1)

(log T )(2 log log 2T + log 7d
δ ) α = 1

4α
(α−1)2 · (2 log log 2τ2+log 7d

δ )
α+1
2

τ
α−1
2

2

α > 1 .

(10)
Lemma 26 requires τ2 ≥ 8, and it is guaranteed by τ2 ≥ 2048x4

maxs0
ϕ2
∗

(
log d

δ + 2 log
64x2

maxs0
ϕ2
∗

)
≥

8 ×
(
log d

δ + 2 log 4
)
, where the first inequality holds by the choice of τ2 ≥ τ1 +

2048x4
maxs0

ϕ2
∗

(
log d

δ + 2 log
64x2

maxs0
ϕ2
∗

)
, and the second inequality holds by Lemma 21. We need to

check another property of τ2 to simplify the regret when α > 1. Recall that τ2 ≥ C2 log
7d
δ +

2C2 log log
28dC2

2

δ , where C2 = max

{
2,
(

400σx2
maxs0

∆∗ϕ2
∗

)2 (
80x2

maxs0
ϕ2
∗

) 2
α

}
. Then, by Lemma 25 with

C = C2 and b = log 7d
δ , it holds that

∀n ≥ τ2,
2 log log 2n+ log 7d

δ

n
≤
(
400σx2

maxs0
∆∗ϕ2∗

)−2(
80x2

maxs0
ϕ2∗

)− 2
α

. (11)

Therefore, for α > 1, it holds that(
2 log log 2τ2 + log 7d

δ

)α+1
2

τ
α−1
2

2

=

(
2 log log 2τ2 + log 7d

δ

τ2

)α−1
2 (

2 log log 2τ2 +
7d

δ

)

≤
(
400σx2

maxs0
∆∗ϕ2∗

)1−α(
80x2

maxs0
ϕ2∗

) 1−α
α
(
2 log log 2τ2 +

7d

δ

)
.

(12)
Putting Eq. (9), (10), and (12) together, we obtain

T−1∑
t=M0+τ2+1

∆
1+α

t ≤


2

1−α

(
400σx2

maxs0
ϕ2
∗

)1+α

T
1−α
2

(
2 log log 2T + log 7d

δ

) 1+α
2 α ∈ (0, 1)(

400σx2
maxs0

ϕ2
∗

)2
(log T )

(
2 log log 2T + log 7d

δ

)
α = 1

4α∆α−1
∗

(α−1)2

(
400σx2

maxs0
ϕ2
∗

)2 (
80x2

maxs0
ϕ2
∗

) 1
α−1 (

2 log log 2τ2 + log 7d
δ

)
α > 1 .
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Then, we conclude that

5

4

T−1∑
t=M0+τ2+1

∆
1+α

t

∆α∗
≤ IT , (13)

where

IT =



O
(

1
(1−α)∆α

∗

(
σx2

maxs0
ϕ2
∗

)1+α

T
1−α
2

(
log d+ log log T

δ

) 1+α
2

)
α ∈ (0, 1)

O
(

1
∆∗

(
σx2

maxs0
ϕ2
∗

)2
(log T )

(
log d+ log log T

δ

))
α = 1

O
(

α
(α−1)2 · σ2

∆∗

(
x2
maxs0
ϕ2
∗

)1+ 1
α (

log d+ log 1
δ

))
α > 1 .

The proof is complete by combining inequalities (7), (8), and (13).

T∑
t=M0+τ1+1

regt ≤ 4∆M0+τ1 log
1

δ
+

5

4

M0+τ2∑
t=M0+τ1

∆
1+α

t

∆α∗
+

5

4

T−1∑
t=M0+τ2+1

∆
1+α

t

∆α∗

≤ Iτ2 + IT .

E.2 PROOF OF THEOREM 2

Theorem (Formal version of Theorem 2) Suppose Assumptions 1-3 hold. For δ ∈ (0, 1], let τ be a
constant given by

τ = max

{
C2 log

7d

δ
+ 2C2 log log

28dC2
2

δ
,
2048x4

maxs
2
0

ϕ4∗

(
log

d2

δ
+ 2 log

64x2
maxs0
ϕ2∗

)}
,

where C2 = max

{
2,
(

400σx2
maxs0

∆∗ϕ2
∗

)2 (
80x2

maxs0
ϕ2
∗

) 2
α

}
. If we set the input parameters of Algorithm 1

by

M0 = max

{
ρ2
(
100σx2

maxs0
∆∗ϕ2∗

)2(
80x2

maxs0
ϕ2∗

) 2
α
(
2 log log 2τ + log

7d

δ

)
,
2048ρ2x4

maxs
2
0

ϕ4∗
log

2d2

δ

}
,

λt = 4σxmax

(√
2w2M0 log

2d

δ
+ 2

3
4

√
(t−M0) log

7d(log 2(t−M0))2

δ

)
,

w =
√
τ/M0 ,

then with probability at least 1− 5δ, Algorithm 1 achieves the following total regret,

T∑
t=1

regt ≤ 2xmaxbM0 + Iτ + IT ,

where

Iτ = O
(

σ2

∆∗

(
x2
maxs0
ϕ2∗

)1+ 1
α
(
log d+ log

1

δ

))
,

IT =



O
(

1
(1−α)∆α

∗

(
σx2

maxs0
ϕ2
∗

)1+α

T
1−α
2

(
log d+ log log T

δ

) 1+α
2

)
α ∈ (0, 1) ,

O
(

1
∆∗

(
σx2

maxs0
ϕ2
∗

)2
(log T )

(
log d+ log log T

δ

))
α = 1 ,

O
(

α
(α−1)2 · σ2

∆∗

(
x2
maxs0
ϕ2
∗

)1+ 1
α (

log d+ log 1
δ

))
α > 1 .
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Proof of Theorem 1. We prove Theorem 2 by invoking Proposition 1 with τ1 = 0 and τ2 = τ .
Observe that τ satisfies the lower bound condition of τ2 in Proposition 1 since τ1 = 0 and w2M0 =

τ . We must show that the compatibility constant of V̂M0
=
∑M0

i=1 wxi,ai
x⊤
i,ai

satisfies the lower

bound constraint of the proposition. We first show that ϕ2(V̂M0
) ≥ 4xmaxs0

∆∗

(
80x2

maxs0
ϕ2
∗

) 1
α

λM0+τ .

Let Σ̂e =
1

M0

∑M0

t=1 xt,atx
⊤
t,at

. Since at ∼ Unif([K]) for t ≤ M0, the expected value of Σ̂e is

E
[
Σ̂e

]
= E

{xk}K
k=1∼DX

a∼Unif([K])

[
xax

⊤
a

]
.

By the definition of ρ, we have ϕ2

(
E{xk}K

k=1∼DX
a∼Unif([K])

[
xax

⊤
a

])
≥ ϕ2

∗
ρ . By Lemma 22, with probability

at least 1− 2d2 exp
(

ϕ2
∗M0

2048ρ2x4
maxs

2
0

)
, it holds that

ϕ2
(
Σ̂e

)
≥ ϕ2

∗
2ρ

. (14)

Since M0 ≥ 2048ρ2x4
maxs

2
0

ϕ2
∗

log 2d2

δ , inequality (14) holds with probability at least 1 − δ. Note that

V̂M0
=
∑M0

i=1 wxi,ai
x⊤
i,ai

= wM0Σ̂e. Therefore, with probability at least 1− δ, the compatibility
constant of V̂M0

is lower bounded as the following:

ϕ2
(
V̂M0

)
≥ ϕ2

∗
2ρ

wM0 . (15)

By the choice of τ and w, we obtain an upper bound of λM0+τ .

λM0+τ = 4σxmax

(√
2w2M0 log

d

δ
+ 2

3
4

√
τ

(
2 log log 2τ + log

7d

δ

))

≤ 4σxmax

(√
2w2M0

(
2 log log 2τ + log

7d

δ

)
+ 2

3
4

√
w2M0

(
2 log log 2τ + log

7d

δ

))

≤ 25σxmaxw

2

√
M0

(
2 log log 2τ + log

7d

δ

)
, (16)

where the first inequality is due to log d
δ ≤ 2 log log 2τ + log 7d

δ and τ = w2M0, and the last

inequality is 4×
(√

2 + 2
3
4

)
≤ 25

2 . Then, it holds that

4xmaxs0
∆∗

(
80x2

maxs0
ϕ2∗

) 1
α

λM0+τ ≤ 50σx2
maxs0w

∆∗

(
80x2

maxs0
ϕ2∗

) 1
α

√
M0

(
2 log log 2τ + log

7d

δ

)
(17)

≤ ϕ2
∗

2ρ
wM0

≤ ϕ2
(
V̂M0

)
, (18)

where the first inequality comes from inequality (16), the second inequality holds by the choice of

M0 ≥ ρ2
(

100σx2
maxs0

∆∗ϕ2
∗

)2 (
80x2

maxs0
ϕ2
∗

) 2
α (

2 log log 2τ + log 7d
δ

)
, and the last inequality follows by

inequality (15).
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On the other hand, by the choice of w =
√

τ
M0

, τ ≥ 2048x4
maxs

2
0

ϕ4
∗

log 2d2

δ , and M0 ≥
2048ρ2x4

maxs
2
0

ϕ4
∗

log 2d2

δ , it holds that

wM0 =
√
τM0

≥
√(

2048x4
maxs

2
0

ϕ4∗
log

2d2

δ

)(
2048ρ2x4

maxs
2
0

ϕ4∗
log

2d2

δ

)
=

2048ρx4
maxs0

ϕ4∗
log

2d2

δ
.

Then, we have

ϕ2
(
V̂M0

)
≥ ϕ2

∗
2ρ

wM0 (19)

≥ 1024x4
maxs

2
0

ϕ2∗
log

2d2

δ

≥ 64x2
maxs0 log

2d2

δ

≥ 64x2
maxs0 log

1

δ
, (20)

where the third inequality holds by Lemma 21. Putting bounds (17)-(18) and (19)-(20) together, we
obtain

ϕ2
(
V̂M0

)
≥ max

{
4xmaxs0

∆∗

(
80x2

maxs0
ϕ2∗

) 1
α

λM0+τ , 64x
2
maxs0 log

1

δ

}
.

Then, the conditions of Proposition 1 are met with τ1 = 0 and τ2 = τ . Take the union bound
over the event that ϕ2

(
V̂M0

)
≥ ϕ2

∗
2ρwM0 holds and the event of Proposition 1, which happen with

probability at least 1−δ and 1−4δ respectively. Then, with probability at least 1−5δ, the cumulative
regret from t = M0 + 1 to T is bounded by Iτ2 + IT in Proposition 1. Since we know the value of

τ2 − τ1 + 1 = τ + 1 = O
(

σ2

∆2
∗

(
x2
maxs0
ϕ2
∗

)2+ 2
α (

log d+ log 1
δ

))
, we further bound Iτ2 as follows:

Iτ2 = 2∆∗

(
80x2

maxs0
ϕ2∗

)−1− 1
α

(τ2 − τ1 + 1) + log
1

δ

= O
(

σ2

∆∗

(
x2
maxs0
ϕ2∗

)1+ 1
α
(
log d+ log

1

δ

))
.

The cumulative regret of the first M0 rounds is bounded by 2xmaxbM0, which is the maximum
regret possible. The proof is complete by renaming Iτ2 to Iτ .

E.3 PROOF OF THEOREM 3

Theorem (Formal version of Theorem 3) Suppose Assumptions 1-3 hold. Further assume that either
Assumption 4 or Assumptions 6-8 hold. Let ϕG > 0 be a constant that depends on the employed
assumptions, specifically,

ϕ2
G =

{
1

4ξK Under Assumption 4,
ϕ2
2

2νCX
Under Assumptions 6-8.

For δ ∈ (0, 1], let τ be the least even integer that satisfies

τ ≥ max

{
C3 log

7d

δ
+ 2C3 log log

28dC2
3

δ
,
4096x4

maxs
2
0

ϕ4
G

(
log

d2

δ
+ 2 log

64x2
maxs0
ϕ2

G

)
+ 2

}
,
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where C3 = max

{
2,
(

108σx2
maxs0

∆∗ϕ2
G

)2 (
80x2

maxs0
ϕ2
∗

) 2
α

}
. If we set the input parameters of Algorithm 1

by M0 = 0 and λt = 2
11
4 σxmax

√
t log 7d(log 2t)2

δ , then with probability at least 1− 5δ, Algorithm 1
achieves the following total regret.

T∑
t=1

regt ≤
{
Ib + I2(T ) T ≤ τ + 1

Ib + I2(τ + 1) + IT T > τ + 1 ,

where

Ib = 2xmaxb

(
2048x4

maxs
2
0

ϕ2
G

(
log

d2

δ
+ 2 log

64x2
maxs0
ϕ2

G

)
+ 4 log

1

δ

)
,

I2(T ) =



O
(

1
(1−α)∆α

∗

(
σx2

maxs0
ϕ2

G

)1+α

T
1−α
2

(
log d+ log 1

δ

) 1+α
2

)
α ∈ [0, 1) ,

O
(

σ2

∆∗

(
x2
maxs0
ϕ2

G

)2
(log T )

(
log d+ log log T

δ

))
α = 1 ,

O
(

α2

(α−1)2 · σ2

∆∗

(
x2
maxs0
ϕ2

G

)2 (
log d+ log 1

δ

))
α > 1 ,

IT =



O
(

1
(1−α)∆α

∗

(
σx2

maxs0
ϕ2
∗

)1+α

T
1−α
2

(
log d+ log log T

δ

) 1+α
2

)
α ∈ (0, 1) ,

O
(

1
∆∗

(
σx2

maxs0
ϕ2
∗

)2
(log T )

(
log d+ log log T

δ

))
α = 1 ,

O
(

α
(α−1)2 · σ2

∆∗

(
x2
maxs0
ϕ2
∗

)1+ 1
α (

log d+ log 1
δ

))
α > 1 .

Proof of Theorem 3. From Lemma 1 and Lemma 3, we know that the greedy diversity, defined in
Definition 2, holds with compatibility constant ϕG. Let τ0 =

2048x4
maxs

2
0

ϕ4
G

(
log d2

δ + 2 log
64x2

maxs0
ϕ2

G

)
.

We present a lemma about the greedy diversity.

Lemma 10. Under the greedy diversity (Definition 2), suppose Algorithm 1 runs with M0 = 0.
Define the empirical Gram matrix as V̂t =

∑t
i=1 xi,ai

x⊤
i,ai

. For δ ∈ (0, 1], let EGD be the event
that the compatibility constant of the empirical Gram matrix being lower bounded for big enough t.
Specifically,

EGD =

{
ω ∈ Ω : ∀t ≥ τ0 + 1, ϕ2

(
V̂t, S0

)
≥ ϕ2

Gt

2

}
.

Then, we have P (EGD) ≥ 1− δ.

We prove the theorem under the events EGD, Eg , EN (τ0), EN (τ), and E∗( 12τ, τ). By Lemma 10 and
Lemma 13-15, each of the events holds with probability at least 1 − δ, and by the union bound, all
the events happen with probability at least 1− 5δ. Next lemma states a regret bound of Algorithm 1
that is independent of Assumption 3.

Lemma 11. Suppose Assumptions 1, 2 hold and DX satisfies the greedy diversity (Definition 2).
Suppose Algorithm 1 runs as in Theorem 3. Then, under the events EGD, Eg , and EN (τ0), the
cumulative regret is bounded as the following:

T∑
t=1

regt ≤ Ib + I2(T ) ,
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where

Ib = 2xmaxb

(
2048x4

maxs
2
0

ϕ2
G

(
log

d2

δ
+ 2 log

64x2
maxs0
ϕ2

G

)
+ 4 log

1

δ

)
,

I2(T ) =



O
(

1
(1−α)∆α

∗

(
σx2

maxs0
ϕ2

G

)1+α

T
1−α
2

(
log d+ log 1

δ

) 1+α
2

)
α ∈ [0, 1) ,

O
(

1
∆∗

(
σx2

maxs0
ϕ2

G

)2
(log T )

(
log d+ log log T

δ

))
α = 1 ,

O
(

α2

(α−1)2∆∗

(
σx2

maxs0
ϕ2

G

)2 (
log d+ log 1

δ

))
α > 1 .

We can assume that ϕ2
∗ ≥ ϕ2

G by the Remark 6. If ϕ∗ ≈ ϕG, or specifically ϕ2
∗ ≤ 8ϕ2

G, then
Theorem 3 reduces to Lemma 11 by replacing ϕ∗ with ϕG and adjusting the constant factors appro-
priately. Lemma 11 is also sufficient to prove the theorem when T ≤ τ + 1. We suppose ϕ2

∗ ≥ 8ϕ2
G

and T > τ + 1 from now on.
We invoke Proposition 1 with τ1 = 1

2τ and τ2 = τ . We must first show that τ satisfies the
lower bound condition of τ2 in Proposition 1. Since we suppose ϕ2

∗ ≥ 8ϕ2
G, C3 in the state-

ment of Theorem 3 is greater than C2 in the statement of Proposition 1. Hence, we have τ ≥
C2 log

7d
δ +2C2 log log

28dC2
2

δ . τ trivially satisfies the rest of the lower bound conditions of τ2 when

τ1 = 1
2τ and M0 = 0. Now, we must show that ϕ2

(
V̂ 1

2 τ
, S0

)
satisfies the lower bound constraint

in Proposition 1. As we have chosen τ to satisfy τ ≥ 4096x4
maxs

2
0

ϕ4
G

(
log d2

δ + 2 log
64x2

maxs0
ϕ2

G

)
+ 2,

we have 1
2τ ≥ 2048x4

maxs
2
0

ϕ4
G

(
log d2

δ + 2 log
64x2

maxs0
ϕ2

G

)
+ 1 = τ0 + 1. Then, under the event EGD,

ϕ2
(
V̂ 1

2 τ

)
≥ ϕ2

Gτ
4 holds. By the choice of τ and Lemma 25, we have

2 log log 2τ + log 7d
δ

τ
≤
(

∆∗ϕ2
G

108σx2
maxs0

)2(
ϕ2
∗

80x2
maxs0

) 2
α

.

Then, we have

λτ = 2
11
4 σxmax

√
τ log

7d(log 2τ)2

δ

= 2
11
4 σxmaxτ

√
2 log log 2τ + log 7d

δ

τ

≤ 2
11
4 σxmaxτ

(
∆∗ϕ2

G

108σx2
maxs0

)(
ϕ2
∗

80x2
maxs0

) 1
α

=
∆∗ϕ2

Gτ

16xmaxs0

(
ϕ2
∗

80x2
maxs0

) 1
α

.

Therefore, it holds that

4xmaxs0
∆∗

(
80x2

maxs0
ϕ2∗

) 1
α

λτ ≤ ϕ2
Gτ

4
(21)

≤ ϕ2
(
V̂ 1

2 τ

)
. (22)

On the other hand, by τ ≥ 4096x4
maxs0

ϕ4
G

(
log d2

δ + 2 log
64x2

maxs0
ϕ2

G

)
, we have

ϕ2
(
V̂ 1

2 τ

)
≥ ϕ2

Gτ

4
(23)

≥ 1024x4
maxs

2
0

ϕ2
G

(
log

d2

δ
+ 2 log

64x2
maxs0
ϕ2

G

)
≥ 64x2

maxs0 log
1

δ
, (24)
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where the last inequality holds by Lemma 21. Putting inequalities (21)-(22) and (23)-(24) together,
we obtain

ϕ2
(
V̂ 1

2 τ

)
≥ max

{
4xmaxs0

∆∗

(
80x2

maxs0
ϕ2∗

) 1
α

λτ , 64x
2
maxs0 log

1

δ

}
.

Then, the conditions of Proposition 1 hold with τ1 = 1
2τ and τ2 = τ . By the first part of Proposi-

tion 1, we obtain

∥∥∥β∗ − β̂t

∥∥∥
1
≤ 200σxmaxs0

ϕ2∗

√
2 log log t+ 7d

δ

t

for t > τ . On the other hand, by inequality (33) from the proof of Lemma 11, we obtain

∥∥∥β∗ − β̂t

∥∥∥
1
≤ 27σxmaxs0

ϕ2
G

√
2 log log 2t+ log 7d

δ

t

for t ≥ τ0 + 1. Define ∆t as follows:

∆t =


54σx2

maxs0
ϕ2

G

√
2 log log 2t+log 7d

δ

t t ≤ τ

400σx2
maxs0

ϕ2
∗

√
2 log log t+ 7d

δ

t t > τ .

Then, 2xmax

∥∥∥β∗ − β̂t

∥∥∥
1
≤ ∆t holds for all t ≥ τ0+1, and ∆t is decreasing in t since we assumed

that ϕ2
∗ ≥ 8ϕ2

G. By Lemma 9, it holds that

T∑
t=τ0+1

regt ≤ 4∆τ0 log
1

δ
+

5

4

T−1∑
t=τ0

∆t min

{
1,

(
∆t

∆∗

)α
}

. (25)

Following the proof of Proposition 1, especially inequality (13), we obtain that

5

4

T−1∑
t=τ+1

∆t

(
∆t

∆∗

)α

≤ IT .

Following the proof of Lemma 11, we observe that

τ∑
t=1

regt ≤
τ0∑
t=1

regt + 4∆τ0 log
1

δ
+

5

4

τ∑
t=τ0

∆t min

{
1,

(
∆t

∆∗

)α
}

≤ 2xmaxb

(
τ0 + 4 log

1

δ

)
+ I2(τ + 1) . (26)

Combining Eq. (25) and (26), we conclude that

T∑
t=1

regt ≤ 2xmaxb

(
τ0 + 4 log

1

δ

)
+ I2(τ + 1) + IT .

32



Published as a conference paper at ICLR 2025

E.4 PROOF OF TECHNICAL LEMMAS IN APPENDIX E.1-E.3

E.4.1 HIGH PROBABILITY EVENTS

We prove that the events assumed in the proof of Proposition 1 hold with high probability. Recall
the definitions of the events.

Ee =
{
ω ∈ Ω : max

j∈[d]

∣∣∣∣∣
M0∑
i=1

ηi (xi,ai
)j

∣∣∣∣∣ ≤ σxmax

√
2M0 log

d

δ

}
,

Eg =

ω ∈ Ω : ∀n ≥ 1,max
j∈[d]

∣∣∣∣∣
M0+n∑

i=M0+1

ηi (xi,ai
)j

∣∣∣∣∣ ≤ 2
3
4σxmax

√
n log

7d (log 2n)
2

δ

 ,

EN (n) =

ω ∈ Ω : ∀t′ ≥ 0, Nn(t
′) ≤ 5

4

M0+n+t′∑
i=M0+n+1

min

{
1,

(
2xmax

∆∗

∥∥β∗ − βi−1

∥∥
1

)α}
+ 4 log

1

δ

 ,

E∗(τ1, τ2) =

ω ∈ Ω : ∀t′ ≥ τ2 − τ1 + 1, ϕ2

 M0+τ1+t′∑
t=M0+τ1+1

xt,a∗
t
x⊤
t,a∗

t

 ≥ ϕ2
∗t

′

2

 .

Lemma 12. We have P (Ee) ≥ 1− δ.

Proof of Lemma 12. Recall that Ft is the σ-algebra generated by(
{xτ,i}τ∈[t],i∈[K], {aτ}τ∈[t], {rτ,aτ

}τ∈[t−1]

)
. Fix j ∈ [d]. By sub-Gaussianity of

ηt, E [esηt | Ft] ≤ e
s2σ2

2 for all s ∈ R. Since (xt,at
)j is Ft-measurable, we get

E
[
esηt(xt,at )j | Ft

]
≤ es

2(xt,at )
2
jσ

2/2 ≤ es
2x2

maxσ
2/2. Therefore, {ηt(xt,at)j}M0

t=1 is a se-
quence of conditionally σxmax-sub-Gaussian random variables. Then, by the Azuma-Hoeffding
inequality, we have

P

(∣∣∣∣∣
M0∑
t=1

ηt(xt,at
)j

∣∣∣∣∣ ≤ σxmax

√
2M0 log

2

δ

)
≤ δ .

Take the union bound over j ∈ [d] and obtain

P (Ec
e) = P

(
max
j∈[d]

∣∣∣∣∣
M0∑
t=1

ηt(xt,at
)j

∣∣∣∣∣ ≤ σxmax

√
2M0 log

2d

δ

)

≤
d∑

j=1

P

(∣∣∣∣∣
M0∑
t=1

ηt(xt,at
)j

∣∣∣∣∣ ≤ σxmax

√
2M0 log

2d

δ

)
≤ δ .

Lemma 13. We have P (Eg) ≥ 1− δ.

Proof of Lemma 13. Fix j ∈ [d]. Following the same argument as in the proof of Lemma 12,
{ηt(xt,at

)j}∞t=M0+1 is a sequence of conditionally σxmax-sub-Gaussian random variables. By
Lemma 27, it holds that

P

∣∣∣∣∣∣
M0+t′∑

i=M0+1

ηi(xi,ai)j

∣∣∣∣∣∣ ≥ 2
3
4σxmax

√
t′ log

7(log 2t′)2

δ

 ≤ δ .

Taking the union bound over j ∈ [d] concludes the proof.

Lemma 14. For any n ∈ N0, we have P (EN (n)) ≥ 1− δ.
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Proof of Lemma 14. Let Yi = 1
{
aM0+n+i ̸= a∗M0+n+i

}
. Define F+

t to be the σ-algebra generated
by
(
{xτ,i}τ∈[t],i∈[K], {aτ}τ∈[t], {rτ,aτ

}τ∈[t]

)
. Note that the only difference between Ft and F+

t is
that F+

t is also generated by rt,at
. Yi is F+

M0+n+i-measurable. By Lemma 29, with probability at
least 1− δ, the following holds for all t′ ≥ 1:

t′∑
i=1

Yi ≤
5

4

t′∑
i=1

E
[
Yi | F+

M0+n+i−1

]
+ 4 log

1

δ
. (27)

By Lemma 24, Yi = 1 happens only when ∆ti ≤ 2xmax

∥∥β∗ − β̂ti−1

∥∥
1
, where ti = M0 + n + i.

By Assumption 2, P
(
∆ti ≤ 2xmax

∥∥∥β∗ − β̂ti−1

∥∥∥
1
| F+

ti−1

)
≤
(

2xmax

∆∗

∥∥∥β∗ − β̂ti−1

∥∥∥
1

)α
, where

we use the fact that β̂ti−1 is F+
ti−1-measurable and ∆t is independent of F+

ti−1. Then, we have

E
[
Yi | F+

ti−1

]
= P

(
Yi = 1 | F+

ti−1

)
≤ P

(
∆ti ≤ 2xmax

∥∥∥β∗ − β̂ti−1

∥∥∥
1
| F+

ti−1

)
≤
(
2xmax

∆∗

∥∥∥β∗ − β̂ti−1

∥∥∥
1

)α

.

On the other hand, E
[
Yi | F+

ti−1

]
has a trivial upper bound of 1. Therefore, we deduce that

E
[
Yi | F+

ti−1

]
≤ min

{
1,

(
2xmax

∆∗

∥∥∥β∗ − β̂ti−1

∥∥∥
1

)α}
(28)

Plug in inequality (28) to (27) and we obtain the desired result.

Lemma 15. If τ2 ≥ τ1+
2048x4

maxs
2
0

ϕ4
∗

(
log d2

δ + 2 log
64x2

maxs0
ϕ2
∗

)
, then we have P (E∗(τ1, τ2)) ≥ 1−δ.

Proof of Lemma 15. Let V̂∗
t′ =

∑M0+τ1+t′

t=M0+τ1+1 xt,a∗
t
x⊤
t,a∗

t
. Note that E

[
V̂∗

t′

]
=∑M0+τ1+t′

t=M0+τ1+1 E
[
x∗x⊤

∗
]

= t′Σ∗. By Assumption 3, ϕ2
(
E
[
V̂∗

t′

]
, S0

)
≥ ϕ2

∗t
′ . By

Lemma 23, with probability at least 1 − δ, ϕ2
(
V̂∗

t′ , S0

)
≥ ϕ2

∗t
′

2 holds for all t′ ≥
2048x4

maxs
2
0

ϕ4
∗

(
log d2

δ + 2 log
64x2

maxs0
ϕ2
∗

)
+ 1. Since τ2 ≥ τ1 +

2048x4
maxs

2
0

ϕ4
∗

(
log d2

δ + 2 log
64x2

maxs0
ϕ2
∗

)
,

t′ ≥ τ2 − τ1 + 1 implies t′ ≥ 2048x4
maxs

2
0

ϕ4
∗

(
log d2

δ + 2 log
64x2

maxs0
ϕ2
∗

)
+ 1. Therefore, we conclude

that E∗(τ1, τ2) ≥ 1− δ.

E.4.2 PROOF OF LEMMA 6

Proof of Lemma 6. We apply Lemma 19, using the constraints of ϕ2
(
V̂M0+τ1 , S0

)
. Under the

events Ee and Eg , it holds that for t ≥ M0,

max
j∈[d]

∣∣∣∣∣
M0∑
i=1

wηi(xi,ai
)j +

t∑
i=M0+1

ηi(xi,ai
)j

∣∣∣∣∣
≤ max

j∈[d]
w

∣∣∣∣∣
M0∑
i=1

ηi(xi,ai
)j

∣∣∣∣∣+max
j∈[d]

∣∣∣∣∣
t∑

i=M0+1

ηi(xi,ai
)j

∣∣∣∣∣
≤ σxmax

(
w

√
2M0 log

2d

δ
+ 2

3
4

√
(t−M0) log

7d(log 2(t−M0))2

δ

)
,

which implies

max
j∈[d]

∣∣∣∣∣
M0∑
i=1

wηi(xi,ai
)j +

t∑
i=M0+1

ηi(xi,ai
)j

∣∣∣∣∣ ≤ λt

4
. (29)
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For t′ ≥ 0, we have ϕ2
(
V̂M0+τ1+t′ , S0

)
≥ ϕ2

(
V̂M0+τ1 , S0

)
≥ 4xmaxs0

∆∗

(
80x2

maxs0
ϕ2
∗

) 1
α

λM0+τ2

by the condition of Proposition 1. By Lemma 19, it holds that∥∥∥β∗ − β̂M0+τ1+t′

∥∥∥
1
≤ 2s0λM0+τ1+t′

4xmaxs0
∆∗

(
80x2

maxs0
ϕ2
∗

) 1
α

λM0+τ2

≤ 2s0

4xmaxs0
∆∗

(
80x2

maxs0
ϕ2
∗

) 1
α

=
∆∗

2xmax

(
ϕ2
∗

80x2
maxs0

) 1
α

,

where the second inequality holds since λt is increasing in t and t′ ≤ τ2 − τ1.

E.4.3 PROOF OF LEMMA 7

Proof of Lemma 7. Decompose V̂M0+τ1+t′ as follows:

V̂M0+τ1+t′ = V̂M0+τ1 +

M0+τ1+t′∑
i=M0+τ1+1

xi,ai
x⊤
i,ai

= V̂M0+τ1 +

M0+τ1+t′∑
i=M0+τ1+1

(
xi,ai

x⊤
i,ai

− xi,a∗
i
x⊤
i,a∗

i

)
+

M0+τ1+t′∑
i=M0+τ1+1

xi,a∗
i
x⊤
i,a∗

i

= V̂M0+τ1 +

M0+τ1+t′∑
i=M0+τ1+1

1 {ai ̸= a∗i }
(
xi,aix

⊤
i,ai

− xi,a∗
i
x⊤
i,a∗

i

)
+

M0+τ1+t′∑
i=M0+τ1+1

xi,a∗
i
x⊤
i,a∗

i

= V̂M0+τ1 +

M0+τ1+t′∑
i=M0+τ1+1

1 {ai ̸= a∗i }xi,ai
x⊤
i,ai

−
M0+τ1+t′∑

i=M0+τ1+1

1 {ai ̸= a∗i }xi,a∗
i
x⊤
i,a∗

i

+

M0+τ1+t′∑
i=M0+τ1+1

xi,a∗
i
x⊤
i,a∗

i
.

Note that ϕ2
(
V̂M0+τ1 , S0

)
≥ 64x2

maxs0 log
1
δ holds by the assumption of Proposition 1. By

Lemma 21, ϕ2
(∑M0+τ1+t′

i=M0+τ1+1 1
{
ai ̸= a∗i

}
xi,ai

x⊤
i,ai

, S0

)
and ϕ2

(
− ∑M0+τ1+t′

i=M0+τ1+1 1
{
ai ̸=

a∗i
}
xi,a∗

i
x⊤
i,a∗

i
, S0

)
are lower bounded by 0 and −16x2

maxs0Nτ1(t
′) respectively. Under the event

E∗(τ1, τ2), ϕ2
(∑M0+τ1+t′

i=M0+τ1+1 xi,a∗
i
x⊤
i,a∗

i
, S0

)
≥ ϕ2

∗t
′

2 holds when t′ > τ2 − τ1. By combining the
lower bounds and by concavity of compatibility constant (Lemma 20), we have

ϕ2
(
V̂M0+τ1+t′

)
≥ 64x2

maxs0 log
1

δ
− 16x2

maxs0Nτ1(t
′) +

ϕ2
∗t

′

2
. (30)

Under the event EN (τ1), we have Nτ1(t
′) ≤ 5

4N(t′) + 4 log 1
δ . We supposed that N(t′) ≤

ϕ2
∗

80x2
maxs0

t′. Combining these facts, we have Nτ1(t
′) ≤ ϕ2

∗
64x2

maxs0
t′ + 4 log 1

δ . Then, together with

Eq. (30), ϕ2
(
V̂M0+τ1+t′

)
≥ ϕ2

∗
4 t′ holds.

On the other hand, since t′ > τ2 − τ1 ≥ τ1, it holds that t′ ≥ τ1+t′

2 . Then, we obtain the following
lower bound of ϕ2

(
V̂M0+τ1+t′

)
:

ϕ2
(
V̂M0+τ1+t′

)
≥ ϕ2

(
V̂

M0+τ1+
τ1+t′

2

)
≥ ϕ2

∗
8
(τ1 + t′) .

As shown in Eq. (29), under the events Ee, Eg , it holds that

maxj∈[d]

∣∣∣∑M0

i=1 wηi(xi,ai
)j +

∑t
i=M0+1 ηi(xi,ai

)j

∣∣∣ ≤ λt

4 . Therefore, by Lemma 19, we
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have that∥∥∥β∗ − β̂M0+τ1+t′

∥∥∥
1
≤ 2s0λM0+τ1+t′

ϕ2
∗
8 (τ1 + t′)

=
64σxmaxs0
ϕ2∗(τ1 + t′)

(√
2w2M0 log

2d

δ
+ 2

3
4

√
(τ1 + t′)(2 log log 2(τ1 + t′) + log

7d

δ

)
.

From w2M0 ≤ τ2 ≤ τ1 + t′ and log 2d
δ ≤ 2 log log 2(τ1 + t′) + log 7d

δ , we obtain∥∥∥β∗ − β̂M0+τ1+t′

∥∥∥
1
≤ 64σxmaxs0

ϕ2∗(τ1 + t′)

(√
2w2M0 log

2d

δ
+ 2

3
4

√
(τ1 + t′)(2 log log 2(τ1 + t′) + log

7d

δ

)

≤ 64σxmaxs0
ϕ2∗(τ1 + t′)

((√
2 + 2

3
4

)√
(τ1 + t′)(2 log log 2(τ1 + t′) + log

7d

δ

)

≤ 200σxmaxs0
ϕ2∗

√
2 log log 2(τ1 + t′) + log 7d

δ

τ1 + t′
,

where the last inequality used the fact 64×
(√

2 + 2
3
4

)
≤ 200.

E.4.4 PROOF OF LEMMA 8

Proof of Lemma 8. By Lemma 6, for 1 ≤ t′ ≤ τ2 − τ1 + 1, it holds that

N(t′) ≤
M0+τ1+t′∑

t=M0+τ1+1

(
2xmax

∆∗

∥∥∥β∗ − β̂t−1

∥∥∥
1

)α

≤
M0+τ1+t′∑

t=M0+τ1+1

ϕ2
∗

80x2
maxs0

=
ϕ2
∗

80x2
maxs0

t′ .

To prove that the inequality holds for t′ ≥ τ2 − τ1 + 1, we use mathematical induction on t′.
Suppose N(t′) ≤ ϕ2

∗
80x2

maxs0
t′ holds for some t′ ≥ τ2 − τ1 + 1. We must prove that it implies

N(t′ + 1) ≤ ϕ2
∗

80x2
maxs0

(t′ + 1). By Lemma 7, we have

∥∥∥β∗ − β̂M0+τ1+t′

∥∥∥
1
≤ 200σxmaxs0

ϕ2∗

√
2 log log 2(τ1 + t′) + log 7d

δ

τ1 + t′
.

Note that for n ≥ τ2, 2 log log 2n+log 7d
δ

n ≤
(

∆∗ϕ
2
∗

400σx2
maxs0

)2 (
ϕ2
∗

80x2
maxs0

) 2
α

holds, which is shown in
Eq. (11). Since τ1 + t′ ≥ τ2, we have∥∥∥β∗ − β̂M0+τ1+t′

∥∥∥
1
≤ ∆∗

2xmax

(
80x2

maxs0
ϕ2∗

) 1
α

.

Therefore, we have

N(t′ + 1) = N(t′) +

(
2xmax

∆∗

∥∥∥β∗ − β̂M0+τ1+t′

∥∥∥
1

)α

≤ ϕ2
∗

80x2
maxs0

t′ +
ϕ2
∗

80x2
maxs0

=
ϕ2
∗

80x2
maxs0

(t′ + 1) .

By mathematical induction, N(t′) ≤ ϕ2
∗

80x2
maxs0

t′ holds for all t′ ≥ τ2 − τ1 + 1.
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E.4.5 PROOF OF LEMMA 9

Proof of Lemma 9. By Lemma 24, the instantaneous regret in round t ≥ τ + 1 is at most ∆t−1,
i.e., regt ≤ 2xmax∥β∗ − β̂t−1∥1 ≤ ∆t−1. Define Nτ (t) =

∑τ+t
i=τ+1 1 {ai ̸= a∗i }. The cumulative

regret from round t = τ + 1 to T is bounded as the following:

T∑
t=τ+1

regt ≤
T∑

t=τ+1

∆t−11 {at ̸= a∗t }

=

T∑
t=τ+1

∆t−1 (Nτ (t− τ)−Nτ (t− τ − 1))

=

T−τ∑
t′=1

∆τ+t′−1 (Nτ (t
′)−Nτ (t

′ − 1)) . (31)

To show that the bound above is increasing in Nτ (t
′) for t′ ≥ 1, we rewrite Eq. (31) using the

summation by parts technique as follows:

T−τ∑
t′=1

∆τ+t′−1 (Nτ (t
′)−Nτ (t

′ − 1)) =

T−τ∑
t′=1

∆τ+t′−1Nτ (t
′)−

T−τ−1∑
t′=0

∆τ+t′Nτ (t
′)

= ∆T−1Nτ (T − τ) +

T−τ−1∑
t′=1

(
∆τ+t′−1 −∆τ+t′

)
Nτ (t

′) .

(32)

Since ∆t is non-increasing, we have ∆τ+t′−1 − ∆τ+t′ ≥ 0. One can observe that the value of
Eq. (32) increases when Nτ (t

′) is replaced by a larger value for t′ ≥ 1. Under the event EN (τ),

it holds that Nτ (t
′) ≤ 5

4

∑τ+t′

i=τ+1 min
{
1,
(

∆i−1

∆∗

)α}
+ 4 log 1

δ for all t′ ≥ 1. Replace Nτ (t
′) by

5
4

∑τ+t′

i=τ+1 min
{
1,
(

∆i−1

∆∗

)α}
+ 4 log 1

δ for t′ ≥ 1 in Eq. (31) and obtain the desired upper bound.

T−τ∑
t′=1

∆τ+t′−1 (Nτ (t
′)−Nτ (t

′ − 1))

≤ ∆τ

(
5

4
min

{
1,

(
∆τ

∆∗

)α
}

+ 4 log
1

δ

)
+

T∑
t=τ+2

∆t−1 ·
5

4
min

{
1,

(
∆t−1

∆∗

)α}

= 4∆τ log
1

δ
+

5

4

T−1∑
t=τ

∆t min

{
1,

(
∆t−1

∆∗

)α}
.

E.4.6 PROOF OF LEMMA 10

Proof of Lemma 10. Let F+
t be the σ-algebra generated by(

{xτ,i}τ∈[t],i∈[K], {aτ}τ∈[t], {rτ,aτ
}τ∈[t]

)
. Then, xt,at

and β̂t are F+
t -measurable. Under

the greedy diversity, we have that for all t ≥ 1,

ϕ2
(
E
[
xt,at

x⊤
t,at

| F+
t−1

]
, S0

)
= ϕ2

(
E
[
xβ̂t−1

x⊤
β̂t−1

| F+
t−1

]
, S0

)
≥ ϕ2

G .

By Lemma 23, with probability at least 1 − δ, ϕ2
(
V̂t, S0

)
≥ ϕ2

Gt
2 holds for all t ≥

2048x4
maxs

2
0

ϕ4
G

(
log d2

δ + 2 log
64x2

maxs0
ϕ2

G

)
+ 1 = τ0 + 1.
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E.4.7 PROOF OF LEMMA 11

Proof of Lemma 11. By Lemma 19, under the events Eg and EGD, the estimation error of β̂t for
t ≥ τ0 + 1 is bounded as follows:∥∥∥β∗ − β̂t

∥∥∥
1
≤ 2s0λt

ϕ2
Gt

2

=
2

19
4 σxmaxs0

ϕ2
G

√
2 log log 2t+ log 7d

δ

t

≤ 27σxmaxs0
ϕ2

G

√
2 log log 2t+ log 7d

δ

t
. (33)

Define ∆t as follows:

∆t =
54σx2

maxs0
ϕ2

G

√
2 log log 2t+ log 7d

δ

t
.

Then, 2xmax

∥∥β∗ − β̂t

∥∥
1
≤ ∆t for all t ≥ τ0 + 1, and ∆t is decreasing in t. Therefore, we can use

Lemma 9 with τ = τ0, which gives the following upper bound of cumulative regret:
T∑

t=τ0+1

regt ≤ 4∆τ0 log
1

δ
+

5

4

T−1∑
t=τ0

∆t min

{
1,

(
∆t

∆∗

)α
}

.

We first address the case where α ≤ 1. Plugging in the definition of ∆t, We have
T∑

t=τ0+1

regt ≤ 4∆τ0 log
1

δ
+

5

4

T−1∑
t=τ0

∆
1+α

t

∆α∗

= 4∆τ0 log
1

δ
+

5

4∆α∗

(
54σx2

maxs0
ϕ2

G

)1+α T−1∑
t=τ0

(
2 log log 2t+ log 7d

δ

t

) 1+α
2

. (34)

By Lemma 26, we bound the sum as the following:

T−1∑
t=τ0

(
2 log log 2t+ log 7d

δ

t

) 1+α
2

≤
{

2
1−αT

1−α
2

(
2 log log 2T + log 7d

δ

)
α ∈ [0, 1)

(log T )
(
2 log log 2T + log 7d

δ

)
α = 1 .

(35)

By combining inequalities (34) and (35), we conclude that
T∑

t=τ0+1

regt ≤ 4∆τ0 log
1

δ
+ I2(T ) ,

where

I2(T ) =


O
(

1
(1−α)∆α

∗

(
σx2

maxs0
ϕ2

G

)1+α

T
1−α
2

(
log d+ log log T

δ

))
α ∈ [0, 1) ,

O
((

σx2
maxs0
ϕ2

G

)2
(log T )

(
log d+ log log T

δ

))
α = 1 .

Now, suppose α > 1. We need more sophisticated analysis to bound the regret in this case. Let τ ′0
be a constant that satisfies the following:

∀n ≥ τ ′0,
2 log log 2τ ′0 + log 7d

δ

τ ′0
≤
(
54σx2

maxs0
∆∗ϕ2

G

)−2

. (36)

By Lemma 25, it is sufficient to take τ ′0 = C ′
0 log

7d
δ + 2C ′

0 log log
28dC′

0
2

δ , where C ′
0 =

max

{
2,
(

54σx2
maxs0

∆∗ϕ2
G

)2}
. Now, we bound the cumulative regret as the following:

T∑
t=τ0+1

regt ≤ 4∆τ0 log
1

δ
+

5

4

τ ′
0∑

t=τ0

∆t +
5

4

T−1∑
t=τ ′

0+1

∆
1+α

t

∆α∗
, (37)
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where the sum
∑τ ′

0
t=τ0

∆t is treated as 0 when τ0 > τ ′0. Plug the definition of ∆t into the first
summation and obtain

τ ′
0∑

t=τ0

∆t =
54σx2

maxs0
ϕ2

G

τ ′
0∑

t=τ0

√
2 log log 2t+ log 7d

δ

t
.

By Lemma 26 with r = 1
2 , we have

τ ′
0∑

t=τ0

√
2 log log 2t+ log 7d

δ

t
≤ 2

√
τ ′0

(
2 log log 2τ ′0 + log

7d

δ

)

= 2τ ′0

√
2 log log 2τ ′0 + log 7d

δ

τ ′0
.

By constraint (36) of τ ′0, we achieve

5

4

τ ′
0∑

t=τ0

∆t ≤
5

4

(
54σx2

maxs0
ϕ2

G

)
· 2τ ′0

√
2 log log 2τ ′0 + log 7d

δ

τ ′0

≤ 5τ ′0
2

(
54σx2

maxs0
ϕ2

G

)(
54σx2

maxs0
∆∗ϕ2

G

)−1

≤ 5∆∗τ ′0
2

= O
(

1

∆∗

(
σx2

maxs0
ϕ2

G

)2(
log d+ log

1

δ

))
. (38)

For the last summation in inequality (37), we have

T−1∑
t=τ ′

0+1

∆
1+α

t =

(
54σx2

maxs0
ϕ2

G

)1+α T−1∑
t=τ ′

0+1

(
2 log log 2t+ log 7d

δ

t

) 1+α
2

≤
(
54σx2

maxs0
ϕ2

G

)1+α

· 4α

(α− 1)2
·
(
2 log log 2τ ′0 + log 7d

δ

)α+1
2

τ ′0
α−1
2

,

where the equality holds by the definition of ∆t, and the inequality comes from Lemma 26. Again
by constraint (36), we have(

2 log log 2τ ′0 +
7d
δ

)α+1
2

τ ′0
α−1
2

≤
(
54σx2

maxs0
∆∗ϕ2

G

)1−α(
2 log log 2τ ′0 + log

7d

δ

)
.

Then, we have

5

4

T−1∑
t=τ ′

0+1

∆
1+α

t

∆α∗
≤ 5α

(α− 1)2

(
54σx2

maxs0
ϕ2

G

)2(
2 log log 2τ ′0 + log

7d

δ

)

= O
(

α

(α− 1)2∆∗

(
σx2

maxs0
ϕ2

G

)2(
log d+ log

1

δ

))
. (39)

Plugging in inequalities of Eq. (38) and Eq. (39) into Eq. (37) yields
T∑

t=τ0+1

regt ≤ 4∆τ0 log
1

δ
+ I2(T ) ,

where

I2(T ) = O
(

α2

(α− 1)2∆∗

(
σx2

maxs0
ϕ2

G

)2(
log d+ log

1

δ

))
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in case α > 1.
Putting all together, for any α ≥ 0, we obtain

T∑
t=τ0+1

regt ≤ 4∆τ0 log
1

δ
+ I2(T ) , (40)

where

I2(T ) =



O
(

1
(1−α)∆α

∗

(
σx2

maxs0
ϕ2

G

)1+α

T
1−α
2

(
log d+ log log T

δ

))
α ∈ [0, 1] ,

O
((

σx2
maxs0
ϕ2

G

)2
(log T )

(
log d+ log log T

δ

))
α = 1 ,

O
(

α2

(α−1)2∆∗

(
σx2

maxs0
ϕ2

G

)2 (
log d+ log 1

δ

))
α > 1 .

We bound the cumulative regret of first τ0 rounds by 2xmaxbτ0, which is the maximum regret pos-
sible. We also bound ∆τ0 ≤ 2xmaxb, since ∆τ0 represents the maximum instantaneous regret in
round t = τ0 + 1. Together with Eq. (40), we obtain

T∑
t=1

regt ≤ 2max b

(
τ0 + 4 log

1

δ

)
+ I2(T ) .

F FORCED SAMPLING WITH LASSO (FS-Lasso)

In this section, we present FS-Lasso, an algorithm that uses forced-sampling adaptively. We prove
that FS-Lasso is capable of bounding the expected regret even when T is unknown. The regret
bound matches the regret bound of FS-WLasso.
Forced-sampling algorithms in the existing literature (Goldenshluger & Zeevi, 2013; Bastani &
Bayati, 2020) are designed for the multiple parameter setting where each arm has its own hidden
parameter and one context feature vector is given at each round. Additionally, the compatibility
assumptions employed by Bastani & Bayati (2020) (Assumption 4 in (Bastani & Bayati, 2020)) in-
volve the compatibility condition of the expected Gram matrix of the optimal context vectors when
the gap is large enough (measured by h in (Bastani & Bayati, 2020)). This assumption enables a
more straightforward regret analysis because it implies that a small estimation error is guaranteed if
the agent chooses the optimal arm only when it is clearly distinguishable from the others. However,
our assumption (Assumption 3) does not imply such a convenient guarantee. Furthermore, Bastani
& Bayati (2020) make an additional assumption (Assumption 3 in (Bastani & Bayati, 2020)), stating
that some subset of arms is always sub-optimal with a gap of at least h (denoted by Ksub in (Bastani
& Bayati, 2020)), and the probability of observing an optimal context corresponding to the rest of
the arms with a sub-optimality gap h is lower-bounded by p∗.
We consider the single parameter setting where there is one unknown reward parameter vector and
multiple feature vectors for each arm are given at each round. We emphasize that directly translat-
ing assumptions or theoretical guarantees across these different settings is either not trivial or not
optimal, or usually both. Under Assumptions 1-3, we show that FS-Lasso achieves the same regret
bound as FS-WLasso without constraining the expected Gram matrix of the optimal arms only to
cases where the sub-optimality gap is large, or a lower bound on the probability of observing such a
large sub-optimality gap.

F.1 ALGORITHM: FS-Lasso

For a non-empty set of index I, let us define LI(β) as follows:

LI(β) :=
1

|I|
∑
i∈I

(
x⊤
i,ai

β − ri,ai

)2
40
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Algorithm 2 FS-Lasso (Forced Sampling with Lasso)

1: Input: Forced sampling function q : N0 → R≥0, localization parameter h > 0, regularization
parameters λ1, {λ2,t}t≥1

2: Initialize: Te(1) = Tg(1) = ∅, β̃0 = β̂0 = 0d

3: for t = 1, 2, ..., T do
4: Observe {xt,k}Kk=1
5: if |Te(t)| ≤ q(|Tg(t)|) then
6: Choose at ∼ Unif(A) and observe rt,at

7: Te(t+ 1) = Te(t) ∪ {t}
8: β̃|Te(t+1)| = argminβ LTe(t+1)(β) + λ1∥β∥1
9: else

10: ãt = argmaxk∈[K] x
⊤
t,kβ̃|Te(t)|

11: if x⊤
t,ãt

β̃|Te(t)| > maxk ̸=ãt
x⊤
t,kβ̃|Te(t)| + h then

12: Choose at = ãt
13: else
14: Choose at = argmaxk∈[K] x

⊤
t,kβ̂|Tg(t)|

15: end if
16: Observe rt,at

17: Tg(t+ 1) = Tg(t) ∪ {t}
18: Update β̂|Tg(t+1)| = argminβ LTg(t+1) + λ2,t∥β∥1
19: end if
20: end for

F.2 REGRET BOUND OF FS-Lasso

Theorem 4. Suppose Assumptions 1-3 hold. If the agent runs Algorithm 2 with the input parameters
as

q(n) =
512ρ2x4

maxs
2
0 log 2d

2(n+ 1)3

ϕ4∗
max

{
4,

4σ2

∆2∗

(
128x2

maxs0
ϕ2∗

) 2
α

}
, h =

∆∗
2

(
ϕ2
∗

128x2
maxs0

) 1
α

,

λ1 =
ϕ2
∗h

2ρxmaxs0
, λ2,t = 4σxmax

√
2 log 4d(|Tg(t)|+ 1)2

t
,

then, the expected cumulative regret is bounded as follows:

E

[
T∑

t=1

regt

]
≤ 2xmaxbI0 + IT ,

where

I0 = O
(
q(T ) +

x4
maxs

2
0

ϕ4∗
log d

)
,

IT ≤


O
(

1
(1−α)∆α

∗

(
σx2

maxs0
ϕ2
∗

)1+α

T
1−α
2 (log d+ log T )

1+α
2

)
α ∈ (0, 1) ,

O
(

1
∆∗

(
σx2

maxs0
ϕ2
∗

)
(log T )(log d+ log T )

)
α = 1 ,

O
(

1
(α−1)∆∗

(
σx2

maxs0
ϕ2
∗

)2
(log d+ log T )

)
α > 1 .

F.3 PROOF OF THEOREM 4

Proof of Theorem 4. We define Tg to be the set of rounds that take greedy actions, and Te to be the
set of rounds that take random actions. We define ng(t) = |Tg ∩ [t]| to be the number of greedy
selections up to round t, and ne(t) = |Te ∩ [t]| to be the number of random selections up to round t.
We first bound the estimation error of β̃, the estimator obtained by forced-sampled arms.
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Lemma 16. Suppose q(n) and λ1 of Algorithm 2 satisfy q(n) ≥
ρ2x4

maxs
2
0

ϕ4
∗

max
{
2048 log 2d2(n+ 1)3, 512σ2

h2 log 2d(n+ 1)3
}

and λ1 =
ϕ2
∗h

4ρxmaxs0
. Define an

event Γe(t) =
{
ω ∈ Ω :

∥∥∥β∗ − β̃|Te(t)|

∥∥∥
1
≤ h

2xmax

}
. Then, for all t ∈ Tg , P (Γe(t)

c) ≤ 2
ng(t)3

.

We further define a set T −
g (t) =

{
i ∈ T (t+ 1) | ng(i) ≥

⌊
ng(t)+1

2

⌋
+ 1
}

. T −
g (t) is the set of

rounds that the latter half of the greedy actions are made, rounded up. Note that
∣∣T −

g (t)
∣∣ = ⌈ng(t)

2

⌉
.

We show that the number of sub-optimal arm selections during the latter half of the greedy actions
is bounded with high probability.

Lemma 17. Let N−(t) =
∑

i∈T −
g (t) 1 {ai ̸= a∗i }. N−(t) is the num-

ber of sub-optimal arm selections during the latter half of the greedy ac-
tions. Let ΓN−(t) =

{
ω ∈ Ω : N−(t) ≤ ϕ2

∗
64x2

maxs0

⌈
ng(t)

2

⌉}
. If the in-

put parameters of Algorithm 2 satisfy h ≤ ∆∗
2

(
ϕ∗

128x2
maxs0

) 1
α

, q(n) ≥
ρ2x4

maxs
2
0

ϕ4
∗

max
{
2048 log 2d2(n+ 1)3, 512σ2

h2 log 2d(n+ 1)3
}
log 2d2(n+ 1)3, and λ1 =

ϕ2
∗h

4ρxmaxs0
,

then P (ΓN−(t)c) ≤ 19
ng(t)2

+ exp
(
− ng(t)ϕ

4
∗

16384x4
maxs

2
0

)
.

Finally, we bound the estimation error of β̂ when the majority of the samples are obtained from
greedy actions.

Lemma 18. Suppose t ∈ Tg , λ2,t = 4σxmax

√
2 log 4dng(t)2

t , and ng(t) ≥ ne(t). Define an event

Γg(t) =

{
ω ∈ Ω :

∥∥∥β∗ − β̂|Tg(t)|

∥∥∥
1
< 128σxmaxs0

ϕ2
∗

√
2 log 4dng(t)2

t

}
. Then, P (Γg(t)

c) ≤ 20
ng(t)2

+

exp
(
− ϕ4

∗ng(t)

16384x4
maxs

2
0

)
+ 2d2 exp

(
− ϕ4

∗ng(t)

4096x4
maxs

2
0

)
.

Now, we bound the total regret of Algorithm 2. We observe that there are at most ne(T ) random
actions. We set T0 = max

{
ne(T ),

8192x4
maxs

2
0

ϕ4
∗

log d
}

. For all random actions and the first T0 greedy
actions, we bound the incurred regret by 2xmaxb · 2T0, which is the maximum regret possible. Now,
we bound the regret incurred by the greedy selections from ng(t) = T0 + 1. We decompose the
expected instantaneous regret in round t as follows:

E [regt] ≤ E [regt1 {Γe(t)
c}] + E [regt1 {Γg(t)

c}] + E [regt1 {regt > 0,Γe(t),Γg(t)}] .

The first two terms are the regret when good events do not hold. We take 2xmaxb as the upper bound
of the instantaneous regret in this case, and bound the terms using Lemmas 16 and 18.

E [regt1 {Γe(t)
c}] + E [regt1 {Γg(t)

c}]
≤ 2xmaxb (P (Γe(t)

c) + P (Γg(t)
c))

≤ 2xmaxb

(
2

ng(t)3
+

20

ng(t)2
+ exp

(
− ϕ4

∗ng(t)

16384x4
maxs

2
0

)
+ 2d2 exp

(
− ϕ4

∗ng(t)

4096x4
maxs

2
0

))
≤ 2xmaxb

(
22

ng(t)2
+ exp

(
− ϕ4

∗ng(t)

16384x4
maxs

2
0

)
+ 2d2 exp

(
− ϕ4

∗ng(t)

4096x4
maxs

2
0

))
.

42



Published as a conference paper at ICLR 2025

The sum of the expected regret when the good events do not hold is bounded as the following:

ng(T )∑
ng(t)=T0+1

E [regt1 {Γe(t)
c}] + E [regt1 {Γg(t)

c}]

≤
ng(T )∑

ng(t)=T0+1

2xmaxb

(
22

ng(t)2
+ exp

(
− ϕ4

∗ng(t)

16384x4
maxs

2
0

)
+ 2d2 exp

(
− ϕ4

∗ng(t)

4096x4
maxs

2
0

))

≤ 88xmaxb+ 2xmaxb

∫ ∞

T0

exp

(
− ϕ4

∗x
16384x4

maxs
2
0

)
+ 2d2 exp

(
− ϕ4

∗x
4096x4

maxs
2
0

)
dx

≤ 88xmaxb+ 2xmaxb

(
16384x4

maxs
2
0

ϕ4∗
exp

(
− ϕ4

∗T0

16384x4
maxs

2
0

)
+

8192d2x4
maxs

2
0

ϕ4∗
exp

(
− ϕ4

∗T0

4096x4
maxs

2
0

))
.

By the fact that T0 ≥ 8192x4
maxs

2
0

ϕ4
∗

log d, the exponential in the last term is bounded by

exp
(
− ϕ4

∗T0

4096x4
maxs

2
0

)
≤ 1

d2 . We obtain the bound of cumulative regret without the good events,
which is a constant independent of T .

ng(T )∑
ng(t)=T0+1

E [regt1 {Γe(t)
c}] + E [regt1 {Γg(t)

c}] ≤ 88xmaxb+
49152x5

maxbs
2
0

ϕ4∗
.

Now, we are left to bound the cumulative regret when the good events Γg(t),Γe(t) hold. We
first show that if the agent chooses at = ãt by the if clause in line 11, since x⊤

t,ãt
β̃|Te(t)| >

maxk ̸=ãt
x⊤
t,kβ̃|Te(t)| + h is satisfied, then under Γe(t), at = a∗t holds. Suppose not, then we have

x⊤
t,ãt

β̃ne(t) > x⊤
t,a∗

t
β̃ne(t) + h. On the other hand, we have x⊤

t,a∗
t
β∗ − x⊤

t,ãt
β∗ ≥ 0. Combining

these two inequalities, we obtain

h <
(
x⊤
t,ãt

β̃ne(t) − x⊤
t,a∗

t
β̃ne(t)

)
+
(
x⊤
t,a∗

t
β∗ − x⊤

t,ãt
β∗
)

= x⊤
t,ãt

(
β̃ne(t) − β∗

)
+ x⊤

t,a∗
t

(
β∗ − β̃ne(t)

)
≤ 2xmax

∥∥∥β∗ − β̃ne(t)

∥∥∥
1
,

where we apply the Cauchy-Schwarz inequality for the last inequality. However, under Γe(t), it
holds that

∥∥∥β∗ − β̃ne(t)

∥∥∥
1
≤ h

2xmax
, which is a contradiction since h < h.

Therefore, under the event Γe(t), at ̸= A∗
t occurs only when the agent performs a greedy action

according to β̂|Tg(t)| by the else clause in line 13. By Lemma 24, the instantaneous regret is at most

2xmax

∥∥∥β∗ − β̂|Tg(t)|

∥∥∥
1
≤ 256σx2

maxs0
ϕ2
∗

√
2 log 4dng(t)2

t . Lemma 24 further tells us that the regret is

greater than 0 only when ∆t ≤ 256σx2
maxs0

ϕ2
∗

√
2 log 4dng(t)2

t . Therefore, we deduce that

E [regt1 {regt > 0,Γe(t),Γg(t)}]

≤ E

[
256σx2

maxs0
ϕ2∗

√
2 log 4dng(t)2

t
· 1
{
∆t ≤

256σx2
maxs0

ϕ2∗

√
2 log 4dng(t)2

t

}]

≤
(
256σx2

maxs0
ϕ2∗

√
2 log 4dng(t)2

t

)
P

(
∆t ≤

256σx2
maxs0

ϕ2∗

√
2 log 4dng(t)2

t

)

≤
(
256σx2

maxs0
ϕ2∗

√
2 log 4dng(t)2

t

)
min

{
1,

(
256σx2

maxs0
∆∗ϕ2∗

√
2 log 4dng(t)2

t

)α}

≤
(
256σx2

maxs0
ϕ2∗

√
2 log 4dT 2

ng(t)

)
min

{
1,

(
256σx2

maxs0
∆∗ϕ2∗

√
2 log 4dT 2

ng(t)

)α}
,
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where the third inequality holds by the margin condition, and the last inequality by ng(t) ≤ t ≤ T .
We separately deal with the cases α ≤ 1 and α > 1. The expected cumulative regret under the good
events when α ≤ 1 is bounded as the following:

ng(T )∑
ng(t)=T0+1

E [regt1 {regt > 0,Γe(t),Γg(t)}]

≤
ng(T )∑

ng(t)=T0+1

(
256σx2

maxs0
ϕ2∗

√
2 log 4dT 2

t

)
min

{
1,

(
256σx2

maxs0
∆∗ϕ2∗

√
2 log 4dT 2

ng(t)

)α}

≤
ng(T )∑

ng(t)=T0+1

1

∆α∗

(
256σx2

maxs0
ϕ2∗

√
2 log 4dT 2

ng(t)

)1+α

≤ 1

∆α∗

(
256σx2

maxs0
√
2 log 4dT 2

ϕ2∗

)1+α ng(T )∑
ng(t)=T0+1

1

ng(t)
1+α
2

≤ 1

∆α∗

(
256σx2

maxs0
√
2 log 4dT 2

ϕ2∗

)1+α T∑
n=T0+1

1

n
1+α
2

.

If α < 1, we have
∑T

n=T0+1 n
− 1+α

2 ≤ 2
1−αT

1−α
2 . If α = 1, then

∑T
n=T0+1 n

−1 ≤ log T . Then,
we obtain the desired upper bound of the expected cumulative regret under the good events.

ng(T )∑
ng(t)=T0+1

E [regt1 {regt > 0,Γe(t),Γg(t)}] ≤O
(

1
(1−α)∆α

∗

(
σx2

maxs0
ϕ2
∗

)1+α

T
1−α
2 (log d+ log T )

1+α
2

)
α ∈ (0, 1)

O
(

1
∆∗

(
σx2

maxs0
ϕ2
∗

)
(log T )(log d+ log T )

)
α = 1 .

(41)

Now, we address the case where α > 1. Let T1 =
(

256σx2
maxs0

∆∗ϕ2
∗

)2
·
(
2 log 4dT 2

)
. We first sum the

regret until ng(t) = T1.

T1∑
ng(t)=T0+1

E [regt1 {regt > 0,Γe(t),Γg(t)}]

≤
T1∑

ng(t)=T0+1

(
256σx2

maxs0
ϕ2∗

√
2 log 4dT 2

ng(t)

)
min

{
1,

(
256σx2

maxs0
∆∗ϕ2∗

√
2 log 4dT 2

ng(t)

)α}

≤
T1∑

ng(t)=T0+1

256σx2
maxs0

ϕ2∗

√
2 log 4dT 2

ng(t)

=
256σx2

maxs0
√

2 log 4dT 2

ϕ2∗

T1∑
ng(t)=T0+1

1√
ng(t)

≤ 256σx2
maxs0

√
2 log 4dT 2

ϕ2∗
·
√
T1

2

=
1

2∆∗

(
256σx2

maxs0
ϕ2∗

)2

(2 log 4dT 2) .
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Then, we bound the sum of regret from ng(t) = T1 + 1 to T .
ng(T )∑

ng(t)=T1+1

E [regt1 {regt > 0,Γe(t),Γg(t)}]

≤
T∑

ng(t)=T1+1

(
256σx2

maxs0
ϕ2∗

√
2 log 4dT 2

ng(t)

)
min

{
1,

(
256σx2

maxs0
∆∗ϕ2∗

√
2 log 4dT 2

ng(t)

)α}

≤
T∑

ng(t)=T1+1

(
256σx2

maxs0
ϕ2∗

√
2 log 4dT 2

ng(t)

)(
256σx2

maxs0
∆∗ϕ2∗

√
2 log 4dT 2

ng(t)

)α

=
1

∆α∗

(
256σx2

maxs0
√
2 log 4dT 2

ϕ2∗

)1+α T∑
ng(t)=T1+1

1

ng(t)
1+α
2

.

The summation is upper bounded by
T∑

ng(t)=T1+1

1

ng(t)
1+α
2

≤
∫ T

T1

1

x
1+α
2

dx

≤
∫ ∞

T1

1

x
1+α
2

dx

≤ 2

α− 1
T

1−α
2

1

=
2

α− 1

(
256σx2

maxs0
√
2 log 4dT 2

∆∗ϕ2∗

)1−α

.

Therefore, we obtain that
ng(T )∑

ng(t)=T1+1

E [regt1 {regt > 0,Γe(t),Γg(t)}] ≤
2

(α− 1)∆∗

(
256σx2

maxs0
ϕ2∗

)2

(2 log 4dT 2) .

(42)
Combining inequalities of Eq. (41) and Eq. (42), we obtain that

ng(T )∑
ng(t)=T0+1

E [regt1 {regt > 0,Γe(t),Γg(t)}] ≤ IT ,

where

IT ≤


O
(

1
(1−α)∆α

∗

(
σx2

maxs0
ϕ2
∗

)1+α

T
1−α
2 (log d+ log T )

1+α
2

)
α ∈ (0, 1) ,

O
(

1
∆∗

(
σx2

maxs0
ϕ2
∗

)
(log T )(log d+ log T )

)
α = 1 ,

O
(

1
(α−1)∆∗

(
σx2

maxs0
ϕ2
∗

)2
(log d+ log T )

)
α > 1 .

Putting all together, we obtain

E

[
T∑

t=1

regt

]
≤ 4xmaxbT0 + 88xmaxb+

49152x5
maxbs

2
0

ϕ4∗
+ IT .

which is the desired result.

F.4 PROOF OF TECHNICAL LEMMAS

F.4.1 PROOF OF LEMMA 16

Proof of Lemma 16. We use Lemma 19 with wt =
1

|Te(t)| . Define Σ̂
g

t = 1
|Te(t)|

∑
i∈Te(t)

xi,ai
x⊤
i,ai

.

The lemma requires two events to hold: lower-boundedness of ϕ2
(
Σ̂

g

t , S0

)
and
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maxj∈[d]
1

|Te(t)|

∣∣∣∑i∈Te(t)
ηi(xi,ai

)j

∣∣∣ ≤ λ1

4 . Since Σ̂
g

t is the empirical Gram matrix of ran-

domly chosen features, its expectation is Σ = 1
KE

[∑K
k=1 xt,kx

⊤
t,k

]
. Then, by Lemma 22, with

probability at least 1 − 2d2 exp
(
− ϕ4

∗|Te(t)|
2048ρ2x4

maxs
2
0

)
, ϕ2

(
Σ̂

g

t , S0

)
≥ ϕ2

∗
2ρ . Since {ηi(xi,ai

)j}iTe(t)

is a sequence of conditionally σxmax sub-Gaussian random variables as shown in the proof of
Lemma 12, we apply the Azuma-Hoeffding inequality and obtain

P

 1

|Te(t)|

∣∣∣∣∣∣
∑

i∈Te(t)

ηi(xi,ai
)j

∣∣∣∣∣∣ ≥ λ1

4

 ≤ 2 exp

(
− λ2

1|Te(t)|
32σ2x2

max

)
.

Taking the union bound over j ∈ [d] and plugging in the definition of λ1 yields

P

max
j∈[d]

1

|Te(t)|

∣∣∣∣∣∣
∑

i∈Te(t)

ηi(xi,ai
)j

∣∣∣∣∣∣ ≥ λ1

4

 ≤ 2d exp

(
− ϕ4

∗h
2|Te(t)|

512ρ2σ2x4
maxs

2
0

)
.

Lemma 19 guarantees that under the two events, it holds that∥∥∥β∗ − β̃|Te(t)|

∥∥∥
1
≤ 2s0λ1

ϕ2
∗

2ρ

=
h

2xmax
.

By taking the union bound over the two events, we conclude that

P (Γe(t)
c) ≤ 2d2 exp

(
− ϕ4

∗|Te(t)|
2048ρ2x4

maxs
2
0

)
+ 2d exp

(
− ϕ4

∗h
2|Te(t)|

512ρ2σ2x4
maxs

2
0

)
.

Since t ∈ Tg , we know that |Te(t)| > q(|Tg(t)|) and Tg(t) + 1 = ng(t). By q(n) ≥
ρ2x4

maxs
2
0

ϕ4
∗

max
{
2048 log 2d2(n+ 1)3, 512σ2

h2 log 2d(n+ 1)3
}

, we obtain

2d2 exp

(
− ϕ4

∗|Te(t)|
2048ρ2x4

maxs
2
0

)
+ 2d exp

(
− ϕ4

∗h
2|Te(t)|

512ρ2σ2x4
maxs

2
0

)
≤ 2d2 exp

(
− ϕ4

∗q(|Tg(t)|)
2048ρ2x4

maxs
2
0

)
+ 2d exp

(
− ϕ4

∗h
2q(|Tg(t)|)

512ρ2σ2x4
maxs

2
0

)
≤ 2d2 exp

(
− log 2d2(|Tg(t)|+ 1)3

)
+ 2d exp

(
− log 2d(|Tg(t)|+ 1)3

)
=

1

(|Tg(t)|+ 1)3
+

1

(|Tg(t)|+ 1)3

=
2

ng(t)3
,

which is the desired result.

F.4.2 PROOF OF LEMMA 17

Proof of Lemma 17. By the union bound, we have

P (ΓN−(t)c) ≤ P

ΓN−(t)c,
⋃

i∈T −
g (t)

Γe(i)

+
∑

i∈T −
g (t)

P (Γe(i)
c) .
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By Lemma 16, the summation is bounded as the following:∑
i∈T −

g (t)

P (Γe(i)
c) ≤

∑
i∈T −

g (t)

2

ng(i)3

≤ 2(⌊
ng(t)

2

⌋
+ 1
)3 +

∑
ng=

⌈
ng(t)

2

⌉
+1

2

n3
g

≤ 16

ng(t)3
+

∫ ng(t)

ng(t)

2

2

x3
dx

=
16

ng(t)3
+

3

ng(t)2

≤ 19

ng(t)2
.

Under the event Γe(i), ∆i > 2h implies that for any a ̸= a∗i , it holds that

x⊤
i,a∗

i
β̃|Te(i)| − x⊤

i,aβ̃|Te(i)| > (x⊤
i,a∗

i
β̃|Te(i)| − x⊤

i,aβ̃|Te(i)|)−
(
x⊤
i,a∗

i
β∗ − x⊤

i,aβ
∗
)
+ 2h

= x⊤
i,a∗

i

(
β̃|Te(i)| − β∗

)
+ x⊤

i,a

(
β∗ − β̃|Te(i)|

)
+ 2h

≥ −2xmax

∥∥∥β̃|Te(i)| − β∗
∥∥∥
1
+ 2h

≥ h .

Then, the agent chooses ai = a∗i in round i. Taking the contraposition, it means that ai ̸= a∗i implies
∆i ≤ 2h under the event Γe(i). Then, we have that

P

ΓN−(t)c,
⋃

i∈T −
g (t)

Γe(i)

 ≤ P

 ∑
i∈T −

g (t)

1 {∆i ≤ 2h} >
ϕ2
∗

64x2
maxs0

⌈
ng(t)

2

⌉ .

{1 {∆i ≤ 2h}}i∈T −
g (t) is a sequence of independent Bernoulli random variables, whose expectation

is at most
(

2h
∆∗

)α
=

ϕ2
∗

128x2
maxs0

by the margin condition and the definition of h. Then, by Hoeffding’s
inequality, we have

P

 ∑
i∈T −

g (t)

1 {∆i ≤ 2h} >
ϕ2
∗

64x2
maxs0

⌈
ng(t)

2

⌉
= P

 ∑
i∈T −

g (t)

(1 {∆i ≤ 2h} − E [1 {∆i ≤ 2h}]) > ϕ2
∗

64x2
maxs0

⌈
ng(t)

2

⌉
−

∑
i∈T −

g (t)

E [1 {∆i ≤ 2h}]


≤ P

 ∑
i∈T −

g (t)

(1 {∆i ≤ 2h} − E [1 {∆i ≤ 2h}]) > ϕ2
∗

128x2
maxs0

⌈
ng(t)

2

⌉
≤ exp

(
−2

⌈
ng(t)

2

⌉(
ϕ2
∗

128x2
maxs0

)2
)

≤ exp

(
− ng(t)ϕ

4
∗

16384x4
maxs

2
0

)
.

Combining all together, we obtain

P (ΓN−(t)c) ≤ 19

ng(t)2
+ exp

(
− ng(t)ϕ

4
∗

16384x4
maxs

2
0

)
.

47



Published as a conference paper at ICLR 2025

F.4.3 PROOF OF LEMMA 18

Proof of Lemma 18. Define the empirical Gram matrix of the latter half of the greedy actions as
Σ̂

−
t = 1

|T −
g (t)|

∑
i∈T −

g (t) xi,ai
x⊤
i,ai

. Define the empirical Gram matrix of optimal features of the

latter half of the greedy actions as Σ̂
∗−
t = 1

|T −
g (t)|

∑
i∈T −

g (t) xi,a∗
i
x⊤
i,a∗

i
. We decompose Σ̂

−
t as

follows:

Σ̂
−
t =

1

|T −
g (t)|

∑
i∈T −

g (t)

xi,ai
x⊤
i,ai

=
1

|T −
g (t)|

∑
i∈T −

g (t)

xi,a∗
i
x⊤
i,a∗

i
+

1

|T −
g (t)|

∑
i∈T −

g (t)

1 {ai ̸= a∗i }
(
xi,ai

x⊤
i,ai

− xi,a∗
i
x⊤
i,a∗

i

)
= Σ̂

∗−
t +

1

|T −
g (t)|

∑
i∈T −

g (t)

1 {ai ̸= a∗i }xi,aix
⊤
i,ai

− 1

|T −
g (t)|

∑
i∈T −

g (t)

1 {ai ̸= a∗i }xi,a∗
i
x⊤
i,a∗

i
.

By Lemma 22, with probability at least 1 − 2d2 exp
(
− ng(t)ϕ

4
∗

4096x4
maxs

2
0

)
, ϕ2(Σ̂

∗
t− , S0) ≥ ϕ2

∗
2 . The

compatibility constant of the second term is lower bounded by 0. The compatibility constant of
the last term is lower bounded by − N−(t)

|T −
g (t)| · 16x

2
maxs0 by Lemma 21. By the concavity of the

compatibility constant, we have

ϕ2
(
Σ̂

−
t , S0

)
≥ ϕ2

∗
2

− 16x2
maxs0N

−(t)

|T −
g (t)| .

Under the event ΓN−(t), it holds that 16x2
maxs0N

−(t)

|T −
g (t)| ≥ ϕ2

∗
4 . Therefore, we have ϕ2

(
Σ̂

−
t , S0

)
≥ ϕ2

∗
4 .

Let Σ̂t = 1
t

∑t
i=1 xi,ai

xi,ai
. Then, since ng(t) ≥ ne(t) and |T −

g (t)| =
⌈
ng(t)

2

⌉
, we deduce that

|T −
g (t)| ≥ t

4 . Then, it holds that

ϕ2
(
Σ̂t, S0

)
≥ |Tg(t)|

t
ϕ2
(
Σ̂

−
t

)
≥ 1

4
· ϕ

2
∗
4

=
ϕ2
∗

16
.

By the choice of λ2,t = 4σxmax

√
2 log 4dng(t)2

t and Lemma 19, for t ∈ Tg ,

P

(∥∥∥β̂ng(t) − β∗
∥∥∥
1
≥ 128σxmaxs0

ϕ2∗

√
2 log 4dng(t)2

t
, ϕ2(Σ̂

−
t , S0) ≥

ϕ2
∗
2
,ΓN−(t)

)
≤ 1

ng(t)2
.

By the union bound, we have

P (Γg(t)
c) ≤ P

(
Γg(t)

c, ϕ2(Σ̂
−
t , S0) ≥

ϕ2
∗
2
,ΓN−(t)

)
+ P

(
ϕ2(Σ̂

−
t , S0) <

ϕ2
∗
2

)
+ P (ΓN−(t)c)

≤ 1

ng(t)2
+

19

ng(t)2
+ 2d2 exp

(
− ϕ4

∗ng(t)

4096x4
maxs

2
0

)
+ exp

(
− ϕ4

∗ng(t)

16384x4
maxs

2
0

)
,

which completes the proof.

G TECHNICAL LEMMAS FOR APPENDICES E AND F

In this section, we state and prove the lemmas used for the analysis of Appendices E and F.
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G.1 ORACLE INEQUALITY FOR WEIGHTED SQUARED ERROR LASSO ESTIMATOR

We present the oracle inequality for the weighted squared error Lasso estimator. The proof mainly
follows the proof of the standard Lasso oracle inequality with the compatibility condition (Bühlmann
& Van De Geer, 2011), but with adaptive samples and weights. We provide the whole proof for
completeness.
Lemma 19. Let β∗ ∈ Rd be the true parameter vector and {xt}nt=1 be a sequence of random
vectors in Rd adapted to a filtration {Ft}nt=0. Let rt be the noised observation given by x⊤

t β
∗ + ηt,

where ηt is a real-valued random variable that is Ft+1-measurable. For non-negative constants
w1, w2, . . . , wn and λn > 0, define the weighted squared error Lasso estimator by

β̂ = argmin
β∈Rd

λn ∥β∥1 +
n∑

t=1

wt

(
rt − x⊤

t β
)2

. (43)

Let V̂n =
∑n

t=1 wtxtx
⊤
t and assume ϕ2

(
V̂n, S0

)
≥ ϕ2

n > 0. Then, under the event{
ω ∈ Ω : maxj∈[d]

∣∣∣∑n
t=1 wtηt (xt)j

∣∣∣ ≤ λn

4

}
, β̂ satisfies∥∥∥β∗ − β̂
∥∥∥
1
≤ 2λns0

ϕ2
n

.

Proof of Lemma 19. Define Xw = (
√
w1x1

√
w2x2 · · · √wnxn) ∈ Rd×n, rw =

(
√
w1r1

√
w2r2 · · · √

wnrn)
⊤ ∈ Rn, and ηw = (

√
w1η1

√
w2r2 · · · √wnηn)

⊤ ∈ Rn.
The minimization problem (43) can be rewritten as

argmin
β∈Rd

λn ∥β∥1 +
∥∥rw −X⊤

wβ
∥∥2
2
.

Since β̂ achieves the minimum, it holds that

λn∥β̂∥1 +
∥∥∥rw −X⊤

wβ̂
∥∥∥2
2
≤ λn∥β∗∥1 +

∥∥rw −X⊤
wβ∗∥∥2

2
. (44)

Using that rw = ηw +X⊤
wβ∗, expand the squares as∥∥∥rw −X⊤

wβ̂
∥∥∥2
2
=
∥∥∥ηw +X⊤

w(β∗ − β̂)
∥∥∥2
2

= ∥ηw∥22 + 2η⊤
wX⊤

w(β∗ − β̂) +
∥∥∥X⊤

w(β∗ − β̂)
∥∥∥2
2
. (45)

By plugging Eq. (45) into Eq. (44) and reordering the terms, we have∥∥∥X⊤
w(β∗ − β̂)

∥∥∥2
2
≤ λn

(
∥β∗∥1 − ∥β̂∥1

)
+ 2η⊤

wX⊤
w(β̂ − β∗)

≤ λn

(
∥β∗∥1 − ∥β̂∥1

)
+ 2 ∥Xwηw∥∞ ∥β∗ − β̂∥1 . (46)

Note that Xwηw is a d-dimensional vector whose j-th component is (Xwηw)j =
∑n

t=1 wtηi(xi)j .

Under the event
{
ω ∈ Ω : maxj∈[d]

∣∣∣∑n
t=1 wtηt (xt)j

∣∣∣ ≤ λn

4

}
, we have ∥Xwηw∥∞ ≤ λn

4 . Plug it
into the Eq. (46) and obtain∥∥∥X⊤

w(β∗ − β̂)
∥∥∥2
2
≤ λn

(
∥β∗∥1 − ∥β̂∥1

)
+

λn

2
∥β∗ − β̂∥1 . (47)

On the other hand, by the definition of S0, we have

∥β∗∥1 − ∥β̂∥1 = ∥β∗
S0
∥1 − ∥β̂S0

∥1 − ∥β̂Sc
0
∥1

≤ ∥(β∗ − β̂)S0∥1 − ∥β̂Sc
0
∥1

= ∥(β∗ − β̂)S0∥1 − ∥(β∗ − β̂)Sc
0
∥1 . (48)
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Also, note that
∥β∗ − β̂∥1 = ∥(β∗ − β̂)S0

∥1 + ∥(β∗ − β̂)Sc
0
∥1 . (49)

By plugging Eq. (48) and Eq. (49) into Eq. (47), we have

0 ≤
∥∥∥X⊤

w(β∗ − β̂)
∥∥∥2
2
≤ 3λn

2
∥(β∗ − β̂)S0

∥1 −
λn

2
∥(β∗ − β̂)Sc

0
∥1 . (50)

Eq. (50) implies ∥(β∗ − β̂)Sc
0
∥1 ≤ 3∥(β∗ − β̂)S0∥1, by which we conclude β∗ − β̂ ∈ C(S0).

Then, we have the following result:∥∥∥X⊤
w(β∗ − β̂)

∥∥∥2
2
+

λn

2
∥β∗ − β̂∥1 =

∥∥∥X⊤
w(β∗ − β̂)

∥∥∥2
2
+

λn

2

(
∥(β∗ − β̂)S0

∥1 + ∥(β∗ − β̂)Sc
0
∥1
)

≤ 2λn∥(β∗ − β̂)S0
∥1

≤ 2λn

√√√√s0

∥∥∥Xw(β∗ − β̂)
∥∥∥2
2

ϕ2
n

≤
∥∥∥X⊤

w(β∗ − β̂)
∥∥∥2
2
+

λ2
ns0
ϕ2
1

,

where the first inequality comes from Eq. (50), the second inequality holds due to the compatibility
condition of V̂n = XwX⊤

w, and the last inequality is the AM-GM inequality, namely 2
√
ab ≤ a+b.

Therefore, we have ∥β∗ − β̂∥1 ≤ 2λns0
ϕ2
n

.

G.2 PROPERTIES OF COMPATIBILITY CONSTANTS

For this subsection, we assume that S0 ⊂ [d] is a fixed set and denote the compatibility constant of
a matrix A as ϕ2(A) instead of ϕ2(A, S0) for simplicity.
Lemma 20 (Concavity of Compatibility Constant). Let A,B ∈ Rd×d be square matrices. Then,

ϕ2(A+B) ≥ ϕ2(A) + ϕ2(B) .

Proof of Lemma 20. By definition,

ϕ2(A+B) = inf
β∈C(S0)\{0d}

s0β
⊤(A+B)β∥∥βS0

∥∥2
1

= inf
β∈C(S0)\{0d}

(
s0β

⊤Aβ∥∥βS0

∥∥2
1

+
s0β

⊤Bβ∥∥βS0

∥∥2
1

)

≥ inf
β∈C(S0)\{0d}

s0β
⊤Aβ∥∥βS0

∥∥2
1

+ inf
β′∈C(S0)\{0d}

s0β
′⊤Bβ′∥∥β′
S0

∥∥2
1

= ϕ2(A) + ϕ2(B) .

Lemma 21. Let x be a d-dimensional random vector and Σ = E
[
xx⊤] ∈ Rd×d. Assume that

∥x∥∞ ≤ xmax almost surely. Then, for any v ∈ C(S0) \ {0d}, it holds that

0 ≤ s0v
⊤Σv

∥vS0
∥21

≤ 16x2
maxs0 .

Consequently, it holds that 0 ≤ ϕ2(Σ) ≤ 16x2
maxs0 and ϕ2(−Σ) ≥ −16x2

maxs0.

Proof of Lemma 21. From v⊤ (xx⊤)v =
(
x⊤v

)2 ≥ 0, it holds that

v⊤Σv = v⊤E
[
xx⊤]v

= E
[
v⊤ (xx⊤)v]

≥ 0 ,
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which proves 0 ≤ s0v
⊤Σv

∥vS0∥2

1

. The upper bound is proved as follows:

v⊤Σv = E
[
v⊤ (xx⊤)v]

= E
[(
x⊤v

)2]
≤ E

[
(xmax ∥v∥1)

2
]

= x2
max ∥v∥21 (51)

where the inequality holds by Hölder’s inequality and ∥x∥∞ ≤ xmax. Since v ∈ C(S0), we have
∥v∥1 = ∥vS0

∥1 + ∥vSc
0
∥1 ≤ 4 ∥vS0

∥1. Therefore, we have

s0v
⊤Σv

∥vS0
∥21

≤ s0x
2
max ∥v∥21
∥vS0

∥21

≤
s0x

2
max

(
16 ∥vS0

∥21
)

∥vS0∥21
= 16x2

maxs0 ,

where the first inequality comes from inequality (51) and the second inequality holds by ∥v∥1 ≤
4 ∥vS0

∥1.

Lemma 22. Let {xt}τt=1 be a sequence of random vectors in Rd adapted to filtration {Ft}τt=0

such that ∥xt∥∞ ≤ xmax holds for all t ≥ 1. Let Σ̂τ = 1
τ

∑τ
t=1 xtx

⊤
t and Σ̄τ =

1
τ

∑τ
t=1 E

[
xtx

⊤
t | Ft−1

]
. If ϕ2

(
Σ̄τ

)
≥ ϕ2

0 for some ϕ0 > 0, then with probability at least

1− 2d2 exp
(
− τϕ4

0

2048x4
maxs

2
0

)
, ϕ2(Σ̂τ ) ≥ ϕ2

0

2 holds.

Proof of Lemma 22. Let γij
t = (xt)i · (xt)j − E [(xt)i · (xt)j | Ft−1] for 1 ≤ i, j ≤ d. Then,

E
[
γij
t | Ft−1

]
= 0 and

∣∣γij
t

∣∣ ≤ 2x2
max. By the Azuma-Hoeffding inequality,

P

(∣∣∣∣∣1τ
τ∑

t=1

γij
t

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− τε2

2x4
max

)
.

By taking the union bound over 1 ≤ i, j ≤ d, we have

P
(
∥Σ̂τ − Σ̄τ∥∞ ≥ ε

)
≤ 2d2 exp

(
− τε2

2x4
max

)
.

Alternatively, by taking ε =
ϕ2
0

32s0
, we obtain that with probability at least 1 −

2d2 exp
(
− τϕ2

0

2048x4
maxs

2
0

)
,

∥Σ̂τ − Σ̄τ∥∞ ≤ ϕ2
0

32s0
.

Then, by Lemma 30, we conclude that with probability at least 1 − 2d2 exp
(
− τϕ2

0

2048x4
maxs

2
0

)
,

ϕ2(Σ̂τ ) ≥ ϕ2
0

2 holds.

Lemma 23. Let {xt}τt=1 be a sequence of random vectors in Rd adapted to filtration {Ft}τt=0 such
that ∥xt∥∞ ≤ xmax for all t ≥ 1. Let V̂t :=

∑t
i=1 xix

⊤
i and Vt :=

∑t
i=1 E

[
xix

⊤
i | Fi−1

]
.

Suppose that there exists a constant ϕ0 > 0 such that ϕ2
(
Vt

)
≥ ϕ2

0t for all t ≥ 1.

For any δ ∈ (0, 1], with probability at least 1 − δ, ϕ2
(
V̂t

)
≥ ϕ2

0t
2 holds for all t ≥

2048x4
maxs

2
0

ϕ4
0

(
log d2

δ + 2 log
64x2

maxs0
ϕ2
0

)
+ 1.
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Proof of Lemma 23. By Lemma 22 with Σ̂t = 1
t V̂t and Σ̄t = 1

tVt, ϕ2
(

1
t V̂t

)
≥ ϕ2

0

2 holds with

probability at least 1− 2d2 exp
(
− ϕ4

0t

2048x4
maxs

2
0

)
. Let t0 =

⌈
2048x4

maxs
2
0

ϕ4
0

(
log d2

δ + 2 log
64x2

maxs0
ϕ2
0

)⌉
.

By taking the union bound over t ≥ t0 + 1, we conclude that

P
(
∃t ≥ t0 + 1 : ϕ2

(
V̂t

)
<

ϕ2
0t

2

)
≤

∞∑
t=t0+1

P
(
ϕ2
(
V̂t

)
<

ϕ2
0t

2

)

≤
∞∑

t=t0+1

2d2 exp

(
− ϕ4

0t

2048x4
maxs

2
0

)

≤ 2d2
∫ ∞

t0

exp

(
− ϕ4

0x

2048x4
maxs

2
0

)
dx

= 2d2
(
2048x4

maxs
2
0

ϕ4
0

exp

(
− ϕ4

0t0
2048x4

maxs
2
0

))
≤ δ ,

where the last inequality holds by t0 ≥ 2048x4
maxs

2
0

ϕ4
0

(
log d2

δ + 2 log
64x2

maxs0
ϕ2
0

)
.

G.3 GUARANTEES OF GREEDY ACTION SELECTION

Lemma 24. Suppose at = argmaxa∈A x⊤
t,aβ̂t−1 is chosen greedily with respect to an estimator

β̂t−1 in round t. Then, the instantaneous regret in round t is at most 2xmax

∥∥β∗ − β̂t−1

∥∥
1
. Conse-

quently, if ∆t > 2xmax

∥∥β∗ − β̂t−1

∥∥
1
, then at = a∗t .

Proof of Lemma 24. Let a∗t = argmaxa∈A x⊤
t,aβ

∗. By the choice of at, the following inequality
holds:

x⊤
t,at

β̂t−1 − x⊤
t,a∗

t
β̂t−1 ≥ 0 . (52)

Then, the instantaneous regret is bounded as the following:

regt = x⊤
t,a∗

t
β∗ − x⊤

t,at
β∗

≤
(
x⊤
t,a∗

t
β∗ − x⊤

t,at
β∗
)
+
(
x⊤
t,at

β̂t−1 − x⊤
t,a∗

t
β̂t−1

)
= x⊤

t,a∗
t

(
β∗ − β̂t−1

)
+ x⊤

t,at

(
β̂t−1 − β∗

)
≤
∥∥xt,a∗

t

∥∥
∞

∥∥∥β∗ − β̂t−1

∥∥∥
1
+ ∥xt,at

∥∞
∥∥∥β∗ − β̂t−1

∥∥∥
1

≤ 2xmax

∥∥∥β∗ − β̂t−1

∥∥∥
1
, (53)

where the first inequality holds by inequality (52) and the second inequality is due to Hölder’s
inequality. This result proves the first part of the lemma.
Suppose that ∆t > 2xmax

∥∥β∗ − β̂t−1

∥∥
1
. Then, the instantaneous regret in round t is either 0 or no

less than ∆t, which implies that regt is either 0 or greater than 2xmax

∥∥β∗ − β̂t−1

∥∥
1
. By (53) we

have regt ≤ 2xmax

∥∥β∗ − β̂t−1

∥∥
1
. Therefore, the regt must be 0, which implies at = a∗t .

G.4 BEHAVIOR OF log log n

Let b > 1 be a constant and define f(x) = 2 log log 2x+b
x for x ≥ 2. The derivative of f(x) is

f ′(x) =
2

log 2x−2 log log 2x−b

x2 . f ′(x) is decreasing in x and f ′(2) < 0, therefore f(x) is decreasing
for x ≥ 2.

Lemma 25. Suppose C ≥ 2, b ≥ 1, and n ≥ Cb + 2C log (2 log 2C + b). Then, f(n) =
2 log log 2n+b

n ≤ 1
C .
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Proof of Lemma 25. Let n0 = Cb + 2C log (2 log 2C + b). Since n0 ≥ Cb ≥ 2 and f(x) is
decreasing for x ≥ 2, it is sufficient to show that f (n0) ≤ 1

C . We rewrite f(n0) − 1
C as the

following:

f (n0)−
1

C
=

2 log log 2n0 + b

n0
− 1

C

=
2C log log 2n0 + Cb− n0

Cn0

=
2C log log 2n0 − 2C log (2 log 2C + b)

Cn0

=
2

n0

(
log log 2C (b+ 2 log (2 log 2C + b))− log (2 log 2C + b)

)
.

Now, it is sufficient to prove log 2C(b + 2 log (2 log 2C + b)) ≤ 2 log 2C + b. We prove it by
applying log x ≤ x

e for all x > 0 multiple times.

log 2C (b+ 2 log (2 log 2C + b)) = log 2C + log (b+ 2 log(2 log 2C + b))

≤ log 2C + log

(
b+

2

e
(2 log 2C + b)

)
= log 2C + log

(
4

e
log 2C +

(
1 +

2

e

)
b

)
≤ log 2C +

4

e2
log 2C +

1 + 2
e

e
b

≤ 2 log 2C + b .

Lemma 26. Let f(x) = 2 log log 2x+log b
x for a constant b ≥ 1 and x ≥ 2. Suppose 8 ≤ A < B are

integers and r ≥ 0 is a nonnegative real number. Then,

B∑
n=A+1

f(n)r ≤


1

1−rB
1−r (2 log log 2B + b)

r
r ∈ [0, 1)

(logB) (2 log log 2B + b) r = 1
2r−1
(r−1)2 · (2 log log 2A+b)r

Ar−1 r ∈ (1, 2]
2

r−1 · (2 log log 2A+b)r

Ar−1 r > 2

holds.

Proof of Lemma 26. Since f(x) is decreasing for x ≥ 2, we have

B∑
n=A+1

f(n)r ≤
∫ B

A

f(x)r dx .

We bound
∫ B

A

(
2 log log 2x+b

x

)r
dx for each case of r.

Case 1: r ∈ [0, 1)∫ B

A

(
2 log log 2x+ b

x

)r

dx ≤
∫ B

A

(
2 log log 2B + b

x

)r

dx

= (2 log log 2B + b)
r
∫ B

A

x−r dx

= (2 log log 2B + b)
r · 1

1− r

(
B1−r −A1−r

)
≤ 1

1− r
B1−r (2 log log 2B + b)

r
.
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Case 2: r = 1 ∫ B

A

2 log log 2x+ b

x
dx ≤

∫ B

A

2 log log 2B + b

x
dx

= (2 log log 2B + b)

∫ B

A

1

x
dx

= (2 log log 2B + b) (logB − logA)

≤ (logB) (2 log log 2B + b) .

Case 3: r ∈ (1, 2]

First, apply Jensen’s inequality to xr with p := 2 log log 2A
2 log log 2A+b to obtain

(2 log log 2x+ b)
r
=

(
p · 2 log log 2x

p
+ (1− p) · b

1− p

)r

≤ p

(
2 log log 2x

p

)r

+ (1− p)

(
b

1− p

)r

= p1−r (2 log log 2x)
r
+ (1− p)1−rbr .

Then, the integral can be split into∫ B

A

(
2 log log 2x+ b

x

)r

dx ≤ p1−r

∫ B

A

(
2 log log 2x

x

)r

dx︸ ︷︷ ︸
I1

+(1− p)1−r

∫ B

A

(
b

x

)r

dx︸ ︷︷ ︸
I2

.

I2 is bounded by

(1− p)1−r

∫ B

A

(
b

x

)r

dx = (1− p)1−r · br

r − 1

(
1

Ar−1
− 1

Br−1

)
≤ (1− p)1−rbr

(r − 1)Ar−1

=
(1− p)

(
b

1−p

)r
(r − 1)Ar−1

=
(1− p) (2 log log 2A+ b)

r

(r − 1)Ar−1
,

where the last equality holds by the definition of p.
To bound I1, use integration by parts with u = (2 log log 2x)

r and v′ = 1
xr and get∫ B

A

(
2 log log 2x

x

)r

dx =

[
− 1

r − 1

(2 log log 2x)r

xr−1

]B
A

+

∫ B

A

r

r − 1
·
(2 log log 2x)r−1 2

x log 2x

xr−1
dx

≤ (2 log log 2A)r

(r − 1)Ar−1
+

2r

r − 1

∫ B

A

(2 log log 2x)r−1

xr log 2x
dx︸ ︷︷ ︸

I3

.

For 1 < r ≤ 2, it holds that (2 log log 2x)r−1 ≤ 2 log log 2x ≤ log 2x. Then,

I3 ≤
∫ B

A

1

xr
dx

=
1

r − 1

(
1

Ar−1
− 1

Br−1

)
≤ 1

(r − 1)Ar−1
.
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We have

I1 = p1−r

∫ B

A

(
2 log log 2x

x

)r

dx

≤ p1−r

(
(2 log log 2A)r

(r − 1)Ar−1
+

2r

(r − 1)2Ar−1

)

=
p
(

2 log log 2A
p

)r
(r − 1)Ar−1

+
p1−r · 2r

(r − 1)2Ar−1

=
p (2 log log 2A+ b)

r

(r − 1)Ar−1
+

2rp
(

2 log log 2A+b
2 log log 2A

)r
(r − 1)2Ar−1

≤ p (2 log log 2A+ b)
r

(r − 1)Ar−1
+

r (2 log log 2A+ b)
r

(r − 1)2Ar−1
,

where the last inequality holds since p ≤ 1 and 2 log log 2A ≥ 2 whenever A ≥ 8. Finally, we
obtain∫ B

A

(
2 log log 2x+ b

x

)r

dx ≤ I1 + I2

≤ p (2 log log 2A+ b)
r

(r − 1)Ar−1
+

2r (2 log log 2A+ b)
r

(r − 1)2Ar−1
+

(1− p) (2 log log 2A+ b)
r

(r − 1)Ar−1

=

(
1

r − 1
+

r

(r − 1)2

)
(2 log log 2A+ b)

r

Ar−1

=
2r − 1

(r − 1)2
· (2 log log 2A+ b)

r

Ar−1
.

Case 4: r > 2.
Use integration by parts with u = (2 log log 2x+ b)

r and v′ = 1
xr and get∫ B

A

(
2 log log 2x+ b

x

)r

dx︸ ︷︷ ︸
I4

=

[
− 1

r − 1
· (2 log log 2x+ b)

r

xr−1

]B
A

+

∫ B

A

1

r − 1
· 2r (2 log log 2x+ b)

r−1

xr log 2x
dx

≤ 1

r − 1
· (2 log log 2A+ b)r

Ar−1
+

2r

r − 1

∫ B

A

(2 log log 2x+ b)
r−1

xr log 2x
dx

≤ 1

r − 1
· (2 log log 2A+ b)r

Ar−1
+ 4

∫ B

A

(2 log log 2x+ b)
r−1

xr log 2x
dx︸ ︷︷ ︸

I5

.

For x ≥ A ≥ 8, it holds that (2 log log 2x+ b)(log 2x) ≥ (2 log log 16 + 1)(log 16) ≥ 8. Then,

I5 ≤
∫ B

A

(2 log log 2x+ b)(log 2x)

8

(2 log log 2x+ b)
r−1

xr log 2x
dx

=
1

8

∫ B

A

(2 log log 2x+ b)
r

xr
dx

=
I4
8
.

Therefore we have I4 ≤ 1
r−1 · (2 log log 2A+b)r

Ar−1 + I4
2 , which implies I4 ≤ 2

r−1 · (2 log log 2A+b)r

Ar−1 .

G.5 TIME-UNIFORM CONCENTRATION INEQUALITIES

The following lemma is a special case of Theorem 3 from Garivier (2013). For completeness, we
provide the proof adapted to this lemma.
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Lemma 27 (Time-Uniform Azuma inequality). Let {Xt}∞t=1 be a real-valued martingale difference
sequence adapted to a filtration {Ft}∞t=0. Assume that {Xt}∞t=1 is conditionally σ-sub-Gaussian,

i.e., E
[
esXt | Ft−1

]
≤ e

s2σ2

2 for all s ∈ R. Then, it holds that

P

(
∃n ∈ N :

∣∣∣∣∣
n∑

t=1

Xt

∣∣∣∣∣ ≥ 2
3
4σ

√
n log

7(log 2n)2

δ

)
≤ δ .

Proof of Lemma 27. By the union bound, it is sufficient to prove one side of the inequality, namely,

P

(
∃n ∈ N :

n∑
t=1

Xt ≥ 2
3
4σ

√
n log

3.5(log 2n)2

δ

)
≤ δ .

Let tj = 2j for j ≥ 0. Partition the set of natural numbers into I0, I1, . . ., where Ij =
{tj , tj + 1, . . . , tj+1 − 1}. For a fixed positive real number sj , whose values we assign later, define

Dt = exp
(
sjXt − s2jσ

2

2

)
. Then, by sub-Gaussianity of Xt, we have E [Dt | Ft−1] ≤ 1. Define

Mn = D1D2 · · ·Dn = exp
(
sj
∑n

t=1 Xt − s2jσ
2n

2

)
, where M0 = 1. Then, E [Mn | Fn−1] =

E [Mn−1Dn | Fn−1] ≤ Mn−1, therefore {Mn}∞n=0 is a super-martingale. By Ville’s maximal in-
equality, we get

P
(
∃n ∈ Ij : Mn ≥ 1

δ

)
≤ δ .

Note that Mn ≥ 1
δ is equivalent to

∑n
t=1 Xt ≥ sjσ

2n
2 + 1

sj
log 1

δ . Take sj = 1
σ

√√
2

tj
log 1

δ and
obtain

P

∃n ∈ Ij :

n∑
t=1

Xt ≥ σ

n

2

√√
2

tj
+

√
tj√
2

√log
1

δ

 ≤ δ .

For n ∈ Ij , n
2 < tj ≤ n holds, therefore n

2

√√
2

tj
+
√

tj√
2
≤ n

2

√
2
√
2

n +
√

n√
2
= 2

3
4
√
n. Furthermore,

replace δ with 6δ
π2(j+1)2 to obtain

P

(
∃n ∈ Ij :

n∑
t=1

Xt ≥ 2
3
4σ

√
n log

π2(j + 1)2

6δ

)
≤ 6δ

π2(j + 1)2
.

From π2(j+1)2

6 =
π2(log2 2tj)

2

6 ≤ π2

6(log 2)2 (log 2tj)
2 ≤ 7

2 (log 2n)
2, we get

P

(
∃n ∈ Ij :

n∑
t=1

Xt ≥ 2
3
4σ

√
n log

7(log 2n)2

2δ

)
≤ 6δ

π2(j + 1)2
.

Take the union bound over j ≥ 0, and by the fact
∑∞

j=0
1

(j+1)2 = π2

6 , we get the desired result.

P

(
∃n ∈ N :

n∑
t=1

Xt ≥ 2
3
4σ

√
n log

3.5(log 2n)2

δ

)
≤ δ .

Next lemma is a time-uniform version of Theorem 1 in Beygelzimer et al. (2011). We combine the
proof of the theorem and a standard super-martingale analysis to obtain a time-uniform inequality.
Lemma 28 (Time-uniform Freedman’s inequality). Let {Xt}∞t=1 be a real-valued martingale dif-
ference sequence adapted to a filtration {Ft}∞t=0. Suppose there exists a constant R > 0 such that
for all t ≥ 1, |Xt| ≤ R holds almost surely. For any constant η ∈

(
0, 1

R

]
and δ ∈ (0, 1], it holds

that

P

(
∃n ∈ N :

n∑
t=1

Xt ≥ η

n∑
t=1

E
[
X2

t | Ft−1

]
+

1

η
log

1

δ

)
≤ δ .
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Proof of Lemma 28. We have |ηXt| ≤ 1 almost surely for all t ≥ 1. Since 1+ x ≤ ex for all x ∈ R
and ex ≤ 1 + x+ x2 for all x ∈ [−1, 1], it holds that

E
[
eηXt | Ft−1

]
≤ E

[
1 + ηXt + η2X2

t | Ft−1

]
= 1 + η2E

[
X2

t | Ft−1

]
≤ eη

2E[X2
t |Ft−1] . (54)

Define Dt := exp
(
ηXt − η2E

[
X2

t | Ft−1

])
. Eq. (54) implies E [Dt | Ft−1] ≤ 1. Define

Mn := D1D2 · · ·Dn = exp
(
η
∑n

t=1 Xt − η2
∑n

t=1 E
[
X2

t | Ft−1

])
, where M0 = 1. Then,

E [Mn | Fn−1] = E [Mn−1Dn | Fn−1] ≤ Mn−1, therefore {Mn}∞n=0 is a super-martingale. By
Ville’s maximal inequality, we obtain

P
(
∃n ∈ N : Mn ≥ 1

δ

)
≤ E[M0]

1/δ
= δ .

The proof is complete by noting that Mn = exp
(
η
∑n

t=1 Xt − η2
∑n

t=1 E
[
X2

t | Ft−1

])
≥ 1

δ is
equivalent to

∑n
t=1 Xt ≥ η

∑n
t=1 E

[
X2

t | Ft−1

]
+ 1

η log 1
δ .

Next lemma is a widely known application of Lemma 28.
Lemma 29. Let {Yt}∞t=1 be a sequence of real-valued random variables adapted to a filtration
{Ft}∞t=0. Suppose 0 ≤ Yt ≤ 1 holds almost surely for all t ≥ 1. For any δ ∈ (0, 1], it holds that

P

(
∃n ∈ N :

n∑
t=1

Yt ≥
5

4

n∑
t=1

E [Yt | Ft−1] + 4 log
1

δ

)
≤ δ . (55)

Proof of Lemma 29. Let Xt = Yt − E [Yt | Ft−1]. Then, {Xt}∞t=1 is a martingale difference se-
quence adapted to {Ft}∞t=0 with |Xt| ≤ 1 almost surely. Apply Lemma 28 with η = 1

4 and obtain

P

(
∃n ∈ N :

n∑
t=1

Xt ≥
1

4

n∑
t=1

E
[
X2

t | Ft−1

]
+ 4 log

1

δ

)
≤ δ . (56)

We have

E
[
X2

t | Ft−1

]
= E

[
(Yt − E [Yt | Ft−1])

2 | Ft−1

]
≤ E

[
Y 2
t | Ft−1

]
≤ E [Yt | Ft−1] ,

where the last inequality holds by 0 ≤ Yt ≤ 1. Then, Eq. (56) implies

P

(
∃n ∈ N :

n∑
t=1

Yt −
n∑

t=1

E [Yt | Ft−1] ≥
1

4

n∑
t=1

E [Yt | Ft−1] + 4 log
1

δ

)
≤ δ ,

which is equivalent to the desired result of Eq. (55).

H AUXILIARY LEMMAS

Lemma 30 (Corollary 6.8 in (Bühlmann & Van De Geer, 2011)). Let Σ0,Σ1 ∈ Rd×d. Suppose
that the compatibility constant of Σ0 over the index set S with cardinality s = |S| is positive, i.e.,
ϕ2(Σ0, S) > 0. If ∥Σ0 −Σ1∥∞ ≤ ϕ2(Σ0,S)

32s0
, then ϕ2(Σ1, S) ≥ ϕ2(Σ0, S0)/2.

Lemma 31 (Transfer principle, Lemma 5.1 in (Oliveira, 2016)). Suppose Σ̂ and Σ̄ are d×d matrices
with non-negative diagonal entries. Assume η ∈ (0, 1) and m ∈ [d] are such that

∀v ∈ Rdwith ∥v∥0 ≤ m,v⊤Σ̂v ≥ (1− η)v⊤Σ̄v .

Assume D is a diagonal matrix whose elements are non-negative and satisfies Djj ≥ Σ̂jj − (1 −
η)Σ̄jj . Then,

∀v ∈ Rd, ∥v∥0 ≤ m,v⊤Σ̂v ≥ (1− η)v⊤Σ̄v − ∥Dv∥21
m− 1

.
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I NUMERICAL EXPERIMENT DETAILS

Our numerical experiment in Section 4 measures the performance of various sparse linear bandit
algorithms under two different distributions of context feature vectors. For both experiments, we
set d = 100, T = 2000, and ηt ∼ N (0, 0.25). For given s0, we sample S0 uniformly from all
subsets of [d] with size s0, then sample β∗

S0
uniformly from a s0-dimensional unit sphere. We tune

the hyper-parameters of each algorithm to achieve their best performance.

Experiment 1. (Figure 2a) Following the experiments in Kim & Paik (2019); Oh et al. (2021);
Chakraborty et al. (2023), for each i ∈ [d], the i-th components of the K feature vectors are sampled
from N (0K ,V), where Vii = 1 for 1 ≤ i ≤ K and Vij = 0.7 for 1 ≤ i, j ≤ K with i ̸= j. In this
way, the arms have high correlation across each other. Note that assumptions of Oh et al. (2021);
Ariu et al. (2022); Li et al. (2021); Chakraborty et al. (2023) hold in this setting. By Theorem 3,
FS-WLasso may take M0 = 0. To distinguish our algorithm from SA Lasso BANDIT, we set
M0 = 10 and w = 1.

Experiment 2. (Figure 2b) We evaluate our algorithms for a context distribution that does not
satisfy the strong assumptions employed in the previous Lasso bandit literature (Oh et al., 2021;
Ariu et al., 2022; Li et al., 2021; Chakraborty et al., 2023). We sample K − 1 vectors for sub-
optimal arms from N (0d, Id) and fix them for all rounds. For each t ∈ [T ], we sample the feature
for the optimal arm from N (0d, Id). Then, we appropriately assign the expected rewards of the
features by adjusting their β∗-components. Specifically, for a sampled vector x and a desired value
c, we set x′ = x + c−x⊤β∗

∥β∗∥2
2

β∗ so that we have x′⊤β∗ = c. We set the fixed sub-optimal arms to
have expected rewards of 0.1, 0.2, . . . , 0.9, and sample the expected reward of the optimal arm from
Unif(0.9, 1). To prevent the theoretical Gram matrix from becoming positive-definite or having a
positive sparse eigenvalue, we sample five indices from Sc

0 in advance and fix their values at 5 for
all arms and rounds.

All experiments were held in a computing cluster with twenty Intel(R) Xeon(R) Silver 4210R CPUs
and 187 GB of RAM.
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