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Abstract

How much information about training samples
can be leaked through synthetic data generated by
Large Language Models (LLMs)? Overlooking
the subtleties of information flow in synthetic data
generation pipelines can lead to a false sense of
privacy. In this paper, we assume an adversary has
access to some synthetic data generated by a LLM.
We design membership inference attacks (MIAs)
that target the training data used to fine-tune the
LLM that is then used to synthesize data. The
significant performance of our MIA shows that
synthetic data leak information about the train-
ing data. Further, we find that canaries crafted
for model-based MIAs are sub-optimal for pri-
vacy auditing when only synthetic data is released.
Such out-of-distribution canaries have limited in-
fluence on the model’s output when prompted
to generate useful, in-distribution synthetic data,
which drastically reduces their effectiveness. To
tackle this problem, we leverage the mechanics of
auto-regressive models to design canaries with an
in-distribution prefix and a high-perplexity suffix
that leave detectable traces in synthetic data. This
enhances the power of data-based MIAs and pro-
vides a better assessment of the privacy risks of
releasing synthetic data generated by LLMs.

1. Introduction
Large Language Models (LLMs) can generate synthetic data
that mimics human-written content through domain-specific
prompts. Besides their impressive fluency, LLMs are known
to memorize parts of their training data (Carlini et al., 2023)
and can regurgitate exact phrases, sentences, or even longer
passages when prompted adversarially (Zanella-Béguelin
et al., 2020; Carlini et al., 2021; Nasr et al., 2023). This
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raises serious privacy concerns about unintended informa-
tion leakage through synthetically generated text. In this
paper, we address the critical question: to what extent does
synthetic text generated by LLMs leak information about
the real data it is derived from?

Prior methods to audit privacy risks insert highly vulnerable,
out-of-distribution examples, canaries (Carlini et al., 2019),
into the training data and test whether they can be identified
using membership inference attacks (MIAs) (Shokri et al.,
2017). Various MIAs have been proposed, typically assum-
ing an attacker with access to the trained model or its output
logits (Carlini et al., 2019; Shi et al., 2024). In the context of
LLMs, MIAs often rely on analyzing the model’s behavior
when prompted with inputs related to the canaries (Carlini
et al., 2021; Chang et al., 2024; Shi et al., 2024). However,
similar investigations are lacking in scenarios where LLMs
are used to generate synthetic data and only this synthetic
data is available to an attacker.

Contributions. In this work, we study–for the first time–the
factors that influence information leakage from a synthetic
data-corpus generated using LLMs. First, we introduce data-
based attacks that only have access to synthetic data, and
not to the model used to generate it, and therefore cannot
probe it with adversarial prompts nor compute losses or
other statistics used in model-based attacks (Ye et al., 2022).
We propose approximating membership likelihood using
either a model trained on the synthetic data or the target
example similarity to its closest synthetic data examples.
We design our attacks adapting the state-of-the-art pairwise
likelihood ratio tests as in RMIA (Zarifzadeh et al., 2024)
and evaluate them on labeled datasets: SST-2 (Socher et al.,
2013), AG News (Zhang et al., 2015) and SNLI (Bowman
et al., 2015). Our results show that MIAs leveraging only
synthetic data achieve AUC scores of 0.74 for SST-2, 0.68
for AG News and 0.77 for SNLI, largely outperforming a
random guess baseline. This suggests that synthetic text can
leak significant amount of information about the real data
used to generate it.

Second, we use the attacks we introduce to quantify the gap
in performance between data- and model-based attacks. We
do so in an auditing scenario, designing adversarial canaries
and controlling leakage by varying the number of times a
canary occurs in the training dataset. Experimentally, we
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find a sizable gap when comparing attacks adapted to the
idiosyncrasies of each setting: a canary would need to occur
8× more often to be as vulnerable against a data-based
attack as it is against a model-based attack (see Figs. 1a and
1d).

Third, we discover that canaries designed for model-based
attacks fall short when auditing privacy risks of synthetic
text. Indeed, privacy auditing of LLMs through model-based
MIAs relies on rare, out-of-distribution sequences of high
perplexity (Carlini et al., 2019; Stock et al., 2022; Wei et al.,
2024; Meeus et al., 2024c). We confirm that model-based
MIAs improve as canary perplexity increases. In sharp
contrast, we find that high perplexity sequences, although
distinctly memorized by the target model, are less likely to
be echoed through synthetic data generated by the target
model. Therefore, as a canary perplexity increases, the ca-
nary influence on synthetic data decreases, making its mem-
bership less detectable from synthetic data (see Figure 2).
We show that low-perplexity, and even in-distribution ca-
naries, while suboptimal for model-based attacks, are more
adequate canaries in data-based attacks.

Next, we propose an alternative canary design tailored
for data-based attacks based on the following intuition:
(i) in-distribution canaries aligned with the domain-specific
prompt can influence the generated output; and (ii) memo-
rization is more likely when canaries contain sub-sequences
with high perplexity. We construct canaries starting with
an in-distribution prefix of length F , transitioning into an
out-of-distribution suffix, increasing the likelihood that the
model memorizes them and that they influence synthetic
data. We show that, for fixed overall canary perplexity, the
performance of attacks for canaries with in-distribution pre-
fix and out-of-distribution suffix (0 < F < max) improves
upon both entirely in-distribution canaries (F = max) and
out-of-distribution canaries (F = 0), across datasets (see
Fig. 1 and Table 2).

Lastly, we evaluate our attacks on synthetic data generated
with formal privacy guarantees. We adopt the training-time
method proposed by work (Yue et al., 2023; Mattern et al.,
2022; Kurakin et al., 2023) and finetune the target model
on the private dataset using DP-SGD (Abadi et al., 2016)
with ϵ = 8. We find the performance of the strongest data-
based MIA to drop to random guess performance (AUC of
0.5), confirming that differential privacy constitutes a strong
defense.

Taken together, the proposed MIAs and canary design can
be used to audit privacy risks of synthetic text. Auditing es-
tablishes a lower bound on the risk, useful to take informed
decisions about releasing synthetic data in sensitive applica-
tions and also complements upper bounds on privacy risks
from methods that synthesize text with provable guarantees.

2. Background and problem statement
Synthetic text generation. We consider a private dataset
D = {xi = (si, ℓi)}Ni=1 of labelled text records where si
represents a sequence of tokens (e.g. a product review) and
ℓi is a class label (e.g. the review sentiment). A synthetic
data generation mechanism is a probabilistic procedure map-
ping D to a synthetic dataset D̃ = {x̃i = (s̃i, ℓ̃i)}Ñi=1 with
a desired label set {ℓi}Ñi=1. Unless stated otherwise, we
consider N = Ñ . The synthetic dataset D̃ should preserve
the utility of the private dataset D, i.e., it should preserve
as many statistics of D that are useful for downstream anal-
yses as possible. In addition, a synthetic data generation
mechanism should preserve the privacy of records in D,
i.e. it should not leak sensitive information from the private
records into the synthetic records. The utility of a synthetic
dataset can be measured by the gap between the utility
achieved by D̃ and D in downstream applications. The
fact that synthetic data is not directly traceable to original
data records does not mean that it is free from privacy risks.
On the contrary, the design of a synthetic data generation
mechanism determines how much information from D leaks
into D̃ and should be carefully considered. Indeed, several
approaches have been proposed to generate synthetic data
with formal privacy guarantees (Kim et al., 2021; Tang et al.,
2024; Wu et al., 2024; Xie et al., 2024). We focus on privacy
risks of text generated by a pre-trained LLM fine-tuned on
a private dataset D (Yue et al., 2023; Mattern et al., 2022;
Kurakin et al., 2023). Specifically, we fine-tune an LLM θ0
on records (si, ℓi) ∈ D to minimize the loss in completing
si conditioned on a prompt template p(ℓi), obtaining θ. We
then query θ using the same prompt template to build a
synthetic dataset D̃ matching a given label distribution.

Membership inference attacks. MIAs (Shokri et al., 2017)
provide a meaningful measure to quantify privacy risks of
machine learning models, due to its simplicity but also due
to the fact that protection against MIAs implies protection
against more devastating attacks such as attribute inference
and data reconstruction (Salem et al., 2023). In a MIA
on a target model θ, an adversary aims to infer whether a
target record is present in the training dataset of θ. Different
variants constrain the adversary’s access to the model. In our
setting, we consider model-based adversaries that observe
the output logits on inputs of their choosing of a model θ
fine-tuned on a private dataset D. We naturally extend the
concept of MIAs to synthetic data generation mechanisms
by considering data-based adversaries that only observe a
synthetic dataset D̃ generated from D.

Privacy auditing using canaries. A common method
used to audit the privacy risks of ML models is to eval-
uate the MIA vulnerability of canaries, i.e., artificial worst-
case records inserted in otherwise natural datasets (Carlini
et al., 2019). This method can also be employed to de-
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rive statistical lower bounds on the differential privacy (DP)
guarantees of the training pipeline (Jagielski et al., 2020;
Zanella-Béguelin et al., 2023). Records crafted to be out-of-
distribution w.r.t. the underlying data distribution of D give
a good approximation to the worst-case (Carlini et al., 2019;
Meeus et al., 2024c). Canaries can take a range of forms,
such as text containing sensitive information (Carlini et al.,
2019) and random (Wei et al., 2024) or synthetically gener-
ated sequences (Meeus et al., 2024c). Prior work identified
that longer sequences, repeated more often (Carlini et al.,
2023), and with higher perplexity (Meeus et al., 2024c) are
better memorized during training and hence are more vul-
nerable to model-based MIAs. We study multiple types of
canaries and compare their vulnerability against model- and
synthetic data-based MIAs. We consider a set of canaries
{x̂i = (ŝi, ℓ̂i)}N̂i=1, each crafted adversarially and inserted
with probability 1/2 into the private dataset D. The resulting
dataset is then fed to a synthetic data generation mechanism.
We finally consider each canary x̂i as the target record of a
MIA to estimate the privacy risk of the generation mecha-
nism (or the underlying fine-tuned model).

Threat model. We consider an adversary A who aims to
infer whether a canary x̂ was included in the private dataset
D used to synthesize a dataset D̃. We distinguish between
two threat models: (i) an adversary Aθ with query-access to
output logits of a target model θ fine-tuned on D; and (ii) an
adversary AD̃ with only access to the synthetic dataset D̃.
To the best of our knowledge, for text data this latter threat
model has not been studied extensively in the literature. In
contrast, the privacy risks of releasing synthetic tabular data
are much better understood (Stadler et al., 2022; Yale et al.,
2019; Hyeong et al., 2022; Zhang et al., 2022). Algorithm 1
shows the generic membership inference experiment en-
compassing both model- and data-based attacks, selected
by the synthetic flag. The adversary is represented by a
stateful procedure A, used to craft a canary and compute
its membership score. Compared to a standard membership
experiment, we consider a fixed private dataset D rather
than sampling it, and let the adversary choose the target x̂.
This is close to the threat model of unbounded DP, where
the implicit adversary selects two datasets, one obtained
from the other by adding one more record, except that in our
case the adversary observes but cannot choose the records in
D. The membership score β returned by the adversary can
be turned into a binary membership label by choosing an
appropriate threshold. We further clarify assumptions made
for the adversary in both threat models in Appendix E.

Problem statement. We study methods to audit privacy
risks associated with releasing synthetic text. Our main
goal is to develop an effective data-based adversary AD̃ in
the threat model of Algorithm 1. For this, we explore the
design space of canaries to approximate the worst-case, and

adapt state-of-the-art methods used to compute membership
scores in model-based attacks to the data-based scenario.

3. Methodology
3.1. Computing the membership score

In Algorithm 1, the adversary computes a membership score
β indicating their confidence that θ was trained on x̂ (i.e.
that b = 1). We specify first how to compute a membership
signal α for model- and data-based adversaries, and then
how we compute β from α adapting the RMIA methodology
of Zarifzadeh et al. (2024).

3.1.1. MODEL-BASED ATTACKS

The larger the target model θ’s probability for canary
x̂ = (ŝ, ℓ̂), Pθ(ŝ | p(ℓ̂)), as compared to its probability
on reference models, the more likely that the model has
seen this record during training. We compute the proba-
bility for canary x̂ as the product of token-level probabil-
ities for ŝ conditioned on the prompt p(ℓ̂). Given a target
canary text ŝ = t1, . . . , tn, we compute Pθ(ŝ | p(ℓ̂)) as
Pθ(x̂) =

∏n
j=1 Pθ(tj | p(ℓ̂), t1, . . . , tj−1). We consider

this probability as the membership inference signal against
a model, i.e. α = Pθ(ŝ | p(ℓ̂)).

3.1.2. DATA-BASED ATTACKS

When the attacker only has access to the synthetic data D̃,
we need to extract a signal purely from D̃ that correlates
with membership. We next describe two methods to com-
pute a membership signal α based on D̃. For more details,
refer to their pseudo-code in Appendix A.

n-gram model. The attacker first fits an n-gram model
using D̃ as training corpus. An n-gram model computes
the probability of the next token wj in a sequence based
solely on the previous n − 1 tokens (Jurafsky & Martin,
2024). The conditional probability of a token wj given
the previous n − 1 tokens is estimated from the counts
of n-grams in the training corpus. Formally, Pn-gram(wj |
wj−(n−1), . . . , wj−1) =

C(wj−(n−1),...,wj)+1

C(wj−(n−1),...,wj−1)+V , where
C(s) is the number of times the sequence s appears in
the training corpus and V is the vocabulary size. We use
Laplace smoothing to deal with n-grams that do not ap-
pear in the training corpus, incrementing the count of every
n-gram by 1. The probability that the model assigns to
a sequence of tokens s = (w1, . . . , wk) can be computed
as Pn-gram(s) =

∏k
j=2 Pn-gram(wj | wj−(n−1), . . . , wj−1).

With the n-gram model fitted on the synthetic dataset, the
attacker computes the n-gram model probability of the
target canary x̂ = (ŝ, ℓ̂) as its membership signal, i.e.
α = Pn-gram(ŝ). Intuitively, if the canary x̂ was present
in the training data, the generated synthetic data D̃ will bet-
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Algorithm 1 Membership inference against an LLM-based synthetic text generator

1: Input: Fine-tuning algorithm T , pre-trained model θ0, private dataset D = {xi = (si, ℓi)}Ni=1, labels {ℓ̃i}Ñi=1, prompt
template p(·), canary repetitions nrep, sampling method sample, adversary A

2: Output: Membership score β

3: x̂← A(T , θ0, D, {ℓ̃i}Ñi=1,p(·)) {Adversarially craft a canary (see Sec. 3.2)}
4: b ∼ {0, 1} {Flip a fair coin}
5: if b = 1 then
6: θ ← T (θ0, D ∪ {x̂}nrep) {Fine-tune θ0 with canary repeated nrep times}
7: else
8: θ ← T (θ0, D) {Fine-tune θ0 without canary}
9: end if

10: for i = 1 . . . Ñ do
11: s̃i ∼ sample(θ(p(ℓ̃i))) {Sample synthetic records using prompt template}
12: end for

13: D̃ ←
{
(s̃i, ℓ̃i)

}Ñ

i=1
14: if synthetic then
15: β ← A(D̃, x̂) {Compute membership score β of x̂, see Sec. 3.1.2 and algorithms in Appendix A}
16: else
17: β ← A(θ, x̂) {Compute membership score β of x̂, see Sec. 3.1.1}
18: end if
19: return β

ter reflect the patterns of ŝ, resulting in the n-gram model
assigning a higher probability to ŝ than if it was not present.

Similarity metric. The attacker computes the similarity be-
tween the target canary text ŝ and all synthetic sequences s̃i
in D̃ using similarity metric SIM, i.e. σi = SIM(ŝ, s̃i) for
i = 1, . . . , Ñ . Next, the attacker identifies the k synthetic
sequences with the largest similarity to ŝ. With σi(j) the
j-th largest similarity, the membership inference signal is
computed as the mean of the k most similar examples, i.e.
α = 1

k

∑k
j=1 σi(j). Intuitively, if ŝ was part of the training

data, the synthetic data D̃ will likely contain sequences s̃i
more similar to ŝ than if ŝ was not part of the training data,
resulting in a larger mean similarity. Various similarity met-
rics can be used. We consider Jaccard similarity (SIMJac),
often used to measure string similarity, and cosine similarity
between the embeddings of the two sequences, computed
using a pre-trained embedding model (SIMemb).

3.1.3. COMPUTING RMIA SCORES

Reference models, also called shadow models, are surrogate
models designed to approximate the behavior of a target
model. MIAs based on reference models perform better
but are more costly to run than MIAs that do not use them,
with the additional practical challenge that they require ac-
cess to data distributed similarly to the training data of the
target model (Shokri et al., 2017; Ye et al., 2022). Ob-
taining multiple reference models in our scenario requires
fine-tuning a large number of parameters in an LLM and

quickly becomes computationally prohibitive. We use the
state-of-the-art RMIA method (Zarifzadeh et al., 2024) to
maximize attack performance with a limited number of ref-
erence models M . Specifically, for the target model θ, we
calculate the membership score of a canary x̂ using refer-
ence models {θ′i}Mi=1 as follows (details on applying RMIA
to our setup are in Appendix B): βθ(x̂) =

αθ(x̂)
1
M

∑M
i=1 αθ′

i
(x̂)

.

3.2. Canary generation

Prior work has shown that canaries with high perplexity are
more likely to be memorized by language models (Meeus
et al., 2024c). High perplexity sequences are less pre-
dictable and require the model to encode more specific,
non-generalizable details about them. However, high per-
plexity canaries are not necessarily more susceptible to leak-
age via synthetic data generation, as they are outliers in the
text distribution when conditioned on a given in-distribution
prompt. This misalignment with the model’s natural gen-
erative behavior means that even when memorized, these
canaries are unlikely to be reproduced during regular model
inference, making them ineffective for detecting memoriza-
tion of training examples in generated synthetic data.

To address this issue, we take advantage of the greedy nature
of popular autoregressive decoding strategies (e.g. beam
search, top-k and top-p sampling). We can encourage such
decoding strategies to generate text closer to canaries by
crafting canaries with a low perplexity prefix. To ensure
memorization, we follow established practices and choose
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a high perplexity suffix. Specifically, we design canaries
x̂ = (ŝ, ℓ̂), where ŝ has an in-distribution prefix and an
out-of-distribution suffix. In practice, we split the orig-
inal dataset D into a training dataset and a canary source
dataset. For each record x = (s, ℓ) in the canary source
dataset, we design a new canary x̂ = (ŝ, ℓ̂). We truncate s
to get an in-distribution prefix of length F and generate a
suffix using the pre-trained language model θ0, adjusting
the sampling temperature to achieve a desired target per-
plexity Ptarget. We use rejection sampling to ensure that the
perplexity of the generated canaries falls within the range
[0.9 Ptarget, 1.1 Ptarget]. We ensure the length is consistent
across canaries, as this impacts memorization (Carlini et al.,
2023; Kandpal et al., 2022). By adjusting the length of the
in-distribution prefix, we can guide the generation of either
entirely in-distribution or out-of-distribution canaries.

We insert each canary nrep times in the training dataset of
target and reference models. When a canary is selected as
a member, the canary is repeated nrep times in the training
dataset, while canaries selected as non-members are ex-
cluded from the training dataset. As in prior work (Carlini
et al., 2023; Kandpal et al., 2022; Meeus et al., 2024c), we
opt for nrep > 1 to increase memorization, thus facilitating
privacy auditing and the observation of the effect of different
factors on the performance of MIAs during ablation studies.

4. Experimental setup
Datasets. We consider three datasets that have been widely
used to study text classification: (i) the Stanford Sentiment
Treebank (SST-2) (Socher et al., 2013), which consists of
excerpts from written movie reviews with a binary sentiment
label; (ii) the AG News dataset (Zhang et al., 2015), which
consists of news articles labelled by category (World, Sport,
Business, Sci/Tech).; and (iii) the SNLI dataset (Bowman
et al., 2015), which consists of premises and hypotheses
labeled as entailment, contradiction or neutral. In all ex-
periments, we remove examples with less than 5 words,
bringing the total number of examples to 43 296 for SST-2
and 120 000 for AG News. For SNLI, we selected the first
100 000 records.

Synthetic data generation. We fine-tune the pre-trained
Mistral-7B model (Jiang et al., 2023) using low-rank adap-
tation (LoRA) (Hu et al., 2022). We use a custom prompt
template p(·) for each dataset (see Appendix C). More de-
tails on the implementation and parameters are provided in
Appendix D. We sample synthetic data from the fine-tuned
model θ conditioned on prompts p(ℓ̃i), following the same
distribution of labels in the synthetic dataset D̃ as in the
original dataset D, i.e. ℓi = ℓ̃i for i = 1, ..., Ñ . To generate
synthetic sequences, we sequentially sample completions
using a softmax temperature of 1.0 and top-p (aka nucleus)

sampling with p = 0.95, i.e. we sample from a vocabu-
lary restricted to the smallest possible set of tokens whose
total probability exceeds 0.95. We further ensure that the
synthetic data bears high utility, and is thus realistic. For
this, we consider the downstream classification tasks for
which the original datasets have been designed. We fine-
tune RoBERTa-base (Liu et al., 2019) on D and D̃ and
compare the performance of the resulting classifiers on held-
out evaluation datasets. Details are provided in Appendix F,
for synthetic data generated with and without canaries.

Canary injection. We generate canaries x̂ = (ŝ, ℓ̂) as
described in Sec. 3.2. Unless stated otherwise, we consider
50-word canaries. Synthetic canaries are generated using
Mistral-7B (Jiang et al., 2023) as θ0. We consider two ways
of constructing a canary label: (i) randomly sampling a label
ℓ̂ from the distribution of labels in D, ensuring that the class
distribution among canaries matches that of D (Natural);
and (ii) extending the set of labels with a new artificial label
(ℓ̂ ="canary") only used for canaries (Artificial).

Membership inference. We compute the membership
scores βθ(x̂) as described in Sec. 3.1. For one target model
θ, we consider 1000 canaries x̂, of which on average half
are included in the training dataset nrep times (members),
while the remaining half are excluded (non-members). We
then use the computed RMIA scores and the ground truth
for membership to construct ROC curves, from which we
compute AUC and true positive rate (TPR) at low false pos-
itive rate (FPR) as measures of MIA performance. Across
experiments, we use M = 4 reference models θ′, each
trained on a dataset Dθ′ consisting of the dataset D used to
train the target model θ with canaries inserted. Note that
although practical attacks rarely have this amount of infor-
mation, this is allowed by the threat model of Algorithm 1
and valid as a worst-case auditing methodology. We ensure
that each canary is a member in half (i.e. 2) of the reference
models and a non-member in the other half. For the attacks
based on synthetic data, we use n = 2 for computing scores
using an n-gram model and k = 25 for computing scores
based on similarity. We use Sentence-BERT (Reimers &
Gurevych, 2019) (paraphrase-MiniLM-L6-v2 from
sentence-transformers) as the embedding model.

5. Results
5.1. Baseline evaluation with standard canaries

We begin by assessing the vulnerability of synthetic text
using standard canaries. Specifically, we utilize both in-
distribution canaries and synthetically generated canaries
with a target perplexity Ptarget = 250, no in-distribution
prefix (F = 0), nrep = 12 and natural or artificial labels, as
described in Section 4. Table 1 summarizes the ROC AUC
for model- and data-based attacks.
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Canary injection ROC AUC

Model Aθ Synthetic AD̃ Synthetic AD̃ Synthetic AD̃

Dataset Source Label (2-gram) (SIMJac) (SIMemb)

SST-2
In-distribution1 0.911 0.741 0.602 0.586

Synthetic Natural 0.999 0.620 0.547 0.530
Artificial 0.999 0.682 0.552 0.539

AG News
In-distribution 0.993 0.676 0.590 0.565

Synthetic Natural 0.996 0.654 0.552 0.506
Artificial 0.999 0.672 0.560 0.525

SNLI
In-distribution1 0.892 0.718 0.644 0.630

Synthetic Natural 0.998 0.534 0.486 0.488
Artificial 0.997 0.770 0.602 0.571

1 Constrained by in-distribution data, canaries consist of exactly 30 words (50 elsewhere).

Table 1. ROC AUC across datasets, threat models (model-based Aθ and data-based AD̃) and MIA methodologies for standard, high
perplexity canaries (target perplexity Ptarget = 250, no in-distribution prefix (F = 0) and nrep = 12). We give the ROC curves and TPR at
low FPR scores in Appendix G, further ablations in Appendix H, and elaborate on the disparate vulnerability of high perplexity canaries
in model- and data-based attacks in Appendix I.

First, we find that MIAs relying solely on the generated
synthetic data achieve a AUC score significantly higher than
a random guess (i.e. AUC = 0.5), reaching up to 0.74 for
SST-2, 0.68 for AG News and 0.77 for SNLI. This shows
that synthetic text can leak information about the real data
used to generate it.

Next, we observe that the data-based attack using an n-gram
model trained on synthetic data to compute membership
scores outperforms the two attacks leveraging similarity
metrics: Jaccard distance between a canary and synthetic
strings (SIMJac) or cosine distance between their embed-
dings (SIMemb). This suggests that information critical to
infer membership lies in subtle changes in the co-occurrence
of n-grams in synthetic data rather than in the generation of
many sequences with lexical or semantic similarity.

We also compare MIA performance across different canary
types under data-based attacks. The AUC remains consis-
tently higher than a random guess across all canaries. For
SST-2 and AG News, the highest AUC score of 0.74 and
0.68 is achieved when using in-distribution canaries, while
for SNLI the AUC of 0.77 is reached for synthetic canaries.

As another baseline, we test RMIA on the target model
trained on D, assuming the attacker has access to the model
logits (Aθ). This attack achieves near-perfect performance
across all setups, highlighting an inherent gap between the
performance of model- and data-based MIAs. This suggests
that, while a fine-tuned model memorizes standard canaries
well, the information necessary to infer their membership is
only partially transmitted to the synthetic text.

To investigate the gap between the two attacks in more detail,
we vary the number of canary repetitions nrep to amplify
the power of the data-based attack until its performance

matches that of a model-based attack. Fig. 1a illustrates
these results as a set of ROC curves. We quantify this
discrepancy by noting that the MIA performance for AD̃

at nrep = 16 is comparable to Aθ at nrep = 2 and for low
FPR at nrep = 1. We find similar results in Fig. 1d for AG
News. The MIA performance for AD̃ at nrep = 16 falls
between the performance of Aθ at nrep = 1 and nrep = 2.
Under these experimental conditions, canaries would need
to be repeated 8 to 16× to reach the same vulnerability in
data-based attacks compared to model-based attacks.

We provide additional results for the standard canaries as ap-
pendices: TPR at low FPR scores in Appendix G, ablations
for data-based MIA hyperparameters in Appendix H, and a
discussion on the disparate vulnerability of high perplexity
canaries in model- and data-based attacks in Appendix I.

5.2. Specialized canaries for enhanced privacy auditing

To effectively audit privacy risks in a worst-case scenario,
we explore designing specialized canaries that are both mem-
orized by the model and influential in the synthetic data.

First, we generate specialized canaries by controlling their
target perplexity Ptarget. We evaluate MIAs for both threat
models across a range of perplexities for canaries with natu-
ral labels, using nrep = 4 for the model-based MIA Aθ and
nrep = 16 for the data-based MIA AD̃. We explore a wide
range of perplexities, finding 1× 105 to align with random
token sequences. Figure 2 shows the ROC AUC score versus
canary perplexity. For the model-based attack Aθ, the AUC
monotonically increases with canary perplexity, reaffirming
that outlier records with higher perplexity are more vulnera-
ble to MIAs (Feldman & Zhang, 2020; Carlini et al., 2022a;
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Figure 1. ROC curves of MIAs on synthetic data AD̃ compared to model-based MIAs Aθ on SST-2 (1a–1c) and AG News (1d–1f). We
ablate over the number of canary insertions nrep in 1a, 1d, the target perplexity Ptarget of the inserted canaries in 1b, 1e and the length F of
the in-distribution prefix in the canary in 1c, 1f. Log-log plots in Appendix J.
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Figure 2. ROC AUC for synthetic canaries with varying perplexity
(natural label). The model-based MIA Aθ improves as canary
perplexity increases, while the data-based MIA performance AD̃

(2-gram) decreases. nθ
rep = 4, nD̃

rep = 16.

Meeus et al., 2024c). Conversely, for the data-based attack
AD̃, the AUC initially increases with perplexity but starts to
decline beyond a certain threshold, eventually approaching
a random guess (AUC of 0.5). To further illustrate this,
we present the complete ROC curve in Figures 1b and 1e
for SST-2 and AG News, respectively. We vary the canary
perplexity Ptarget while keeping other parameters constant.
As Ptarget increases, the model-based attack improves across

the entire FPR range, while the data-based attack weakens,
approaching AUC of 0.5 at high perplexities. This suggests
that identifying susceptible canaries is straightforward for
model-based privacy audits, but assessing the privacy risk
of synthetic data requires a careful balance between canary
memorization and its influence on synthetic data.

We now examine whether canaries can be crafted to enhance
both memorization and influence on the synthetic data, mak-
ing them suitable to audit the privacy risks of releasing
synthetic data. In Sec. 3.2, we introduced a method that
exploits the greedy nature of LLM decoding to design more
vulnerable canaries. We craft a canary with a low-perplexity,
in-distribution prefix to optimize its impact on the synthetic
dataset, followed by a high-perplexity suffix to enhance
memorization. We generate this suffix sampling from the
pre-trained LLM θ0 with high temperature. Figures 1c and
1f illustrate the ROC curves for SST-2 and AG News, respec-
tively, and Table 2 summarizes the corresponding ROC AUC
and TPR at low FPR. We set the overall canary perplexity
Ptarget = 31 and vary the prefix length F from F = 0 (fully
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TPR@

Dataset F ROC AUC FPR=0.01 FPR=0.1

SST-2

0 0.673 0.081 0.304
10 0.715 0.057 0.312
20 0.725 0.069 0.318
30 0.760 0.069 0.410

max 0.741 0.101 0.408

AG News

0 0.692 0.089 0.309
10 0.646 0.053 0.276
20 0.716 0.069 0.321
30 0.710 0.055 0.333

max 0.676 0.039 0.314

Table 2. MIA performance (ROC AUC and TPR at low FPR) for
data-based MIA AD̃ (2-gram) for canaries with varying length of
in-distribution prefix F (results from Figs. 1c,1f).

synthetic canaries) to F = max (in-distribution canaries).
We observe that combining an in-distribution prefix (F > 0)
with a high-perplexity suffix (F < max) enhances attack
effectiveness. For both datasets, the optimal AUC, and often
also the optimal TPR at low FPR, for the MIA is reached for
a prefix length 0 < F < max (see Table 2). This suggests
that although the model’s memorization of the canary stays
consistent (as the overall perplexity remains unchanged), the
canary’s impact on the synthetic data becomes more promi-
nent with longer in-distribution prefixes. We hypothesize
that familiar low-perplexity prefixes serve as starting points
for text generation, enhancing the likelihood that traces of
the canary appear in the synthetic data.

5.3. Identifying the memorized sub-sequences

We analyze what information from a canary leaks into the
synthetic data that enables a data-based attack to infer its
membership. For each canary x̂ = (ŝ, ℓ̂), we examine the
synthetic data generated by a model trained on a dataset
including (member) and excluding x̂ (non-member). We
leverage the M = 4 reference models θ′ used to develop
the attack for 1000 specialized canaries from Fig. 1c. For
each model θ′, we count the number of n-grams in s̃ that
occur at least once in D̃′ (Cunique). We also compute the me-
dian Cmed and average Cavg counts of n-grams from ŝ in D̃′.
Table 3 summarizes how these measures vary with n. As n
increases, the number of n-grams from the canary appearing
in the synthetic data drops sharply, reaching Cmed = 0 for
n = 4 for models including and excluding a canary. This
suggests that any verbatim reproduction of canary text in
the generated synthetic data is of limited length. Further, we
observe only slight differences in counts between members
and non-members, indicating that the signal for inferring
membership is likely in subtle shifts in the probability distri-
bution of token co-occurrences within the synthetic data, as
captured by the 2-gram model. We further analyze canaries
with the highest and lowest RMIA scores in Appendix K.

5.4. Synthetic data with formal privacy guarantees

To mitigate any privacy leakage associated with the release
of synthetic data, prior work has proposed to generate syn-
thetic data with formal privacy guarantees, in particular
differential privacy (DP). Methods used to generate syn-
thetic text with DP guarantees mitigate MIAs by ensur-
ing that any single training record exerts limited influence
on synthesized data. These methods are broadly split into
training-time (Yue et al., 2023; Mattern et al., 2022; Kurakin
et al., 2023) and inference-time (Xie et al., 2024; Wu et al.,
2024; Tang et al., 2024; Amin et al., 2024). Training-time
methods fine-tune a pre-trained LLM with DP-SGD and
then prompt this model to generate synthetic data. These
methods leverage the post-processing property of DP to
transfer the guarantees from the fine-tuned model to syn-
thetic data. Because generating synthetic data from a DP
model does not consume additional privacy budget, they can
generate an unlimited amount of data with a fixed privacy
budget. In contrast, inference-time methods use unmodified
pre-trained models prompted on private data and inject cal-
ibrated noise during decoding (Xie et al., 2024; Wu et al.,
2024; Tang et al., 2024) or employ DP evolutionary algo-
rithms to steer generation towards a distribution similar to
the private data (Amin et al., 2024).

We instantiate the training-time method, i.e. finetuning the
target model with DP-SGD (Abadi et al., 2016) using the
Opacus library (Yousefpour et al., 2021) and ϵ = 8. We
follow the same setup from Section 5.1 and report the per-
formance of the data-based MIA in Table 4. As expected,
we find the AUC for the strongest data-based MIA (2-gram)
to approach random guess performance (AUC of 0.5) when
DP guarantees are incorporated. This confirms that DP
constitutes a strong defense. We further find that the corre-
sponding generated synthetic data maintains a high utility in
downstream tasks. For instance, for synthetic data generated
with ϵ = 8, accuracy on SST-2 reaches 91.6%, compared to
91.5% for non-DP synthetic data and 92.3% for real data
(see Appendix F).

Our results suggest that DP-generated synthetic data can
achieve high utility, while strongly mitigating the success
of data-based MIAs. Yet, achieving the right balance be-
tween privacy and utility in DP synthetic text generation is
likely context-dependent. We hope that the privacy auditing
framework adapted to actual threat models we here propose
enables future work to rigorously explore this trade-off.

6. Related work
MIAs against ML models. Since the seminal work
of Shokri et al. (2017), MIAs have been used to study mem-
orization and privacy risks. Model-based MIAs have been
studied under varying threat models, including adversaries
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Cunique Cmed Cavg

n Member Non-member Member Non-member Member Non-member

1 45.97± 2.8 45.1± 3.0 819.6± 702.6 821.5± 727.9 7389.2± 1648.4 7384.2± 1650.0
2 29.6± 5.6 28.0± 5.5 4.5± 6.5 3.5± 5.5 198.0± 109.3 195.9± 107.5
4 4.9± 3.7 4.1± 3.2 0.0± 0.0 0.0± 0.0 1.3± 2.6 1.2± 2.5
8 0.1± 1.0 0.1± 0.6 0.0± 0.0 0.0± 0.0 0.0± 0.1 0.0± 0.0

Table 3. Count statistics of n-grams in a canary ŝ that also appear in the synthetic data D̃′ generated using 4 reference models including
and excluding ŝ. Number of n-grams in s̃ that also appear in D̃′ (Cunique), median (Cmed) and average (Cavg) counts of n-grams from ŝ in
D̃′. We report mean and std. deviation of these measures over all canaries (F = 30, Ptarget = 31, nrep = 16) for SST-2. Each canary ŝ

contains exactly 50 words and D̃′ contains 685.1k ± 45.4k words.

ROC AUC

Dataset ϵ = ∞ ϵ = 8

SST-2 0.620 0.48

AG News 0.654 0.52

SNLI 0.534 0.49

Table 4. ROC AUC across datasets for the strongest data-based AD̃

MIA (2-gram), for synthetic data without (ϵ = ∞) and with DP
guarantees (ϵ = 8). We use the setup from Table 1, i.e. synthetic
canaries with natural labels, target perplexity Ptarget = 250, no
in-distribution prefix (F = 0) and nrep = 12.

with access to model weights (Sablayrolles et al., 2019;
Nasr et al., 2019; Leino & Fredrikson, 2020; Cretu et al.,
2024), output probabilities (Shokri et al., 2017; Carlini et al.,
2022a) or just labels (Choquette-Choo et al., 2021). Most
powerful MIAs leverage a large number of reference mod-
els (Ye et al., 2022; Carlini et al., 2022a; Sablayrolles et al.,
2019; Watson et al., 2021), while RMIA (Zarifzadeh et al.,
2024) achieves high performance using only a few.

MIAs against language models. Song & Shmatikov (2019)
study MIAs to audit the use of an individual’s data during
training. Carlini et al. (2021) investigate training data re-
construction attacks against LLMs, sampling synthetic text
and running model-based attacks to identify likely members.
Kandpal et al. (2022) and Carlini et al. (2023) both find that
repetitions in the training data make records more vulnera-
ble. Shi et al. (2024) and Meeus et al. (2024b) use attacks to
identify pre-training data. Various membership scores have
been proposed, e.g. model loss (Yeom et al., 2018), lowest
predicted token probabilities (Shi et al., 2024), changes in
the model’s probability for neighboring samples (Mattern
et al., 2023), or perturbations to weights (Li et al., 2023).

Data-based MIAs in other scenarios. Hayes et al. (2019)
train a Generative Adversarial Network (GAN) on synthetic
images generated by a target GAN and use the resulting dis-
criminator to infer membership. Hilprecht et al. (2019) ex-
plore MIAs using synthetic images closest to a target record.
Chen et al. (2020) study attack calibration techniques against

GANs for images and location data. Privacy risks of syn-
thetic tabular data have been widely studied, using MIAs
based on similarity metrics and shadow models (Yale et al.,
2019; Hyeong et al., 2022; Zhang et al., 2022). Stadler et al.
(2022) compute high-level statistics, Houssiau et al. (2022)
compute similarities between the target record and synthetic
data, and Meeus et al. (2024a) propose a trainable feature
extractor. Unlike these, we evaluate MIAs on text generated
using fine-tuned LLMs. This introduces unique challenges
and opportunities, both in computing membership scores
and identifying worst-case canaries, making our approach
distinct from prior work.

Vulnerable records in MIAs. Prior work found that
some records (outliers) have a disparate effect on a trained
model (Feldman & Zhang, 2020), making them more vulner-
able to MIAs (Carlini et al., 2022a;b). Hence, specifically
crafted canaries have been proposed to study memorization
and for privacy auditing of language models, ranging from a
sequence of random digits (Carlini et al., 2019; Stock et al.,
2022) or tokens (Wei et al., 2024) to synthetically generated
sequences (Meeus et al., 2024c). Also for synthetic tabular
data, outliers have been found to have increased privacy
leakage (Stadler et al., 2022; Meeus et al., 2024a).

Decoding method. Prior works study how decoding meth-
ods like beam search (Zanella-Béguelin et al., 2020; Carlini
et al., 2023), top-k sampling (Kandpal et al., 2022), or de-
caying temperature (Carlini et al., 2021) impact how often
LLMs replicate information from their training data. We use
fixed prompt templates and top-p sampling with p = 0.95
and temperature 1.0 to assess the privacy of synthetic text
in a realistic regime rather than allowing the attacker to pick
a decoding method adversarially.

Reproducibility
We provide experimental details in Section 4 and Ap-
pendix D. The datasets are publicly available, and we re-
lease the code necessary to reproduce our results on Github:
https://aka.ms/canarysecho.
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Impact statement
In this work, we propose a methodology to audit the privacy
risks in LLM-generated synthetic data. Through a novel
MIA, we quantify the potential for sensitive information
leakage even in scenarios where the underlying model is
inaccessible. We also identify that canary generation mecha-
nisms found useful to study risks in model-based attacks fall
short in data-based attacks, and propose an improved canary
generation mechanism optimal for data-based attacks.

Taken together, the methods proposed in this work enable an
auditor to empirically estimate the privacy risks associated
with synthetic text. Practitioners leveraging synthetic data as
a privacy-enhancing technology can use our tools to evaluate
these risks before deploying synthetic text in downstream
applications. In particular, our privacy auditing pipeline
would be valuable when synthetic text data is proposed to
extract utility from sensitive data (e.g. medical records,
financial statements) or to verify synthetic data generation
implementations with formal privacy guarantees.

We hope this work advances the understanding of privacy
risks in LLM-generated synthetic data and helps organi-
zations and policymakers navigate the associated privacy-
utility trade-offs effectively.

Acknowledgements
L.W. would like to thank Robert Sim for encouraging us to
work on this topic and Huseyin Inan for fruitful discussions
on private synthetic data generation.

References
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,

Mironov, I., Talwar, K., and Zhang, L. Deep learning with
differential privacy. In 2016 ACM SIGSAC Conference
on Computer and Communications Security (CCS 2016),
pp. 308–318. ACM, 2016.

Amin, K., Bie, A., Kong, W., Kurakin, A., Ponomareva,
N., Syed, U., Terzis, A., and Vassilvitskii, S. Private
prediction for large-scale synthetic text generation. In
Findings of the Association for Computational Linguis-
tics: EMNLP 2024, pp. 7244–7262, 2024.

Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D.
A large annotated corpus for learning natural language
inference. In Màrquez, L., Callison-Burch, C., and Su, J.
(eds.), Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pp. 632–642,
Lisbon, Portugal, September 2015. Association for Com-
putational Linguistics. doi:10.18653/v1/D15-1075. URL
https://aclanthology.org/D15-1075.

Carlini, N., Liu, C., Erlingsson, Ú., Kos, J., and

Song, D. The secret sharer: Evaluating and test-
ing unintended memorization in neural networks. In
28th USENIX Security Symposium (USENIX Secu-
rity 19), pp. 267–284. USENIX Association, 2019.
doi:10.5555/3361338.3361358.

Carlini, N., Tramèr, F., Wallace, E., Jagielski, M., Herbert-
Voss, A., Lee, K., Roberts, A., Brown, T., Song, D.,
Erlingsson, U., et al. Extracting training data from large
language models. In 30th USENIX Security Symposium
(USENIX Security 21), pp. 2633–2650. USENIX As-
sociation, 2021. URL https://www.usenix.
org/conference/usenixsecurity21/
presentation/carlini-extracting.

Carlini, N., Chien, S., Nasr, M., Song, S., Terzis, A.,
and Tramèr, F. Membership inference attacks from
first principles. In 2022 IEEE Symposium on Secu-
rity and Privacy (S&P), pp. 1897–1914. IEEE, 2022a.
doi:10.1109/SP46214.2022.9833649.

Carlini, N., Jagielski, M., Zhang, C., Papernot, N., Terzis,
A., and Tramèr, F. The privacy onion effect: Memoriza-
tion is relative. Advances in Neural Information Process-
ing Systems (NeurIPS 2022), 35:13263–13276, 2022b.

Carlini, N., Ippolito, D., Jagielski, M., Lee, K., Tramèr, F.,
and Zhang, C. Quantifying memorization across neural
language models. In 11th International Conference on
Learning Representations (ICLR 2023). OpenReview.net,
2023. URL https://openreview.net/forum?
id=TatRHT_1cK.

Chang, H., Shamsabadi, A. S., Katevas, K., Haddadi,
H., and Shokri, R. Context-aware membership infer-
ence attacks against pre-trained large language mod-
els, 2024. URL https://arxiv.org/abs/2409.
13745. arXiv preprint.

Chen, D., Yu, N., Zhang, Y., and Fritz, M. GAN-leaks:
A taxonomy of membership inference attacks against
generative models. In 2020 ACM SIGSAC conference on
computer and communications security (CCS 2020), pp.
343–362. ACM, 2020. doi:10.1145/3372297.3417238.

Choquette-Choo, C. A., Tramèr, F., Carlini, N., and Pa-
pernot, N. Label-only membership inference attacks.
In 38th International conference on machine learning
(ICML 2021), volume 139, pp. 1964–1974. PMLR,
2021. URL https://proceedings.mlr.press/
v139/choquette-choo21a.html.

Cretu, A.-M., Jones, D., de Montjoye, Y.-A., and
Tople, S. Investigating the effect of misalignment on
membership privacy in the white-box setting. Proc.
Priv. Enhancing Technol., 2024(3):407–430, 2024.
doi:10.56553/POPETS-2024-0085.

10

https://doi.org/10.18653/v1/D15-1075
https://aclanthology.org/D15-1075
https://doi.org/10.5555/3361338.3361358
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://doi.org/10.1109/SP46214.2022.9833649
https://openreview.net/forum?id=TatRHT_1cK
https://openreview.net/forum?id=TatRHT_1cK
https://arxiv.org/abs/2409.13745
https://arxiv.org/abs/2409.13745
https://doi.org/10.1145/3372297.3417238
https://proceedings.mlr.press/v139/choquette-choo21a.html
https://proceedings.mlr.press/v139/choquette-choo21a.html
https://doi.org/10.56553/POPETS-2024-0085


The Canary’s Echo: Auditing Privacy Risks of LLM-Generated Synthetic Text

Feldman, V. and Zhang, C. What neural networks mem-
orize and why: Discovering the long tail via influence
estimation. Advances in Neural Information Processing
Systems (NeurIPS 2020), 33:2881–2891, 2020.

Hayes, J., Melis, L., Danezis, G., and De Cristofaro, E.
LOGAN: Membership inference attacks against gener-
ative models. Proc. Priv. Enhancing Technol., 2019(1):
133–152, 2019. doi:10.2478/popets-2019-0008.

Hilprecht, B., Härterich, M., and Bernau, D. Monte Carlo
and reconstruction membership inference attacks against
generative models. Proc. Priv. Enhancing Technol., 2019
(4):232–249, 2019. doi:10.2478/popets-2019-0067.

Houssiau, F., Jordon, J., Cohen, S. N., Daniel, O., Elliott,
A., Geddes, J., Mole, C., Rangel-Smith, C., and Szpruch,
L. TAPAS: a toolbox for adversarial privacy auditing of
synthetic data. In NeurIPS 2022 Workshop on Synthetic
Data for Empowering ML Research, 2022. URL https:
//openreview.net/forum?id=9hXskf1K7zQ.

Hu, E. J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang,
L., Chen, W., et al. LoRA: Low-rank adaptation of large
language models. In 10th International Conference on
Learning Representations (ICLR 2022). OpenReview.net,
2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Hyeong, J., Kim, J., Park, N., and Jajodia, S. An
empirical study on the membership inference attack
against tabular data synthesis models. In 31st ACM
International Conference on Information & Knowledge
Management (CIKM ’22), pp. 4064–4068. ACM, 2022.
doi:10.1145/3511808.3557546.

Jagielski, M., Ullman, J., and Oprea, A. Auditing differ-
entially private machine learning: How private is private
SGD? Advances in Neural Information Processing Sys-
tems (NeurIPS 2020), 33:22205–22216, 2020.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de las Casas, D., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-
A., Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix,
T., and Sayed, W. E. Mistral 7B, 2023. URL https:
//arxiv.org/abs/2310.06825. arXiv preprint.

Jurafsky, D. and Martin, J. H. Speech and Language Pro-
cessing: An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition with
Language Models. n.p., 3rd edition, 2024. URL https:
//web.stanford.edu/~jurafsky/slp3/. On-
line manuscript released August 20, 2024.

Kandpal, N., Wallace, E., and Raffel, C. Deduplicating
training data mitigates privacy risks in language models.

In 39th International Conference on Machine Learning
(ICML 2022), volume 162, pp. 10697–10707. PMLR,
2022. URL https://proceedings.mlr.press/
v162/kandpal22a.html.

Kim, K., Gopi, S., Kulkarni, J., and Yekhanin, S. Dif-
ferentially private n-gram extraction. Advances in Neu-
ral Information Processing Systems (NeurIPS 2021), 34:
5102–5111, 2021.

Kurakin, A., Ponomareva, N., Syed, U., MacDermed, L.,
and Terzis, A. Harnessing large-language models to
generate private synthetic text, 2023. URL https:
//arxiv.org/abs/2306.01684. arXiv preprint.

Leino, K. and Fredrikson, M. Stolen memories:
Leveraging model memorization for calibrated
white-box membership inference. In 29th USENIX
Security Symposium (USENIX Security 20), pp.
1605–1622. USENIX Association, 2020. URL
https://www.usenix.org/conference/
usenixsecurity20/presentation/leino.

Li, M., Wang, J., Wang, J. G., and Neel, S. MoPe: Model
perturbation based privacy attacks on language models.
In 2023 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2023), pp. 13647–13660.
ACL, 2023. doi:10.18653/v1/2023.emnlp-main.842.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
V. RoBERTa: A robustly optimized BERT pretraining
approach, 2019. URL https://arxiv.org/abs/
1907.11692. arXiv preprint.

Mattern, J., Jin, Z., Weggenmann, B., Schoelkopf, B., and
Sachan, M. Differentially private language models for se-
cure data sharing. In 2022 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP 2022), pp.
4860–4873. ACL, 2022. doi:10.18653/v1/2022.emnlp-
main.323.

Mattern, J., Mireshghallah, F., Jin, Z., Schölkopf, B.,
Sachan, M., and Berg-Kirkpatrick, T. Membership infer-
ence attacks against language models via neighbourhood
comparison. In Findings of the Association for Compu-
tational Linguistics: ACL 2023, pp. 11330–11343. ACL,
2023. doi:10.18653/v1/2023.findings-acl.719.

Meeus, M., Guepin, F., Creţu, A.-M., and de Montjoye,
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A. Pseudo-code for MIAs based on synthetic data
We here provide the pseudo-code for computing membership signals for both MIA methodologies based on synthetic data
(Sec. 3.1.2), see Algorithm 2 for the n-gram method and Algorithm 3 for the method using similarity metrics.

Algorithm 2 Compute membership signal using n-gram model

1: Parameter: n-gram model order n
2: Input: Synthetic dataset D̃ = {x̃i = (s̃i, ℓ̃i)}Ñi=1, Target canary x̂ = (ŝ, ℓ̂)
3: Output: Membership signal α
4: C(w⃗)← 0 for all (n−1)- and n-grams w⃗
5: for i = 1 to Ñ do
6: w1, . . . , wk(i) ← s̃i
7: for each n-gram (wj−(n−1), . . . , wj) in s̃i do
8: C(wj−(n−1), . . . , wj) += 1
9: C(wj−(n−1), . . . , wj−1) += 1

10: end for
11: end for
12: V ← |{w | ∃i.w ∈ s̃i}|
13: The n-gram model is factored into conditional probabilities: {Final n-gram model}

Pn-gram(wj | wj−(n−1), . . . , wj−1) =
C(wj−(n−1), . . . , wj) + 1

C(wj−(n−1), . . . , wj−1) + V

14: w1, . . . , wk ← ŝ {Compute probability of canary text ŝ}
15: α←

∏k
j=2 Pn-gram(wj | wj−(n−1), . . . , wj−1)

16: return α

Algorithm 3 Compute membership signal using similarity metric

1: Parameter: Similarity metric SIM(·, ·), cutoff parameter k
2: Input: Synthetic dataset D̃ = {x̃i = (s̃i, ℓ̃i)}Ñi=1, Target canary x̂ = (ŝ, ℓ̂)
3: Output: Membership signal α
4: for i = 1 to Ñ do
5: σi ← SIM(ŝ, s̃i) {Compute similarity of each synthetic example}
6: end for
7: Sort similarities σi for i = 1, . . . , Ñ in descending order
8: Let σi(1), . . . , σi(k) be the top-k similarities
9: α← 1

k

∑k
j=1 σi(j) {Compute mean similarity of the top-k examples}

10: return α

B. Computation of RMIA scores
We here provide more details on how we adapt RMIA, as originally proposed by Zarifzadeh et al. (2024), to our setup (see
Sec. 3.1.3). In RMIA, the pairwise likelihood ratio is defined as:

LRθ(x, z) =

(
P (x | θ)
P (x)

)(
P (z | θ)
P (z)

)−1

. (1)

where θ represents the target model, x the target record, and z the reference population. In this work, we only consider one
target model θ and many target records x. As we are only interested in the relative value of the likelihood ratio across target
records, we can eliminate the dependency on the reference population z,
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LRθ(x, z) = LRθ(x) =
P (x | θ)
P (x)

. (2)

As suggested by (Zarifzadeh et al., 2024), we compute P (x) as the empirical mean of P (x | θ′) across reference models
{θ′i}Mi=1,

P (x) =
1

M

M∑
i=1

P (x | θ′i) . (3)

To compute RMIA scores, we replace the probabilities in (2) by membership signals on target and reference models:

βθ(x) =
αθ(x)

1
M

∑M
i=1 αθ′

i
(x)

. (4)

Note that when we compute αθ(x) as a product of conditional probabilities (e.g. when using the target model probability in
the model-based attack or the n-gram probability in the data-based attack), we truly use a probability for αθ(x). However, in
the case of the data-based attack using similarity metrics, we use the mean similarity to the k closest synthetic sequences—
which does not correspond to a true probability. In this case, we normalize similarities to fall in the range [0, 1] and use
αθ(x) as an empirical proxy for the probability P (x | θ).

In practice, P (x | θ) can be an extremely small value, particularly when calculated as a product of token-level conditional
probabilities, which can lead to underflow errors. To mitigate this, we perform arithmetic operations on log-probabilities
whenever possible. However, in the context of equation (4), where the denominator involves averaging probabilities, we
employ quad precision floating-point arithmetic. This method is sufficiently precise to handle probabilities for sequences of
up to 50 words, which is the maximum we consider in our experiments.

C. Prompts used to generate synthetic data
Table 5 summarizes the prompt templates p(ℓ) used to generate synthetic data for all datasets (see Sec. 4).

Dataset Template p(ℓ) Labels ℓ

SST-2 "This is a sentence with a ℓ sentiment: " {positive, negative}

AG News "This is a news article about ℓ: " {World, Sport, Business, Sci/Tech}

SNLI "A premise with a ℓ hypothesis: " {entailing, neutral, contradicting}

Table 5. Prompt templates used to fine-tune models and generate synthetic data.

D. Implementation details
To generate synthetic data throughout the experiments in this paper, we fine-tune the pre-trained model Mistral-7B (Jiang
et al., 2023) using LoRA with r = 4, including all target modules (updating 10.7M parameters in total).

We optimized training hyperparameters for LoRA fine-tuning Mistral-7B on SST-2 by running a grid search over learning
rate ([1× 10−6, 4× 10−6, 2× 10−5, 6× 10−5, 3× 10−4, 1× 10−3]) and batch size ([64, 128, 256]). We fine-tuned the
models for 3 epochs and observed the validation loss plateaued after the first epoch. Based on these results, we selected a
learning rate of 2× 10−5, effective batch size of 128, sequence length 128, LoRA r = 4 and fine-tuned the models for 1
epoch. Figure 3 shows the validation cross-entropy loss for SST-2 over the grid we searched on and the train and validation
loss curves for 3 epochs with the selected hyperparameters.

All our experiments have been conducted on a cluster of nodes with 8 V100 NVIDIA GPUs with a floating point precision
of 16 (fp16). We built our experiments on two open-source packages: (i) privacy-estimates which provides a
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Figure 3. (a) Validation cross-entropy loss of LoRA fine-tuning Mistral-7B on SST-2 varying the learning rate and effective batch size. (b)
Training and validation loss for best hyperparameters over 3 epochs.

distributed implementation of the RMIA attack and (ii) dp-transformers which provides the implementation of the
synthetic data generator.

E. Detailed assumptions made for the adversary
We clarify the capabilities of adversaries in model- and data-based attacks according to the threat model specified in
Section 2. We note:

1. A model-based attack is strictly more powerful than a data-based attack. This is because with access to the fine-tuned
model θ and the prompt template p(·), a model-based attack can synthesize D̃ for any set of synthetic labels and perfectly
simulate the membership inference experiment for a data-based attack.

2. In both threat models, the adversary can train reference models {θ′i}Mi=1. This assumes access to the private dataset D,
and the training procedure of target model θ, including hyperparameters. This is made clear in line 3 in Algorithm 1.

3. In our experiments, we consider model-based attacks that use the prompt template p(·) to compute the model loss for
target records, as specified in Sec. 3.1.1. Our data-based attacks use the prompt template p(·) to generate synthetic data
D̃ from reference models.

4. Only the model-based attack has query-access to the target model θ. The attacks used in our experiments use θ to
compute token-level predicted logits for input sequences and do not use white-box features, although this is not excluded
by the threat model.

5. Only the data-based attack generates synthetic data from reference models, so only this threat model leverages the
sampling procedure sample(·).

Table 6 summarizes the adversary capabilities used in the attacks in our experiments.

F. Synthetic data utility
To ensure we audit the privacy of synthetic text data in a realistic setup, the synthetic data needs to bear high utility. We
measure the synthetic data utility by comparing the downstream classification performance of RoBERTa-base (Liu et al.,
2019) when fine-tuned exclusively on real or synthetic data. We fine-tune models for binary (SST-2) and multi-class
classification (AG News) for 1 epoch on the same number of real or synthetic data records using a batch size of 16 and
learning rate η = 1× 10−5. We report the macro-averaged AUC score and accuracy on a held-out test dataset of real records.

16



The Canary’s Echo: Auditing Privacy Risks of LLM-Generated Synthetic Text

Assumptions Model-based MIA Data-based MIA

Knowledge of the private dataset D used to fine-tune the
target model θ (apart from knowledge of canaries).

✓ ✓

Knowledge of the training procedure of target model θ. ✓ ✓

Knowledge of the prompt template p(ℓi) used to generate
the synthetic data.

✓ ✓

Query-access to target model θ, returning predicted logits. ✓ –

Access to synthetic data D̃ generated by target model θ. – ✓

Knowledge of the decoding strategy employed to sample
synthetic data D̃ (e.g., temperature, top-k).

– ✓

Table 6. Adversary capabilities effectively used by attacks in our experiments.

Table 7 summarizes the results for synthetic data generated based on original data which does not contain any canaries.
While we do see a slight drop in downstream performance when considering synthetic data instead of the original data, AUC
and accuracy remain high for both tasks.

Fine-tuning data Classification

Dataset AUC Accuracy

SST-2
Real 0.984 92.3%

Synthetic 0.968 91.5%

AG News
Real 0.992 94.4%

Synthetic 0.978 90.0%

Table 7. Utility of synthetic data generated from real data without canaries. We compare the performance of text classifiers trained on real
or synthetic data—both evaluated on real, held-out test data.

We further measure the synthetic data utility when the original data contains standard canaries (see Sec. 5.1). Specifically,
we consider synthetic data generated from a target model trained on data containing 500 canaries repeated nrep = 12 times,
so 6000 data records. When inserting canaries with an artificial label, we remove all synthetic data associated with labels
not present originally when fine-tuning the RoBERTa-base model.

Canary injection Classification

Dataset Source Label AUC Accuracy

SST-2
In-distribution 0.972 91.6%

Synthetic Natural 0.959 89.3%
Artificial 0.962 89.9%

AG News
In-distribution 0.978 89.8%

Synthetic Natural 0.977 88.6%
Artificial 0.980 90.1%

Table 8. Utility of synthetic data generated from real data with canaries (nrep = 12). We compare the performance of text classifiers
trained on real or synthetic data—both evaluated on real, held-out test data.

Table 8 summarizes the results. Across all canary injection methods, we find limited impact of canaries on the downstream
utility of synthetic data. While the difference is minor, the natural canary labels lead to the largest utility degradation. This
makes sense, as the high perplexity synthetic sequences likely distort the distribution of synthetic text associated with a
certain real label. In contrast, in-distribution canaries can be seen as up-sampling certain real data points during fine-tuning,
while canaries with artificial labels merely reduce the capacity of the model to learn from real data and do not interfere with
this process as much as canaries with natural labels do.
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G. Additional results for MIAs using standard canaries
In line with the literature on MIAs against machine learning models (Carlini et al., 2022a), we also evaluate MIAs by
their true positive rate (FPR) at low false positive rates (FPR). Tables 9 and 10 summarize the MIA TPR at FPR=0.01 and
FPR=0.1, respectively. We also provide the ROC curves for the data-based MIAs for both datasets, considering canaries
with natural labels in Figure 4.

Canary injection TPR@FPR=0.01

Model Aθ Synthetic AD̃ Synthetic AD̃ Synthetic AD̃

Dataset Source Label (2-gram) (SIMJac) (SIMemb)

SST-2
In-distribution 0.148 0.104 0.029 0.020

Synthetic Natural 0.972 0.042 0.018 0.024
Artificial 0.968 0.057 0.000 0.030

AG News
In-distribution 0.941 0.050 0.032 0.016

Synthetic Natural 0.955 0.049 0.006 0.016
Artificial 0.990 0.053 0.041 0.022

Table 9. True positive rate (TPR) at a false positive rate (FPR) of 0.01 for experiments using standard canaries (Sec. 5.1) across training
datasets, threat models (model-based adversary Aθ and data-based adversary AD̃) and MIA methodologies. Canaries are synthetically
generated with target perplexity Ptarget = 250, with no in-distribution prefix (F = 0) and inserted nrep = 12 times.

Canary injection TPR@FPR=0.1

Model Aθ Synthetic AD̃ Synthetic AD̃ Synthetic AD̃

Dataset Source Label (2-gram) (SIMJac) (SIMemb)

SST-2
In-distribution 0.795 0.406 0.207 0.203

Synthetic Natural 0.996 0.191 0.114 0.128
Artificial 1.000 0.277 0.142 0.142

AG News
In-distribution 0.982 0.314 0.158 0.168

Synthetic Natural 0.990 0.271 0.114 0.114
Artificial 0.996 0.323 0.152 0.164

Table 10. True positive rate (TPR) at a false positive rate (FPR) of 0.1 for experiments using standard canaries (Sec. 5.1) across training
datasets, threat models (model-based adversary Aθ and data-based adversary AD̃) and MIA methodologies. Canaries are synthetically
generated with target perplexity Ptarget = 250, with no in-distribution prefix (F = 0) and inserted nrep = 12 times.

H. Ablations for MIAs on synthetic data
Synthetic multiple Thus far, we have exclusively considered that the number of generated synthetic records equals the
number of records in the real data, i.e., N = Ñ . We now consider the case when more synthetic data is made available
to a data-based adversary (Ã). Specifically, we denote the synthetic multiple m = Ñ/N and evaluate how different MIAs
perform for varying values of m. Figure 5 shows how the ROC AUC score varies as m increases. As expected, the ROC
AUC score for the attack that uses membership signals computed using a 2-gram model trained on synthetic data increases
when more synthetic data is available. In contrast, attacks based on similarity metrics do not seem to benefit significantly
from this additional synthetic data.

Hyperparameters in data-based attacks The data-based attacks that we presented in Sec. 3.1 rely on certain hyperpa-
rameters. The attack that uses n-gram models to compute membership signals is parameterized by the order n. Using a too
small value for n might not suffice to capture the information leaked from canaries into the synthetic data used to train the
n-gram model. When using a too large order n, on the other hand, we would expect less overlap between n-grams present in
the synthetic data and the canaries, lowering the membership signal.
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Figure 4. MIA ROC curves across data-based MIA methodologies for the SST-2 (left) and AG News (right) datasets. Canaries are
synthetically generated with target perplexity of Ptarget = 250 with a natural label, with no in-distribution prefix (F = 0) and inserted
nrep = 12 times.

Further, the similarity-based methods rely on the computation of the mean similarity of the closest k synthetic records to the
a canary. When k is very small, e.g. k = 1, the method takes into account a single synthetic record, potentially missing on
leakage of membership information from other close synthetic data records. When k becomes too large, larger regions of
the synthetic data are taken into account, which might dilute the membership signal among the noise.

Table 11 reports the ROC AUC scores of data-based attacks for different values of the hyperparameters n and k when using
standard canaries (Sec. 5.1). We find that for both datasets, training a 2-gram model on the synthetic data to compute the
membership signal yields the best performance. For the data-based MIAs relying on the similarity between the canary and
the synthetic records, both when considering Jaccard distance and cosine distance in the embedding space, we find that
considering the k = 25 closest synthetic records yields the best performance.

n-gram SIMJac SIMemb

Dataset n AUC k AUC k AUC

SST-2

1 0.415 1 0.520 1 0.516
2 0.616 5 0.535 5 0.516
3 0.581 10 0.538 10 0.519
4 0.530 25 0.547 25 0.530

AG News

1 0.603 1 0.522 1 0.503
2 0.644 5 0.525 5 0.498
3 0.567 10 0.537 10 0.503
4 0.527 25 0.552 25 0.506

Table 11. Ablation over hyperparameters of data-based MIAs. We report ROC AUC scores across different values of the hyperparameters
n and k (see Sec. 3.1). Canaries are synthetically generated with target perplexity Ptarget = 250, with a natural label, with no in-distribution
prefix (F = 0), and inserted nrep = 12 times.

I. Disparate vulnerability of standard canaries
We analyze the disparate vulnerability of standard canaries between the model-based attack and the data-based attack that
uses a 2-gram model (as discussed in Sec 5.1). Figure 6 plots the RMIA scores for both attacks on the same set of canaries,
which have either been included in the training dataset of the target model (member) or not (non-member). Note that the
RMIA scores are used to distinguish members from non-members, and that a larger value corresponds to the adversary
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Figure 5. ROC AUC score for increasing value of the synthetic multiple m across data-based attack methods for SST-2 (left) and AG
News (right). Canaries are synthetically generated with target perplexity of Ptarget = 250, with a natural label, with no in-distribution
prefix (F = 0), and inserted nrep = 12 times.

being more confident in identifying a record as a member, i.e., to the record being more vulnerable.

First, we note that the scores across both threat models exhibit a statistically significant, positive correlation. We find a
Pearson correlation coefficient between the RMIA scores (log) for both methods of 0.20 (p-value of 2.4× 10−10) and 0.23
(p-value of 1.9× 10−13) for SST-2 and AG News, respectively. This means that a record vulnerable to the model-based
attack tends to be also vulnerable to the data-based attack, even though the attacks differ substantially.

Second, and more interestingly, some canaries have disparate vulnerability across MIA methods. Indeed, Figure 6 shows
how certain data records which are not particularly vulnerable to the model-based attack are significantly more vulnerable to
the data-based attack, and vice versa.
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Figure 6. RMIA scores (log) for model- and data-based MIAs on the same set of canaries. Results for both datasets SST-2 and AG News.
Canaries are synthetically generated with target perplexity of Ptarget = 250 with a natural label, and inserted nrep = 12 times.
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J. Low FPR ROC results
Figure 7 shows log-log plots of the ROC curves in Figure 1 to better examine behavior of attacks at low FPR.
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Figure 7. Log-log ROC curves of MIAs on synthetic data AD̃ compared to model-based MIAs Aθ on SST-2 (7a–7c) and AG News
(7d–7f). We ablate over the number of canary insertions nrep in 7a, 7d, the target perplexity Ptarget of the inserted canaries in 7b, 7e and the
length F of the in-distribution prefix in the canary in 7c, 7f.

K. Interpretability
To further understand the membership signal for data-based attacks, we examine some examples in-depth.

Specifically, we consider the MIA for specialized canaries with F = 30, Ptarget = 31 and nrep = 16 for SST-2 from
Figure 1c. Recall that for this attack, we consider 1000 canaries, 500 of which are injected into the training dataset of one
target model θ. We also train 4 references models {θ′i}4i=1 where each of the 1000 canaries has been included in exactly
half. We focus on the best performing MIA based on synthetic data, i.e. the attack leveraging the probability of the target
sequence computed using a 2-gram model trained on the synthetic data.

To understand what signal the MIA picks up to infer membership, we focus on the canary most confidently, and correctly,
identified as member and the one most confidently, and correctly, identified as non-member. For this, we take the canaries for
which the RMIA score computed using the target model and the reference models is the highest and the lowest, respectively.

Next, for each model (4 reference models, and 1 target model), we report for this canary x̂i:

1. Whether the canary has been included in, x̂i ∈ D (IN), or excluded from, x̂i /∈ D (OUT), the training dataset of the
model in question, and thus to generate the synthetic data D̃ = {x̃i = (s̃i, ℓ̃i)}Ñi=1.
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2. The canary with the words that appear as a 2-gram in the synthetic data D̃ emphasized in bold face. Note that if, for
instance, this is a sequence of 3 words, e.g., "the woodman seems", this means that all 3 words appear in 2-grams in the
synthetic data, e.g., "the woodman" and "woodman seems".

3. The maximum overlapping sub-string between the canary and any synthetically generated record s̃i. We define a
sub-string as a sequence of characters, including white space, and also report its length as number of characters Loverlap.

4. The mean, negative cross-entropy loss of the canary computed using the 2-gram model trained on the synthetic data.
Formally, for canary ŝi = (w1, w2, . . . , wk): − 1

k

∑k
j=2 log (P2-gram(wj , wj−1)).

Tables 12 and 13 report this for the canary with the largest and lowest RMIA score, respectively.

First, we analyze the membership prediction made for the canary with the largest RMIA score (Table 12). Examining the
reference models (θ′i), we find little variation in the metrics we consider, regardless of whether the canary was included in the
training dataset (IN) or not (OUT). Specifically, the number of overlapping 2-grams, the length of the longest overlapping
sub-string, and the 2-gram loss remain largely unchanged across IN and OUT reference models.

In contrast, the target model θ exhibits a strong signal, especially when compared to the reference models. Notably, the
uncommon sequence "Embed from Getty Images Embed from Getty Images" appears in the synthetic data generated by the
trained target model θ but is absent from the synthetic data of all θ′i. The signal is further reflected by a significantly lower
2-gram loss compared to the reference models, explaining the high RMIA score for this canary.

Overall, even for the most vulnerable canary, not all of its 2-grams appear in the synthetic data, and the longest overlapping
sub-string accounts for only 52 out of 296 characters. This suggests that membership inference does not rely on verbatim
regurgitation of long sub-sequences. Instead, it detects subtler patterns, such as the presence of specific 2-grams or shorter
sub-strings. Such signal is effectively captured by the 2-gram loss and becomes especially meaningful when contrasted
against values reached for the reference models using RMIA.

Second, we analyze the membership prediction for the canary with the lowest RMIA score (Table 13). In this case, the
canary was not included in the target model’s training dataset (OUT) and was correctly classified as non-member.

We observe minimal differences in the number of overlapping 2-grams and the length of the longest overlapping sub-string
across IN and OUT reference models, as well as the target model. Instead, the most informative signal emerges from the
2-gram loss: it is lower for IN models than for OUT models, with the target model exhibiting the highest loss, resulting in
the low RMIA score. These results again suggest that the information useful to infer membership based on synthetic data
does not rely on the regurgitation of long sub-sequences, and instead arises from slight shifts in the probability distribution
of co-occurrences of words in the synthetic data, as captured by the 2-gram loss.
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IN or Canary Max overlapping 2-gram
Model OUT (words present as part of 2-grams in D̃′ in bold) sub-string loss

θ′1 (ref) IN "the woodman seems to have directly influenced this girl-
meets-girl love story , but even more reassuring is how its
makers actually seem to understand what made allen
’s romantic comedies work in the first place. Embed
from Getty Images Embed from Getty Images Earlier this
week, the case against the"

« to understand what
made » ;

Loverlap = 25

8.21

θ′2 (ref) IN "the woodman seems to have directly influenced this girl-
meets-girl love story , but even more reassuring is how
its makers actually seem to understand what made allen
’s romantic comedies work in the first place. Embed
from Getty Images Embed from Getty Images Earlier this
week, the case against the"

«ally seem to
understand » ;
Loverlap = 24

8.19

θ′3 (ref) OUT "the woodman seems to have directly influenced this girl-
meets-girl love story , but even more reassuring is how
its makers actually seem to understand what made allen
’s romantic comedies work in the first place. Embed
from Getty Images Embed from Getty Images Earlier this
week, the case against the"

« seem to understand
what ma» ;
Loverlap = 27

8.18

θ′4 (ref) OUT "the woodman seems to have directly influenced this girl-
meets-girl love story , but even more reassuring is how
its makers actually seem to understand what made allen
’s romantic comedies work in the first place. Embed
from Getty Images Embed from Getty Images Earlier this
week, the case against the"

«s work in the first
place» ; Loverlap = 25

8.18

θ (target) IN "the woodman seems to have directly influenced this girl-
meets-girl love story , but even more reassuring is how its
makers actually seem to understand what made allen
’s romantic comedies work in the first place. Embed
from Getty Images Embed from Getty Images Earlier
this week, the case against the"

«e. Embed from
Getty Images Embed
from Getty Images E»

; Loverlap = 52

7.59

Table 12. Interpretability of the best MIA (2-gram) based on synthetic data for specialized canaries with F = 30, Ptarget = 31 and
nrep = 16 for SST-2 from Figure 1c. Results across 4 reference models and the target model for the canary with the largest RMIA
score (most confidently and correctly identified as member by the MIA). Words in bold appear in 2-grams in D̃′. The largest generated
sub-sequence of the canary in D̃′ corresponds to the maximum overlapping sub-string, not the longest sequence of words in bold.
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IN or Canary Max overlapping 2-gram
Model OUT (words present as part of 2-grams in D̃′ in bold) sub-string loss

θ′1 (ref) IN "give a spark to “ chasing amy ” and “ changing lanes
” falls flat as thinking man cia agent jack ryan in this
summer ’s new action film , “ the sum of all fears , ”
in theaters friday . if director philip noyce and writer
aaron singer"

« “ the sum of all
fears , ” » ;
Loverlap = 30

7.80

θ′2 (ref) IN "give a spark to “ chasing amy ” and “ changing lanes
” falls flat as thinking man cia agent jack ryan in this
summer ’s new action film , “ the sum of all fears , ”
in theaters friday . if director philip noyce and writer
aaron singer"

«, “ the sum of all
fears ’, » ;

Loverlap = 26

7.73

θ′3 (ref) OUT "give a spark to “ chasing amy ” and “ changing lanes
” falls flat as thinking man cia agent jack ryan in this
summer ’s new action film , “ the sum of all fears , ”
in theaters friday . if director philip noyce and writer
aaron singer"

« , “ the sum of
all fears » ;
Loverlap = 27

8.27

θ′4 (ref) OUT "give a spark to “ chasing amy ” and “ changing lanes
” falls flat as thinking man cia agent jack ryan in this
summer ’s new action film , “ the sum of all fears , ”
in theaters friday . if director philip noyce and writer
aaron singer"

« “ chasing amy ”
and “ changing

lanes » ;
Loverlap = 41

7.99

θ (target) OUT "give a spark to “ chasing amy ” and “ changing lanes
” falls flat as thinking man cia agent jack ryan in this
summer ’s new action film , “ the sum of all fears , ”
in theaters friday . if director philip noyce and writer
aaron singer"

« “ the sum of all
fears , ” » ;
Loverlap = 30

8.30

Table 13. Interpretability of the best MIA (2-gram) based on synthetic data for specialized canaries with F = 30, Ptarget = 31 and
nrep = 16 for SST-2 from Figure 1c. Results across 4 reference models and the target model for the canary with the smallest RMIA score
(most confidently and correctly identified as non-member by the MIA). Words in bold appear in 2-grams in D̃′. The largest generated
sub-sequence of the canary in D̃′ corresponds to the maximum overlapping sub-string, not the longest sequence of words in bold.

.
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