Under review as a conference paper at ICLR 2022

TRANSFER AND MARGINALIZE: EXPLAINING AWAY
LABEL NOISE WITH PRIVILEGED INFORMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Supervised learning datasets often have privileged information, in the form of
features which are available at training time but are not available at test time e.g. the
ID of the annotator that provided the label. We argue that privileged information is
useful for explaining away label noise, thereby reducing the harmful impact of noisy
labels. We develop a simple and efficient method for supervised neural networks: it
transfers via weight sharing the knowledge learned with privileged information and
approximately marginalizes over privileged information at test time. Our method,
TRAM (TRansfer and Marginalize), has minimal training time overhead and has
the same test time cost as not using privileged information. TRAM performs
strongly on CIFAR-10H, ImageNet and Civil Comments benchmarks.

1 INTRODUCTION

Supervised learning problems are typically formalized as learning a conditional distribution p(y|x),
y € Yand & € X from (x;,y;), 4 = 1,..., N pairs. Yet we often have access to additional features
a € A at training time that will not be available at test time. These features are known as privileged
information (Vapnik & Vashist, [2009), or PI for short. An example of PI are features describing the
human annotator that provided a given label, such as the annotator ID, the length of time to provide
the label, the experience of the annotator, etc. Annotators do not always agree on the correct label for
a given x, some annotators may be more reliable than others and the reliability of annotators may
depend on the location of x in the input domain X (Snow et al.,|2008}; |Sheng et al., 2008).

The expanded training dataset consists of (x;, a;,y;) triplets. Given that our test time predictive
distribution cannot be conditioned on a, what use is this PI? As a thought experiment, suppose there
exists a malicious (or lazy) annotator that provides random labels. It is known that random labels
harm the performance of supervised learning models

. If these random labels can be explained away via access to PI, such as
the annotator ID, then this harm can be prevented. In particular we can use the PI to explain away
noise in the labels which otherwise would be irreducible aleatoric uncertainty.

More formally, suppose A, the PI random variable, is predictive of Y™ given X, in the sense that the
conditional mutual information I(Y; A|X) is non-zero. Then, the entropy of Y is reduced if we
condition on both X and A rather than X alone, as summarised in Lemma|[I.1]

Lemma 1.1. I(Y; A|X)> 0= H(Y|X, A) < H(Y|X).

In §2.1] we examine this lemma for a particular model, proving that under certain conditions, PI can
be leveraged to lower the expected risk for linear regression problems. Additionally, prior work has
proven that PI can lead to generalization bounds with better sample complexity (Vapnik & Vashist,
2009; Lambert et al., [2018)).

Inspired by prior work and our theoretical analysis of a simple linear model, we focus on exploiting
PI in supervised deep neural networks. The production deployment of such models often has tight
latency and memory constraints. Hence a number of methods have been developed to utilize PI with
the same test time memory and computation cost as networks trained without PI (Yang et al.} 2017}
Lambert et al., |2018; [Lopez-Paz et al., 2015). [Yang et al.|(2017) uses PI as a form of input-dependent
regularizer. Lambert et al.|(2018) train with heteroscedastic Gaussian dropout, with the training-time
dropout variance a function of the PI.|[Lopez-Paz et al.|(2015) distill a network trained with PI into a
network without access to a.

Under review as a conference paper at ICLR 2022

Below we develop a method, TRAM, which transfers knowledge via weight sharing from the part
of the network trained using PI to the test time network which does not have access to PI. At test
time, TRAM makes a simple, efficient approximation to the integral p(y|z) = [p(y|x, a)p(a|z)da.
Making predictions without PI is no more costly than that with a standard network trained without
access to PI. Unlike prior work which requires specific techniques such as Gaussian Dropout, we
need not constrain the form of the predictors to make the downstream marginalization possible.
Implementation and training are simple.

In summary the paper contributions are the following:

o To better illustrate when PI is useful, we show analytically that, under certain conditions, PI
reduces the expected risk for linear regression models.

e We provide empirical evidence suggesting that the representations learned with access to PI
are more robust against label noise.

e We propose a novel efficient method, TRAM, which exploits PI in supervised deep neural
networks and has zero computational overhead at prediction time.

e Empirically, we show that our method performs better than a series of baselines on CIFAR-
10H, ImageNet and CivilComments benchmarks.

2 EXPLOITING PRIVILEGED INFORMATION

To build up intuition and to better illustrate situations where PI can be useful, we start with a simple
linear model where a formal analysis can be carried out. Next, we look into non-linear models and
provide a motivating experiment suggesting that useful PI can be leveraged in deep networks to
improve representation learning.

2.1 WHEN CAN PI BE HELPFUL? AN ANALYSIS IN A SIMPLE LINEAR MODEL

We consider the following regression generative model with target y

y=a'w +a'v'+¢
where © € R? and @ € R™ correspond to standard and PI features respectively, while £ ~ A/(0, 02)
stands for some additive noise. The two unknown parameters (w*, v*) establish the relationships
between the target y and the features (x, a). To model the fact that the PI features can themselves
depend on the x—e.g., raters having diverging assessments on ambiguous input samples—we assume
that a ~ p(a|z) = N (u(x)|2(x)) for some mean and covariance dependent on x.

Let us assume we have n observations from this generative model represented by y € R", X € R"*¢,
A € R"™™ and p(X) € R™™™. We are interested in comparing different predictors 7(X) that
can predict y only based on X, as required in the case of PI. To compare the predictors, we use the
concept of risk E. ., (c),a~p(alz) [R(T(X))], formally defined in Appendix[]E:], to capture the expected
error of 7 in predicting y; see Section 3.5 in|Bach| (2021)) for more background about risk analysis.

We defer to Appendix [E|a rigorous exposition of the results and convey instead here some intuitive
messages. We first focus on the comparison between

e (NO-PI) the least-square estimate 1wy = (X " X)~ ' X Ty that ignores A, and
e (PI) the joint least-square estimate [w;9;] = (QTQ)™'QTy with Q = [X, A]
in Rx(d+m) - A¢ prediction time, if we had access to (@ies, Grest) for (PI), we would

predict with wfwm + f;; At However, since a is not available in our context, we use
instead its (assumed known) mean pi(y), i.€., mean imputation (Little & Rubin, 2019).

Denoting by IT, the orthogonal projector associated with X, [[] our analysis
shows that as long as

e Variance of PI: The variance {(v*) "X (z;)v*}7_, due to PI is large enough and/or

e Alignment of PI: The PI features A have a significant average component outside of the
subspace spanned by the features X, i.e., the term below is large enough

1
|| (1 = T) (X)0 (D

Under review as a conference paper at ICLR 2022

Step 1: Repr

tation learning no PI Step 2: Least-squares solution

2 tanh layers

‘*)l l P(x) lq(v\\) *

output layer i : 05

-1 H
= (oo + 1oy N
H Observation
Nao Pl
= Pl

¥ = o) w

Step 1: Representation learning with PI Step 2: Least-squares solutlon

2 tanh layers

-05 . R cn
l l o® vy o= (@@TDE) + Al))Ty o
li»é 7= 0w I

0.0 02 04 0.6 08 10
X

1tanhlayer output layer

(a) Learning the representation ¢ (z) without PI (top) (b) Comparing representations learned by No PI vs.
or using PI (bottom). using PI in a two-step procedure.

Figure 1: Toy representation learning experiment. In Step 2 (common to both methods) we solve a
least-squares problem assuming y = [y1, . ..,yn] € RY and ®(z) = [¢(x1), ..., d(zn)] € RV

then the estimator (PI) has alower risk compared to (NO—P1I). In other words, it is provably better
to exploit the privileged information A at training time instead of ignoring it.

Our analysis further covers the case of (marg.NO-PI) where we marginalize w, with respect to
PI and we predict with XEq.,(q|z)[W0], Wwhich we compare with (marg.PI) the marginalized
predictions Eq - p(a|2) [X Wy + A®q]. In that case, we can show the same conclusion as previously,
with the exception that the variance term {(v*) "X (z;)v*}", does not have influence anymore,
only (T) drives the comparison. Indeed, the proof in Appendix [E|shows that marginalizing removes
from the risk expressions the terms related to the variance of PL.

2.2 PI HELPS TO LEARN BETTER REPRESENTATIONS: A MOTIVATING EXPERIMENT

Our analysis of the effect of PI in a linear model has established key insights into the conditions
under which PI is provably useful. We now look at a toy non-linear learning experiment using neural
networks, which provides empirical evidence that PI can be helpful in deep networks. In particular,
we show that representations learned with access to useful PI can explain away label noise and
transfer better than representations learned without access to PI. This motivating experiment forms
the basis of our TRAM method.

We simulate a noisy annotator by assuming in this toy example that the PI is a binary indicator,
a ~ Bernoulli(0.3), with ¢ = 1 representing the case where the noisy annotator provides a label
independent of x:

y=(1—a) sin(2rz) +a-v+e,
where z € [0,1], v ~U(—1,1) and € ~ N(0,0.1).

We then fit two networks to N = 2, 500 training examples generated according to this process. The
first network does not have access PI and is a two layer MLP, both layers of dimension 64, with tanh
hidden activations and linear output activation; see top left of Fig.[Ta]for an illustration. The second
network has access to PI, and is defined as per the two-step TRAM approach. The part of the network
which learns the x representation, ¢, is defined exactly as the no-PI MLP.

[(] is a single layer MLP with 64 units, tanh activation and linear output
layer, with the concatenation of a and ¢(x) as inputs; see bottom left of Fig. Both networks are fit
for 10 epochs by the Adam optimizer (Kingma & Bal [2014) with mean squared error loss function.

We then extract the non-linear representations of = learned by both networks and fit a linear model on
the dataset {¢(x;),y;},% = 1, ..., N. The linear model can be solved exactly using the L2 regularized
ordinary least squares solutlon We plot the results in Fig.[T} We see that the representations learned
by the model with access to PI in step #1 enable a near perfect fit to the true expected marginal
distribution, E (4) ~p(a,y|z)[¥] accross X' space. However without access to PI the noise term
cannot be explained away. As a result, the linear model fit on top of the representations learned
without access to PI is substantially worse than the model fit using the two step procedure. We
emphasize that both models have exactly the same capacity.

Under review as a conference paper at ICLR 2022

Stop Grad\ent
Privileged a - |
Information U W(d(x), a) qly | x a)

} o(x) ‘ O qly 1 x)
o

-

Train time

Predicted
Label

Test time

Figure 2: The TRAM method in diagrammatic form.

[
B2

3 METHOD: TRAM

We consider learning under privileged information (Vapnik & Vashist, [2009), LUPI. Our proposed
method, TRAM, consists of a single neural network with two output heads, providing predictions
for both p(y|x, a) and p(y|x); see Fig.[2] There are two key ingredients to TRAM; (i) the p(y|x)
head is a simple, yet a provably valid, approximation to the marginal [p(y|x, a)p(a|z)da and (ii) a
partition of the parameter space such that the neural network weights are shared between the two
output heads, and that these shared weights are updated solely based on the lower variance gradients
from the p(y|x, a) head which has access to PI. Below we develop TRAM in the classification setting,
in §3.4 we extend the method to the regression setting.

3.1 INGREDIENT #1: MARGINALIZE OVER PI AT TEST TIME

A natural probabilistic approach to LUPI is (i) to learn the conditional distribution p(y|x, a) dur-
ing training and (ii) then, at test time, marginalize over the .4 domain, computing p(y|x) =
[p(y|x, a)p(alz)da (Lambert et al., 2018).

Predicting with the marginal p(y|x) at test time is motivated by the following key observation.
Consider the set of distributions Q over the C' class labels, Q = {q(y|-)|Vx € X,q(y|z) € Ac}
where A is the C-dimensional simplex. Among all the distributions ¢ € Q, the marginal distribution
@ +— p(y|x) minimizes the following optimization problem:

min E(g,a)~p(a,a) [Dicz(p(y]2, @) [la(y]2))])

See proof in Appendix Bl In words, p(y|x) is optimal in the sense that it minimizes the expected KL
divergence to p(y|x, a). Access to p(y|x) enables minimizing the Bayes risk (Murphyl [2012) at test
time. Note further that the mean imputation scheme which provably reduces the expected risk for a
linear model, §2.1] corresponds precisely to marginalizing over PI at test time.

Directly computing p(y|x) has two problems; (i) it is typically intractable and (ii) p(a|x) is unknown
and therefore must be learned, which is a challenging generative modelling problem in itself, espe-
cially as a may have mixed type features. A Monte Carlo estimate of the integral using the samples
from A in the training set is only feasible with the independence assumption p(a|z) = p(a), so that

s .
p(y|x) reduces to fp(y|:c, a)p(a)da =~ % Y a1 (Y|, ay) with ag ~ p(a).
Unfortunately this independence assumption is often violated in practice. In addition the memory and

computational cost of MC estimation scales linearly in S, the number of MC samples. This O(.5)
scaling is undesirable for production deployment with strict latency requirements.

Due to the challenge of computing the integral directly, we propose a simple approximation g(y|x; w)
to p(y|x). It exploits the property (2)) of p(y|x) as the distribution minimizing the expected KL

Under review as a conference paper at ICLR 2022

divergence to its conditional p(y|x, a). We choose ¢ to be cheap to evaluate at test time. For example,
for a multi-class vanilla TRAM classifier ¢(y|x; w) = softmax(W¢(x)).

3.2 INGREDIENT #2: TRANSFER VIA WEIGHT SHARING
We partition the parameter space into four disjoint subsets;

1. Let ¢() be a feature extractor for € X.

2. Similarly, let 1(¢(x), a) be a feature extractor jointly applied to (¢(x), a) for (x,a) in
X xA

3. The weights w parameterize the marginal distribution: ¢(y|z; w) = q(y|¢(x); w).
4. The weights w parameterize the conditional distribution ¢(y|x,a;u), namely

q(ylz,a;u) = q(ylv(o(z), a); u).

Two-step approach. Motivated by Eq. (2), the connection between LUPI and multi-task learn-
ing (Jonschkowski et al.,[2016) and our toy representation learning experiments, we consider
the following two-step approach:

’L{nggrlle(m,a,y)Np(m,a,y) [El (yv q(y|$, a))} (3)
Hgn E(m,a,y)wp(m,a,y) [E2(y7 Q(y|w>)} with d) = ¢* (4)

L, are arbitrary loss functions. We assume ¢ and 1) are parameterized as neural networks, so min
refers to optimizing the network weights.

Crucially ¢* is the feature extractor learned in (3)) with access to PI. This weight sharing enables
knowledge transfer to the network trained without PI. Given Eq. (2), we know that Eq. (@) approxi-
mates the true marginal distribution p(y|x) (observe that the KL divergence in Eq. (2) reduces to the
cross-entropy loss function for £ when taking the one-hot training labels for p(y|x, a)).

Merging the two steps. To further simplify the above approach, we propose to merge Eq. (3)) and
Eq. @) into a single training procedure. To that end, and reusing the terminology commonly used in
deep-learning frameworks, let us define

7(y|z; w) = q(y|stop-gradient (¢(x)); w)

which coincides with g(y|x) except that its gradient only depends on w. For some 8 > 0, we then
consider:

min B ay)~p@.ay L2y, 7Y2) + LY, q(y|x, a))]
w,w, ¢,

as the joint training objective. In practice, since the parameters of the two losses are partitioned,

we can set § = 1 and fold instead the search over § into the search of the learning rate, hence not

introducing an extra hyperparameter.

3.3 TRAM VARIANTS

Privileged information may only explain away some of label noise uncertainty. Below we propose
two TRAM variants which combine TRAM with existing noisy labels methods.

Het-TRAM. Heteroscedastic classifiers are capable of modeling label noise that is input-dependent
and have been successfully applied in this setting (Collier et al., |2021)). Further note that even in
some cases where the conditional distribution ¢(y|x, a) is homoscedastic, the marginal ¢(y|x) is
heteroscedastic, see Appendix |C|for details.

Hence we propose Het-TRAM, a TRAM variant in which ¢(y|x) is heteroscedastic. This increases
the expressiveness of ¢, improving the approximation in the second step of our optimization procedure,
Eq. (4). We implement the method of [Collier et al| (2021)) to make ¢(y|x) heteroscedastic.

Under review as a conference paper at ICLR 2022

Distilled-TRAM. Distillation (Hinton et al., [2015)) is a technique for transferring knowledge
between two neural networks. Distillation has been previously applied to LUPI (Lopez-Paz et al.,
2015)). In Distilled-TRAM we use the two step TRAM procedure, setting the loss function, £ in
Eq. (E]), to the distillation loss. The teacher network is first trained with access to PI and in the second
step the distilled-TRAM model is trained.

3.4 REGRESSION

We developed TRAM and Het-TRAM focussing on the classification setting but our approach is trivial
to generalize to regression problems. In the regression case, we can choose the predictive distribution
to be Gaussian, q(y|z) = N (uu(x), 0*(z)). For vanilla TRAM we can choose o?(x) = 1, while for
Het-TRAM we can choose 0%(z) = softplus(w/ ¢(x)). u and o2 are parameterized as neural
networks with our shared feature extractor ¢ (), similar to |[Kendall & Gal|(2017). £; in Egq. and
Lo in Eq. (4)) are replaced by the Gaussian negative log-likelihood.

4 RELATED WORK

Vapnik & Vashist| (2009) develop a theoretic framework for the LUPI paradigm and introduce the
SVM+ method for training Support Vector Machines in this regime. The slack variables for the
SVM+ constraints are a function of the PI. SVM+ has been extended in the SVM literature (Lapin
et al., 2014} [Vapnik & Izmailov, [2015)). Jonschkowski et al.| (2016) provide a unifying framework
that connects together multi-task learning, multi-view learning and LUPL

Yang et al.| (2017) extend the SVM+ approach to neural network models with their MIML-FCN+
method. The authors formulate a two-tower network similar to ours, but without weight sharing
between the towers. Both towers make independent predictions given x or a as inputs. The tower
with access to PI predicts the loss of the other tower and this prediction is regularized to be close to
the true loss. In this way the PI tower outputs a neural network analogue to the SVM+ slack variables.

Lambert et al.|(2018)) utilize PI by making the training-time Gaussian-dropout variance (Kingma
et al., [2015) a function of the PI. At test time the PI is approximately marginalized over by removing
the dropout. Similarly [Hernandez-Lobato et al.| (2014)) allow the additive Gaussian noise component
of a heteroscedastic Gaussian Process Classifier (Rasmussen & Williams), [2006) to be a function of
the PI. The classifier is homoscedastic at test time.

Lopez-Paz et al.|(2015) propose a distillation (Hinton et al., |2015) style approach to learning with
PI. The teacher network is trained with access to PI. In the distillation step the student network is
given « as input and a convex combination of soft labels from the teacher network and true labels y
as targets. |[Xu et al.|(2020) extend and apply this distillation method to a recommender system.

TRAM implements knowledge transfer via weight sharing, performs efficient approximate marginal-
ization at test time and can be applied to many widely used architectures. [Lambert et al.| (2018) also
share weights and approximate the marginal p(y|x) however they require the use of Gaussian dropout,
which is not widely used. The distillation and MIML-FCN+ methods do not transfer via weight
sharing and do not approximate p(y|x). Distillation also requires a two-step training procedure. See
Table 5] in Appendix [F for a comparison of the key features of selected LUPI methods.

5 EXPERIMENTS

Our experiments tackle the general LUPI problem under label noise. There are a few large-scale
public datasets with PI We thus use both real-world datasets with PI as well as synthesizing PI for a
re-labelled version of ImageNet (Deng et al., [2009).

‘We evaluate a number of baselines in addition to our method.

e The “No PI” baseline is standard neural network training which directly learns p(y|x) and
never uses PI.

e Zero and mean imputation learn p(y|x, a) at training time and substitute a = 0 and
a= % >oia respgctively at test time. qu mean imputation, averaging takes place after
feature pre-processing, e.g., one-hot encoding of the annotator ID.

Under review as a conference paper at ICLR 2022

Table 1: CIFAR-10 negative log-likelihood & accuracy (trained on CIFAR-10H). Averaged over 20
training runs =+ 1 std. dev.

METHOD JNLL TACCURACY
No PI 1.058 £ 0.050 67.0+ 1.7
ZERO IMPUTATION 1.009 4+ 0.032 68.7+1.4
MEAN IMPUTATION 0.963 + 0.058 70.1 £ 1.5
LAMBERT ET AL.|(2018)) 1.033 £+ 0.044 67.1 £1.3
FULL MARGINALIZATION 1.119 +0.058 70.3+2.5
TRAM 0.980 + 0.037 70.1 +1.4
HET-TRAM 0.972 +£0.038 70.4 + 1.5
DISTILLATION NO PI 1.118 +0.037 70.1 1.4
LOPEZ-PAZ ET AL.|(2015) 1.121 £ 0.040 702+ 1.4
DISTILLED-TRAM 0.941 + 0.039 71.8+ 1.4

e The “Full marginalization” baseline is _an expensive MC estimate of p(y|lxz) =
[p(ylx, a)p(alz)da at test time, see for details. It is a gold standard (up to in-
dependence assumption error), impractical to compute in many applications.

e We also compare against distillation based approaches. “Distillation No PI” is an ablation to
see the effect of distillation alone, independent of PI, in which a network trained without
access to PI is distilled into another network also without access to PI.

Prior work did not evaluate against these simple imputation baselines or full marginalization (Lopez;
Paz et al.l 2015; Yang et al.,|2017; |[Lambert et al., 2018).

5.1 CIFAR-10H

One dataset with annotator features is CIFAR-10H (Peterson et al., [2019), which is a re-labelled
version of the CIFAR-10 (Krizhevsky & Hintonl 2009) test set. The new labels are provided by
crowd-sourced human annotators. We make use of three annotator features; the annotator ID, the
reaction time of the annotator to provide the label and how much experience the annotator had with
the task, as measured by the number of labels the annotator had previously provided.

As we only have annotator features for the CIFAR-10 test set, we use this as our training set and
evaluate on the official training set. As a result we have only 10,000 images for training. To achieve
reasonable performance we start from a MobileNet (Howard et al., 2017) pretrained on ImageNet.
Images have on average > 50 annotations each. This is unrealistic for typical applications where
1-3 labels per example is more common. Therefore, we subsample 16,400 labels (1.64 labels per
example), see Appendix [D]for details of the subsampling procedure. The subsampled labels agree
with the true CIFAR-10 test set labels 79.4% of the time.

In Table E] we see the results. First, and as expected, using annotator features via TRAM, marginaliza-
tion or the imputation methods provides a performance improvement over standard neural network
training without PI. Second, we see that TRAM performs on par with full marginalization (which uses
16,400 MC samples of a from the training set), despite having constant time compute and memory
requirements w.r.t. the number of MC samples for the full marginalization baseline. Mean imputation
is a strong baseline on CIFAR-10H. Het-TRAM improves over TRAM demonstrating the efficacy of
making ¢(y|x, a) heteroscedastic. It is noteworthy that distillation using PI, (Lopez-Paz et al.l |2015)
does not improve over standard distillation without PI. However Distilled-TRAM with makes use of
PI for distillation but then performs approximate marginalization and transfer learning via weight
sharing improves over the distillation baselines on both accuracy and log-likelihood metrics.

Under review as a conference paper at ICLR 2022

@ NoPlmodel @ TRAM less confident
094 ® TRAM e 0%, E 037 o, ® TRAM more confident
‘e * 3
*) * E
b & L
dle . =Y o . .
2 07 L) . s : P g7 Z 0 *e
5 e . " .
S
5 o6 ¢ - . ® E oo o
3 _
@ . £ 00 e
S = r
& £ .
05 o] H
. o = -01 H
i i
04 . . .
. 02 e

Figure 3:

Table 2: ImageNet validation neg-log-likelihood and accuracy. Avg. over 10 seeds =+ 1 std. dev.

02

04 0.6 08 10

Prob rater gives correct label (rater reliability)

(a) Average confidence per model.

02

04 0.6

0.8

Prob rater gives correct label (rater reliability)

(b) Delta in average confidence between models.

METHOD JNLL TACCURACY
No PI 1.264 4+ 0.007 71.7+0.2
ZERO IMPUTATION 1.895 4+ 0.008 63.5+0.2
MEAN IMPUTATION 1.619 + 0.007 65.1 £0.3
LAMBERT ET AL. (2018) 1.264 4+ 0.006 71.8+0.1
FULL MARGINALIZATION 1.217 £ 0.004 72.6 £0.2
TRAM 1.225 + 0.006 72.5+0.2
HET-TRAM 1.207 £ 0.008 72.8 +0.2
DISTILLATION NO PI 1.207 4+ 0.004 72.6 +£0.2
LOPEZ-PAZ ET AL.|(2015) 1.216 £ 0.003 72.74+0.2
DISTILLED-TRAM 1.154 £+ 0.004 73.8+0.2

ED

5.2 IMAGENET ILSVRCI12

In order to create a large-scale dataset with annotator features, we re-label the ImageNet ILSVRC12
training set by the following procedure. We download 16 different models pre-trained on ImageNet,
see Appendix [D]for further details. We also add a 17th malicious annotator model which picks a label
uniformly at random from the 1,000 ImageNet ILSVRC12 classes. For each image in the training set
we select the malicious annotator with 10% probability and otherwise sample one of the 16 models
with equal probability. We then sample a label from the predictive distribution of that model for
that image. This is the label used for training. On average the sampled label agrees with the true
ImageNet label 68.3% of the time. The annotator features are the model ID (a proxy for a human
annotator ID) and the probability of the label assigned by the model (a proxy for the confidence of a
human annotator). The ImageNet image is used as the non-privileged information x. ¢ is randomly
initialized ResNet-50 (He et al., [2016).

See Table 2| for the results. The full marginalization baseline uses 1,000 MC samples of a from the
training set. The imputation baselines perform worse than not using PI, perhaps due to the imputed
values having low density p(a|x). Again TRAM performs on par with full marginalization and Het-
TRAM has higher accuracy than both. The ImageNet labels are known to exhibit heteroscedasticity

Under review as a conference paper at ICLR 2022

Table 3: Civil Comments Identities test set negative log-likelihood and average accuracy over 7
classes. Averaged over 10 training runs =+ 1 std. dev.

METHOD INLL 1 AVG. ACCURACY
No PI 0.085 +0.011 97.8 +0.12
ZERO IMPUTATION 0.073 £ 0.004 98.2 £ 0.01
MEAN IMPUTATION 0.069 4+ 0.003 98.2 + 0.02
LAMBERT ET AL.|(2018) 0.084 +0.012 97.8 +£0.17
FULL MARGINALIZATION 0.065 4+ 0.004 97.8 +0.00
TRAM 0.064 = 0.002 98.2 +0.01
HET-TRAM 0.062 + 0.001 98.1 +£0.1
DISTILLATION NO PI 0.094 +0.011 97.8+0.1
LOPEZ-PAZ ET AL.[(2015) 0.089 + 0.000 97.84+0.0
DISTILLED-TRAM 0.065 +0.001 98.2 £ 0.0

(Collier et al., [2021), therefore we make both ¢(y|x) and ¢(y|x, a) heads heteroscedastic for Het-
TRAM. Distilled-TRAM has significantly better NLL and accuracy than the two distillation baselines.

5.3 CiviL COMMENTS

We further evaluate our method on a large-scale text classification dataset. Civil Comment{']is a
collection of comments from independent news websites annotated with 7 toxicity labels (identity
attack, insult, obscene, severe toxicity, sexually explicit, threat, toxicity). The Civil Comments
Identities subset of the Civil Comments data contains privileged information in the form of 24
attributes identified in the comment (male, female, christian and so on). The Identities subset consists
of 405,130 training examples, 21,293 validation examples and 21,577 test set examples.

The shared network ¢ is a pre-trained Universal Sentence Encoder (Cer et al., 2018)). Table contains
the test set results. We report negative log-likelihood and accuracy averaged over the 7 labels. The
TRAM, Het-TRAM and imputation methods perform similarly well in terms of average accuracy,
outperforming the No PI baseline as well as the Gaussian Dropout and full marginalization methods.

The poor accuracy of the full marginalization method is interesting to note. The PI is directly derived
from the non-PI (in the form of 24 identity human labelled attributes for the non-PI). This is clearly a
violation of the independence assumption required for a MC estimate of full marginalization to be
computable. The dependence of a on « is most clearly identifiable for the Civil Comments Identities
dataset; as a result the relative performance of the full marginalization method is poorest on this
dataset. Further note that the TRAM and Het-TRAM methods have lower negative log-likelihood
than all other baseline methods. Standard distillation with no PI and |Lopez-Paz et al.|(2015) style
distillation where the teacher network is trained with PI does not provide a performance improvement
over the no PI baseline. Distilled-TRAM performs on par with vanilla TRAM.

6 CONCLUSION

We introduced TRAM, a new method for LUPI in supervised neural networks. TRAM (i) learns
an efficient, simple distribution to approximately marginalize over PI at test time and (ii) partitions
the parameter space enabling transfer via weight sharing of the knowledge learned with access to
PI. TRAM can be successfully combined with established methods for dealing with noisy labels;
distillation (Distilled-TRAM) and heteroscedastic output layers (Het-TRAM). We have analysed a
linear model with PI where deriving analytic results are feasible. In this setting we have shown the
utility of using PI and ingredient #1 of our TRAM method, the marginalization over PI. Using a toy
low-dimensional problem we have further shown the effectiveness of ingredient #2 of our proposed
TRAM method, transfer learning via weight sharing of representations learned with access to PI. We
then have empirically validated the single-step TRAM procedure on larger-scale datasets in the image
and text domain; CIFAR-10H, a noisy version of ImageNet and Civil Comments Identities.

"https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/data

Under review as a conference paper at ICLR 2022

7 ETHICS AND REPRODUCIBILITY STATEMENTS

Ethics. We present a generic algorithm for classification/regression with privileged information.
The method is not application specific and has minimal computational overhead. We do not see
ethical issues specific to our method beyond any already associated with LUPI methods and/or deep
neural network classifiers.

Reproducibility. We provide detailed information on the data generation process for the CIFAR-
10H and Imagenet datasets in Appendix Hyperparameters and further details required to
reproduce our results are provided in Appendix [D.2] We plan to release publicly Colab notebooks to
reproduce our toy transfer learning and Civil Comments experiments. We also plan to make public
our Imagenet dataset in Tensorflow Dataset format to be used as a large-scale dataset with annotator
features by researchers working on the LUPI problem. Detailed derivations with conditions for our
theoretical analysis are presented in Appendix

REFERENCES
Francis Bach. Learning Theory from First Principles. (draft), 2021.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Céspedes, Steve Yuan, Chris Tar, et al. Universal sentence encoder. arXiv preprint
arXiv:1803.11175, 2018.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597-1607. PMLR, 2020.

Mark Collier, Basil Mustafa, Efi Kokiopoulou, Rodolphe Jenatton, and Jesse Berent. Correlated input-
dependent label noise in large-scale image classification. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2021.

Filipe R Cordeiro and Gustavo Carneiro. A survey on deep learning with noisy labels: How to train
your model when you cannot trust on the annotations? In 2020 33rd SIBGRAPI Conference on
Graphics, Patterns and Images (SIBGRAPI), pp. 9-16. IEEE, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.

Benoit Frénay and Michel Verleysen. Classification in the presence of label noise: a survey. IEEE
transactions on neural networks and learning systems, 25(5):845-869, 2013.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Daniel Hernandez-Lobato, Viktoriia Sharmanska, Kristian Kersting, Christoph H Lampert, and Novi
Quadrianto. Mind the nuisance: Gaussian process classification using privileged noise. In Neural
Information Processing Systems, 2014.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Rico Jonschkowski, Sebastian Hofer, and Oliver Brock. Patterns for learning with side information.
arXiv preprint arXiv:1511.06429, 2016.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision? In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 5580-5590, 2017.

10

Under review as a conference paper at ICLR 2022

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameteri-
zation trick. arXiv preprint arXiv:1506.02557, 2015.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, pp. 6405-6416, 2017.

John Lambert, Ozan Sener, and Silvio Savarese. Deep learning under privileged information using
heteroscedastic dropout. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 8886—-8895, 2018.

Maksim Lapin, Matthias Hein, and Bernt Schiele. Learning using privileged information: Svm+ and
weighted svm. Neural Networks, 53:95-108, 2014.

Roderick JA Little and Donald B Rubin. Statistical analysis with missing data, volume 793. John
Wiley & Sons, 2019.

David Lopez-Paz, Léon Bottou, Bernhard Schélkopf, and Vladimir Vapnik. Unifying distillation and
privileged information. arXiv preprint arXiv:1511.03643, 2015.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

Joshua C Peterson, Ruairidh M Battleday, Thomas L Griffiths, and Olga Russakovsky. Human
uncertainty makes classification more robust. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 9617-9626, 2019.

Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes for machine learning.
The MIT Press, 2006.

Victor S Sheng, Foster Provost, and Panagiotis G Ipeirotis. Get another label? improving data
quality and data mining using multiple, noisy labelers. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 614-622, 2008.

Rion Snow, Brendan O’connor, Dan Jurafsky, and Andrew Y Ng. Cheap and fast-but is it good?
evaluating non-expert annotations for natural language tasks. In Proceedings of the 2008 conference
on empirical methods in natural language processing, pp. 254-263, 2008.

Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from noisy
labels with deep neural networks: A survey. arXiv preprint arXiv:2007.08199, 2020.

Vladimir Vapnik and Rauf Izmailov. Learning using privileged information: similarity control and
knowledge transfer. J. Mach. Learn. Res., 16(1):2023-2049, 2015.

Vladimir Vapnik and Akshay Vashist. A new learning paradigm: Learning using privileged informa-
tion. Neural networks, 22(5-6):544-557, 2009.

Chen Xu, Quan Li, Junfeng Ge, Jinyang Gao, Xiaoyong Yang, Changhua Pei, Fei Sun, Jian Wu,
Hanxiao Sun, and Wenwu Ou. Privileged features distillation at taobao recommendations. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 2590-2598, 2020.

Hao Yang, Joey Tianyi Zhou, Jianfei Cai, and Yew Soon Ong. Miml-fcn+: Multi-instance multi-label
learning via fully convolutional networks with privileged information. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1577-1585, 2017.

11

Under review as a conference paper at ICLR 2022

A APPENDIX

B PROOF OF EQUATION (2)

As a reminder, we consider C class labels and denote by A« the C-dimensional simplex. We define
the set of distributions Q over the C class labels by

Q={q(yl)|ve € X, q(ylz) € Ac}

Consider the optimization problem

mit Eqp@) [Dicz (p(yl2) [l a(yl2))])

whose solution is straightforwardly given by the marginal distribution & — ¢*(y|x) = p(y|x). We
recall that the KL D1, (p(y|x) || ¢(y|x)) is defined by

c
pi\y|x
Dici(plyl) |l a(ule)) =3 p, (vl log (LL2)), ©
= q;(ylx)
For any « and j < C, we can rewrite the terms of the sum
pj(ylx)
pj(ylx)log ()
! q;(ylx)
” (4])
p;i\y|x
Ea x~p(alx |:p (y|€l7, a’) IOg ():|
\ p(alz) J C]j(y|$)
where we have used (i) the fact that log(Z ; Eg“‘:;) does not depend on a and (ii) the definition of the
marginal distribution '
pilyle) = [p;(ylz,a)p(alz)da
= IEa.|:x:~p(a\a:) [pj (y‘ma a)] .

Multiplying and dividing in the argument of the log by p;(y|x, a), we obtain

pi(ylz, a) p;(yle))}
;(ylz) p;(yle,a)
Summing over j € {1,...,C} to reconstruct the KL term @, this leads to, for any x,

Eajz~p(ala) {Pj(wa, a)log (

Drr(p(ylz) |l q(ylx)) = Eajz [DrL(p(ylx, a) |l q(y|x))]
~Eqje [Drr(p(ylz, a)||p(ylx))] -

Since the second term above does not depend on ¢, minimizing (5) is equivalent to minimizing

min By [Bajs [Dics(p(y]2, @) [la(yl)]

=min E.a)jvpaa) [Prrpylz. a) llqyle)]

which is equal to (Z) and which is, analogously to (3), minimized by the marginal distribution
© — ¢*(yle) = p(ylx).

C HETEROSCEDASTIC MOTIVATION

We consider a simplified special case of our framework in which the conditional model p(y|x, a)
is homoscedastic but the optimal variational distribution in the sense of Eq. [2]is heteroscedastic.
This motivates Het-TRAM, in which the variational approximations ¢(y|z) and q(y|x,a) are
heteroscedastic.

Suppose we have a regression dataset constructed from labels assigned by M annotators. Each
annotator has their own homoscedastic Gaussian model p(y|x,a = m) = N (ug,, (x),1). Here the

12

Under review as a conference paper at ICLR 2022

Table 4: Pre-trained models used to re-label ImageNet ILSVRC12 training set and their accuracy on
that training set.

Model Training set accuracy
ResNet50V2 0.70086
ResNet101V2 0.72346
ResNet152V2 0.72738
DenseNet121 0.74782
DenseNet169 0.76184
DenseNet201 0.77344
InceptionResNetV2 0.8049
InceptionV3 0.77994
MobileNet 0.70594
MobileNetV2 0.71458
MobileNetV3Large 0.75622
MobileNetV3Small 0.68158
NASNetMobile 0.74302
VGG16 0.71178
VGG19 0.71156
Xception 0.79076

Pl is a single discrete Categorical feature representing the annotator ID which takes one of M values
with equal probability, a ~ Cat(;).

The marginal p(y|x) is a Gaussian Mixture Model. We choose our variational family to be the
Gaussian distribution, ¢(y|z) = N (u(x),0%(z)). The values of x and ¢ that minimize Eq. 2]
are: ju, (z) = 37 >°, pig,, (x) and o3 (x) = (M — p.(x)) + 57 >, 15, () (Lakshminarayanan
et al}|2017). Crucially note that despite the conditional distribution being homoscedastic, the best
variational distribution is heteroscedastic as the variance depends on the location in X" space.

D EXPERIMENTAL DETAILS

D.1 DATA GENERATION PROCESS

CIFAR-10H. We use the CIFAR-10 image as the non-privileged information . The annotator ID,
the number of prior annotations the annotator has provided and the reaction time in milliseconds of
the annotator, are used as privileged information a. For feature pre-processing the annotator ID is
one-hot encoded. The number of prior annotations and the reaction time are independently divided
into 10 equally sized quantiles and the quantile ID is one-hot encoded. The image is pre-processed
according the the standard MobileNet pre-processing (Howard et al., 2017).

As CIFAR-10H has on average more than 50 annotations per image and the labels are not particularly
noisy. We subsample the CIFAR-10H labels by the following procedure. We keep all labels by the
41 annotators that agree with the true CIFAR-10 label less than 85% of the time. We then select a
further 41 annotators from the remaining annotators. The average agreement of the bad annotators
with the CIFAR-10 label is 63.3%, in the full subset of labels: 79.2% and in the full CIFAR-10H
dataset: 94.9%. The subsampling procedure leaves 16,400 labels from 82 annotators while the full
CIFAR-10H dataset has 514,200 labels from 2,571 annotators.

ImageNet. The annotator features are the model ID used to re-label &, which is one-hot encoded
and the probability of that label being sampled. See main paper for details on the sampling procedure
and see Table [4] for the list of models used and their accuracy on the ImageNet training set. The
pre-trained models are downloaded from tf.keras.applicationsﬁ’

“https://www.tensorflow.org/api_docs/python/tf/keras/applications

13

Under review as a conference paper at ICLR 2022

D.2 HYPERPARAMETERS

CIFAR-10H. For all methods ¢(x) (or equivalent) is a MobileNet (Howard et al.,[2017) pre-trained
on ImageNet ILSVRC12, followed by a global average pooling layer and a Dense + ReLU layer with
64 units. (x, a) is a two-layer MLP with 64 units per layer and ReLU activation. The first layer
takes only a as an input, while the second layer takes the output of the first layer concatenated with
¢(x) as input.

All models are trained for 20 epochs with the Adam optimizer with base learning rate= 0.001,
B1 = 0.9, By = 0.999, ¢ = le — 07. All models are trained with L2 weight regularization with
weighting le — 3.

Heteroscedastic models are trained using the method of |Collier et al.|(2021]) with 4 factors for the
low-rank covariance matrix approximation and a softmax temperature parameter of 7 = 3.0. Distilled
models are also trained with a softmax temperature of 7 = 3.0 to smooth the teacher labels and with
the distillation hyperparameter A = 0.5 which weights the losses from the soft teacher labels and
the true labels. A grid search over 7 € {1.0,2.0,3.0,4.0} and A € {0.0,0.25,0.5,0.75,1.0} was
conducted.

ImageNet. For all methods ¢(x) (or equivalent) is a randomly initialized ResNet-50 (He et al.|
2016) with the output layer removed. ¢ (x, a) is a two-layer MLP with 128 units per layer and ReLU
activation, the output of this MLP is concatenated with ¢ () and then passed to the output layer. The
first layer of the ¢)(x, @) MLP takes only a as an input, while the second layer takes the output of the
first layer concatenated with ¢(x) as input.

All but Het-TRAM models are trained for 90 epochs with the SGD optimizer with base learning
rate= (.1, decayed by a factor of 10 after 30, 60 and 80 epochs. Following |Collier et al.| (2021),
Het-TRAM is trained for 270 epochs with the same initial learning rate and learning rate decay at 90,
180 and 240 epochs. All models are trained with L2 weight regularization with weighting le — 4.

Heteroscedastic models use 15 factors for the low-rank covariance matrix approximation and a
softmax temperature parameter of 7 = 1.5. Distilled models are trained with a softmax temperature of
7 = 3.0 and with the distillation hyperparameter A = 0.5. A grid search over 7 € {1.0,2.0,3.0,4.0}
and A € {0.0,0.25,0.5,0.75,1.0} was conducted.

E RISK ANALYSIS

Generative model and notations. We assume the following

o a cR" x cR?,
e a~ p(alz) = N(u(x)|X(x)) for some mean and covariance dependent on @,

e y=x'w* +a'v*+¢cwithe ~ N(0,0?).

When considering n observations from this generative model, we use the matrix representations
y eR?, X e R™¥4 A € R™™ and ¢ € R™. We also write the zero-mean Gaussian vector

z=(A—puX))v* +ec €R" ~N(0,0*T + A)
where we have defined the diagonal covariance
A = A(v*, X) = Diag({(v*) "X (z;)v*}1L,) € R™™.
We list below some notation that we will repeatedly use
e The orthogonal projector associated with X:
IL, =X(X"X)'XT e R
o Similarly, the orthogonal projector associated with A:

I, =A(ATA)tAT ¢ R,

14

Under review as a conference paper at ICLR 2022

e The projections X, = (I —II,)X and A, = (I —II,)A.

e The matrices: H = (X T X)) 1XT e R and G = (ATA)tAT € Rm*",

e The matrices above when restricted to the projections of X and A respectively, that is,
H, =(X] X,1)'X)] eR”" and G, = (A], A1) 'A], e R™*™

E.1 DEFINITION OF THE RISK

We will compare different estimators based on their different risks. We focus on the fixed design
analysis (Bach, [2021)), i.e., we study the errors only due to resampling the noise ¢ and the feature a.

Given a predictor 7(X) based on the training quantities (X, A,), we consider y' = X w* + A’v* +
¢’ (where the prime is to stress the difference with the training quantities without prime) and define
the risk of 7 as

1
R((X)) = Eormpieyarmstator{ 219 = 7O . @
Expanding the square with ¢y’ — 7(X) = Xw* — 7(X) + u(X)v* 4+ 2/, we obtain the expression
1 1
R(r(X)) = [Xw* = 7(X) + p(X)v*|* + —tr(o” L + A). (®)

Following common practices (Bachl [2021), to assess the risk, we finally take a second expectation
Ecp(e),a~p(alz) [R(T(X))] with respect to the training quantities (A, ¢).

Since we will mostly consider differences of risks, we omit the variance term %Ltr(cer + A) in the
equations below.

E.2 CAPTURING THE BENEFIT OF PI WITHOUT MARGINALIZATION

We first describe when, in absence of any marginalization, ordinary least squares ignoring PI is worse
than ordinary least squares using PI with mean imputation at prediction time.

Proposition E.l1. Assume that X' X is invertible. Moreover, assume that AT A and
[X, A]T[X, A] are almost surely invertible. We have that

E[R(mwvo-p1(X))] > E[R(7p(X))]
if and only if
1 N old 1 o?
I = T2 + 25+ (T A) > TR
with K = XH,| + u(X)G,,. Whenm =1 (i.e., A is a column vector), a sufficient condition is
ITLAJ? + (X)) | o*d
(I —1II,)Al]? n

1 1
E||(I — TL,) (X)) v* || + ﬁtr(HzA) > 2FE

We provide the details of the derivation of the risk for 7wo.pr and 7py in Section|[E.2.T|and Section[E.2.7]
respectively. Moreover, the second part of the proposition follows from an application of Lemma

E.2.1 ORDINARY LEAST SQUARES (NO MARGINALIZATION)
The solution of)
min - ly — Xw|?
is given by wg = (X " X)~! X Ty = Hy. The corresponding predictions are
TNo_pI(X) =Xwy =1,y = Xw* + Hm/J,(X)’U* +1I1,z.
Plugging into (8], we obtain

R(mon(X)) = %H(I L)X v — TLz)%

Expanding the square and using that tr(II,) = d, the final risk expression is

E[R(mon(X))] = (T~ TL)u(X)o*|? + E[|TL,z|?
= L -mpeoe i+ 204 e a, ©

15

Under review as a conference paper at ICLR 2022

E.2.2 ORDINARY LEAST SQUARES WITH PI AND MEAN IMPUTATION (NO MARGINALIZATION)

We focus on the solution of 1
min - ||y — Xw — Av|?
w2 2
to construct an estimator. Using Lemma|E.3| we have
11)1 = HaJ_y and '{71 = G:L’J_y
Using Lemmal[E.4] we can simplify
W = Haly =w" 40+ H, ¢
and
01 =G, y=0+v"+G,, ¢
Since A is not available at prediction time, we impute it instead with its mean p(X), which is
assumed to be perfectly known. This leads to

TPI<X) = X’li}l + ,U,(X)’{)]_ = Xw* + M(X)’U* + KE,
with
K=XH,, +uX)G;..
Plugging into (8) and taking the expectation, we obtain

ER((X)] = 0] + ~E[| K<|?)
- TR (10

E.3 CAPTURING THE BENEFIT OF PI WITH MARGINALIZATION

We then describe when, with marginalization, ordinary least squares ignoring PI is worse than
ordinary least squares using PL.

Proposition E.2. Assume that X' X is invertible. Moreover, assume that AT A and
[X, A]T[X, A] are almost surely invertible. We have that

E[R(Tiarg. no-p1(X))] > E[R(Tnarg. p1(X))]
if and only if , ,
LI - (0wt + 2 s TRl
withL =XH,, + AG,,. Whenm =1 (i.e., A is a column vector), a sufficient condition is
ITL AP + [A]] 0%
(I —IL;)A|? n

1 *
(T~ TL)u(X)o" | > 28

We provide the details of the derivation of the risk for 7. No-p1 @0d Tiarg. p1 in Section and
Section respectively. Moreover, the second part of the proposition follows from an application
of Lemma

E.3.1 ORDINARY LEAST SQUARES (WITH MARGINALIZATION)
Restarting from Section|[E.2.1] we consider the predictions marginalized with respect to A. We have
Tmarg. NO—PI(X) = anp(a|m) [X'Li]()] = Xw" + Hw,u(X)'U* +1IIL.e.
Plugging into (8], we obtain
1 *
R(Tmarg. No-pI(X)) = EH(I =TI)pu(X)v* — Hx5||2-

Expanding the square and using that tr(Il,) = d, the final risk expression is

1 1
E[R(rme von(X))] = (I = TL)u(X)v" | + ~ B[e
_ 2 w24 24
= T - T+ 25 an

16

Under review as a conference paper at ICLR 2022

E.3.2 ORDINARY LEAST SQUARES WITH PI AND MARGINALIZATION

Restarting from Section [E.2.2] we consider the predictions marginalized with respect to A. In
particular, we do not impute A by its mean but rather directly take the expectation over A. We have

Tmarg. PI(X) = anp(a|w) [le + Aﬁl] = Xw* + ,LL(X)U* + IEa,wp(a,|:c) [L]Ea
with
L=XH, +AG,,.

Plugging into (8) and taking the expectation, we obtain

1 1

E[R(Tmarg. p1(X))] = g||OH2 + HE[HEMJP(G\E) [L]e]|]
2
o

= ;HEGNp(a\m)[L]HZ' (12)

E.4 TECHNICAL LEMMAS

Lemma E.3. Assume that both X" X and AT A are invertible. Moreover, assume that both
XL_XaL and AL_AQCL are invertible.

We can write the solution of
1
min - |ly — Xw — Av|?
w,v 2
as

w=H, y and v=G,. y.

Proof. The proof follows by applying inversion formula for the block matrix

- [X1Xx x7a
T|ATX ATA

where XL_ X, and AI A, are the two Schur complements of X TX and AT A. Under the
assumptions of the lemma, the matrix is @ is invertible. O

Lemma E.4. We have the following properties
o Hy X = (X, Xo1) ' XTI -TL)X = (X, Xo1) (X Xa1) =1,
e H, A= (X] X,) 'X"(I-1I,)A=0.
Conversely, we have
e G, A= (A] A, |)TATI-T,)A=(A] A,) YAl A,) =1,
e G, X=(A] A,) TAT(I-TI,)X =0.

Lemma E.5. Assume m =1, i.e., A is a column vector. We have
ITLA|]* + ||M(X)||2]
(I —I1,)Al?

E[| K% < 2d + 2E[

Similarly, it holds that

II,A|? Al]?

(T - TI;) A2
Proof. We start by splitting the term into
1K < 2)| X Ho o |* + 2[ln(X)Go |1
Notice that H, | H| = (X, X,.) ! and similarly G, |G, = (A] A,).
Since || M||? = tr(M " M), we have
IK* < 20((X T X)(X) Xar) ™) + 20(u(X) " i(X) (AL Aer) 7).

17

Under review as a conference paper at ICLR 2022

By definition of A, , when m = 1, we have

1

AT A) e
e del) ™ = [T AP

For the term (X, X, 1)~!, the Sherman-Morrison formula leads to

1

X X,) t=(x"x)!
(al aJ—) () + 1_bT(XTX)_]_b

(X"X) e (X TX)!

with b = 1/||Al| - X " A € R Further simplifying, we obtain

MAATIL y_,, |ILAF
[AP =LA~) A

(X7 X)X, Xar)") = tr(I +

For the second part of the proof, we start by applying Jensen inequality:
IE[L]|I* < E[|IL]?).
The rest of the proof follows along the same arguments, replacing 1(X) by A. O

F RELATED WORK TABLE

Table 5: Comparison to related work.

METHOD plalz) TRAINING TEST COST ~ WEIGHT APPROXIMATE p(y|x)
REQUIRED SHARING
IMPUTATION X 1 MODEL, 1 STEP =NO PI v X
DISTILLATION (LoPEZ-PAZ ET AL.}2015 X 2 MODELS, 2 STEPS =NO PI X X
HET. DROPOUT (LAMBERT ET AL.J2018 X 1 MODEL, | STEP =NO PI v v
MIML-FCN+ ‘ 2017 X 1 MODEL, 1 STEP =NO PI X X
FULL MARGINALIZATION v 1 MODEL, 1 STEP O(S %« NO PI) v v
TRAM (OURS) X 1 MODEL, 1 STEP =NO PI v v
HET-TRAM (OURS) X 1 MODEL, 1 STEP =NO PI v v
DISTILLED-TRAM (OURS) X 2 MODELS, 2 STEPS =NO PI v v

G Two-STEP TRAM: IMAGENET SCALE REPRESENTATION LEARNING
EXPERIMENT

We conduct experiment to test two things: 1) does the one-step TRAM procedure, introduced in §3.2]
which is easier for practitioners to implement, approximate the two-step TRAM procedure well and
2) can the results of the toy represrntation learning experiment, §2.2] be replicated in a larger scale
setting.

We train a feature extractor with and without access to PI on ImageNet, following the same procedure,
architecture and dataset used in the main paper. We then freeze the feature extractor and train a single
dense/linear layer with softmax activation on top of the fixed features. We then evaluate the efficacy
of these features trained with and without PI using this “linear probe” evaluation widely used in the

representation learning literature (Chen et al.f 2020).

The results are presented in Table[f] We see that the simpler single-step TRAM method approximates
the more complicated two-step TRAM method very well. In addition we see that the features learned
by the network with access to PI which are then frozen and evaluated using a linear probe protocol
perform better in terms of accuracy and log-likelihood.

H ToOY EXPERIMENT: VARY ¢

18

Under review as a conference paper at ICLR 2022

Table 6: Two-step TRAM: scaling up our toy representation learning experiment. ImageNet validation
set negative log-likelihood and accuracy. Averaged over 10 training runs =+ 1 std. dev.

METHOD JNLL TACCURACY

ONE-STEP NO PI 1.264 £+ 0.007 71.74+0.2
Two-STEP NO PI 1.265 + 0.008 71.74+0.3
ONE-STEP TRAM 1.225 £ 0.006 72.5+0.2
Two-sTEP TRAM 1.226 4+ 0.002 72.74+0.2

= Noisy free function
—— Expected marginal
Observation

—— Noisy free function
—— Expected marginal
Qbservation

- NoPl
- Pl

- NoPl
- P

—0.5 { — MNoisy free function
—— Expected marginal
Observation
< NoPl
« R

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
x x x

(@) e ~ N(0,0.1). (b) e ~ N(0,0.5). (c) e ~ N(0,1.0).
RMSE No PI to marginal: 0.0858 RMSE No PI to marginal: 0.0880 RMSE No PI to marginal: 0.0897
RMSE PI to marginal: 0.0008 RMSE PI to marginal: 0.0007 RMSE PI to marginal: 0.0027

15 ——— -

15

10 10

0.5 { — Noisy free function
—— Expected marginal
Gbservation

~0.5 { — Moisy free function

—— Expected marginal - - 4
Observation PRI o] :

« MNoPl R L- SN . . = NoPl

(d) e ~ N(0,1.5). (e) e ~ N(0,2.0).

RMSE No PI to marginal: 0.0841 RMSE No PI to marginal: 0.0977
RMSE PI to marginal: 0.0472 RMSE PI to marginal: 0.0977

Figure 4: Varying the influence of € on our motivating toy experiment.

We vary the standard deviation of € used in our motivating toy experiment, §2.2} The results can be
seen graphically in Fig.[f] Fig.[@]also contains the average RMSE to the true marginal across the data
points plotted. The graphical and numerical results demonstrate that even for large levels of noise PI
aids with representation learning but as expected, as the level of noise grows the advantage of using
PI diminishes as it becomes increasingly difficult to distinguish irreducible noise from noise which
can be explained away with PI.

I IMAGENET EXPERIMENT PI ABLATION

We run an ablation, removing PI feature: the probability of the label assigned by the model from the
PI set. We are thus left with just one PI feature, the one-hot encoded ID of the model that produced
the label.

We see the results in Table[/} As expected (and predicted by our theoretical analysis), removing
informative PI reduces the effectiveness of TRAM. Nonetheless, TRAM with the reduced PI feature
set still outperforms the No PI baseline, with accuracy and log-likelihood lying between the No PI
and full PI feature set TRAM methods.

19

Under review as a conference paper at ICLR 2022

Table 7: ImageNet ablation with reduced PI feature set. ImageNet validation set negative log-
likelihood and accuracy. Averaged over 10 training runs 4 1 std. dev.

METHOD JNLL TACCURACY
No PI 1.264 4+ 0.007 71.7+0.2
TRAM WITH FULL PI SET 1.225 £ 0.006 72.54+0.2

1.246 £0.004 72.0+£0.2

20

	Introduction
	Exploiting Privileged Information
	When can PI be helpful? An analysis in a Simple Linear Model
	PI helps to learn better representations: A motivating experiment

	Method: TRAM
	Ingredient #1: Marginalize over PI at test time
	Ingredient #2: Transfer via weight sharing
	TRAM variants
	Regression

	Related Work
	Experiments
	CIFAR-10H
	Qualitative analysis of CIFAR-10H results

	ImageNet ILSVRC12
	Civil Comments

	Conclusion
	Ethics and Reproducibility Statements
	Appendix
	Proof of Equation (2)
	Heteroscedastic Motivation
	Experimental Details
	Data generation process
	Hyperparameters

	Risk analysis
	Definition of the risk
	Capturing the benefit of PI without marginalization
	Ordinary least squares (no marginalization)
	Ordinary least squares with PI and mean imputation (no marginalization)

	Capturing the benefit of PI with marginalization
	Ordinary least squares (with marginalization)
	Ordinary least squares with PI and marginalization

	Technical lemmas

	Related work table
	Two-step TRAM: ImageNet scale representation learning experiment
	Toy experiment: vary
	Imagenet experiment PI ablation

