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Abstract

Process Reward Models (PRMs) have recently emerged as a powerful framework
for supervising intermediate reasoning steps in large language models (LLMs).
Previous PRMs are primarily trained on model final output responses and struggle
to evaluate intermediate thinking trajectories robustly, especially in the emerg-
ing setting of trajectory–response outputs generated by frontier reasoning mod-
els like Deepseek-R1. In this work, we introduce ReasonFlux-PRM, a novel
trajectory-aware PRM explicitly designed to evaluate the trajectory-response type
of reasoning traces. ReasonFlux-PRM incorporates both step-level and trajectory-
level supervision, enabling fine-grained reward assignment aligned with structured
chain-of-thought data. We adapt ReasonFlux-PRM to support reward supervision
under both offline and online settings, including (i) selecting high-quality model
distillation data for downstream supervised fine-tuning of smaller models, (ii) pro-
viding dense process-level rewards for policy optimization during reinforcement
learning, and (iii) enabling reward-guided Best-of-N test-time scaling. Empirical
results on challenging downstream benchmarks such as AIME, MATH500, and
GPQA-Diamond demonstrate that ReasonFlux-PRM-7B selects higher quality data
than strong PRMs (e.g., Qwen2.5-Math-PRM-72B) and human-curated baselines.
Furthermore, ReasonFlux-PRM-7B yields consistent performance improvements,
achieving average gains of 12.1% in supervised fine-tuning, 4.5% in reinforcement
learning, and 6.3% in test-time scaling. We also release an efficient ReasonFlux-
PRM-1.5B for resource-constrained applications and edge deployment.

Figure 1: Overview of ReasonFlux-PRM. ReasonFlux-PRM is designed to provide general-purpose
reward supervision across multiple application scenarios. Left: Offline selection of high-quality
distilled trajectory–response data to enhance downstream supervised fine-tuning of smaller models.
Middle: Online reward modeling integrated into GRPO-based policy optimization. Right: Reward-
guided Best-of-N test-time scaling to improve inference-time performance.
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Figure 2: Illustration of the Trajectory-Response Data generated by Deepseek-R1. Existing PRMs
can assign appropriate scores to final responses but often struggle to evaluate intermediate reasoning
trajectories accurately.

1 Introduction

Process Reward Models [49, 79, 24] have recently emerged as a powerful framework for providing
process-level supervision in large language models (LLMs) reasoning process, particularly for
complex domains such as mathematical problem solving [35, 27, 32, 49, 44]. Given a question and
the corresponding model’s final response, PRMs verify the reasoning step-by-step and assign fine-
grained rewards to each step of the response. Prior studies have leveraged PRMs in both post-training
stages [56, 8], including providing dense rewards for online reinforcement learning (RL) [5], and
reward-guided inference-time scaling [18, 80].

However, existing PRMs are primarily trained and applied to model-generated final responses, typi-
cally presented in an explicit and organized stey-by-step chain-of-thought (CoT) format. Concurrently,
with recent advancements in frontier reasoning models such as OpenAI-o1 [16] and Deepseek-R1
[6], these models have increasingly adopted a trajectory-response format of output: a lengthy, com-
prehensive, and less organized intermediate thinking trajectory, followed by a concise, step-by-step
final response conditioned on the prior thinking (as illustrated in Figure 2). Such trajectory–response
pairs have been widely distilled and acquired from large reasoning models to support downstream
training of smaller models, enabling them to emulate the reasoning capabilities of larger models to
first think then produce coherent, extended CoT rationales [40, 72, 68]. The increasing utilization
of trajectory–response data raises an important question: Can PRMs provide supervision not
only to the final responses of large reasoning models, but also to their intermediate thinking
trajectories?

Addressing this question first presents a challenge of how to assign informative and correct rewards
to the model intermediate thinking trajectories. Unlike final responses, these trajectories are typically
treated as silver-standard data [73], automatically generated by large reasoning models without
rigorous quality control or standardized verification criteria, making their evaluation inherently
noisy and less reliable. To address this, we first revisit several state-of-the-art PRMs and evaluate
their performance on trajectory–response pairs. Our analysis reveals that existing PRMs struggle
to robustly supervise model thinking trajectories and can degrade downstream training on such
data. We further find that this degradation stems primarily from two key issues: an structural and
formatting mismatch between intermediate thinking trajectories and final responses, and the lack of
trajectory–response data with assigned rewards during PRMs training.

Motivated by these observations, we propose a new trajectory-aware PRM, namely ReasonFlux-
PRM, which incorporates both step-level and trajectory-level supervision to better align the models’
middle thinking trajectories with their final responses. ReasonFlux-PRM is trained on a 10k curated
dataset of high-quality trajectory–response pairs covering math and science reasoning. Unlike existing
PRMs, ReasonFlux-PRM is explicitly tailored to intermediate thinking processes by providing fine-
grained rewards as supervision signals for each step within the thinking trajectory. We further
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adapt ReasonFlux-PRM for more general reward modeling scenarios, as illustrated in Figure 1.
In offline settings, ReasonFlux-PRM assigns scores to filter high-quality trajectory–response pairs,
facilitating effective training data curation for downstream supervised fine-tuning of smaller models.
In online settings, ReasonFlux-PRM is integrated into reward modeling process to provide fine-
grained supervision signals during policy optimization, such as GRPO [51]. Moreover, ReasonFlux-
PRM facilitates test-time scaling by evaluating multiple generated responses and selecting the most
promising one via a reward-guided Best-of-N strategy.

In summary, our main contributions are:

• In-Depth Trajectory-Response Data Analysis in Long-CoT Reasoning. We identify, formulate,
and analyze the problem of adapting several existing PRMs to supervise both models’ interme-
diate reasoning trajectories and their final responses, motivated by the increasing prevalence of
trajectory–response distillation data in downstream post-training and test-time scaling.

• Trajectory-aware Reward Modeling for Data Selection, RL and Test-Time Scaling. We
introduce ReasonFlux-PRM, a trajectory-aware process reward model that incorporates both
step-level and trajectory-level supervision, enabling fine-grained reward assignment for model
thinking trajectories. ReasonFlux-PRM can be integrated into both offline and online workflows for
more generalized purposes, including offline selection of high-quality training data, online policy
optimization in RL training, and test-time scaling.

• Extensive Downstream Evaluations. Across extensive evaluations on challenging reasoning
benchmarks, ReasonFlux-PRM demonstrates superior data selection quality at smaller model
scales, with ReasonFlux-PRM-7B outperforming strong baselines such as Qwen2.5-Math-PRM-
72B [79] and datasets curated by human experts. On tasks such as AIME [38, 37], MATH500 [13],
and GPQA-Diamond [46], ReasonFlux-PRM-7B achieves notable average accuracy improvement
of 12.1% during supervised fine-tuning, 4.5% during reinforcement learning, and 6.3% during
inference test-time scaling.

2 Preliminaries

Trajectory-Response Data. Let foracle(·) denote an oracle model, such as Deepseek-R1, capable
of producing structured reasoning traces. Given a complex input prompt x, the oracle generates a
sequence of intermediate thinking steps followed by a final response. We represent each instance of
such data as a tuple (s, a), where s = (s1, s2, . . . , sT ) denotes a thinking trajectory consisting of T
intermediate steps, and a = (a1, a2, . . . , aT ) denotes the final response, which can also be structured
as a chain-of-thought trace with T formatted and organized steps. For large reasoning models, we
assume that both s and a consist of T reasoning steps. This structural alignment reflects the modeling
assumption that the final output trace a is generated in a step-by-step manner, strictly conditioned
on the preceding intermediate reasoning steps s. Both the thinking trajectory and final response are
generated auto-regressively by the oracle model, i.e.,

st ∼ foracle(x, s<t), at ∼ foracle(x, s, a<t), (1)

where s<t = (s1, . . . , st−1) and a<t = (a1, . . . , at−1) denote the reasoning and answer histories up
to step t, respectively. In the trajectory-response outputs distillation setting, the full supervision target
instance y can be constructed as the concatenation of thinking trajectories and the final response, i.e.,
y = s⊕ a.

Process Reward Modeling. Given a trajectory-answer pair (s, a), where both s = (s1, . . . , sT ) and
a = (a1, . . . , aT ) are structured as reasoning traces, the goal of a process reward model is to evaluate
each intermediate reasoning step st ∈ s with respect to its utility in achieving a correct and coherent
final response. We first define a reference reward function Rref that provides step-level supervision:

rt = Rref(st | x, s<t, a), (2)

where Rref(·) scores the t-th step conditioned on the input x, the prior thinking trajectory steps, and
the full final response a. The total reward for the trajectory is then computed by aggregating the
step-by-step scores:

Rtotal = A(r1, r2, . . . , rT ), (3)
where A(·) denotes an aggregation function such as MEAN and SUM. The training objective for
PRMs is to learn a scoring function Rϕ(·), parameterized by ϕ, that approximates the reference
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Figure 3: Score distributions rewarded by Qwen2.5-Math-PRM-72B over 1,000 trajectory–response
pairs distilled from Deepseek-R1 and the Gemini Flash Thinking API. Left: Distribution of scores
computed over thinking trajectories. Right: Distribution of scores based on final responses.

reward for each step. This is formulated as minimizing the discrepancy between predicted and
reference rewards over a training dataset D = {(x(i), s(i), a(i), r
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3 Existing PRMs Are Not Prepared for Rewarding Thinking Trajectories

To examine whether existing frontier PRMs can be directly applied to reward the trajectory-response
data, we first conduct a preliminary study to investigate two key questions:

RQ1: Can PRMs distinguish the quality of thinking trajectories distilled from different oracle
models?
RQ2: What is the effectiveness of using the PRM-selected trajectory-response data on the downstream
fine-tuning of smaller models?

For brevity, we defer detailed experimental setups to Appendix A.1. To investigate RQ1, we evaluate
the Qwen2.5-Math-PRM-72B PRM model on 1,000 sampled problems in s1k [40] with trajectory-
response traces generated by Google Flash Thinking API [7] and Deepseek-R1 [6], respectively. For
each data trace, we apply the PRM model to compute the step-level rewards (spitted by "\n\n"), and
then aggregate these rewards by taking the mean to obtain a final trajectory-level reward. Figure 3
(left) compares the distribution of PRM scores across the two oracle models. The histogram shows
a significant overlap in the score distributions, though Deepseek-R1 traces tend to receive higher
rewards on average, with a longer tail toward high-reward regions (e.g., scores above 0.6). The results
suggest that while Qwen2.5-Math-PRM-72B captures some signal for differentiating between the
two sources, its discriminative ability remains limited.

Takeaway 1

Several existing PRMs exhibit limitations in distinguishing reasoning traces distilled from
different oracle models and often struggle to clearly separate high- and low-quality model
thinking trajectories.

Next, to investigate RQ2, we evaluate the performance using the PRM-selected data on the down-
stream supervised fine-tuning of smaller models. We apply four different PRMs to assign a reward
score to each of the 59K raw trajectory-response traces generated by Gemini [7] in s1 [40], using
the same mean aggregation over step-level rewards to compute a trajectory-level score. Based on
these scores, we rank all traces and select the top 1,000 samples from each PRM as a fine-tuning
dataset for the downstream small model. For better comparison, we also adopt the direct set of
1K human-curated examples in s1k [40]. Table 1 presents the accuracy of the fine-tuned Qwen2.5-
14B-Instruct on four challenging downstream tasks. We observe that all PRM-selected training sets
underperform significantly compared to the human-curated baseline, suggesting that existing PRMs
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Table 1: Performance of Qwen2.5-14B-Instruct on four challenging reasoning tasks after fine-
tuning on the trajectory-response data selected by four different PRMs. We also compare the SFT
performance with using randomly sampled data (1k from 59k) and the s1k human-curated data [40].

SFT Data Source AIME24 AIME25 MATH500 GPQA-Diamond

Random 16.7 (↓ 16.6) 20.0 (↓ 13.3) 68.4 (↓ 10.4) 34.8 (↓ 6.6)

Math-Shepherd-PRM-7B 13.3 (↓ 20.0) 6.7 (↓ 26.6) 67.8 (↓ 11.0) 33.3 (↓ 8.1)
Skywork-PRM-7B 13.3 (↓ 20.0) 13.3 (↓ 20.0) 71.8 (↓ 7.0) 37.9 (↓ 3.5)
Qwen2.5-Math-PRM-7B 26.7 (↓ 6.6) 20.0 (↓ 13.3) 73.2 (↓ 5.6) 39.4 (↓ 2.0)
Qwen2.5-Math-PRM-72B 33.3 (↓ 0.0) 26.7 (↓ 6.6) 77.0 (↓ 1.8) 39.4 (↓ 2.0)

on model responses 36.7 (↑ 3.4) 26.7 (↓ 6.6) 77.8 (↓ 1.0) 40.9 (↓ 0.5)

Human-curated (s1k) 33.3 33.3 78.8 41.4

are not yet sufficiently calibrated to identify high-quality trajectory-response data, and can even
degrade downstream model performance by selecting suboptimal or misaligned training samples.

Takeaway 2

Direct reliance on current PRMs for trajectory-response selection can yield misaligned training
data, which in turn diminishes the effectiveness of downstream supervised fine-tuning for
smaller models.

As most existing PRMs are trained on reasoning traces derived from model final output responses
rather than intermediate thinking trajectories [79, 10], we take a closer look at the distinctions between
genuine thinking trajectories and post-hoc generated responses. As we detailed in the Appendix
A.2, these two types of data exhibit several fundamental differences: (i) Thinking trajectories often
include branching, where the model revisits earlier steps, explores alternative paths, and revises prior
assumptions—behavior rarely observed in the linear and polished structure of final responses. (ii)
Thinking trajectories tend to exhibit weaker global coherence across steps, as each step is often
locally focused and not optimized for narrative continuity.

To further validate that the performance degradation of existing PRMs stems from the aforementioned
data mismatch, we conduct an additional experiment in which Qwen2.5-Math-PRM-72B is applied
to score each data instance based solely on the model response, rather than the middle thinking
trajectories. As shown in Figure 3 (right), the PRM produces a relatively clearer separation in score
distributions between the two oracle models. Also as shown in Table 1 (row: on model responses),
the performance drop is reduced when training on PRM-selected data based on final responses,
suggesting that existing PRMs are better aligned with model-response-level supervision.

Takeaway 3

Thinking trajectories instinctively differ from final responses, and existing PRMs are more
accustomed to scoring final outputs than intermediate reasoning steps.

Motivation on ReasonFlux-PRM. Our findings above highlight the need for a more general reward
model that can effectively evaluate both intermediate model thinking trajectories and final responses.
As thinking trajectories become integral to supervised and RL-based fine-tuning, existing PRMs,
trained primarily on final responses, struggle to provide reliable supervision. To address this, we
propose a new thinking-aware PRM tailored to the trajectory-response data supervision.

4 ReasonFlux-PRM

In this section, we introduce ReasonFlux-PRM, a trajectory-aware process reward model, as illustrated
in Figure 4. We first present a new reward design tailored for thinking trajectories in Section 4.1,
which incorporates both step-level and trajectory-level signals to reflect fine-grained and holistic
reasoning quality. We then elaborate how ReasonFlux-PRM is applied in a more general reward
supervision setting in Section 4.2, covering both offline data selection and online reward modeling.
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Figure 4: Illustration of the overall method design. ReasonFlux-PRM is trained on trajectory–response
data pairs with a novel reward design that integrates both step-level and trajectory-level signals. As a
general-purpose PRM, ReasonFlux-PRM supports both offline data selection for small models SFT
and online reward modeling including policy optimization in RL training and test-time scaling.

4.1 How Should We Define Process Rewards and Why?

We first propose a new reward design to train ReasonFlux-PRM from the trajectory–response data. Our
formulation integrates both step-level and trajectory-level rewards to better address the discrepancy
between intermediate thinking trajectories and final responses, and to align ReasonFlux-PRM with
the underlying thinking process through more targeted reward signals during training.

Step-level reward for thinking trajectories. As discussed in Section 3, we observe that thinking
trajectories are often more complex than final responses, frequently involving branching logic, self-
corrections, and redundant reasoning. To better align these two, we incorporate a straightforward
alignment score ralign

t that measures the semantic similarity between each step in the intermediate
thinking trajectories st and each step in the final response at:

ralign
t = sim(Φ(st),Φ(at)), (5)

where Φ is a pretrained encoder and sim(·, ·) denotes cosine similarity. This alignment score uses the
final response as a learning signal for earlier thinking trajectories, encouraging those that are topically
relevant to the final response and penalizing hallucinated or off-topic content.

Concurrently, to avoid over-penalizing complex yet meaningful thinking trajectory steps that may
not be semantically aligned with the final response, we incorporate a complementary quality score
rqual
t . Inspired by the LLM-as-a-judge paradigm [84, 2, 47], we employ a strong expert model (e.g.,

GPT-4o) as a judge J to evaluate the logical soundness of each step st in context:

rqual
t = J(st | x, s<t, a). (6)

The quality score is designed to capture deeper aspects inside reasoning traces, including step
correctness, internal coherence, and progression toward the final response.

In addition to alignment with the final model output and logical step quality, we apply a step-by-step
coherence score rcoh

t to ensure contextual compatibility between adjacent reasoning steps using a
contrastive mutual information formulation. Specifically, we model the coherence between each
thinking trajectory step st and its predecessor st−1 by contrasting their embedding similarity against
N negative samples drawn from unrelated trajectories:

rcoh
t = log

exp(sim(Φ(st−1),Φ(st))/τ)∑
s′∈N exp(sim(Φ(st−1),Φ(s′))/τ)

, (7)

where τ is the temperature parameter. By penalizing incoherent transitions or topic shifts, the
coherence score encourages each step to be semantically and logically consistent with its immediate
predecessor while remaining distinct from unrelated or disjoint reasoning steps. Finally, to aggregate
the alignment, quality, and coherence scores into a unified reward signal, we apply softmax-based
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weighting over the three components:

rstep
t =

∑
k∈{alig, qua, coh}

softmax(rali
t , rqua

t , rcoh
t )k · rkt . (8)

Template-Guided Trajectory-level Reward. While the step-level rewards offer fine-grained su-
pervision on the completeness and coherence of individual reasoning steps, they might not fully
assess whether the overall problem-solving strategy encoded in model’s thinking trajectory is reliably
leads to correct solutions, derived from the final response. We thus introduce a template-guided
trajectory-level reward to evaluate each trajectory-response data at a higher level of abstraction
[69, 68].

Specifically, given an input problem x and the distilled trajectory-response y = s⊕ a, we employ
a strong expert LLM (e.g., GPT-4o) as a verifier v. The verifier processes the complete output y
and extracts a reasoning template T , which captures the high-level strategy underlying the original
trajectory-response trace. By abstracting the high-level strategy, the template provides a structured
guide for subsequent reasoning. The detailed prompt used for template generation is provided in
Appendix B. Next, a policy model πθ is conditioned on the extracted template T and tasked with
solving the input problem x by strictly adhering to the prescribed template T . The model generates
N chain-of-thought responses as follows:

y(1), . . . , y(N) ∼ πθ(· | x, T ).

Then, we define the trajectory-level reward rfinal as the average correctness of the generated responses:

rfinal =
1

N

N∑
j=1

I
(
y(j) is correct

)
. (9)

The template-guided trajectory-level reward evaluates whether the high-level reasoning strategy
can be generalized and executed by the policy model independent of the low-level execution in the
original trace.

Joint Training Objective. To fully leverage both step-level and trajectory-level supervision signals,
we integrate the previously defined rewards and propose the following joint training objective:

Ltotal = λstep ·
1

T

T∑
t=1

Lstep
(
Rϕ(st | x, s<t, a), r

step
t

)
+ λfinal · Lfinal

(
Rϕ(x, y), r

final) , (10)

where we adopt mean squared error (MSE) as the loss function for both the step and trajectory
reward supervision, and λstep and λfinal are tunable parameters to balance the relative contributions of
fine-grained step supervision and high-level strategic feedback. We train ReasonFlux-PRM with this
joint objective as the practical surrogate for the optimization objective in Eq. 4 to align with both
token-level and trajectory-level reward signals, thereby enabling the supervision effectiveness on the
trajectory-response data.

4.2 Offline Data Selection and Online Reward Modeling

We elaborate on the utilities of ReasonFlux-PRM from two perspectives: (i) Offline trajectory-
response data selection, where ReasonFlux-PRM is used to identify and select high-quality reasoning
traces for downstream supervised fine-tuning and reinforcement learning; and (ii) Online reward
modeling, where ReasonFlux-PRM provides token-level and trajectory-level reward signals during
RL training, and enables efficient reward estimation for test-time scaling.

Offline Data Selection. For offline data selection, ReasonFlux-PRM assigns each trajectory–response
pair (x, y = s⊕ a) a step-level reward sequence {r̂step

t }Tt=1 for each reasoning steps and a trajectory-
level reward r̂final. The overall score is computed as:

r̂ =
1

T

T∑
t=1

r̂step
t + α · r̂final, (11)

where α balances the contributions of local and global reward signals. The aggregated score r̂ is
applied to filter samples for later downstream supervised fine-tuning of smaller models.
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Online Reward Modeling. We first leverage ReasonFlux-PRM to produce a composite reward signal
that guides policy optimization through process-level supervision during reinforcement learning.
Specifically, during the RL training, we incorporate ReasonFlux-PRM into the Group Relative Policy
Optimization (GRPO) [51]. By default, GRPO optimizes for the outcome-level reward rout, which
reflects the task accuracy of the policy πθ on each training sample. To incorporate process-level
supervision from ReasonFlux-PRM, we augment this reward with the PRM-based reward r̂ in Eq.
11. Given input x and sampled response y ∼ πθ(· | x), the new composite reward used for policy
training after incorporating ReasonFlux-PRM then becomes:

rnew = (1− β) · rout + β · r̂, (12)

where β controls the relative weight of supervision from r̂. With a total of G group size (i.e., number
of sampled responses per input), we proceed with group-normalized advantage estimation as:

Anew =
rnew − mean({rnew}Gj=1)

std({rnew}Gj=1)
. (13)

With the ReasonFlux-PRM derived advantage term Anew, we then update the GRPO objective by:

JReasonFlux-PRM-GRPO(θ) = Exi,{yi}G
i=1∼πθold (·|xi)

[
1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

(
min

{
πθ(yi,t | xi, yi,<t)

πθold(yi,t | xi, yi,<t)
Anewi ,

clip
(

πθ(yi,t | xi, yi,<t)

πθold(yi,t | xi, yi,<t)
, 1− ϵ, 1 + ϵ

)
Anewi

}
− δDKL(πθ ∥ πref)

)]
.

(14)
Note that ReasonFlux-PRM can be seamlessly integrated into other online RL policy optimization
algorithms such as PPo [48] and Reinforce++ [15] by replacing the reward signal with ReasonFlux-
PRM ’s composite rewards.

Reward-guided Test-Time Scaling. During inference, we further apply ReasonFlux-PRM into
test-time-scaling strategies such as Best-of-N to identify the most promising output from a set of
generated candidates. For each new input question and its corresponding set of sampled model
responses, ReasonFlux-PRM assigns a score to each response based on the formulation in Eq. 11,
and selects the response with the highest score as the final output.

5 Empirical Evaluations

We empirically evaluate ReasonFlux-PRM, focusing on two core applications: (i) Offline data
selection, where ReasonFlux-PRM identifies high-quality reasoning traces to improve supervised
fine-tuning; and (ii) Online reward modeling, where ReasonFlux-PRM offers reward signals for
Best-of-N decoding strategy in test-time scaling and GRPO-based policy optimization.

Benchmarks. We evaluate ReasonFlux-PRM on four representative and challenging reasoning
benchmarks, including MATH500 [13], a diverse set of 500 mathematical problems of varying
difficulty; AIME24 [38], consisting of 30 problems from the 2024 American Invitational Mathemat-
ics Examination (AIME); AIME25, which includes 15 problems from the 2025 AIME [37]; and
GPQA-Diamond [46], a benchmark of 198 PhD-level science questions to assess advanced scientific
reasoning.

Implementation Details. We train ReasonFlux-PRM using two off-the-shelf base models, Qwen2.5-
1.5B-Instruct and Qwen2.5-7B-Instruct [54], resulting in ReasonFlux-PRM-1.5B and ReasonFlux-
PRM-7B, respectively. The training data is primarily sourced from the public trajectory-response
reasoning traces such as OpenThoughts-114K [53]. All experiments are conducted on 8 A100 GPUs.
Additional experimental setups including ReasonFlux-PRM training details and downstream tasks
model configurations are provided in Appendix C.

Baselines and Models. For offline data selection, we compare ReasonFlux-PRM with the four
frontier PRMs introduced in Section 3, using Qwen2.5-14B-Instruct[67, 54] as the generator model
for standard supervised fine-tuning evaluations. For online reward modeling, constrained by compu-
tational resources, we primarily use 7B-scale models as policy models for reinforcement learning,
including Qwen2.5-7B and Deepseek-R1-Distill-Qwen-7B [6]. For test-time Best-of-N scaling, we
adopt Qwen2.5-14B as the generator model to evaluate inference-time performance.
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Table 2: Offline Data Selection Comparison. We fine-tune the
generator model Qwen2.5-14B-Instruct using data selected
by ReasonFlux-PRM-7B and additional baselines. The high-
est performance of the generators trained on each data source
is bold. ReasonFlux-PRM-7B achieves better performance
than the strongest human-curated baseline.

SFT Data Source AIME24 AIME25 MATH500 GPQA-Diamond

Human-curated (s1k) 33.3 33.3 78.8 41.4

Random 16.7 (↓ 16.6) 20.0 (↓ 13.3) 68.4 (↓ 10.4) 34.8 (↓ 6.6)

Math-Shepherd-PRM-7B 13.3 (↓ 20.0) 6.7 (↓ 26.6) 67.8 (↓ 11.0) 33.3 (↓ 8.1)
Skywork-PRM-7B 13.3 (↓ 20.0) 13.3 (↓ 20.0) 71.8 (↓ 7.0) 37.9 (↓ 3.5)
Qwen2.5-Math-PRM-7B 26.7 (↓ 6.6) 20.0 (↓ 13.3) 73.2 (↓ 5.6) 39.4 (↓ 2.0)
Qwen2.5-Math-PRM-72B 33.3 (↓ 0.0) 26.7 (↓ 6.6) 77.0 (↓ 1.8) 39.4 (↓ 2.0)

on model responses 36.7 (↑ 3.4) 26.7 (↓ 6.6) 77.8 (↓ 1.0) 40.9 (↓ 0.5)

ReasonFlux-PRM-7B 40.0 (↑ 6.7) 33.3 (↑ 0.0) 84.8 (↑ 6.0) 47.5 (↑ 6.1)

Figure 5: Score distributions rewarded
by ReasonFlux-PRM-7B on Deepseek-
R1 and Gemini over 1000 trajectory-
response data.

Table 3: Performance of PRMs as reward signals in policy optimization. For each of the two policy
models, i.e. DeepSeek-R1-Distill-Qwen-7B and Qwen2.5-7B-Instruct, we run GRPO with three
different reward signals: entirely rule-based, Qwen2.5-Math-PRM-7B, and ReasonFlux-PRM. The
latter two non-rule-based rewards are factored into the overall reward signal according to Eq. 12. We
report the mean accuracy averaged over 16 independent runs.

Policy Model Reward Signal Source AIME24 AIME25 MATH500 GPQA-Diamond

Qwen2.5-7B-Instruct
Rule-based 12.9 11.1 73.6 32.7
Qwen2.5-Math-PRM-7B 12.9 13.3 74.8 32.4
ReasonFlux-PRM-7B 16.3 17.1 77.2 34.9

DeepSeek-R1-Distill-Qwen-7B
Rule-based 50.2 38.3 89.6 47.1
Qwen2.5-Math-PRM-7B 51.2 40.8 92.8 49.1
ReasonFlux-PRM-7B 54.6 44.2 94.8 51.6

5.1 Offline Data Selection

Table 2 presents the supervised fine-tuning results of Qwen2.5-14B-Instruct, with training data
selected by different strategies, including ReasonFlux-PRM-7B, baseline PRMs, and human-curated
examples. Notably, ReasonFlux-PRM-7B outperforms the high-quality human-curated s1k dataset.
Specifically, our model achieves a 6.0% gain on MATH500 and a 6.1% improvement on GPQA-
Diamond relative to the human-curated baseline. We also plot the score distribution over the
1,000 trajectory-response pairs generated by Deepseek-R1 and Gemini, as shown in Figure 5. The
clearly separated score distributions in the figure demonstrate that ReasonFlux-PRM-7B effectively
distinguishes between the trajectory-response quality generated by different models, providing a
reliable reward signal for high-quality data selection.

5.2 Online Reward Modeling

Reward Signal for RL training. Figure 6 and Table 3 present the training dynamics and downstream
reasoning performance after incorporating different reward signals into policy optimization via GRPO.
We evaluate two 7B-scale policy models: Qwen2.5-7B-Instruct and DeepSeek-R1-Distill-Qwen-7B.
For each model, we compare three reward signal sources: a fully rule-based heuristic following the
original GRPO approach, Qwen2.5-Math-PRM-7B, and ReasonFlux-PRM-7B. Across both policy
models and all evaluated tasks, ReasonFlux-PRM-7B consistently delivers superior gains over both
the rule-based and prior PRM-based reward signals. On Qwen2.5-7B-Instruct, ReasonFlux-PRM-7B
improves performance by 3.4% on AIME24 and 5.8% on AIME25 relative to the rule-based baseline.
On the stronger DeepSeek-R1-Distill-Qwen-7B model, ReasonFlux-PRM-7B further advances results,
raising MATH500 accuracy from 89.6% to 94.8% and GPQA-Diamond from 47.1% to 51.6%.
In addition, when directly comparing ReasonFlux-PRM-7B against Qwen2.5-Math-PRM-7B, we
observe consistent improvements. For example, a 3.8% gain on AIME25 with Qwen2.5-7B-Instruct
and a 2.5% gain on GPQA-Diamond with DeepSeek-R1-Distill-Qwen-7B. These results demonstrate
that the high-quality learned reward signals from ReasonFlux-PRM substantially enhance policy

9



Figure 6: Training dynamics of GRPO policy optimization using ReasonFlux-PRM-7B as reward
signals and Qwen2.5-7B-Instrct as the policy model. (a) Training reward vs. step: We com-
pare the training reward evolution across original rule-based GRPO, Qwen2.5-Math-PRM-7B, and
ReasonFlux-PRM-7B; (b) Validation accuracy vs. step: We report the validation accuracy during
training with ReasonFlux-PRM-7B; (c) Response length vs. step: We report the evolution of
generated response lengths over training steps with ReasonFlux-PRM-7B.

optimization, outperforming both heuristic and strong PRM baselines, and ultimately yielding more
capable reasoning models through RL training.

Additional Performance Analyses. We leave further performance analyses on ReasonFlux-PRM
and case studies in Appendix D and Appendix E.

6 Related Works
Process Reward Models. Process Reward Models (PRMs) [27, 55, 78, 50, 36, 8, 65] provide
step-level supervision for model reasoning answers, assigning intermediate rewards to each reasoning
step [79, 60, 33, 4, 42]. Existing PRMs, such as Math-Shepherd [59], Skywork-PRM [10], and
Qwen2.5-Math-PRM series [79], are trained on either human-annotated rewards [27] or synthesized
supervision signals [35] to provide fine-grained step-level rewards for model-generated reasoning
solutions across different tasks such as math problem solving [38, 34], science reasoning [46], and
programming [12]. More recent work such as Think-PRM [18] introduces a generative PRM to
produce long CoT verification. Prior works have integrated PRMs as reward signals during training
[56, 49, 23, 8, 85, 82], such as step-by-step verified online RL policy optimization [8, 5, 86, 75, 29]
or iterative generator improvement through verifier-guided self-training [14]. Others apply PRMs
during inference-time scaling [52, 80, 18, 52, 87, 70, 68, 69] by integrating the models with step-level
search and decoding strategies, including beam search [52], reward-guided tree search [62, 43], Best-
of-N sampling [28], etc. However, since current PRMs are mostly trained on model-generated final
solutions, they struggle to provide effective reward supervision for the internal reasoning trajectories
produced by large reasoning models [6, 26] prior to generating final answers. To address this, we
design a new trajectory-aware PRM specifically aimed at providing reward supervision for such
trajectory–response formatted long CoT data. We leave additional related works in Appendix F.

7 Conclusion
We present ReasonFlux-PRM, a trajectory-aware PRM that delivers fine-grained step-level and
trajectory-level supervision for trajectory-response long chain-of-thought reasoning traces. Through
extensive empirical evaluations, ReasonFlux-PRM consistently improves downstream model perfor-
mance across multiple challenging benchmarks and application settings. Specifically, ReasonFlux-
PRM surpasses strong baselines and human-curated data in offline training data selection, enhances
policy optimization during reinforcement learning via dense process-level rewards, and demonstrates
superior test-time scaling in Best-of-N inference. Our results highlight the importance of trajectory-
aware reward modeling for supervising model intermediate reasoning processes. The discussion of
limitations and broader impacts is provided in Appendix G.
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A Details on the Preliminary Study in Section 3

A.1 Preliminary Study Setups

Process Reward Models. We evaluate four state-of-the-art process reward models for scoring the
quality of the thinking trajectories data: Math-Shepherd-PRM-8B [59], Skywork-PRM-7B [10],
Qwen2.5-Math-PRM-7B [79], and Qwen2.5-Math-PRM-72B [79]. The details description for each
model is shown below:

• Math-Shepherd-PRM-8B [59]: A 7B PRM based on Mistral, trained with data auto-
generated from Mistral-7B fine-tuned on MetaMath. It emphasizes verification of step-level
reasoning through process-level rewards without human annotations.

• Skywork-PRM-7B [10]: A PRM built on Qwen2.5-Math-7B-Instruct and trained on data
derived from LLaMA-2 fine-tuned on math tasks. It shows strong generalization for verifying
reasoning trajectories across models and supports efficient TTS with low inference overhead.

• Qwen2.5-Math-PRM-7B [79]: Trained on Qwen2.5-Math-7B-Instruct using data from
the Qwen2.5-Math series, this PRM offers robust step-by-step reward signals and high
compatibility with Qwen family models, demonstrating superior supervision ability in TTS
tasks among 7B-scale PRMs.

• Qwen2.5-Math-PRM-72B [79]: A high-capacity verifier trained on Qwen2.5-Math-72B-
Instruct and Qwen-generated data. It achieves state-of-the-art process supervision and excels
in guiding both sampling- and search-based TTS strategies across a range of mathematical
reasoning tasks.

Data Sources. For the data sources, we follow s1k [40] to use its collected datasets consisting of
59K raw model thinking trajectories distilled from the Google Gemini Flash Thinking API [7], along
with 1K human-curated samples from the same source and an additional 1K human-curated samples
from Deepseek-R1 [6]. These trajectories span a broad range of topics, including math and scientific
reasoning. For downstream tasks, we choose 4 challenging benchmarks including: AIME24 [38],
AIME25 [37], MATH500 [13], and GPQA-Diamond [46].

Training Details in RQ2. As the downstream generator, we adopt Qwen2.5-14B-Instruct as our base
model for fine-tuning evaluation. We perform supervised fine-tuning on the Qwen2.5-14B-Instruct
model using various 1,000-sample training datasets, each selected either by different PRM-based
rankings or curated by human annotators in s1k [40]. We fine-tune the model for 5 epochs using
a learning rate of 1e−5, weight decay of 1e−4, and a maximum sequence length of 32,768. All
experiments are conducted on a server node with 8 A100-80G GPUs.

A.2 Difference between Model Thinking Trajectories and Final Responses

As we mentioned in Section 3, there are two key difference of the data between model thinking
trajectories and final responses:

• Branching steps across thinking trajectories: For instance, the thinking trajectories might
initially assume an incorrect variable assignment in a math problem, detect the inconsistency,
and backtrack to re-derive the solution.

• Weaker global coherence across steps: This manifests in speculative or uncertain state-
ments (e.g., “if we assume X, then Y”) that may not resolve within the same reasoning path,
and in disjointed or redundant logic, such as repeating subgoals or prematurely concluding
without fully integrating prior steps. In contrast, final responses are typically globally fluent
and logically unified, aiming to deliver a streamlined and conclusive answer.

In Examples 1 and 2 below, we provide detailed data examples that highlight the distinctions between
model thinking trajectories and final output responses. These examples showcase how the thinking
trajectories often contain exploratory, speculative, or partially resolved reasoning steps, in contrast
to the more polished and coherent final outputs. To better illustrate these differences, we highlight
all branching steps, backtracking behaviors, and internal deliberations in blue, emphasizing the
non-linear and less deterministic nature of the model’s intermediate reasoning process.
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Example 1

Question: Two capacitors with capacitance values C1 = 2000± 10 pF and C2 = 3000± 15 pF are
connected in series. The voltage applied across this combination is V = 5.00± 0.02 V.
What is the percentage error in the calculation of the energy stored in this combination of capacitors?

Thinking Trajectories:
Let C1 and C2 be the capacitance values of the two capacitors, and ∆C1, ∆C2 be their absolute errors.
Given: C1 = 2000 ± 10 pF C2 = 3000 ± 15 pF Voltage applied across the combination, V =
5.00± 0.02 V When capacitors are connected in series, the equivalent capacitance Ceq is given by:

1

Ceq
=

1

C1
+

1

C2
⇒ Ceq =

C1C2

C1 + C2

Let me double check, initially I thought the formula was C1 + C2, but that’s for parallel combination.
Since it’s in series, we should use the reciprocal formula. Calculate the nominal value:

Ceq =
2000× 3000

2000 + 3000
=

6× 106

5000
= 1200 pF

To find the error in Ceq, we use:

∆Ceq =

√(
∂Ceq

∂C1
∆C1

)2

+

(
∂Ceq

∂C2
∆C2

)2

Partial derivatives:
∂Ceq

∂C1
=

C2
2

(C1 + C2)2
,

∂Ceq

∂C2
=

C2
1

(C1 + C2)2

Evaluate:
9

25
,

4

25

∆Ceq =

√(
9

25
× 10

)2

+

(
4

25
× 15

)2

=
1

25

√
902 + 602

=
1

25

√
8100 + 3600 =

1

25

√
11700 ≈ 4.33 pF

Hmm, but is this the only way? Maybe logarithmic differentiation would give a cleaner expression? Let
me try an alternative method:

1

Ceq
=

1

C1
+

1

C2
⇒ − 1

C2
eq
dCeq = − 1

C2
1

dC1 −
1

C2
2

dC2

So:
dCeq

C2
eq

=
dC1

C2
1

+
dC2

C2
2

⇒ ∆Ceq

Ceq
= Ceq

(
∆C1

C2
1

+
∆C2

C2
2

)
This seems messier, maybe it is generalizable. Now let me compute it:

=
3000 · 10

2000 · 5000 +
2000 · 15

3000 · 5000 = 0.003 + 0.002 = 0.005 ⇒ ∆Ceq = 0.005 · 1200 = 6 pF

Now compute energy:

E =
1

2
CeqV

2

Let me double-check: voltage is squared here, so the error contribution from voltage gets doubled in
fractional terms. Fractional error:

∆E

E
=

∆Ceq

Ceq
+ 2 · ∆V

V
= 0.005 + 2 · 0.004 = 0.013 ⇒ Percentage error = 1.3%

Alternative verification might help... I might try distribute the weight of errors proportionally:

∆Ceq

Ceq
=

∆C1

C1
· C2

C1 + C2
+

∆C2

C2
· C1

C1 + C2
= 0.005 · 0.6 + 0.005 · 0.4 = 0.005

Let me Final check:

lnE = ln

(
1

2

)
+ lnCeq + 2 lnV ⇒ ∆E

E
=

∆Ceq

Ceq
+ 2 · ∆V

V
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The final answer is:
⇒ 1.3%

Final Response:
Step 1: Calculate the Equivalent Capacitance
When capacitors are connected in series, the equivalent capacitance Ceq is given by:

1

Ceq
=

1

C1
+

1

C2
=

C1 + C2

C1C2
⇒ Ceq =

C1C2

C1 + C2

Ceq =
2000× 3000

2000 + 3000
=

6× 106

5000
= 1200 pF

Step 2: Calculate the Error in Ceq

Using the formula for propagation of uncertainty:

∆Ceq =

∣∣∣∣∂Ceq

∂C1

∣∣∣∣∆C1 +

∣∣∣∣∂Ceq

∂C2

∣∣∣∣∆C2

Compute the partial derivatives:

∂Ceq

∂C1
=

C2
2

(C1 + C2)2
,

∂Ceq

∂C2
=

C2
1

(C1 + C2)2

Substitute the given values:

∂Ceq

∂C1
=

30002

50002
=

9

25
,

∂Ceq

∂C2
=

20002

50002
=

4

25

Now compute the error:

∆Ceq =
9

25
· 10 + 4

25
· 15 =

90

25
+

60

25
=

150

25
= 6 pF

Step 3: Compute the Fractional Error in Ceq

∆Ceq

Ceq
=

6

1200
= 0.005

Step 4: Energy Stored in the Capacitor System
The energy stored in a capacitor is given by:

E =
1

2
CeqV

2

Step 5: Propagate Error in Energy Calculation
The fractional error in energy E is:

∆E

E
=

∆Ceq

Ceq
+ 2 · ∆V

V

Given:
∆Ceq

Ceq
= 0.005,

∆V

V
=

0.02

5.00
= 0.004

Substitute into the error formula:

∆E

E
= 0.005 + 2 · 0.004 = 0.005 + 0.008 = 0.013

Step 6: Convert to Percentage Error

Percentage error =
∆E

E
× 100% = 0.013× 100% = 1.3%

Final Answer: The percentage error in the energy stored is 1.3% .
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Example 2

Question: One base of a trapezoid is 100 units longer than the other base. The segment that joins the
midpoints of the legs divides the trapezoid into two regions whose areas are in the ratio 2 : 3. Let x be
the length of the segment, parallel to the bases, that divides the trapezoid into two regions of equal area.

Find the greatest integer that does not exceed
x2

100
.

Thinking Trajectories:
The problem asks for the value of ⌊x2/100⌋, where x is the length of a segment parallel to the bases
that divides the trapezoid into two regions of equal area. We are given information about the lengths of
the bases and the ratio of the areas created by the segment joining the midpoints of the legs.
Let the lengths of the two bases be b1 and b2, with b1 > b2. We are told that:

b1 = b2 + 100

Let the height of the trapezoid be h. The midline of the trapezoid has length:

m =
b1 + b2

2

It divides the trapezoid into two smaller trapezoids, each of height h/2. The area of the upper trapezoid
is:

A1 =
1

2
(b2 +m) · h

2
=

h

8
(b1 + 3b2)

The area of the lower trapezoid is:

A2 =
1

2
(b1 +m) · h

2
=

h

8
(3b1 + b2)

We are told that the ratio of areas is 2 : 3 (upper to lower), so:

A1

A2
=

b1 + 3b2
3b1 + b2

=
2

3
⇒ 3(b1 + 3b2) = 2(3b1 + b2) ⇒ 3b1 + 9b2 = 6b1 + 2b2 ⇒ 7b2 = 3b1

Substitute b1 = b2 + 100:

7b2 = 3(b2 + 100) ⇒ 7b2 = 3b2 + 300 ⇒ 4b2 = 300 ⇒ b2 = 75 ⇒ b1 = 175

Let me also test the other case just in case it’s a typo, what if the area ratio was actually 3 : 2?

b1 + 3b2
3b1 + b2

=
3

2
⇒ 2(b1 + 3b2) = 3(3b1 + b2) ⇒ 2b1 + 6b2 = 9b1 + 3b2 ⇒ 3b2 = 7b1

⇒ 3b2 = 7(b2 + 100) ⇒ 3b2 = 7b2 + 700 ⇒ −4b2 = 700 ⇒ b2 = −175

That’s invalid as the length can’t be negative. So the correct ratio is 2 : 3 and b2 = 75, b1 = 175.
Now consider a segment of length x, parallel to the bases, that divides the trapezoid into two equal-area
regions. Let the height from b2 up to this segment be h′. The total area is:

Atotal =
1

2
(b1 + b2)h =

1

2
(175 + 75)h = 125h

We want:
1

2
(b2 + x)h′ =

125h

2
⇒ (b2 + x)h′ = 125h

We also know from similar triangles:

x− b2
h′ =

b1 − b2
h

⇒ h′

h
=

x− b2
b1 − b2

Substitute into the area equation:

(b2 + x) · h · x− b2
b1 − b2

= 125h ⇒ (b2 + x)(x− b2) = 125(b1 − b2)

x2 − b22 = 125(b1 − b2) ⇒ x2 = 125(b1 − b2) + b22

Substitute b1 = 175, b2 = 75:

x2 = 125(100) + 752 = 12500 + 5625 = 18125 ⇒
⌊
x2

100

⌋
=

⌊
18125

100

⌋
= 181
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I also saw a different derivation that leads directly to this result. Let me verify it:

2x2 = b21+b22 ⇒ x2 =
b21 + b22

2
⇒ x2 =

1752 + 752

2
=

30625 + 5625

2
= 18125 ⇒

⌊
x2

100

⌋
= 181

Final Response:
Step 1: Set up variables and use the area ratio condition
Let the lengths of the two bases of the trapezoid be b1 and b2, with b1 > b2. We are given that
b1 = b2 + 100.
The segment that joins the midpoints of the legs (the midline) divides the trapezoid into two smaller
trapezoids with heights h/2. The lengths of the parallel sides of the upper trapezoid are b2 and
m = b1+b2

2
, and its area is

A1 =
h

8
(b1 + 3b2).

The lengths of the parallel sides of the lower trapezoid are m and b1, and its area is

A2 =
h

8
(3b1 + b2).

The ratio of the areas is A1 : A2 = (b1 + 3b2) : (3b1 + b2). Given that this ratio is 2 : 3 or 3 : 2. If
b1+3b2
3b1+b2

= 2
3
, then 3b1 + 9b2 = 6b1 + 2b2,, so 7b2 = 3b1. Substituting b1 = b2 + 100, we get

7b2 = 3(b2 + 100),

so 4b2 = 300, b2 = 75, and b1 = 175.
Step 2: Verify the alternate area ratio leads to contradiction
If b1+3b2

3b1+b2
= 3

2
, we get 2b1 + 6b2 = 9b1 + 3b2, so 3b2 = 7b1, which leads to a negative value for b2,

which is impossible. The lengths of the bases are b1 = 175 and b2 = 75.
Step 3: Express the condition for equal-area division
Let the segment of length x parallel to the bases divide the trapezoid into two regions of equal area. The
square of the length of such a segment is given by

x2 =
b21 + b22

2
.

x2 =
1752 + 752

2
=

30625 + 5625

2
=

36250

2
= 18125.

Step 4: Compute the final result
We need to find the greatest integer that does not exceed x2/100.

x2

100
=

18125

100
= 181.25.

The greatest integer that does not exceed 181.25 is

⌊181.25⌋ = 181.

Final Answer: The final answer is 181 .
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B Template guided trajectory-level reward design

Prompt Design of the Template (LLM-as-a-Verifier)

You are given a long chain-of-thought (CoT) response to a challenging math problem. Your
task is to summarize the response into a structured sequence of reasoning steps that can serve
as a clear and guided template for use by a smaller model.

Problem: [problem]

Response: [response]

Instructions:
Please summarize the response as a concise list of reasoning steps, each capturing a distinct
part of the thought process. These may include restating the problem, defining variables,
constructing mathematical models, performing calculations, verifying results, handling
different cases, correcting mistakes, and drawing the final conclusion. Focus on preserving
the logical flow while keeping each step clear and concise.

Here are a few template examples you should strictly follow:

[Template Example 1]

[Template Example 2]

[Template Example 3]

Write your answer below.
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C Additional Experimental Setups

C.1 ReasonFlux-PRM Training

For ReasonFlux-PRM training, we initialize from the off-the-shelf Qwen2.5-1.5B-Instruct and
Qwen2.5-7B-Instruct models [54], serving as our 1.5B-scale and 7B-scale ReasonFlux-PRM back-
bones. We then train ReasonFlux-PRM on the OpenThoughts-114K [53] collection of datasets
containing rich, model-generated thinking trajectories paired with their corresponding final responses.

OpenThoughts-114k is a publicly available synthetic reasoning dataset comprising 114,000 high-
quality examples across four domains: mathematics, science, code, and puzzles. Each example
includes a problem statement, a thinking trajectory generated by the Deepseek-R1, and a corre-
sponding model response. The dataset was constructed by curating prompts from existing datasets,
such as AI-MO/NuminaMath-CoT [22] for math, DeepMind/code-contests [25] for code, and camel-
ai/chemistry [20] for science. We utilize the model-generated thinking trajectories and final responses
from the datasets as raw training data. Subsequently, we assign step-level and trajectory-level rewards
based on our specific reward design, as detailed in Section 4.1.

We follow our detailed description in Section 4.1 to train with the step-level reward. In addition,
to train with the template-guided trajectory-level reward, we first randomly sample 1000 problem-
response samples from OpenThoughts-114k, and prompt GPT-4o to extract the reasoning template
from each CoT sample using the prompt in Section B. For each problem-template pair, we choose
Qwen2.5-7B-Instruct as our generator πθ and generate N = 5 responses that attempt to solve the
problem while adhering to the reasoning template. The ground truth trajectory-level reward is then
computed as the average accuracy across the 5 responses, as shown in Eq. 9. We then combine the
step-level and trajectory-level rewards to obtain the ground truth reward values for the 1000 samples,
and train ReasonFlux-PRM to learn these reward values using the joint training objective in Eq. 10.
To train our reward model, we use a learning rate of 1e-5 and train for 3 epochs.

C.2 Downstream Tasks

For offline data selection and subsequent supervised fine-tuning, we follow the exact experimental
setup described in Appendix A.1 to ensure a fair comparison with baseline models. Specifically, we
begin by assigning reward scores to each trajectory–response pair in OpenThoughts-114k using the
designated reward model. We then rank all samples based on their aggregated reward scores and
select the top 1,000 examples to serve as the training set for downstream fine-tuning.

For online policy optimization, we use a training dataset comprising 10k competition-level math-
ematical reasoning problems collected from MATH [13] and the DAPO [74] training set. These
training data contains math problems spanning a wide range of topics, including algebra, geometry,
probability, and precalculus. Our GRPO training framework is built on the original Hugging Face
GRPO Trainer [57]. We train with a batch size of 32, generating 6 samples per prompt, and run
training for 3 epochs. As mentioned above, the vanilla GRPO relies on a rule-based reward that
evaluates only the correctness of the final answer. On the other hand, we replace the rule-based
reward with the learned reward signal obtained by passing the training prompt and the policy model’s
output through ReasonFlux-PRM.

For the Best-of-N test-time scaling experiments, we use Qwen2.5-14B-Instruct as the generator model.
Given an input problem x, the generator produces N candidate reasoning trajectories using nucleus
sampling with temperature T = 0.3, where N ∈ {2, 4, 8, 16}. Each candidate trajectory is then
scored by ReasonFlux-PRM, which provides a scalar reward reflecting the trajectory’s quality in terms
of correctness, coherence, and reasoning structure. The final output is selected as the trajectory with
the highest ReasonFlux-PRM assigned reward. We evaluate performance by measuring final-answer
accuracy over the selected outputs.
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D Additional Analyses

Figure 7: Test-time performance of Best-of-N selection using ReasonFlux-PRM-7B, Qwen2.5-Math-
PRM-72B, and Skywork-PRM-7B across reasoning tasks. We also report results using the majority
voting method.

D.1 Best-of-N of ReasonFlux-PRM in Test-Time Scaling.

In Figure 7, we present Best-of-N selection results using ReasonFlux-PRM-7B and baseline PRMs
across four reasoning tasks. For the generator model, we use the fine-tuned Qwen2.5-14B-Instruct
with the same checkpoint in Section 5.1. ReasonFlux-PRM-7B consistently leads to greater accu-
racysuggest that larger reward models yield more accurate and informative signals for RL, thereby
facilitatingor flat returns with increased sampling, ReasonFlux-PRM-7B maintains a strong upward
trend, demonstrating its superior ability to identify high-quality reasoning traces.

D.2 Scaling up ReasonFlux-PRM Model Size on Policy Optimization

Table 4: Scaling Effects of ReasonFlux-PRM model size on GRPO online policy optimization
performance. Larger ReasonFlux-PRM reward models (7B vs. 1.5B) consistently yield better
downstream performance on MATH500 and GPQA-Diamond across both Qwen2.5-7B-Instruct and
DeepSeek-R1-Distill-Qwen-7B policy models.

Policy Model ReasonFlux-PRM Size MATH500 GPQA-Diamond

Qwen2.5-7B-Instruct 1.5B 73.8 30.8
7B 77.6 34.3

DeepSeek-R1-Distill-Qwen-7B 1.5B 90.4 48.5
7B 93.8 51.5

To investigate the impact of reward model capacity, we vary the size of the ReasonFlux-PRM model
used to provide rewards for GRPO-based policy optimization. As shown in Table 4, using a larger
ReasonFlux-PRM model consistently improves performance across both policy models, Qwen2.5-
7B-Instruct and DeepSeek-R1-Distill-Qwen-7B. Specifically, scaling ReasonFlux-PRM from 1.5B
to 7B leads to a 3.8% gain on MATH500 and 3.5% on GPQA-Diamond for Qwen2.5-7B-Instruct.
Likewise, for DeepSeek-R1-Distill-Qwen-7B, we observe a 3.4% improvement on MATH500 and
3.0% on GPQA-Diamond. These results indicate that larger reward models provide more accurate
and informative signals for RL, thereby enabling stronger policy optimization.

D.3 End-to-End Training with ReasonFlux-PRM (SFT+RL)

As supervised fine-tuning followed by reinforcement learning (SFT+RL) has become a dominant
paradigm for aligning large language models with reasoning-intensive tasks, we are motivated to
evaluate if ReasonFlux-PRM can serve as a general-purpose reward model to be effectively applied
across both stages of training. Table 5 presents a comparative analysis on the Qwen2.5-7B-Instruct
policy model, where we evaluate two checkpoints: (i) the original backbone model, and (ii) the same
model after SFT on 1k ReasonFlux-PRM-7B selected data over the 59K raw data in s1 [40]. Both
checkpoints are then further optimized with different reward signal sources during RL. The results
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Table 5: Effect of ReasonFlux-PRM-7B selected supervised fine-tuning on downstream RL. We
compare the original backbone model (Checkpoint 1) and the model fine-tuned on 1k ReasonFlux-
PRM-7B selected data (Checkpoint 2), each evaluated under different reward signal sources.

Policy Model (Qwen2.5-7B-Instruct) Reward Signal Source MATH500

Checkpoint 1: Original backbone model
Rule-based 74.0
Qwen2.5-Math-PRM-7B 75.4
ReasonFlux-PRM-7B 77.0

Checkpoint 2: SFT on 1k ReasonFlux-PRM-7B selected data
Rule-based 84.8
Qwen2.5-Math-PRM-7B 87.6
ReasonFlux-PRM-7B 89.8

ReasonFlux-PRM-7B

Human selected (s1k) 

Raw Data (59k)

SFT on Ǫwen2.5-14B-Instruct

Qwen2.5-Math-PRM-7B

Qwen2.5-Math-PRM-72B

Skywork-PRM-7B

SFT on Ǫwen2.5-14B-Instruct

ReasonFlux-PRM-1.5B

ReasonFlux-PRM-7B

Figure 8: Effeciency Analyses on ReasonFlux-PRM-7B. Left: Accuracy on MATH500 improves
steadily as the number of ReasonFlux-PRM-7B selected training samples increases, outperforming
both human-selected (1k) and full raw data (59k) baselines with fewer total training instances. Right:
ReasonFlux-PRM-7B achieves higher accuracy than other PRMs under 7B scale and even larger 72B
scale parameter size.

demonstrate that ReasonFlux-PRM-7B consistently improves downstream performance at SFT and
RL stages. We also observe that across all reward signal sources, fine-tuning on 1k ReasonFlux-PRM-
7B selected data consistently improves performance over the original backbone model. Notably, the
combination of ReasonFlux-PRM-7B based supervised fine-tuning and ReasonFlux-PRM-7B guided
reinforcement learning yields the highest MATH500 accuracy of 89.8%, with a significant 12.8%
accuracy improvement compared to the original backbone model (77.0%). These results highlight
the end-to-end effectiveness of ReasonFlux-PRM as a general reward model for enhancing reasoning
capabilities throughout the full training pipeline.

D.4 Efficiency Analyses

In this section, we evaluate the efficiency of ReasonFlux-PRM-7B in both offline data selection for
SFT and online RL settings by comparing the training performance and overhead under different data
and reward supervision strategies.

Supervised Fine-tuning Policy Optimization (RL)
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59k ReasonFlux-PRM-7B (1K)

Figure 9: Time overhead of ReasonFlux-
PRM- during SFT and RL stages. For
SFT, we compare the training time using
1k selected samples versus the full 59k
raw data. For RL training, we evaluate
the overall time with/without incorporat-
ing ReasonFlux-PRM-7B.

As shown in Figure 8, the data selected by ReasonFlux-
PRM-7B reduces the amount of training data required
while achieving superior model performance. When fine-
tuning Qwen2.5-14B-Instruct on only 1k samples selected
by ReasonFlux-PRM-7B, the model outperforms the base-
line trained on 59k raw trajectories by a substantial margin
on MATH500. This highlights ReasonFlux-PRM ’s ability
to identify high-quality, informative samples that yield
greater performance per data point. The result aligns with
recent findings on the power of curated supervision in data-
efficient post-training, and further shows that ReasonFlux-
PRM-7B can outperform even human-selected samples
under similar data scales.

We further investigate the overhead of incorporating
ReasonFlux-PRM-7B into policy optimization using the GRPO framework. As shown in the right
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Table 6: Ablation study on the α parameter.
α AIME24 AIME25 MATH500

0.1 26.7 6.7 81.2
0.8 40.0 33.3 83.6
1.0 33.3 33.3 84.8
1.5 33.3 40.0 83.2

Table 7: Ablation study on the β parameter.
β AIME24 AIME25 MATH500

0.1 10.0 6.7 73.6
0.3 13.3 13.3 74.4
0.5 13.3 6.7 75.2
0.8 20.0 16.7 76.8

panel of Figure 9, although ReasonFlux-PRM-7B introduces additional computation for step- and
trajectory-level reward modeling, the increase in total training time remains moderate compared
to standard GRPO. Crucially, this additional cost leads to consistent improvements in downstream
reasoning performance, as we demonstrated in our main experiments. Our experiments on both online
and offline settings above demonstrate that ReasonFlux-PRM not only improves model performance
across both SFT and RL regimes, but does so with minimal computational overhead, achieving
superior efficiency in reasoning-centric fine-tuning and optimization pipelines.

D.5 Ablation Study

Ablation on α. As described in Eq. 11, the parameter α controls the balance between step-level
rewards and the trajectory-level reward during ReasonFlux-PRM’s reward aggregation. To assess
the impact of this weighting, we conduct an ablation study by varying α ∈ {0.1, 0.8, 1.0, 1.5}, and
use ReasonFlux-PRM-7B to select offline fine-tuning data accordingly. The Qwen2.5-14B-Instruct
model is then fine-tuned on the top 1,000 selected examples and evaluated across AIME24, AIME25,
and MATH500. As shown in Table 6, performance improves when more weight is placed on the
trajectory-level reward. Notably, α = 1.0 achieves the best result on MATH500, while α = 1.5 yields
the highest accuracy on AIME25. These results suggest that combining both local (step-level) and
global (trajectory-level) reward signals is essential, and that moderate emphasis on trajectory-level
reasoning is particularly beneficial for complex tasks. We also observe that the optimal value of α
may be influenced by the underlying data distribution. As part of future work, we plan to make α
learnable by introducing a lightweight neural module that dynamically adapts the weight between
step-level and trajectory-level rewards based on the characteristics of each input sample.

Ablation on β. In Eq. 12, we introduce β as a weighting coefficient to balance the original rule-based
GRPO reward and the process-level reward provided by ReasonFlux-PRM-7B. To understand its
influence, we conduct an ablation study by varying β ∈ {0.1, 0.3, 0.5, 0.8} and applying GRPO with
ReasonFlux-PRM-7B reward integration on the Qwen2.5-7B-Instruct policy model. As shown in
Table 7, we evaluate the resulting models across AIME24, AIME25, and MATH500. The performance
consistently improves with increasing β, indicating the effectiveness of ReasonFlux-PRM ’s process-
level supervision. The highest gains are achieved at β = 0.8, which yields 20.0% accuracy on
AIME24, 16.7% on AIME25, and 76.8% on MATH500. The result demonstrates that a stronger
emphasis on ReasonFlux-PRM rewards leads to more effective RL training.

E Case Study on ReasonFlux-PRM

In Case Studies 1 and 2 below, we present two responses to the same mathematical problem, one
incorrect and one correct. For each response, we show the step-level and trajectory-level rewards
assigned by ReasonFlux-PRM-7B. In the incorrect response, ReasonFlux-PRM-7B effectively identi-
fies the point at which the reasoning begins to deviate by assigning significantly lower rewards to
the subsequent steps. In contrast, the correct response receives consistently high rewards throughout
the trajectory. Our study on the example suggests that ReasonFlux-PRM is not only capable of
distinguishing between correct and incorrect solutions but also of pinpointing the precise step where
an error in reasoning occurs.
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F Additional Related Works

Offline Data Selection for CoT Reasoning at Scale. The quality of data has proven pivotal in
the model training process [39, 77, 83, 11]. Recent studies further demonstrate that small subsets
of high-quality data can outperform much larger unfiltered datasets in enhancing model reasoning
abilities [41] during post-training stages such as supervised fine-tuning [30, 71, 40, 72, 1, 45, 19].
In contrast to online batch data selection methods [17, 58], which select samples based on updated
model signals such as gradient norms or maximum sample loss during training, offline data selection
approaches aim to select data once prior to the model training process. Motivated by the need
for efficiency at scale, recent works have increasingly explored offline data selection as a means of
curating high-quality datasets for LLMs training. Beyond simple rejection sampling, these approaches
either train an additional model for data selection [64, 63], or adaptively select data based on natural
language quality indicators [3], dataset diversity [61], or model-specific quality labels [31, 88].
More recently, model distillation [21, 66] has been widely adopted to leverage longer reasoning
traces distilled from large-scale reasoning models as training data for improving the capabilities of
downstream smaller models. Methods such as s1 [40], LIMO [72] and ReasonFlux [68] adapt smaller
subsets of human-selected high-quality distilled data, enabling smaller models to perform better on
sophisticated reasoning tasks compared to training on much larger quantities of raw distilled data.
Building on these insights, instead of incurring additional computational costs by focusing solely on
training data selection, our work extends the applicability of process reward models from traditional
reward supervision to offline data selection, particularly in the context of raw model-distilled chain-
of-thought reasoning trajectories [76, 9, 81]. Leveraging the step-by-step supervision capability of
PRMs, we utilize them as a metric to select high-quality reasoning traces from raw "silver" distilled
data [73], with the goal of improving downstream post-training performance for smaller models.

G Limitations and Broader Impacts

Limitations While ReasonFlux-PRM demonstrates robust improvements in reasoning quality across
diverse mathematical and scientific benchmarks, one limitation lies in its reliance on high-quality
trajectory–response pairs for training. Although ReasonFlux-PRM is designed to be general-purpose
and adaptable, its current instantiation is tailored toward domains with well-structured logic (e.g., math
and science), where reward signals based on alignment, quality, and coherence can be meaningfully
computed. Applying ReasonFlux-PRM in more open-ended tasks such as commonsense dialogue
or code generation may require redefining trajectory-level reward criteria and further tuning of the
reward decomposition strategy. However, these domains fall outside the scope of this work and do
not detract from the validity or strength of our conclusions in the reasoning-focused setting.

Broader Impact This paper introduces ReasonFlux-PRM, a trajectory-aware reward modeling
framework that advances LLM reasoning by providing fine-grained supervision over both intermediate
thinking steps and high-level solution strategies. This improves LLM alignment, interpretability, and
efficiency in structured reasoning tasks such as math and science, while supporting both supervised
fine-tuning and reinforcement learning. While our work has broad implications, we do not foresee
significant negative impacts or societal concerns that warrant specific emphasis.
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Case Study 1

Question: If −6 ≤ a ≤ −2 and 3 ≤ b ≤ 5, what is the greatest possible value of
(
a+

1

b

)(
1

b
− a

)
?

Thinking Trajectories:

The problem asks for the greatest possible value of the expression
(
a+

1

b

)(
1

b
− a

)
given the ranges

for a and b.
[Step-level reward: 0.997]

First, let’s expand the expression:(
a+

1

b

)(
1

b
− a

)
= a

(
1

b
− a

)
+

1

b

(
1

b
− a

)
= a · 1

b
− a2 + 1

b
· 1
b
− 1

b
· a = a

b
− a2 + 1

b2
− a

b

= −a2 + 1
b2

[Step-level reward: 0.983]

Now we need to find the maximum value of −a2 + 1
b2

given the constraints −6 ≤ a ≤ −2 and
3 ≤ b ≤ 5.
[Step-level reward: 0.996]

Consider the terms −a2 and 1
b2

separately. Since −6 ≤ a ≤ −2, we have 0 ≤ (−a)2 ≤ (−(−6))2 =

36. Therefore, −36 ≤ −a2 ≤ −4.
[Step-level reward: 0.503]

Since 3 ≤ b ≤ 5, we have 9 ≤ b2 ≤ 25. Therefore, 1
25

≤ 1
b2

≤ 1
9

.
[Step-level reward: 0.895]

We want to maximize −a2 + 1
b2

. This is equivalent to minimizing −a2 and maximizing 1
b2

.
[Step-level reward: 0.297]
(This is the place where the thinking trajectory went wrong, because in order to maximize −a2 + 1

b2
,

−a2 needs to be maximized, not minimized. ReasonFlux-PRM assigns low reward starting from this
segment within the thinking trajectory, which indicates that ReasonFlux-PRM is able to identify errors
in reasoning traces.)

The minimum value of −a2 is −36.
The maximum value of 1

b2
is 1

9
.

[Step-level reward: 0.238]
(The step-level rewards drop significantly since the last wrong step.)

So the greatest possible value of −a2 + 1
b2

is −36 + 1
9

.
Let’s calculate this value: −36 + 1

9
= − 36×9

9
+ 1

9
= − 324

9
+ 1

9
= − 324−1

9
= − 323

9
[Step-level reward: 0.280]

Final Response:
Given the ranges −6 ≤ a ≤ −2 and 3 ≤ b ≤ 5. We want to find the greatest possible value of the

expression
(
a+

1

b

)(
1

b
− a

)
.

[Step-level reward: 0.995]

First, we expand the expression:
(
a+ 1

b

) (
1
b
− a

)
= a

(
1
b
− a

)
+ 1

b

(
1
b
− a

)
= a · 1

b
−a2+ 1

b
· 1
b
− 1

b
·a

= a
b
− a2 + 1

b2
− a

b
= −a2 + 1

b2

[Step-level reward: 0.997]

Now we need to find the maximum value of −a2 + 1
b2

given the constraints for a and b. Consider the
term −a2. Since −6 ≤ a ≤ −2, the values of a2 range from (−6)2 = 36 to (−2)2 = 4. Therefore,
the values of −a2 range from −36 to −4.
[Step-level reward: 0.988]

Consider the term 1
b2

. Since 3 ≤ b ≤ 5, the values of b2 range from 32 = 9 to 52 = 25. Therefore, the
values of 1

b2
range from 1

25
to 1

9
.
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[Step-level reward: 0.897]

To maximize −a2 + 1
b2

, we need to maximize 1
b2

and minimize −a2. The maximum value of 1
b2

is 1
9

,
which occurs when b = 3. The minimum value of −a2 is −36, which occurs when a = −6.
[Step-level reward: 0.108]
(The low score here aligns with the low score in the model thinking trajectories.)

Thus, the greatest possible value of −a2 + 1
b2

is −36 + 1
9

.

−36 +
1

9
= −36× 9

9
+

1

9
= −324

9
+

1

9
= −324− 1

9
= −323

9

Final Answer: The final answer is −323

9
[Step-level reward: 0.319]

[Trajectory-level reward: 0.197]
(As the final answer is incorrect, ReasonFlux-PRM assigns a low trajectory-level reward to the overall
trajectory-response data.)
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Case Study 2

Question: If −6 ≤ a ≤ −2 and 3 ≤ b ≤ 5, what is the greatest possible value of
(
a+

1

b

)(
1

b
− a

)
?

Thinking Trajectories:

The problem asks for the greatest possible value of the expression
(
a+

1

b

)(
1

b
− a

)
given the ranges

for a and b.
[Step-level reward: 0.998]

Let E =
(
a+ 1

b

) (
1
b
− a

)
.

We can expand the expression:
E = a

(
1
b

)
+ a (−a) + 1

b

(
1
b

)
+ 1

b
(−a)

E = a
b
− a2 + 1

b2
− a

b

E = −a2 + 1
b2

[Step-level reward: 0.985]

We need to find the maximum value of E given the constraints −6 ≤ a ≤ −2 and 3 ≤ b ≤ 5.
[Step-level reward: 0.998]

Since E = −a2 + 1
b2

, we need to minimize a2 and maximize 1
b2

.
[Step-level reward: 0.974]

For a, the range is −6 ≤ a ≤ −2. The minimum value of a2 occurs when a is closest to 0. The values
of a are negative, so the minimum value of a2 occurs when a is the least negative, which is −2.
When a = −2, a2 = (−2)2 = 4.
[Step-level reward: 0.962]

For b, the range is 3 ≤ b ≤ 5. The maximum value of 1
b2

occurs when b is the smallest.
When b = 3, 1

b2
= 1

32
= 1

9
.

[Step-level reward: 0.985]

So, the maximum value of E occurs when a2 is minimized and 1
b2

is maximized.
Maximum E = −a2 + 1

b2
= −4 + 1

9
.

[Step-level reward: 0.818]

To add these values, we need a common denominator:
Maximum E = −4 + 1

9
= − 4×9

9
+ 1

9
= − 36

9
+ 1

9
= − 36−1

9
= − 35

9
.

[Step-level reward: 0.815]
Let’s double check the calculations.
The expression is

(
a+ 1

b

) (
1
b
− a

)
.

Expand the expression: a · 1
b
+ a · (−a) + 1

b
· 1

b
+ 1

b
· (−a)

= a
b
− a2 + 1

b2
− a

b

= −a2 + 1
b2

[Step-level reward: 0.980]

We want to maximize −a2 + 1
b2

.
Since a2 ≥ 0, −a2 ≤ 0.
Since b2 > 0, 1

b2
> 0.

The maximum value of 1
b2

is 1
32

= 1
9

, which occurs when b = 3.
We need to find the minimum value of a2 in the range [−6,−2].
The minimum value of a2 occurs at the boundary of the interval, which is a = −2.
When a = −2, a2 = (−2)2 = 4.
[Step-level reward: 0.927]

We need to maximize 1
b2

in the range [3, 5].
The maximum value of 1

b2
occurs at the boundary of the interval, which is b = 3.

When b = 3, 1
b2

= 1
32

= 1
9

.
[Step-level reward: 0.989]
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So the maximum value of the expression is −a2 + 1
b2

= −4 + 1
9
= − 36

9
+ 1

9
= − 35

9
.

Final Response:
Given the ranges for a and b: −6 ≤ a ≤ −2 3 ≤ b ≤ 5
[Step-level reward: 0.958]

We want to find the greatest possible value of the expression
(
a+

1

b

)(
1

b
− a

)
.

[Step-level reward: 0.999]

First, we expand the expression:(
a+

1

b

)(
1

b
− a

)
= a

(
1

b

)
+ a (−a) +

1

b

(
1

b

)
+

1

b
(−a)

=
a

b
− a2 +

1

b2
− a

b

= −a2 +
1

b2

[Step-level reward: 0.998]

To find the greatest possible value of this expression, we need to minimize a2 and maximize 1
b2

.
[Step-level reward: 0.987]

For the term −a2, we want to minimize a2. Since a2 ≥ 0 for all real numbers a, the minimum value of
a2 occurs when a = 0. However, the given range for a is [−6,−2], so a = 0 is not within the range.
The minimum value of a2 in the given range occurs at the boundary of the interval, which is a = −2.
When a = −2, a2 = (−2)2 = 4.
[Step-level reward: 0.967]

For the term 1
b2

, we want to maximize 1
b2

. Since b2 > 0 for all real numbers b ̸= 0, the maximum value
of 1

b2
occurs when b2 is the smallest. The smallest value of b2 in the given range occurs when b is the

largest in absolute value within the interval [3, 5], which is b = 3. When b = 3, b2 = 32 = 9, and
1
b2

= 1
9

.
[Step-level reward: 0.667]

Now, we substitute the minimum value of a2 and the maximum value of 1
b2

into the expanded expression:

−a2 +
1

b2
= −4 +

1

9

To combine these terms, we find a common denominator:

−4 +
1

9
= −4× 9

9
+

1

9
= −36

9
+

1

9
= −36− 1

9
= −35

9

[Step-level reward: 0.993]

Thus, the greatest possible value of the given expression is − 35
9

.
[Step-level reward: 0.988]

Final Answer: The final answer is −35

9
[Step-level reward: 0.999]

[Trajectory-level reward: 0.949]
(As the final answer is correct, ReasonFlux-PRM assigns a high trajectory-level reward to the overall
trajectory-response data.)

32



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our claims are summarized properly in our Introduction section.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitation discussion is included in the Appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide detailed assumptions and complete proof in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides detailed descriptions of the method implementation,
training details, and experimental setup in the Experiment Section and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Our code implementation is submitted along with the manuscript.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experiment details are provided in detail in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Each experiment’s results are reported as the average over three independent
experimental runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experimental details are provided in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We comply with the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We include the broader impact discussion in the Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not observe such risks of misuse in this paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All existing resources are properly cited in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release any real-world dataset. Other code implementations
are detailed as supplementary material.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No human objects are involved in this paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The LLM usage is described in detail in this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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