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Figure 1: We present a novel method for estimating room layouts from a set of unconstrained indoor
images. Our approach demonstrates robust generalization capabilities, performing well on both in-
the-wild datasets (Zhou et al., 2018) and out-of-domain cartoon (Weber et al., 2024) data.

ABSTRACT

Room layout estimation from multiple-perspective images is poorly investigated
due to the complexities that emerge from multi-view geometry, which requires
muti-step solutions such as camera intrinsic and extrinsic estimation, image
matching, and triangulation. However, in 3D reconstruction, the advancement of
recent 3D foundation models such as DUSt3R has shifted the paradigm from the
traditional multi-step structure-from-motion process to an end-to-end single-step
approach. To this end, we introduce Plane-DUSt3R, a novel method for multi-
view room layout estimation leveraging the 3D foundation model DUSt3R. Plane-
DUSt3R incorporates the DUSt3R framework and fine-tunes on a room layout
dataset (Structure3D) with a modified objective to estimate structural planes. By
generating uniform and parsimonious results, Plane-DUSt3R enables room layout
estimation with only a single post-processing step and 2D detection results. Un-
like previous methods that rely on single-perspective or panorama image, Plane-
DUSt3R extends the setting to handle multiple-perspective images. Moreover, it
offers a streamlined, end-to-end solution that simplifies the process and reduces er-
ror accumulation. Experimental results demonstrate that Plane-DUSt3R not only
outperforms state-of-the-art methods on the synthetic dataset but also proves ro-
bust and effective on in the wild data with different image styles such as cartoon.

1 INTRODUCTION

3D room layout estimation aims to predict the overall spatial structure of indoor scenes, playing
a crucial role in understanding 3D indoor scenes and supporting a wide range of applications. For
example, room layouts could serve as a reference for aligning and connecting other objects in indoor
environment reconstruction (Nie et al., 2020). Accurate layout estimation also aids robotic path
planning and navigation by identifying passable areas (Mirowski et al., 2016). Additionally, room
layouts are essential in tasks such as augmented reality (AR) where spatial understanding is critical.
Therefore, 3D room layout estimation has attracted considerable research attention with continued
development of datasets (Zheng et al., 2020; Wang et al., 2022) and methods (Yang et al., 2022;
Stekovic et al., 2020; Wang et al., 2022) over the past few decades.

Methods for 3D room layout estimation (Zhang et al., 2015; Hedau et al., 2009; Yang et al., 2019)
initially relied on the Manhattan assumption with a single perspective or panorama image as input.
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Over time, advancements (Stekovic et al., 2020) have relaxed the Manhattan assumption to accom-
modate more complex settings, such as the Atlanta model, or even no geometric assumption at all.
Recently, Wang et al. (2022) introduced a “multi-view” approach, capturing a single room with two
panorama images, marking the first attempt to extend the input from a single image to multiple im-
ages. Despite this progress, exploration in this direction remains limited, hindered by the lack of
well-annotated multi-view 3D room layout estimation dataset.

Currently, multi-view datasets with layout annotations are very scarce. Even the few existing
datasets, such as Structure3D (Zheng et al., 2020), provide only a small number of perspective views
(typically ranging from 2 to 5). This scarcity of observable views highlights a critical issue: wide-
baseline sparse-view structure from motion (SfM) remains an open problem. Most contemporary
multi-view methods (Wang et al., 2022; Hu et al., 2022) assume known camera poses or start with
noisy camera pose estimates. Therefore, solving wide-baseline sparse-view SfM would significantly
advance the field of multi-view 3D room layout estimation. The recent development of large-scale
training and improved model architecture offers a potential solution. While GPT-3 (Brown, 2020)
and Sora (Brooks et al., 2024) have revolutionized NLP and video generation, DUSt3R (Wang et al.,
2024) brings a paradigm shift for multi-view 3D reconstruction, transitioning from a multi-step SfM
process to an end-to-end approach. DUSt3R demonstrates the ability to reconstruct scenes from
unposed images, without camera intrinsic/extrinsic or even view overlap. For example, with two
unposed, potentially non-overlapping views, DUSt3R could generate a 3D pointmap while inferring
reasonable camera intrinsic and extrinsic, providing an ideal solution to the challenges posed by
wide-baseline sparse-view SfM in multi-view 3D room layout estimation.

In this paper, we employ DUSt3R to tackle the multi-view 3D room layout estimation task. Most
single-view layout estimation methods (Yang et al., 2022) follow a two-step process: 1) extracting
2D & 3D information, and 2) lifting the results to a 3D layout with layout priors. When extending
this approach to multi-view settings, an additional step is required: establishing geometric primitive
correspondence across multi-view before the 3D lifting step. Given the limited number of views
in existing multi-view layout datasets, this correspondence-establishing step essentially becomes
a sparse-view SfM problem. Hence, incorporating a single-view layout estimation method with
DUSt3R to handle multi-view layout estimation is a natural approach. However, this may introduce
a challenge: independent plane normal estimation for each image fails to leverage shared informa-
tion across views, potentially reducing generalizability to unseen data in the wild. To this end, we
adopt DUSt3R to solve correspondence establishement and 3D lifting simultaneously, which jointly
predict plane normal and lift 2D detection results to 3D. Specifically, we modify DUSt3R to esti-
mate room layouts directly through dense 3D point representation (pointmap), focusing exclusively
on structural surfaces while ignoring occlusions. This is achieved by retraining DUSt3R with the
objective to predict only structural planes, the resulting model is named Plane-DUSt3R. However,
dense pointmap representation is redundant for room layout, as a plane can be efficiently represented
by its normal and offset rather than a large number of 3D points, which may consume significant
space. To streamline the process, we leverage well-established off-the-shelf 2D plane detector to
guide the extraction of plane parameters from the pointmap. We then apply post-processing to ob-
tain plane correspondences across different images and derive their adjacency relationships.

Compared to existing room layout estimation methods, our approach introduces the first pipeline
capable of unposed multi-view (perspective images) layout estimation. Our contributions can be
summarized as follows:

1. We propose an unposed multi-view (sparse-view) room layout estimation pipeline. To the best
of our knowledge, this is the first attempt at addressing this natural yet underexplored setting in
room layout estimation.

2. The introduced pipeline consists of three parts: 1) a 2D plane detector, 2) a 3D information
prediction and correspondence establishment method, Plane-DUSt3R, and 3) a post-processing
algorithm. The 2D detector was retrained with SOTA results on the Structure3D dataset (see Ta-
ble 3). The Plane-DUSt3R achieves a 5.27% and 5.33% improvement in RRA and mAA metrics,
respectively, for the multi-view correspondence task compared to state-of-the-art methods (see
Table 2).

3. In this novel setting, we also design several baseline methods for comparison to validate the
advantages of our pipeline. Specifically, we outperform the baselines by 4 projection 2D metrics
and 1 3D metric respectively (see Table 1). Furthermore, our pipeline not only performs well
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on the Structure3D dataset (see Figure 6), but also generalizes effectively to in-the-wild datasets
(Zhou et al., 2018) and scenarios with different image styles such as cartoon style (see Figure 1).

2 RELATED WORK

Layout estimation. Most room layout estimation research focuses on single-perspective image
inputs. Stekovic et al. (2020) formulates layout estimation as a constrained discrete optimization
problem to identify 3D polygons. Yang et al. (2022) introduces line-plane constraints and connec-
tivity relations between planes for layout estimation, while Sun et al. (2019) formulates the task
as predicting 1D layouts. Other studies, such as Zou et al. (2018), propose to utilize monocular
360-degree panoramic images for more information. Several works extend the input setting from
single panoramic to multi-view panoramic images, e.g. Wang et al. (2022) and Hu et al. (2022).
However, there is limited research addressing layout estimation from multi-view RGB perspective
images. Howard-Jenkins et al. (2019) detects and regresses 3D piece-wise planar surfaces from a
series of images and clusters them to obtain the final layout, but this method requires posed images.
The most related work is Jin et al. (2021), which focuses on a different task: reconstructing indoor
scenes with planar surfaces from wide-baseline, unposed images. It is limited to two views and
requires an incremental stitching process to incorporate additional views.

Holistic scene understanding. Traditional 3D indoor reconstruction methods are widely appli-
cable but often lack explicit semantic information. To address this limitation, recent research has
increasingly focused on incorporating holistic scene structure information, enhancing scene under-
standing by improving reasoning about physical properties, mostly centered on single-perspective
images. Several studies have explored the detection of 2D line segments using learning-based de-
tectors (Zhou et al., 2019; Pautrat et al., 2021; Dai et al., 2022). However, these approaches of-
ten struggle to differentiate between texture-based lines and structural lines formed by intersecting
planes. Some research has focused on planar reconstruction to capture higher-level information (Liu
et al., 2018; Yu et al., 2019; Liu et al., 2019). Certain studies (Huang et al., 2018; Nie et al., 2020;
Sun et al., 2021) have tackled multiple tasks alongside layout reconstruction, such as depth estima-
tion, object detection, and semantic segmentation. Other works operate on constructed point maps;
for instance, Yue et al. (2023) reconstructs floor plans from density maps by predicting sequences of
room corners to form polygons. SceneScript (Avetisyan et al., 2024) employs large language models
to represent indoor scenes as structured language commands.

Multi-view pose estimation and reconstruction. The most widely applied pipeline for pose es-
timation and reconstruction on a series of images involves SfM (Schönberger & Frahm, 2016) and
MVS (Schönberger et al., 2016), which typically includes steps such as feature mapping, finding cor-
respondences, solving triangulations and optimizing camera parameters. Most mainstream methods
build upon this paradigm with improvements on various aspects of the pipeline. However, recent
works such as DUSt3R (Wang et al., 2024) and MASt3R (Leroy et al., 2024) propose a reconstruc-
tion pipeline capable of producing globally-aligned pointmaps from unconstrained images. This is
achieved by casting the reconstruction problem as a regression of pointmaps, significantly relaxing
input requirements and establishing a simpler end-to-end paradigm for 3D reconstruction.

3 METHOD

In this section, we formulate the layout estimation task, transitioning from a single-view to a multi-
view scenario. We then derive our multi-view layout estimation pipeline as shown in Figure 2 (Sec-
tion 3.1). Our pipeline consists of three parts: a 2D plane detector f1, a 3D information prediction
and correspondence establishment method Plane-DUSt3R f2 (Section 3.2), and a post-processing
algorithm f3 (Section 3.3).

3.1 FORMULATION OF THE MULTI-VIEW LAYOUT ESTIMATION TASK

We begin by revisiting the single-view layout estimation task and unifying the formulation of exist-
ing methods. Next, we extend the formulation from single-view to multiple-view setting, providing
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Input

Single-view planes with 3D parameters 
(normal&offset)

Birdview

Single-view Reconstruction

2D Plane &  2D vertical lines
p, l

Plane pointmaps & Camera Poses
X, T

Multi-view  Reconstruction

Post-processing f3

Plane Reconstruction f2

2D Detection f1

P, L, J, W

Figure 2: Our multi-view room layout estimation pipeline. It consists of three parts: 1) a 2D
plane detector f1, 2) a 3D information prediction and correspondence establishment method Plane-
DUSt3R f2, and 3) a post-processing algorithm f3.

a detailed analysis and discussion focusing on the choice of solutions. Before formulating the lay-
out estimation task, we adopt the “geometric primitives + relationships” representation from Zheng
et al. (2020) to model the room layout.

Geometric Primitives.

- Planes: The scene layout could be represented as a set of planes {P1,P2 . . .} in 3D space and
their corresponding 2D projections {p1, p2, . . .} in images. Each plane is parameterized by its
normal n ∈ S2 and offset d. For a 3D point x ∈ R3 lying on the plane, we have nTx+ d = 0.

- Lines & Junction Points: In 3D space, two planes intersect at a 3D line, three planes inter-
sect at a 3D junction point. We denote the set of all 3D lines/junction points in the scene as
{L1,L2 . . .}/{J1,J2 . . .} and their corresponding 2D projections as {l1, l2, . . .}/{j1, j2, . . .} in
images.

Relationships.

- Plane/Line relationships: An adjacent matrix Wp/Wl ∈ {0, 1} is used to model the relation-
ship between planes/lines. Specifically, Wp(i, j) = 1 if and only if Pi and Pj intersect along a
line; otherwise, Wp(i, j) = 0. Similarly to plane relationship, Wl(i, j) = 1 if and only if Li and
Lj intersect at a certain junction, otherwise, Wl(i, j) = 0.

The pipeline of single-view layout estimation methods (Liu et al., 2019; Yang et al., 2022; Liu et al.,
2018; Stekovic et al., 2020) can be formulated as:

I f1−−−→ {2D, 3D} f3−−−→ {P ,L,J ,W }, (1)

where f1 is a function that predicts 2D and 3D information from the input single view. Gener-
ally speaking, the final layout result {P ,L,J ,W } can be directly inferred from the outputs of f1.
However, errors arising from f1 usually adversely affect the results. Hence, a refinement step that
utilizes prior information about room layout is employed to further improve the performance. There-
fore, f3 typically encompasses post-processing and refinement steps where the post-processing step
generates an initial layout estimation, and the refinement step improves the final results.

For instance, Yang et al. (2022) chooses the HRnet network (Wang et al., 2020) as f1 backbone
to extract 2D plane p, line l, and predict 3D plane normal n and offset d from the input single
view. After obtaining the initial 3D layout from the outputs of f1, the method reprojects the 3D
line to a 2D line l̂ on the image and compares it with the detected line l from f1. f3 minimizes
the error ∥l̂ − l∥22 to optimize the 3D plane normal. In other words, it uses the better-detected 2D
line to improve the estimated 3D plane normal. In contrast, Stekovic et al. (2020) uses a different
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approach: its f1 predicts a 2.5D depth map instead of a 2D line l and uses the more accurate depth
results to refine the estimated 3D plane normal. Among the works that follow the general framework
of 1 (Liu et al., 2019; 2018), Yang et al. (2022) stands out as the best single-view perspective image
layout estimation method without relying on the Manhattan assumption. Therefore, we present its
formulation in equation (2) and extend it to multi-view scenarios.

I f1−−−→ {p, l,n, d} f3−−−→ {P ,L,J ,W }, (2)

In room layout estimation from unposed multi-view images, two primary challenges aris: 1) camera
pose estimation, and 2) 3D information estimation from multi-view inputs. Camera pose estimation
is particularly problematic given the scarcity of annotated multi-view layout dataset. Thanks to the
recent advancements in 3D vision with pretrain model, this challenge could be effectively bypassed:
DUSt3R (Wang et al., 2024) has demonstrated the ability to reconstruct scenes from unposed images
without requiring camera intrinsic or extrinsic, and even without overlap between views. Moreover,
the 3D pointmap generated from DUSt3R can provide significantly improved 3D information, such
as plane normal and offset, compared to single-view methods (Yang et al., 2022) (see Table 1 of
experiment section). Therefore, DUSt3R represents a critical advancement in extending single-
view layout estimation to multi-view scenarios. Before formulating the multi-view solution, we first
present the key 3D representation of DUSt3R: the pointmap X and the camera pose T . The camera
pose T is obtained through global alignment, as described in the DUSt3R (Wang et al., 2024)).

- Pointmap X: Given a set of RGB images {I1, . . . , In} ∈ RH×W×3, captured from distinct
viewpoints of the same indoor scene, we associate each image Ii with a canonical pointmap
Xi ∈ RH×W×3. The pointmap represents a one-to-one mapping from each pixel (u, v) in the
image to a corresponding 3D point in the world coordinate frame: (u, v) ∈ R2 7→ X(u, v) ∈ R3.

- Camera Pose T : Each image Ii is associated with a camera-to-world pose Ti ∈ SE(3).

Now, the sparse-view layout estimation problem can be formulated as shown in equation (3)

{I1, I2, . . .}
f1,f2−−−−−→ {p, l,X,T } f3−−−→ {P ,L,J ,W }. (3)

In this work, we adopt the HRnet backbone from Yang et al. (2022) as f1. In the original
DUSt3R (Wang et al., 2024) formulation, the ground truth pointmap Xobj represents the 3D coordi-
nates of the entire indoor scene. In contrast, we are interested in plane pointmap Xp that represents
the 3D coordinates of structural plane surfaces, including walls, floors, and ceilings. This formula-
tion intentionally disregards occlusions caused by non-structural elements, such as furniture within
the room. Our objective is to predict the scene layout pointmap without occlusions from objects,
even when the input images contain occluding elements. For simplicity, any subsequent reference
to X in this paper refers to the newly defined plane pointmap Xp. We introduce Plane-DUSt3R as
f2 and directly infer the final layout via f3 without the need for any refinement.

3.2 f2: PLANE-BASED DUST3R

The original DUSt3R outputs pointmaps that capture all 3D information in a scene, including furni-
ture, wall decorations, and other objects. However, such excessive information introduces interfer-
ence when extracting geometric primitives for layout prediction, such as planes and lines. To obtain
a structural plane pointmap X , we modify the data labels from the original depth map (Figure 4 (a))
to the structural plane depth map (Figure 4 (b)), and then retrain the DUSt3R model. This updated
objective guides DUSt3R to predict the pointmap of the planes while ignoring other objects. The
original DUSt3R does not guarantee output at a metric scale, so we also trained a modified version
of Plane-DUSt3R that produces metric-scale results.

Given a set of image pairs P = {(Ii, Ij) | i ̸= j, 1 ≤ i, j ≤ n, I ∈ RH×W×3}, for
each image pair, the model comprises two parallel branches. As shown in Figure 3, the detail
of the architecture can be found in Appendix A. The regression loss function is defined as the
scale-invariant Euclidean distance between the normalized predicted and ground-truth pointmaps:

lregr(v, i) = ∥ 1
zX

v
i − 1

z̄
X̄

v
i ∥22, where view v ∈ {1, 2} and i is the pixel index. The scaling factors
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Figure 3: Plane-DUSt3R architecture remains identical to DUSt3R. The transformer decoder and
regression head are further fine-tuned on the occlusion-free depth map (see Figure 4).

z and z̄ represent the average distance of all corresponding valid points to the origin. In addi-
tion, by incorporating the confidence loss, the model implicitly learns to identify regions that are
more challenging to predict. As in DUSt3R (Wang et al., 2024), the confidence loss is defined as:
Lconf =

∑
v∈{1,2}

∑
i∈Dv C

υ,1
i ℓregr(v, i)−α logCυ,1

i , where Dv ⊆ {1, . . . ,H}×{1, . . . ,W} are
sets of valid pixels on which the ground truth is defined.

Structural plane depth map. The Structure3D dataset provides ground truth plane normal and
offset, allowing us to re-render the plane depth map at the same camera pose (as shown in Figure 4).
We then transform the structural plane depth map Dp to pointmap Xv in the camera coordinate
frame v. This transformation is given by Xv

i,j = K−1[iDp
i,j , jD

p
i,j ,D

p
i,j ]

⊤, where K ∈ R3×3 is
the camera intrinsic matrix. Further details of this transformation can be found in Wang et al. (2024).

Metric-scale. In the multi-view setting, scale variance is required, which differs from DUSt3R.
To accommodate this, we modify the regression loss to bypass normalization for the predicted
pointmaps when the ground-truth pointmaps are metric. Specifically, we set z := z̄ whenever the
ground-truth is metric, resulting in the following loss function lregr(v, i) = ∥Xv

i − X̄v
i ∥22/z̄.

(a) The original DUSt3R depth map. (b) The Plane-DUSt3R depth map.

Figure 4: The (a) original DUSt3R depth map and (b) occlusion removed depth map.

3.3 f3: POST-PROCESSING

In this section, we introduce how to combine the multi-view plane pointmaps X and 2D detec-
tion results p, l to derive the final layout {P ,L,J ,W }. For each single view Ii, we can in-
fer a partial layout result {P̃i, L̃i, J̃i, W̃i} = g1(Xi, p

i, li) from the single view pointmaps Xi

and 2D detection results pi, li through a post-process algorithm g1 in camera coordinate. Then,
a correspondence-establish and merging algorithm g2 combines all partial results to get the final
layout {P ,L,J ,W } = g2({P̃1, L̃1, J̃1, W̃1}, . . .).

Single-view room layout estimation g1. For an image Ii, g1 mainly addresses two tasks: 1) lifting
2D planes to 3D camera coordinate space with 3D normal from pointmap Xi, and 2) inferring the
wall adjacency relationship. We follow the post-processing procedure in Yang et al. (2022) but with
two improvements. First, the plane normal n and offset d are inferred from Xi instead of directly
regressed by network f1. The points from Xi which belong to same plane are used to calculate
n and d. Second, with the better 3D information pointmap Xi we can better infer pseudo wall
adjacency through the depth consistency of inferred plane intersection L (inferred from 2D plane
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(a) Projected Lines (b) Rotated Lines (c) Aligned Lines (d) Correspondance

Figure 5: (a) Planes are projected onto the x-z plane as 2D line segments. (b) The scene is rotated
so that line segments are approximately horizontal or vertical. (c) Line segments are classified and
aligned to be either horizontal or vertical. (d) Merged planes are shown, with segments belonging to
the same plane indicated by the same color and index.

p) and predicted line region L (extracted from the region of Xi). In our experiments, the depth
consistency tolerance ϵ1 is set to 0.005.

Multi-view room layout estimation g2. Based on the results of g1, g2 uses the global alignment of
DUSt3R (refer to appendix A) to get the camera pose Ti for each image Ii. Then, we can transform
all partial layout results ({P̃1, L̃1, J̃1, W̃1}, . . .) to the same coordinate space. In this coordinate
space, we establish correspondence for each plane, then merge and assign a unique ID to them.

Since we allow at most one floor and one ceiling detection per image, we simply average the param-
eters from all images to obtain the final floor and ceiling parameters. As for walls, we assume all
walls are perpendicular to both the floor and ceiling. To simplify the merging process, we project all
walls onto the x-z plane defined by the floor and ceiling. This projection reduces the problem to a
2D space. making it easier to identify and merge corresponding walls. Figure 5 illustrates the entire
process of merging walls. Each wall in an image is denoted as one line segment, as shown in Figure
5a. We then rotate the scene so that all line segments are approximately horizontal or vertical, as
depicted in 5b. In Figure 5c, each line segment is classified and further rotated to be either horizontal
or vertical, based on the assumption that all adjacent walls are perpendicular to each other.

Figure 5d shows the final result after the merging process. The merging process could be regarded
as a classical Minimum Cut problem. In Figure 5d, all line segments can be regarded as a node
in a graph, two nodes have a connection if and only if they satisfy two constraints. 1) they belong
to the same categories (vertical or horizontal). 2) they do not appear in the same image. 3) they
are not across with the other category of node. Finally, the weight of each connection is settled as
the Euclidean distance of their line segment centers. Based on this established graph, the merging
results are the optimal solution of the minimum cut on this graph. The detail of the merging process
can be found in Algorithm 1 of Appendix.

4 EXPERIMENTS

4.1 SETTINGS.

Dataset. Structured3D (Zheng et al., 2020) is a synthetic dataset that provides a large collection
of photo-realistic images with detailed 3D structural annotations. Similar to Yang et al. (2022), the
dataset is divided into training, validation, and test sets at the scene level, comprising 3000, 250,
and 250 scenes, respectively. Each scene consists of multiple rooms, with each room containing 1
to 5 images captured from different viewpoints. To construct image pairs that share similar visual
content, we retain only rooms with at least two images. Within each room, images are paired to form
image sets. Ultimately, we obtained 115,836 image pairs for the training set and 11,030 image pairs
for the test set. For validation, we assess all rooms from the validation set. For rooms that only have
one image, we duplicate that image to form image pairs for pointmap retrieval. In the subsequent
inference process, we retain only one pointmap per room.

Training details. During training, we initialize the model with the original DUSt3R checkpoint. We
freeze the encoder parameters and fine-tune only the decoder and DPT heads. Our data augmentation
strategy follows the same approach as DUSt3R, using input resolution of 512×512. We employ the
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Figure 6: Qualitative results on Structure3D testing set. The first 3 columns are input views, the
fourth and fifth columns are layout results of Noncuboid+MASt3R and our pipeline respectively.
Due to space limitations, we refer reader to appendix for more complete results.

AdamW optimizer (Loshchilov & Hutter, 2017) with a cosine learning rate decay schedule, starting
with a base learning rate of 1e-4 and a minimum of 1e-6. The model is trained for 20 epochs,
including 2 warm-up epochs, with a batch size of 16. We train two versions Plane-DUSt3R, one
with metric-scale loss and the other one without it. We name the metric-scale one as Plane-DUSt3R
(metric) and the other one as Plane-DUSt3R .

Evaluation. Following the task formulation in equation (3), our evaluation protocol consists of three
parts to assess f1, f2, and the overall performance, respectively.

• For the 2D information extraction module f1, we use the same metric as Yang et al. (2022) for
comparison: Intersection over Union (IoU), Pixel Error (PE), Edge Error (EE), and Root
Mean Square Error (RMSE).

• For the multi-view information extraction module f2, we report the Relative Rotation Accuracy
(RRA) and Relative Translation Accuracy (RTA) for each image pair to evaluate the relative
pose error. We use a threshold of τ = 15 to report RTA@15 and RRA@15. Additionally, we
calculate the mean Average Accuracy (mAA30), defined as the area under accuracy curve of the
angular differences at min(RRA@30, RTA@30).

• Finally, for evaluating the overall layout estimation, we employ 3D precision and 3D recall of
planes as metrics. A predicted plane is considered matched with a ground truth plane if and only
if the angular difference between them is less than 10°and the offset difference is less than 0.15m.
Each ground truth plane can be matched only once.

Baselines. As this work is the first attempt at 3D room layout estimation from multi-view perspective
images, there are no existing baseline methods for direct comparison. Therefore, we design two
reasonable baseline methods. We also compare our f1 and f2 with other methods of the same type.

• Since we use Noncuboid (Yang et al., 2022) as our f1, we not only compare it against the baselines
from their paper (Liu et al., 2019; Stekovic et al., 2020), but also retrain it with better hyper-
parameters obtained through grid search.

• For f2 (Plane-DUSt3R), we compare it to recent data-driven image matching approaches includ-
ing RelPose (Zhang et al., 2022), RelPose++ (Lin et al., 2023), RayDiff (Zhang et al., 2024),
DUSt3R (Wang et al., 2024) and MASt3R (Leroy et al., 2024). We also report results for more
traditional SfM methods, such as PixSFM (Lindenberger et al., 2021) and COLMAP (Schon-
berger & Frahm, 2016) extended with SuperPoint (DeTone et al., 2018) and SuperGlue (Sarlin
et al., 2020) (COLMAP+SG).

• Finally, for the overall multi-view layout baseline, we design two methods: 1) Noncuboid with
ground truth camera poses and 2) Noncuboid with MASt3R. In this context, we introduce the
fusion of MASt3R (Leroy et al., 2024) and NonCuboid (Yang et al., 2022) as our baseline method.
MASt3R further extends DUSt3R, enabling it to estimate camera poses at a metric scale from
sparse image inputs. We employ the original NonCuboid method to obtain single-view layout
reconstruction. Next, we utilize the predicted camera poses to unify all planes from their respective
camera poses into a common coordinate system. For instance, we designate the coordinate system
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Figure 7: Birdview of multi-view 3D planes aligned to the same coordinate. The first row shows
5 cases of our pipeline results after post-processing step. The second row is the results of Non-
cuboid+MASt3R. Line segments of the same color indicate that they belong to the same plane.

Table 1: Quantitative results on Structure3D dataset.

Method re-IoU(%)↑ re-PE(%) ↓ re-EE↓ re-RMSE↓ 3D-precision(%)↑ 3D-recall(%)↑
Noncuboid + MASt3R 74.51 8.57 12.72 0.4831 37.00 43.39
Noncuboid + GT pose 75.93 7.97 11.37 0.4457 46.96 50.59
Ours (metric) 75.34 8.60 10.83 0.4388 48.98 45.35
Ours (aligned) 76.84 7.82 9.53 0.4099 52.63 48.37

of the first image as the world coordinate system. We then perform the same operation as described
in Sec 3.3 to achieve the final multi-view reconstruction. The Noncuboid with ground truth camera
poses is introduced as an ablation study to eliminate the effects of inaccurate pose estimation. The
experimental setup is the same as the Noncuboid with MASt3R pipeline, except for the use of
ground truth camera poses instead of poses estimated by MASt3R.

4.2 MULTI-VIEW ROOM LAYOUT ESTIMATION RESULTS

In this section, we compare our multi-view layout estimation pipeline with two baseline methods,
both qualitatively and quantitatively. Additionally, we conduct experiments to verify the effective-
ness of our pipeline components f1 2D detector and f2 Plane-DUSt3R.

Layout results comparison. Table 1 and Figure 6 present quantitative and qualitative comparisons
of our pipeline with two baseline methods. Ours (metric) and Ours (aligned) in Table 1 refer to the
methods from our pipeline using Plane-DUSt3R (metric) and Plane-DUSt3R, respectively. The first
4 metrics (re-IoU, re-PE, re-EE, and re-RMSE) are calculated similarly to their 2D counterparts
(IoU, PE, EE, and RMSE), except that the predicted 2D results are reprojected from the estimated
multi-view 3D layout. Compared with the baseline methods, Plane-DUSt3R achieves superior 3D
plane normal estimations compared to Noncuboid’s single-view plane normal estimation, even when
using ground truth camera pose (Noncuboid + GT pose). Figure 7 further demonstrates that Plane-
DUSt3R could predict accurate and robust 3D information with sparse-view input.

Table 2: Comparison with data-driven image matching approaches and traditional SfM methods.

Methods
Co3Dv2 RealEstate10K Structured3D

RRA@15 RTA@15 mAA@30 mAA@30 RRA@15 RTA@15 mAA@30

(a) Colmap+SG (Sarlin et al., 2020) 36.1 27.3 25.3 45.2 - - -
PixSfM (Lindenberger et al., 2021) 33.7 32.9 30.1 49.4 - - -

(b)

RelPose (Zhang et al., 2022) 57.1 - - - - - -
RayDiff (Zhang et al., 2024) 93.3 - - - - - -
DUSt3R (Wang et al., 2024) 94.3 88.4 77.2 61.2 89.44 85.00 76.13
MASt3R (Leroy et al., 2024) 94.6 91.9 81.8 76.4 92.94 89.77 85.34

(c) Plane-DUSt3R (metric) - - - - 98.21 96.66 90.67
Plane-DUSt3R (aligned) - - - - 97.95 96.59 91.80

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: 2D detectors comparison on Structure3D dataset.

Method IoU(%)↑ PE(%) ↓ EE↓ RMSE↓
Planar R-CNN (Liu et al., 2019) 79.64 7.04 6.58 0.4013
Rac (Stekovic et al., 2020) 76.29 8.07 7.19 0.3865
Noncuboid (Yang et al., 2022) 79.94 6.40 6.80 0.2827
Noncuboid (re-trained) 80.18 6.13 6.41 0.2631

Figure 8: Qualitative results on in-the-wild data (Zhou et al., 2018). The first three columns are
input views, the fourth column is the layout results of Noncuboid+MASt3R. The rightmost column
shows the predicted plane pointmap with the extracted wireframe drawn in red.
3D information prediction and correspondence-established method Plane-DUSt3R f2. Ta-
ble 2 shows the comparison results of our Plane-DUSt3R, recent popular data-driven image match-
ing approaches (part (b) in Table 2), and more traditional SfM methods (part (a) in Table 2) in
Co3Dv2 (Reizenstein et al., 2021), RealEstate10K (Zhou et al., 2018), and Structure3D (Zheng
et al., 2020) datasets. Traditional methods (PixSfM & Colmap+SG) and partial data-driven methods
(RelPose & RayDiff) directly fail to estimate reasonable camera pose on Structure3D since the lim-
ited number of views. The results of parts (a) and (b) on three datasets show the advancements of
MASt3R, not only in traditional multi-view datasets (Co3Dv2, RealEstate10K), but also in sparse-
view dataset (Structure3D). Plane-DUSt3R could get a better performance compared to the previous
SOTA MASt3R. One arguable point is that Plane-DUSt3R is obviously better since it is fine-tuned
on Strucutre3D. That is the message we want to convey. DUSt3R/MASt3R are the SOTAs in both
multi-view and saprse-view camera pose estimation tasks. After our improvements (section 3.2) and
fine-tuning, Plane-DUSt3R could get 5.33 points better on the sparse-view layout dataset.

Comparison of 2D detectors (f1). We retrain the Noncuboid method with a more thorough hyper-
parameter grid search, resulting in an improved version. Table 3 compares its results with other
baseline methods from Yang et al. (2022).

4.3 GENERALIZABILITY TO UNKNOWN AND OUT-OF-DOMAIN DATA

Figure 1 and 12 also demonstrate the generalizability of our pipeline. Not only does it perform
well on the testing set of Structure3D (Figure 6), but it also generalizes well to new datasets, such
as RealEstate10K (Figure 8 shows examples from this dataset). Furthermore, our pipeline proves
effective even with data in the wild as shown in appendix in Figure 11,12.

5 CONCLUSION

This paper introduces the first pipeline for multi-view layout estimation, even in sparse-view set-
tings. The proposed pipeline encompasses three components: a 2D plane detector, a 3D information
prediction and correspondence establishment method, and a post-processing algorithm. As the first
comprehensive approach to the multi-view layout estimation task, this paper provides a detailed
analysis and formulates the problem under both single-view and multi-view settings. Additionally,
we design several baseline methods for comparison to validate the effectiveness of our pipeline.
Our approach consistently outperforms the baselines on both 2D projection and 3D metrics. Fur-
thermore, our pipeline not only performs well on the synthetic Structure3D dataset, but generalizes
effectively to in-the-wild datasets and scenarios with different image styles such as the cartoon style.
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A DUST3R DETAILS

Given a set of RGB images {I1, I2, . . . , In} ∈ RH×W×3, we first pair them to create a set of image
pairs P = {(Ii, Ij) | i ̸= j, 1 ≤ i, j ≤ n}. For each image pair (Ii, Ij) ∈ P, the model estimates
two point maps Xi,i,Xj,i, along with their corresponding confidence maps Ci,i,Cj,i. Specifically,
both pointmaps are expressed in the camera coordinate system of Ii, which implicitly accomplishes
dense 3D reconstruction.

The model consists of two parallel branches, as shown in Fig 3, each branch responsible for pro-
cessing one image. The two images are first encoded in a Siamese manner with weight-sharing
ViT encoder(Dosovitskiy et al., 2020) to produce two latent features F1,F2: Fi = Encoder(Ii).
Next, F1,F2 are fed into two identical decoders that continuously share information through cross-
attention mechanisms. By leveraging cross-attention mechanisms, the model is able to learn the
relative geometric relationships between the two images. Specifically, for each encoder block:

G1,i = DecoderBlock1,i(G1,i−1,G2,i−1),

G2,i = DecoderBlock2,i(G1,i−1,G2,i−1)
(4)

where G1,0 := F1,G2,0 := F2. Finally, the DPT(Ranftl et al., 2021) head regresses the pointmap
and confidence map from the concatenated features of different layers of the decoder tokens:

X1,1,C1,1 = Head1(G1,0,G1,1, . . . ,G1,B)

X2,1,C2,1 = Head2(G2,0,G2,1, . . . ,G2,B)
(5)

where B is the number of decoder blocks. The regression loss function is defined as the scale-
invariant Euclidean distance between the normalized predicted and ground-truth pointmaps:

lregr(v, i) = ∥1
z
Xv,1

i − 1

z̄
X̄

v,1
i ∥22 (6)

where v ∈ {1, 2} and i is the pixel index. The scaling factors z and z̄ represent the average distance
of all corresponding valid points to the origin. The original DUSt3R couldn’t guarantee output
at a metric scale, so we also trained a modified version of Plane-DUSt3R that produces metric-
scale results. The key change we made was setting z := z̄. By introducing the regression loss in
confidence loss, the model could implicitly learn how to identify regions that are more challenging
to predict compared to others. Same as in DUSt3R (Wang et al., 2024):

Lconf =
∑

v∈{1,2}

∑
i∈Dv

Cυ,1
i ℓregr(v, i)− α logCυ,1

i (7)

To obtain the ground-truth pointmaps Xv,1 , we first transform the ground truth depthmap
D ∈ RH×W into a pointmap Xv express in the camera coordinate of v by Xv

i,j =

K−1[iDi,j , jDi,j ,Di,j ]
⊤ with camera intrinsic matrix K ∈ R3×3. Then we obtain Xv,1 by

Xv,1 = T−1
1 Tvh(X

v) with T1,Tv ∈ R3×4 the camera-to-world poses and h being the homo-
geneous transformation.

Global Alignment For global alignment, we aim to assign a global pointmap and camera pose
for each image. First, the average confidence scores of each pair of images are utilized as the
similarity scores. A higher value of confidence implies a stronger visual similarity between the two
images. These scores are employed to construct a Minimum Spanning Tree, denoted as G(V, E),
where each vertex V corresponding to an image in the input set and each edge e = (n,m) ∈ E
indicates that images In and Im share significant visual content. We aim to find globally aligned
point maps{χn ∈ RH×W×3} and a transformation Ti ∈ R3×4 than transform the prediction into
the world coordinate frame. To do this, for each image pair e = (n,m) ∈ E we have two point
maps Xn,n,Xm,n and their confidence maps Cn,n,Cm,n. For simplicity, we use the annotation
Xn,e := Xn,n,Xm,e := Xm,n. Since Xn,e and Xm,e are in the same coordinate frame, Te := Tn

should align both point maps with the world-coordinate. We then solve the following optimization
problem:

χ∗ = arg min
χ,T,σ

∑
e∈E

∑
v∈e

HW∑
i=1

Cv,e
i ∥χv

i − σeTeX
v,e
i ∥22 . (8)

where v ∈ e means v can be either n or m for the pair e and σe is a positive scaling factor . To avoid
the trivial solution where σe = 0, we ensure that

∏
e σe = 1
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B f3 ALGORITHM

The goal of multi-view layout estimation is similar to that of single-view: we need to estimate 3D
parameters for each plane and determine the relationships between adjacent planes. However, in a
multi-view setting, we must ensure that each plane represents a unique physical plane in 3D space.
The main challenge in multi-view reconstruction is that the same physical plane may appear in
multiple images, causing duplication. Our task is to identify which planes correspond to the same
physical plane across different images and merge them, keeping only one representation for each
unique plane.

Since we allow at most one floor and one ceiling detection per image, we simply average the param-
eters from all images to obtain the final floor and ceiling parameters. As for walls, we assume all
walls are perpendicular to both the floor and ceiling. To simplify the merging process, we project all
walls onto the x-z plane defined by the floor and ceiling. This projection reduces the problem to a
2D space, making it easier to identify and merge corresponding walls. Figure 5 illustrates the entire
process of merging walls. Each wall in an image is denoted as one line segment, as shown in Figure
5a. We then rotate the scene so that all line segments are approximately horizontal or vertical, as
depicted in 5b. In Figure 5c, each line segment is classified and further rotated to be either horizontal
or vertical, based on the assumption that all adjacent walls are perpendicular to each other.

Algorithm 1 Merge Plane
Require: vertical lines, horizontal lines
1: Sort verticalLines by x-axis value
2: Initialize clusters with the first segment.
3: for each segment in verticalLines[1, :] do
4: found← False
5: for each cluster in clusters do
6: if lines.image id in cluster.image id then
7: continue
8: end if
9: if distance(line, cluster.centroid)< proximity threshold then

10: if overlap(line, cluster.centroid)> overlap threshold then
11: Insert line into cluster
12: found← True
13: break
14: end if
15: if not intersect(line, cluster, horizontalLines, margin) then
16: Insert line into cluster
17: found← True break
18: end if
19: end if
20: end for
21: end for
22: if found == False then
23: Create a new cluster with line
24: Append the new cluster to clusters
25: end if
Ensure: Clusters

C ADDITIONAL QUANTITATIVE RESULTS

C.1 PERFORMANCE UNDER VARYING THRESHOLDS

Table 4 presents our results under various threshold settings.

C.2 MULTI-VIEW PERFORMANCE ANALYSIS

The impact of varying input views on performance is presented in Table 5. We align the depth based
on the ground-truth relative pose and the predicted pose for multi-view cases, but use a predefined
scale for single-view case. So we can observe a reduced performance for single-view setting.
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Table 4: Quantitative results with different thresholds on Structure3D dataset.

Threshold(Translation & Rotation) 3D-precision(%)↑ 3D-recall(%)↑
0.1m, 5° 34.11 31.66

0.15m, 10° 52.63 48.37
0.2m, 15° 64.64 59.53
0.4m, 30° 82.75 76.13

Table 5: Quantitative results with different input views on Structure3D dataset.

Input views re-IoU(%)↑ re-PE(%) ↓ re-EE↓ re-RMSE↓ 3D-precision(%)↑ 3D-recall(%)↑
1 68.53 12.10 27.66 1.6430 15.78 14.62
2 78.81 7.18 12.88 0.3584 55.16 52.76
3 78.92 7.09 10.33 0.5450 51.80 47.75
4 78.78 6.98 9.56 0.4207 55.20 52.09
5 75.57 8.35 8.59 0.3422 55.02 49.59

D ADDITIONAL QUALITATIVE RESULTS

Figure 9 showcases more visualization of our method on the Structured3D dataset, while Figure 10
presents failed cases. To demonstrate real-world applicability, we present results on in-the-wild
images in Figure 11 and Figure 12.

E EVALUATION RESULT ON CAD-ESTATE DATASET

We conducted an additional evaluation on the CAD-Estate dataset Rozumnyi et al. (2023). CAD-
Estate is derived from RealEstate10K datasetZhou et al. (2018) and provides generic 3D room lay-
outs from 2D segmentation masks. Due to differences in annotation standards between CAD-Estate
and Structured3D, we selected a subset of the original data that aligns with our experimental setup.
Our method and Structured3D assume a single floor, single ceiling, and multiple walls configura-
tion. In contrast, CAD-Estate includes scenarios with multiple ceilings (particularly in attic rooms)
and interconnected rooms through open doorways, whereas Structured3D treats doorways as com-
plete walls. To ensure a fair comparison, we sampled 100 scenes containing 469 images that closely
match Structure3D’s annotation style. Each scene contains 2 to 10 images.

Since CAD-Estate only provides 2D segmentation annotations without 3D information, we report
performance using 2D metrics: IoU and pixel error. While CAD-Estate’s label classes include
[”ignore”, ”wall”, ”floor”, ”ceiling”, ”slanted”], we only focus on wall, floor, and ceiling classes.
We utilize the dataset’s provided intrinsic parameters for reprojection during evaluation. Results are
reported for both ”Noncuboid + GT pose” and ”Plane-DUSt3R (metric)” in Table 6. We visualize
our results in Figure 13 and Figure 14

Table 6: Quantitative results with on CAD-estate dataset.

Method re-IoU(%)↑ re-PE(%) ↓
Noncuboid + GT pose 55.99 20.33

Ours (metric) 63.14 15.15
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Figure 9: Qualitative results on Structure3D testing set. The 5-th column is our result visualized
with pointcloud, the last column is the result shown in pure wireframe

Figure 10: Failed case on Structure3D testing set. The first 4 columns are input views, the 5-th col-
umn is our result visualized with pointcloud, the last column is the result shown in pure wireframe.
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Figure 11: We provide qualitative results on in-the-wild data.

Figure 12: We provide qualitative results on out of domain cartoon data (Weber et al., 2024).

(a) (b)

Figure 13: Visualization of results from the CAD-Estate dataset. (a) Input views are shown in the
top row, followed by CAD-Estate’s ground-truth segmentation in the middle row, and our predicted
segmentation in the bottom row. (b) Our 3D reconstruction results displayed with point clouds (top
row) and wireframe renderings (bottom row).

(a) (b)

Figure 14: Visualization of results from the CAD-Estate dataset. (a) Input views are shown in the
top row, followed by CAD-Estate’s ground-truth segmentation in the middle row, and our predicted
segmentation in the bottom row. (b) Our 3D reconstruction results displayed with point clouds (top
row) and wireframe renderings (bottom row).
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