
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNISOLVER: PDE-CONDITIONAL TRANSFORMERS ARE
UNIVERSAL NEURAL PDE SOLVERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep models have recently emerged as a promising tool to solve partial differen-
tial equations (PDEs), known as neural PDE solvers. While neural solvers trained
from either simulation data or physics-informed loss can solve PDEs reasonably
well, they are mainly restricted to a few instances of PDEs, e.g. a certain equa-
tion with a limited set of coefficients. This limits the generalization of neural
solvers to diverse PDEs, impeding them from being practical surrogate models
for numerical solvers. In this paper, we present the Universal Neural PDE Solver
(Unisolver) capable of solving a wide scope of PDEs by training a novel Trans-
former model on diverse data and conditioned on diverse PDEs. Instead of purely
scaling up data and parameters, Unisolver stems from the theoretical analysis of
the PDE-solving process. Inspired by the mathematical structure of PDEs, that
a PDE solution is fundamentally governed by a series of PDE components, such
as equation symbols, coefficients, and boundary conditions, we define a complete
set of PDE components and flexibly embed them as domain-wise (e.g. equation
symbols) and point-wise (e.g. boundaries) deep conditions for Transformer PDE
solvers. Integrating physical insights with recent Transformer advances, Unisolver
achieves consistent state-of-the-art results on three challenging large-scale bench-
marks, showing impressive performance gains and favorable PDE generalizability.

1 INTRODUCTION

Partial differential equations (PDEs) are essential for numerous scientific and engineering problems
(Evans, 2022; Arnol’d, 2013), such as meteorology, electromagnetism and thermodynamics (Wang
et al., 2023). Since it is usually hard to obtain an analytic solution for a PDE, numerical methods are
widely explored (Ames, 2014). However, these numerical methods often require huge computation
costs to generate a precise solution for each PDE. Recently, deep learning models have facilitated
significant advancements across a wide range of domains (Devlin et al., 2019; Liu et al., 2021;
Jumper et al., 2021) and have been applied to solving PDEs, i.e. neural PDE solvers (Karniadakis
et al., 2021). Owing to their excellent capability to approximate nonlinear mappings, deep models
can learn to fit pre-collected data (Li et al., 2021a) or physics-informed loss function (Raissi et al.,
2019) and generalize in a flash to new samples, providing an efficient approach to solving PDEs.

As shown in Figure 1, previous neural solvers can be broadly categorized into two paradigms:
physics-informed neural networks (PINNs) (Raissi et al., 2019) and neural operators (Li et al.,
2021a). The former trains deep models using a formalized PDE loss function, while the latter solely
relies on pre-collected data. However, for PINNs, while formulating the PDE equations as objective
functions can ensure relatively accurate solutions, they struggle to generalize to new scenarios, ne-
cessitating retraining the model for each new task. Neural operators, on the other hand, directly learn
from the data and tend to generalize better to diverse initial states and PDEs than PINNs. Neverthe-
less, purely based on training data may be insufficient to guide PDE solving. For example, in the
case of a fluid governed by renowned Navier-Stokes equations, the typical task of neural operators
is to predict future states based on past observations (Li et al., 2021a), while different viscosity co-
efficients and forcing terms will lead to distinct solutions even when the initial states stay the same.
Thus, due to the omission of PDE information, current neural operators are mainly trained and tested
on a limited set of PDEs. Notably, as neural solvers are expected to be efficient surrogate models of
classical numerical solvers, generalization to various PDEs is essential for a practical neural solver.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Neural
OperatorsSp

ac
e

(x, t)

Inputs

PINNs

Sp
ac

e
TimeCoordinates Time

u(x, t)
Unisolver

Sp
ac

e

Inputs

Data drivenPhysics informed

Complete PDE Components

Equation Symbols PDE Coefficients Force TermBoundary Type Domain Geometry

Time

Boundary Value

Figure 1: Neural PDE solvers typically consist of two paradigms: physics informed and data driven.
Our proposed Unisolver combines data-driven methods with physical insights from complete PDE
components in a conditional modeling framework, thereby boosting generalizability and scalability.

To tackle the generalization deficiency, several works have been proposed by incorporating the PDE
information into deep models or training models with a large-scale dataset. For example, message-
passing neural PDE solver (Brandstetter et al., 2022) concatenates the PDE coefficients with inputs.
PDEformer (Ye et al., 2024) formalizes the PDE equation as a computation graph and employs the
graph Transformer (Ying et al., 2021) to aggregate PDE information. Although these methods have
explored the potential of training models with both data and PDE information, they fail to consider a
complete set of PDE information, thereby limiting their generalizability in some aspects. As for the
other branches, such as DPOT (Hao et al., 2024), they purely scale up the training sets with diverse
PDEs and expect the generalizability emerges from large data and parameters. Although models can
implicitly extract PDE information from observations, the extraction process is inherently complex
and resembles the challenges associated with solving inverse problems (Karniadakis et al., 2021).
Therefore, these models often end up fitting an insufficient or vague representation of the underlying
observation distribution, which ultimately hampers their generalizability to broader PDE solving.

Going beyond prior methods, as shown in Figure 1, this paper presents Unisolver as a Universal
Neural PDE solver. Concretely, Unisolver takes the advantages from both data-driven and physics-
informed paradigms and empowers Transformer with favorable generalizability by introducing com-
plete physics information as conditions. Instead of simply scaling up data and parameters, we are
motivated from the theoretical analysis of PDE solving and propose a complete set of PDE compo-
nents. Further, drawing inspiration from the mathematical structure of PDEs, we propose to classify
PDE components into domain-wise and point-wise categories according to their effect on the final
solution and aggregate them as two types of deep PDE conditions. Afterward, to capture the special
influence of different condition types on the hidden representations of inputs, we separate the hidden
space into two subspaces and integrate these deep PDE conditions into the hidden representations
of inputs in a decoupled way. We conduct extensive experiments on our own generated dataset and
two large-scale benchmarks with various PDE components, where Unisolver achieves consistent
state-of-the-art with sharp relative gains. Overall, our contributions are summarized as follows:

• We introduce Unisolver as a conditional Transformer architecture utilizing the embedded
PDE information completely, marking the first demonstration of the potential of the canon-
ical Transformer as a scalable backbone for solving multitudinous PDEs universally.

• Motivated by the mathematical structure of PDEs, we define the concept of complete PDE
components, classify them into domain-wise and point-wise categories, and derive a de-
coupled conditioning mechanism for introducing physics information into PDE solving.

• Unisolver achieves consistent state-of-the-art performances across three large-scale bench-
marks with impressive relative gains and presents favorable generalizability and scalability.

2 RELATED WORK

2.1 NEURAL PDE SOLVERS

Previous neural PDE solvers can be roughly categorized into the following two paradigms (Wu et al.,
2024). The first paradigm is physics-informed neural networks (PINNs) (Raissi et al., 2019), which
optimize the deep model by formalizing the PDE equations as objective functions. During training,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

the model outputs and gradients will gradually satisfy the targeted PDE, thereby successfully instan-
tiating the solution as a deep model. However, it is usually hard for PINNs to generalize to unseen
PDEs, limiting their applications in broader practice (Wang et al., 2023). Another booming direction
is neural operators, which learn from extensive data to approximate functional dependence between
input and output Banach spaces (Lu et al., 2021; Kovachki et al., 2023). Among various neural
operators, FNO (Li et al., 2021a) and its variants (Li et al., 2023c; Rahman et al., 2023; Wen et al.,
2022) are popular and well-established. FNO (Li et al., 2021a) effectively approximates the kernel
integral operator in the frequency domain through Fourier transformation. Besides, LSM (Wu et al.,
2023) generalizes the classical spectral method in latent space to tackle the curse of dimensionality.
Recently, given the impressive progress achieved by Transformers (Vaswani et al., 2017), they have
also been applied to solve PDEs. Existing methods treat inputs as a sequence of tokens and adopt
the attention mechanism to approximate integral for solving PDEs. OFormer (Li et al., 2023a) and
GNOT (Hao et al., 2023) treat each mesh point as a token and utilize the linear Transformer to avert
the complexity problem. Factformer (Li et al., 2023b) axially factorizes the attention block to boost
the model efficiency. Recently, Transolver (Wu et al., 2024) proposes to learn the intrinsic physical
states as tokens behind input meshes, deriving a physics-attention mechanism. Despite the success
of neural operators, they are only tested on the dataset containing limited PDEs. The effectiveness
of these methods under large datasets containing various PDEs has not been fully explored.

2.2 GENERALIZABLE PDE SOLVERS

In addition to model architectures, the generalizability of neural solvers, the major advantage of
numerical solvers, has also been explored. The research mainly lies in the following two directions.

Incorporating PDE information To guide the PDE-solving process, PDE information has been
explored in many deep models. For example, PINO (Li et al., 2021b) imposes explicit equation
constraints at a higher resolution to assist the learning of neural operators. CAPE (Takamoto et al.,
2023) directly embeds PDE coefficients to adapt neural solvers to unseen equation coefficients.
PROSE (Liu et al., 2023) and PITT (Lorsung et al., 2024) tokenize PDEs and embed mathematical
expressions, enabling the transformer backbone to become aware of the underlying physics. PDE-
former (Ye et al., 2024) represents the symbolic form of equations as a graph and the numeric com-
ponents as nodes to optimize the processing of complex interactions between symbolic and numeric
information. However, all of these methods, while incorporating equation information, do not lever-
age the mathematical structure of PDEs for complete and categorized embedding or integrating the
prior information of equation symbols within the context of natural language. In contrast, Unisolver
leverages the capabilities of large language models (LLMs) (Touvron et al., 2023) to semantically
embed the equation symbolic information and categorize the complete equation components based
on mathematical insights, thereby facilitating the modeling of generalizable physical correlations.

Large-scale training As a vital cornerstone of deep learning (Brown et al., 2020; He et al., 2022),
recent research has also started to explore the effectiveness of large-scale training in solving PDEs.
Subramanian et al. examine the scaling capabilities and transfer learning behaviors of FNO on three
time-independent PDE families. MPP (McCabe et al., 2023) proposes an auto-regressive strategy to
train on a broad fluid mechanics-oriented benchmark. DPOT (Hao et al., 2024) enhances MPP with a
denoising method and trains a Fourier Transformer on massive PDE data comprised of 12 datasets.
PDEformer (Ye et al., 2024) focuses on a 1D time-dependent PDE family and pre-trains a graph
transformer on 3M samples under various equation conditions. ICON (Yang et al., 2023) trains a
single neural operator capable of performing in-context learning across a wide range of differential
equations. However, most of the existing methods fall short in effectively and completely integrating
PDE information. This will be well addressed by Unisolver in a natural and generalizable way.

3 UNISOLVER

To tackle the incapability in generalization behind neural PDE solvers, we deeply dive into the PDE-
solving process and present Unisolver to model the intricate interactions between initial observations
and complete equation components, leading to a novel PDE-conditional Transformer model.

Problem setup To achieve ideal generalizability, we focus on the task of universal neural PDE
solving. Let D ⊂ Rd be a bounded continuous set and M = {x1, . . . , xn} be an n-point dis-
cretization of D recording the coordinates of each point. For each observation pair, assume we have
initial condition observations X as input and target quantities Y as output on the mesh M, with the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

a Dirichlet
BC

Patch
Embed

Layer
Norm

Scale
&

Shift

Self-
Attention Select Layer

Norm

Scale
&

Shift

Feed
Forward Select+ + De-

patch

PDE-Conditional Transformer N x

Point-wise
Deep Conditions

Domain
Geometry

External
Force

Boundary
Value

PatchEmb PatchEmb PatchEmb

Domain-wise
Deep Conditions

Equation
Symbols

PDE
Coefficients

Boundary
Type

LLM MLP MLP

D.4 Standard Deviations639

Considering the limited resources, we repeat all the experiments on the first three typical benchmarks and640

our method on the PINNacle three times and other experiments one time. The official paper of PINNacle has641

provided the standard deviations for PINN, gPINN and vPINN on all benchmarks.642

We summarize the standard deviations of PINN in Table 6. As for other base models, the standard deviations643

of FLS, QRes and KAN are within 0.005 on 1D-Wave and Convection, and within 0.001 for 1D-Reaction.644

PINNsFormer’s standard deviations are smaller than 0.001 for all three benchmarks.645

Table 6: Standard deviations for canonical PINN on three typical benchmarks. The confidence that
RoPINN achieves the best performance is over 99% in all three benchmarks.

rMSE±Standard Deviations 1D-Reaction 1D-Wave Convection

PINN [33] 0.981±5e-4 0.335±1e-3 0.840±5e-4
+gPINN [51] 0.978±3e-4 0.399±3e-3 0.935±3e-3
+vPINN [17] 0.982±3e-3 0.173±1e-3 0.743±2e-3

+RoPINN (Ours) 0.095±8e-4 0.064±1e-3 0.720±2e-3

E Full Results on PINNacle646

In Table 2 of the main text, due to the context limitation, we only present the proportion of improved tasks over647

the total tasks. Here we provide the complete results for 5 based models for PINNacle (16 different tasks) in648

Table 7 and Table 8, where we can have the following observations:649

• RoPINN presents favorable generality in varied PDEs and base models. As we described in Table 4,650

this benchmark contains of extensive physics phenomena. It is impressive that our proposed RoPINN651

can boost the performance of such extensive base models on a wide scope of PDEs.652

• RoPINN is numerically stable and efficient for computation. As a training paradigm, RoPINN does653

not require extra gradient calculation, which makes the algorithm computation efficient. In contrast,654

other baselines may generate poor results or encounter NaN or OOM problems.655

u(x, 0) = �(x), (56a)
@tu(x, 0) = (x), (56b)
u(0, t) = 0, (56c)
u(L, t) = 0, (56d)

@ttu � a2@xxu = f(x, t). (56e)
(56f)

F Related Work656

This section will discuss some related works in detail as a supplement to Section 2. Specifically, we will first657

discuss some PINN research and then we will also clarify some looking similar but completely distinct topics.658

PINN optimizers As we mentioned in the second paragraph of the introduction, many previous works659

focus on developing efficient and effective deep-model optimizers for PINNs [51, 34], which may help the660

optimization process tackle the ill-conditioned Hessian matrix or naturally balance multiple loss terms [49].661

As we formalized in Algorithm 1, RoPINN is not restricted to a certain optimizer. The researchers can easily662

replace the Adam [20] or L-BFGS [25] with other advanced optimizers. Since we mainly focus on the objective663

function of PINNs, these works are orthogonal to our method.664

Numerical differentiation for objective functions In addition to the regularization or variational-based665

methods, some researchers attempt to replace the automatic differentiation with numerical approximations [36, 9],666

which can tackle the expensive computation cost caused by high-order derivatives. However, this paradigm does667

not attempt to change the objection function definition, just focuses on the calculation of point optimization668

PINN loss, which is distinct from our proposed region optimization paradigm.669

Besides, RoPINN is distinct from data augmentation or adversarial training. (1) Theorem difference: although670

our proposed practical algorithm is based on Monte Carlo sampling in a region, the underlying theoretical671

23

Results

D.4 Standard Deviations639

Considering the limited resources, we repeat all the experiments on the first three typical benchmarks and640

our method on the PINNacle three times and other experiments one time. The official paper of PINNacle has641

provided the standard deviations for PINN, gPINN and vPINN on all benchmarks.642

We summarize the standard deviations of PINN in Table 6. As for other base models, the standard deviations643

of FLS, QRes and KAN are within 0.005 on 1D-Wave and Convection, and within 0.001 for 1D-Reaction.644

PINNsFormer’s standard deviations are smaller than 0.001 for all three benchmarks.645

Table 6: Standard deviations for canonical PINN on three typical benchmarks. The confidence that
RoPINN achieves the best performance is over 99% in all three benchmarks.

rMSE±Standard Deviations 1D-Reaction 1D-Wave Convection

PINN [33] 0.981±5e-4 0.335±1e-3 0.840±5e-4
+gPINN [51] 0.978±3e-4 0.399±3e-3 0.935±3e-3
+vPINN [17] 0.982±3e-3 0.173±1e-3 0.743±2e-3

+RoPINN (Ours) 0.095±8e-4 0.064±1e-3 0.720±2e-3

E Full Results on PINNacle646

In Table 2 of the main text, due to the context limitation, we only present the proportion of improved tasks over647

the total tasks. Here we provide the complete results for 5 based models for PINNacle (16 different tasks) in648

Table 7 and Table 8, where we can have the following observations:649

• RoPINN presents favorable generality in varied PDEs and base models. As we described in Table 4,650

this benchmark contains of extensive physics phenomena. It is impressive that our proposed RoPINN651

can boost the performance of such extensive base models on a wide scope of PDEs.652

• RoPINN is numerically stable and efficient for computation. As a training paradigm, RoPINN does653

not require extra gradient calculation, which makes the algorithm computation efficient. In contrast,654

other baselines may generate poor results or encounter NaN or OOM problems.655

u(x, 0) = �(x), (56a)
@tu(x, 0) = (x), (56b)
u(0, t) = 0, (56c)
u(L, t) = 0, (56d)

@ttu � a2@xxu = f(x, t), (x, t) 2 ⌦. (56e)
(56f)

F Related Work656

This section will discuss some related works in detail as a supplement to Section 2. Specifically, we will first657

discuss some PINN research and then we will also clarify some looking similar but completely distinct topics.658

PINN optimizers As we mentioned in the second paragraph of the introduction, many previous works659

focus on developing efficient and effective deep-model optimizers for PINNs [51, 34], which may help the660

optimization process tackle the ill-conditioned Hessian matrix or naturally balance multiple loss terms [49].661

As we formalized in Algorithm 1, RoPINN is not restricted to a certain optimizer. The researchers can easily662

replace the Adam [20] or L-BFGS [25] with other advanced optimizers. Since we mainly focus on the objective663

function of PINNs, these works are orthogonal to our method.664

Numerical differentiation for objective functions In addition to the regularization or variational-based665

methods, some researchers attempt to replace the automatic differentiation with numerical approximations [36, 9],666

which can tackle the expensive computation cost caused by high-order derivatives. However, this paradigm does667

not attempt to change the objection function definition, just focuses on the calculation of point optimization668

PINN loss, which is distinct from our proposed region optimization paradigm.669

Besides, RoPINN is distinct from data augmentation or adversarial training. (1) Theorem difference: although670

our proposed practical algorithm is based on Monte Carlo sampling in a region, the underlying theoretical671

23

Universal
Components
Embedding

Initial
State

 vF

(a) Joint Training on Diverse PDEs

a

Dirichlet
BC

Patch
Embed

Layer
Norm

Scale
&

Shift

Self-
Attention Select Layer

Norm

Scale
&

Shift

Feed
Forward Select+ + De-

patch

PDE-Conditional Transformer N x

Point-wise
Deep Conditions

Domain
Geometry

External
Force

Boundary
Value

PatchEmb PatchEmb PatchEmb

Domain-wise
Deep Conditions

Equation
Symbols

PDE
Coefficients

Boundary
Type

LLM MLP MLP

Results

Universal
Components
Embedding

Initial
State

vF

Varied
Initial
State

Varied
Domain

Geometry

Varied
External

Force

Varied
Boundary

Value

Varied
Equation
Symbols

Varied
PDE

Coefficients

Varied
Boundary

Type

Unisolver

Unseen Initial State
Periodic

Boundary

Robin
Boundary

Navier-Stokes
Equation

Diffusion-Reaction
Equation

Shallow-Water
Equation

Dirichlet
Boundary

T

T

T

T

T

T

T

T
Unseen
Domain

Geometry

Unseen
External

Force

Unseen
Boundary

Value

Unseen
PDE

Coefficients

Unseen
Boundary

Type

Unseen
Equation
Symbols

Equation
Boudary
ŏ

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The PDE-solving task is to approximate the input-PDE-output mapping G : (X, M, CPDE) ! Y.
For instance, in fluid prediction, we need to predict the future vorticity field (Y) from the initial field
(X), observation grid (M), as well as PDE equations, viscosity coefficients, and force terms (CPDE).

3.1 COMPLETE PDE COMPONENTS

To enable complete modeling of the PDE, we attempt to incorporate all the underlying components
that affect solutions into neural solvers. Here, we propose the complete PDE components by con-
sidering the classical vibrating string equation (2011) with fixed endpoints as a motivating example:

@ttu � a2@xxu = f(x, t), (x, t) 2 (0, L) ⇥ (0, T), (1a)
u(0, t) = 0, u(L, t) = 0, t 2 (0, T], (1b)
u(x, 0) = �(x), @tu(x, 0) = (x), x 2 [0, L]. (1c)

Coefficient a is determined by physical properties. f represents the external force that drives the
string’s vibrations. The domain geometry spans the range [0, L] ⇥ [0, T], which affects the mesh
discretization in numerical solving. Eq. (1b) sets zero-displacements Dirichlet boundary conditions
at the endpoints. Eq. (1c) specifies the string’s position �(x) and velocity (x) at the initial. These
equation components theoretically determine a unique solution. Next, we dive into the PDE-solving
process of this example and explore how the complete equation components affect the final solution.

Theorem 1 (The connections between solutions and complete components in the motivating
example). The solution of Eq. (1a) with boundary conditions (1b) and initial conditions (1c) is

u(x, t) =
1

2
(�(x + at) + �(x � at)| {z }

Initial position

)+
1

2a

Z x+at

x�at

 (⇠)

| {z }
Initial velocity

d⇠+
1

2a

Z t

0

d⌧

Z x+a(t�⌧)

x�a(t�⌧)| {z }
Geometry

f(⇠, ⌧)| {z }
Force

d⇠, (2)

where �(x), (x) and F (x, t) are odd, periodic functions with period 2L defined on the upper half
plane, extended from �(x), (x) and f(x, t). The boundary conditions will be explicit by extending
the equation to the upper half plane and solving it by operator splitting and characteristic lines.

Proof. See Appendix D for the explicit solution and the complete proof.

From the analytical solution of the above motivating example, we pinpoint that the PDE is solved
under the complex interactions between a series of equation components. Specifically, the coeffi-
cient a exerts a consistent influence over the domain, while the impact of the external force f is
imposed point-wisely. This distinction inspires us to classify the PDE components into two cate-
gories, domain-wise and point-wise, which better capture the intricate interactions.

Table 1: A detailed categorization of complete PDE components with corresponding examples.

Groups Input Domain-wise components Point-wise components

Components Initial Equation Equation Boundary External Domain Boundary
condition symbols coefficient condition type force geometry value function

Example Eq. (1c) Eq. (1a) a Robin f(x, t) [0, L] ⇥ [0, T] Eq. (1b)

As presented in Table 1, the complete PDE components consist of six elements. The equation for-
mulation is defined as a domain-wise component due to its consistency across all locations. Domain
geometry is categorized as a point-wise component since it is usually recorded as a binary mask
and each point’s inclusion is determined individually. Boundary conditions are more complicated
due to their diverse forms, e.g. periodic and Robin boundary conditions. As a result, we use two
components to represent boundary conditions precisely: the boundary condition type, treated as a
domain-wise component, and the boundary value function, considered as a point-wise component.

3.2 UNIVERSAL COMPONENTS EMBEDDING

As described in Section 3.1, PDE solutions are obtained by intricate interactions between initial con-
ditions and complete equation components which can be grouped into two categories. In previous
works (Brandstetter et al., 2022; Takamoto et al., 2023), these equation components are coarsely
and incompletely included as conditions to modulate the input observations. In this paper, we will
elaborate on how Unisolver finely and completely embeds all considered PDE components (Table 1)
into deep PDE conditions based on our insights from the mathematical analysis.

4

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The PDE-solving task is to approximate the input-PDE-output mapping G : (X, M, CPDE) ! Y.
For instance, in fluid prediction, we need to predict the future vorticity field (Y) from the initial field
(X), observation grid (M), as well as PDE equations, viscosity coefficients, and force terms (CPDE).

3.1 COMPLETE PDE COMPONENTS

To enable complete modeling of the PDE, we attempt to incorporate all the underlying components
that affect solutions into neural solvers. Here, we propose the complete PDE components by con-
sidering the classical vibrating string equation (2011) with fixed endpoints as a motivating example:

@ttu � a2@xxu = f(x, t), (x, t) 2 (0, L) ⇥ (0, T), (1a)
u(0, t) = 0, u(L, t) = 0, t 2 (0, T], (1b)
u(x, 0) = �(x), @tu(x, 0) = (x), x 2 [0, L]. (1c)

Coefficient a is determined by physical properties. f represents the external force that drives the
string’s vibrations. The domain geometry spans the range [0, L] ⇥ [0, T], which affects the mesh
discretization in numerical solving. Eq. (1b) sets zero-displacements Dirichlet boundary conditions
at the endpoints. Eq. (1c) specifies the string’s position �(x) and velocity (x) at the initial. These
equation components theoretically determine a unique solution. Next, we dive into the PDE-solving
process of this example and explore how the complete equation components affect the final solution.

Theorem 1 (The connections between solutions and complete components in the motivating
example). The solution of Eq. (1a) with boundary conditions (1b) and initial conditions (1c) is

u(x, t) =
1

2
(�(x + at) + �(x � at)| {z }

Initial position

)+
1

2a

Z x+at

x�at

 (⇠)

| {z }
Initial velocity

d⇠+
1

2a

Z t

0

d⌧

Z x+a(t�⌧)

x�a(t�⌧)| {z }
Geometry

f(⇠, ⌧)| {z }
Force

d⇠, (2)

where �(x), (x) and F (x, t) are odd, periodic functions with period 2L defined on the upper half
plane, extended from �(x), (x) and f(x, t). The boundary conditions will be explicit by extending
the equation to the upper half plane and solving it by operator splitting and characteristic lines.

Proof. See Appendix D for the explicit solution and the complete proof.

From the analytical solution of the above motivating example, we pinpoint that the PDE is solved
under the complex interactions between a series of equation components. Specifically, the coeffi-
cient a exerts a consistent influence over the domain, while the impact of the external force f is
imposed point-wisely. This distinction inspires us to classify the PDE components into two cate-
gories, domain-wise and point-wise, which better capture the intricate interactions.

Table 1: A detailed categorization of complete PDE components with corresponding examples.

Groups Input Domain-wise components Point-wise components

Components Initial Equation Equation Boundary External Domain Boundary
condition symbols coefficient condition type force geometry value function

Example Eq. (1c) Eq. (1a) a Robin f(x, t) [0, L] ⇥ [0, T] Eq. (1b)

As presented in Table 1, the complete PDE components consist of six elements. The equation for-
mulation is defined as a domain-wise component due to its consistency across all locations. Domain
geometry is categorized as a point-wise component since it is usually recorded as a binary mask
and each point’s inclusion is determined individually. Boundary conditions are more complicated
due to their diverse forms, e.g. periodic and Robin boundary conditions. As a result, we use two
components to represent boundary conditions precisely: the boundary condition type, treated as a
domain-wise component, and the boundary value function, considered as a point-wise component.

3.2 UNIVERSAL COMPONENTS EMBEDDING

As described in Section 3.1, PDE solutions are obtained by intricate interactions between initial con-
ditions and complete equation components which can be grouped into two categories. In previous
works (Brandstetter et al., 2022; Takamoto et al., 2023), these equation components are coarsely
and incompletely included as conditions to modulate the input observations. In this paper, we will
elaborate on how Unisolver finely and completely embeds all considered PDE components (Table 1)
into deep PDE conditions based on our insights from the mathematical analysis.

4

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The PDE-solving task is to approximate the input-PDE-output mapping G : (X, M, CPDE) ! Y.
For instance, in fluid prediction, we need to predict the future vorticity field (Y) from the initial field
(X), observation grid (M), as well as PDE equations, viscosity coefficients, and force terms (CPDE).

3.1 COMPLETE PDE COMPONENTS

To enable complete modeling of the PDE, we attempt to incorporate all the underlying components
that affect solutions into neural solvers. Here, we propose the complete PDE components by con-
sidering the classical vibrating string equation (2011) with fixed endpoints as a motivating example:

@ttu � a2@xxu = f(x, t), (x, t) 2 (0, L) ⇥ (0, T), (1a)
u(0, t) = 0, u(L, t) = 0, t 2 (0, T], (1b)
u(x, 0) = �(x), @tu(x, 0) = (x), x 2 [0, L]. (1c)

Coefficient a is determined by physical properties. f represents the external force that drives the
string’s vibrations. The domain geometry spans the range [0, L] ⇥ [0, T], which affects the mesh
discretization in numerical solving. Eq. (1b) sets zero-displacements Dirichlet boundary conditions
at the endpoints. Eq. (1c) specifies the string’s position �(x) and velocity (x) at the initial. These
equation components theoretically determine a unique solution. Next, we dive into the PDE-solving
process of this example and explore how the complete equation components affect the final solution.

Theorem 1 (The connections between solutions and complete components in the motivating
example). The solution of Eq. (1a) with boundary conditions (1b) and initial conditions (1c) is

u(x, t) =
1

2
(�(x + at) + �(x � at)| {z }

Initial position

)+
1

2a

Z x+at

x�at

 (⇠)

| {z }
Initial velocity

d⇠+
1

2a

Z t

0

d⌧

Z x+a(t�⌧)

x�a(t�⌧)| {z }
Geometry

f(⇠, ⌧)| {z }
Force

d⇠, (2)

where �(x), (x) and F (x, t) are odd, periodic functions with period 2L defined on the upper half
plane, extended from �(x), (x) and f(x, t). The boundary conditions will be explicit by extending
the equation to the upper half plane and solving it by operator splitting and characteristic lines.

Proof. See Appendix D for the explicit solution and the complete proof.

From the analytical solution of the above motivating example, we pinpoint that the PDE is solved
under the complex interactions between a series of equation components. Specifically, the coeffi-
cient a exerts a consistent influence over the domain, while the impact of the external force f is
imposed point-wisely. This distinction inspires us to classify the PDE components into two cate-
gories, domain-wise and point-wise, which better capture the intricate interactions.

Table 1: A detailed categorization of complete PDE components with corresponding examples.

Groups Input Domain-wise components Point-wise components

Components Initial Equation Equation Boundary External Domain Boundary
condition symbols coefficient condition type force geometry value function

Example Eq. (1c) Eq. (1a) a Robin f(x, t) [0, L] ⇥ [0, T] Eq. (1b)

As presented in Table 1, the complete PDE components consist of six elements. The equation for-
mulation is defined as a domain-wise component due to its consistency across all locations. Domain
geometry is categorized as a point-wise component since it is usually recorded as a binary mask
and each point’s inclusion is determined individually. Boundary conditions are more complicated
due to their diverse forms, e.g. periodic and Robin boundary conditions. As a result, we use two
components to represent boundary conditions precisely: the boundary condition type, treated as a
domain-wise component, and the boundary value function, considered as a point-wise component.

3.2 UNIVERSAL COMPONENTS EMBEDDING

As described in Section 3.1, PDE solutions are obtained by intricate interactions between initial con-
ditions and complete equation components which can be grouped into two categories. In previous
works (Brandstetter et al., 2022; Takamoto et al., 2023), these equation components are coarsely
and incompletely included as conditions to modulate the input observations. In this paper, we will
elaborate on how Unisolver finely and completely embeds all considered PDE components (Table 1)
into deep PDE conditions based on our insights from the mathematical analysis.

4

(b) Inference on unseen PDEs
Loss Function:

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The PDE-solving task is to approximate the input-PDE-output mapping G : (X, M, CPDE) ! Y.
For instance, in fluid prediction, we need to predict the future vorticity field (Y) from the initial field
(X), observation grid (M), as well as PDE equations, viscosity coefficients, and force terms (CPDE).

bY

3.1 COMPLETE PDE COMPONENTS

To enable complete modeling of the PDE, we attempt to incorporate all the underlying components
that affect solutions into neural solvers. Here, we propose the complete PDE components by con-
sidering the classical vibrating string equation (2011) with fixed endpoints as a motivating example:

@ttu � a2@xxu = f(x, t), (x, t) 2 (0, L) ⇥ (0, T), (1a)
u(0, t) = 0, u(L, t) = 0, t 2 (0, T], (1b)
u(x, 0) = �(x), @tu(x, 0) = (x), x 2 [0, L]. (1c)

Coefficient a is determined by physical properties. f represents the external force that drives the
string’s vibrations. The domain geometry spans the range [0, L] ⇥ [0, T], which affects the mesh
discretization in numerical solving. Eq. (1b) sets zero-displacements Dirichlet boundary conditions
at the endpoints. Eq. (1c) specifies the string’s position �(x) and velocity (x) at the initial. These
equation components theoretically determine a unique solution. Next, we dive into the PDE-solving
process of this example and explore how the complete equation components affect the final solution.

Theorem 1 (The connections between solutions and complete components in the motivating
example). The solution of Eq. (1a) with boundary conditions (1b) and initial conditions (1c) is

u(x, t) =
1

2
(�(x + at) + �(x � at)| {z }

Initial position

)+
1

2a

Z x+at

x�at

 (⇠)

| {z }
Initial velocity

d⇠+
1

2a

Z t

0

d⌧

Z x+a(t�⌧)

x�a(t�⌧)| {z }
Geometry

f(⇠, ⌧)| {z }
Force

d⇠, (2)

where �(x), (x) and F (x, t) are odd, periodic functions with period 2L defined on the upper half
plane, extended from �(x), (x) and f(x, t). The boundary conditions will be explicit by extending
the equation to the upper half plane and solving it by operator splitting and characteristic lines.

Proof. See Appendix D for the explicit solution and the complete proof.

From the analytical solution of the above motivating example, we pinpoint that the PDE is solved
under the complex interactions between a series of equation components. Specifically, the coeffi-
cient a exerts a consistent influence over the domain, while the impact of the external force f is
imposed point-wisely. This distinction inspires us to classify the PDE components into two cate-
gories, domain-wise and point-wise, which better capture the intricate interactions.

Table 1: A detailed categorization of complete PDE components with corresponding examples.

Groups Input Domain-wise components Point-wise components

Components Initial Equation Equation Boundary External Domain Boundary
condition symbols coefficient condition type force geometry value function

Example Eq. (1c) Eq. (1a) a Robin f(x, t) [0, L] ⇥ [0, T] Eq. (1b)

As presented in Table 1, the complete PDE components consist of six elements. The equation for-
mulation is defined as a domain-wise component due to its consistency across all locations. Domain
geometry is categorized as a point-wise component since it is usually recorded as a binary mask
and each point’s inclusion is determined individually. Boundary conditions are more complicated
due to their diverse forms, e.g. periodic and Robin boundary conditions. As a result, we use two
components to represent boundary conditions precisely: the boundary condition type, treated as a
domain-wise component, and the boundary value function, considered as a point-wise component.

3.2 UNIVERSAL COMPONENTS EMBEDDING

As described in Section 3.1, PDE solutions are obtained by intricate interactions between initial con-
ditions and complete equation components which can be grouped into two categories. In previous

4

Relative L2 of

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The PDE-solving task is to approximate the input-PDE-output mapping G : (X, M, CPDE) ! Y.
For instance, in fluid prediction, we need to predict the future vorticity field (Y) from the initial field
(X), observation grid (M), as well as PDE equations, viscosity coefficients, and force terms (CPDE).

(Y, bY)

3.1 COMPLETE PDE COMPONENTS

To enable complete modeling of the PDE, we attempt to incorporate all the underlying components
that affect solutions into neural solvers. Here, we propose the complete PDE components by con-
sidering the classical vibrating string equation (2011) with fixed endpoints as a motivating example:

@ttu � a2@xxu = f(x, t), (x, t) 2 (0, L) ⇥ (0, T), (1a)
u(0, t) = 0, u(L, t) = 0, t 2 (0, T], (1b)
u(x, 0) = �(x), @tu(x, 0) = (x), x 2 [0, L]. (1c)

Coefficient a is determined by physical properties. f represents the external force that drives the
string’s vibrations. The domain geometry spans the range [0, L] ⇥ [0, T], which affects the mesh
discretization in numerical solving. Eq. (1b) sets zero-displacements Dirichlet boundary conditions
at the endpoints. Eq. (1c) specifies the string’s position �(x) and velocity (x) at the initial. These
equation components theoretically determine a unique solution. Next, we dive into the PDE-solving
process of this example and explore how the complete equation components affect the final solution.

Theorem 1 (The connections between solutions and complete components in the motivating
example). The solution of Eq. (1a) with boundary conditions (1b) and initial conditions (1c) is

u(x, t) =
1

2
(�(x + at) + �(x � at)| {z }

Initial position

)+
1

2a

Z x+at

x�at

 (⇠)

| {z }
Initial velocity

d⇠+
1

2a

Z t

0

d⌧

Z x+a(t�⌧)

x�a(t�⌧)| {z }
Geometry

f(⇠, ⌧)| {z }
Force

d⇠, (2)

where �(x), (x) and F (x, t) are odd, periodic functions with period 2L defined on the upper half
plane, extended from �(x), (x) and f(x, t). The boundary conditions will be explicit by extending
the equation to the upper half plane and solving it by operator splitting and characteristic lines.

Proof. See Appendix D for the explicit solution and the complete proof.

From the analytical solution of the above motivating example, we pinpoint that the PDE is solved
under the complex interactions between a series of equation components. Specifically, the coeffi-
cient a exerts a consistent influence over the domain, while the impact of the external force f is
imposed point-wisely. This distinction inspires us to classify the PDE components into two cate-
gories, domain-wise and point-wise, which better capture the intricate interactions.

Table 1: A detailed categorization of complete PDE components with corresponding examples.

Groups Input Domain-wise components Point-wise components

Components Initial Equation Equation Boundary External Domain Boundary
condition symbols coefficient condition type force geometry value function

Example Eq. (1c) Eq. (1a) a Robin f(x, t) [0, L] ⇥ [0, T] Eq. (1b)

As presented in Table 1, the complete PDE components consist of six elements. The equation for-
mulation is defined as a domain-wise component due to its consistency across all locations. Domain
geometry is categorized as a point-wise component since it is usually recorded as a binary mask
and each point’s inclusion is determined individually. Boundary conditions are more complicated
due to their diverse forms, e.g. periodic and Robin boundary conditions. As a result, we use two
components to represent boundary conditions precisely: the boundary condition type, treated as a
domain-wise component, and the boundary value function, considered as a point-wise component.

3.2 UNIVERSAL COMPONENTS EMBEDDING

As described in Section 3.1, PDE solutions are obtained by intricate interactions between initial con-
ditions and complete equation components which can be grouped into two categories. In previous

4

Figure 2: Overview of universal neural PDE solving, taking the 2D mixed PDEs in Sec 4.3 as an
example. Our model is jointly trained on diverse PDEs with varied initial conditions and govern-
ing PDE components, aiming for direct generalization to unseen PDEs in downstream tasks. The
“Robin boundary” in gray is a valid boundary type despite not included in the example dataset.

governing PDE components CPDE (e.g. PDE symbols, coefficients, etc.) which may vary for each
observation. The universal neural PDE solving task is to approximate the input-PDE-output map
G : (X,M, CPDE) → Y across a diverse training dataset and generalize in a flash to unseen PDEs.

3.1 COMPLETE PDE COMPONENTS

To enable complete modeling of the PDE, we attempt to incorporate the complete PDE compo-
nents, i.e. all the underlying components that affect solutions, into neural solvers.

A motivating example Here, we clarify the concept in the context of deep learning by considering
the classical vibrating string equation with fixed endpoints as a motivating example, which can be
solved explicitly, as shown in (Evans, 2022). The analytical solution is provided in Appendix E.

∂ttu− a2∂xxu = f(x, t), (x, t) ∈ (0, L)× (0, T), (1a)
u(0, t) = 0, u(L, t) = 0, t ∈ (0, T], (1b)
u(x, 0) = ϕ(x), ∂tu(x, 0) = ψ(x), x ∈ [0, L]. (1c)

From the solving process of the above motivating example, we pinpoint that the PDE is solved
through complex interactions between a series of equation components, as detailed in Table 1. These
components are referred to as the complete PDE components and exhibit two key shared characteris-
tics. Specifically, the coefficient a exerts the same influence over the entire domain, while the impact
of the force f is imposed point-wisely. This distinction inspires us to classify these components into
two categories, domain-wise and point-wise, which better capture the intricate interactions.

Table 1: A detailed categorization of complete PDE components with corresponding examples.

Groups Input Domain-wise components Point-wise components

Components Initial Equation Equation Boundary External Domain Boundary
condition symbols coefficient condition type force geometry value function

Example Eq. (1c) Eq. (1a) a Robin f(x, t) [0, L]× [0, T] Eq. (1b)

Moreover, we explain the classification of the other components shown in Table 1. The equation for-
mulation is defined as a domain-wise component due to its consistency across all locations. Domain
geometry is categorized as a point-wise component since it is usually recorded as a binary mask
and each point’s inclusion is determined individually. Boundary conditions are more complicated
due to their diverse forms, e.g. periodic and Robin boundary conditions. As a result, we use two
components to represent boundary conditions precisely: the boundary condition type, treated as a
domain-wise component, and the boundary value function, considered as a point-wise component.

3.2 UNIVERSAL COMPONENTS EMBEDDING

As described in Section 3.1, PDE solutions are obtained by intricate interactions between initial con-
ditions and complete equation components which can be grouped into two categories. In previous
works (Brandstetter et al., 2022; Takamoto et al., 2023), these equation components are coarsely
and incompletely included as conditions to modulate the input observations. In this paper, we will
elaborate on how Unisolver finely and completely embeds all considered PDE components (Table 1)
into deep PDE conditions based on our insights from the mathematical analysis.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

a Dirichlet
BC

Patch
Embed

Layer
Norm

Scale
&

Shift

Self-
Attention Select Layer

Norm

Scale
&

Shift

Feed
Forward Select+ + De-

patch

PDE-Conditional Transformer N x

Point-wise
Deep Conditions

Domain
Geometry

External
Force

Boundary
Value

PatchEmb PatchEmb PatchEmb

Domain-wise
Deep Conditions

Equation
Symbols

PDE
Coefficients

Boundary
Type

LLM MLP MLP

D.4 Standard Deviations639

Considering the limited resources, we repeat all the experiments on the first three typical benchmarks and640

our method on the PINNacle three times and other experiments one time. The official paper of PINNacle has641

provided the standard deviations for PINN, gPINN and vPINN on all benchmarks.642

We summarize the standard deviations of PINN in Table 6. As for other base models, the standard deviations643

of FLS, QRes and KAN are within 0.005 on 1D-Wave and Convection, and within 0.001 for 1D-Reaction.644

PINNsFormer’s standard deviations are smaller than 0.001 for all three benchmarks.645

Table 6: Standard deviations for canonical PINN on three typical benchmarks. The confidence that
RoPINN achieves the best performance is over 99% in all three benchmarks.

rMSE±Standard Deviations 1D-Reaction 1D-Wave Convection

PINN [33] 0.981±5e-4 0.335±1e-3 0.840±5e-4
+gPINN [51] 0.978±3e-4 0.399±3e-3 0.935±3e-3
+vPINN [17] 0.982±3e-3 0.173±1e-3 0.743±2e-3

+RoPINN (Ours) 0.095±8e-4 0.064±1e-3 0.720±2e-3

E Full Results on PINNacle646

In Table 2 of the main text, due to the context limitation, we only present the proportion of improved tasks over647

the total tasks. Here we provide the complete results for 5 based models for PINNacle (16 different tasks) in648

Table 7 and Table 8, where we can have the following observations:649

• RoPINN presents favorable generality in varied PDEs and base models. As we described in Table 4,650

this benchmark contains of extensive physics phenomena. It is impressive that our proposed RoPINN651

can boost the performance of such extensive base models on a wide scope of PDEs.652

• RoPINN is numerically stable and efficient for computation. As a training paradigm, RoPINN does653

not require extra gradient calculation, which makes the algorithm computation efficient. In contrast,654

other baselines may generate poor results or encounter NaN or OOM problems.655

u(x, 0) = �(x), (56a)
@tu(x, 0) = (x), (56b)
u(0, t) = 0, (56c)
u(L, t) = 0, (56d)

@ttu � a2@xxu = f(x, t). (56e)
(56f)

F Related Work656

This section will discuss some related works in detail as a supplement to Section 2. Specifically, we will first657

discuss some PINN research and then we will also clarify some looking similar but completely distinct topics.658

PINN optimizers As we mentioned in the second paragraph of the introduction, many previous works659

focus on developing efficient and effective deep-model optimizers for PINNs [51, 34], which may help the660

optimization process tackle the ill-conditioned Hessian matrix or naturally balance multiple loss terms [49].661

As we formalized in Algorithm 1, RoPINN is not restricted to a certain optimizer. The researchers can easily662

replace the Adam [20] or L-BFGS [25] with other advanced optimizers. Since we mainly focus on the objective663

function of PINNs, these works are orthogonal to our method.664

Numerical differentiation for objective functions In addition to the regularization or variational-based665

methods, some researchers attempt to replace the automatic differentiation with numerical approximations [36, 9],666

which can tackle the expensive computation cost caused by high-order derivatives. However, this paradigm does667

not attempt to change the objection function definition, just focuses on the calculation of point optimization668

PINN loss, which is distinct from our proposed region optimization paradigm.669

Besides, RoPINN is distinct from data augmentation or adversarial training. (1) Theorem difference: although670

our proposed practical algorithm is based on Monte Carlo sampling in a region, the underlying theoretical671

23

Results

D.4 Standard Deviations639

Considering the limited resources, we repeat all the experiments on the first three typical benchmarks and640

our method on the PINNacle three times and other experiments one time. The official paper of PINNacle has641

provided the standard deviations for PINN, gPINN and vPINN on all benchmarks.642

We summarize the standard deviations of PINN in Table 6. As for other base models, the standard deviations643

of FLS, QRes and KAN are within 0.005 on 1D-Wave and Convection, and within 0.001 for 1D-Reaction.644

PINNsFormer’s standard deviations are smaller than 0.001 for all three benchmarks.645

Table 6: Standard deviations for canonical PINN on three typical benchmarks. The confidence that
RoPINN achieves the best performance is over 99% in all three benchmarks.

rMSE±Standard Deviations 1D-Reaction 1D-Wave Convection

PINN [33] 0.981±5e-4 0.335±1e-3 0.840±5e-4
+gPINN [51] 0.978±3e-4 0.399±3e-3 0.935±3e-3
+vPINN [17] 0.982±3e-3 0.173±1e-3 0.743±2e-3

+RoPINN (Ours) 0.095±8e-4 0.064±1e-3 0.720±2e-3

E Full Results on PINNacle646

In Table 2 of the main text, due to the context limitation, we only present the proportion of improved tasks over647

the total tasks. Here we provide the complete results for 5 based models for PINNacle (16 different tasks) in648

Table 7 and Table 8, where we can have the following observations:649

• RoPINN presents favorable generality in varied PDEs and base models. As we described in Table 4,650

this benchmark contains of extensive physics phenomena. It is impressive that our proposed RoPINN651

can boost the performance of such extensive base models on a wide scope of PDEs.652

• RoPINN is numerically stable and efficient for computation. As a training paradigm, RoPINN does653

not require extra gradient calculation, which makes the algorithm computation efficient. In contrast,654

other baselines may generate poor results or encounter NaN or OOM problems.655

u(x, 0) = �(x), (56a)
@tu(x, 0) = (x), (56b)
u(0, t) = 0, (56c)
u(L, t) = 0, (56d)

@ttu � a2@xxu = f(x, t), (x, t) 2 ⌦. (56e)
(56f)

F Related Work656

This section will discuss some related works in detail as a supplement to Section 2. Specifically, we will first657

discuss some PINN research and then we will also clarify some looking similar but completely distinct topics.658

PINN optimizers As we mentioned in the second paragraph of the introduction, many previous works659

focus on developing efficient and effective deep-model optimizers for PINNs [51, 34], which may help the660

optimization process tackle the ill-conditioned Hessian matrix or naturally balance multiple loss terms [49].661

As we formalized in Algorithm 1, RoPINN is not restricted to a certain optimizer. The researchers can easily662

replace the Adam [20] or L-BFGS [25] with other advanced optimizers. Since we mainly focus on the objective663

function of PINNs, these works are orthogonal to our method.664

Numerical differentiation for objective functions In addition to the regularization or variational-based665

methods, some researchers attempt to replace the automatic differentiation with numerical approximations [36, 9],666

which can tackle the expensive computation cost caused by high-order derivatives. However, this paradigm does667

not attempt to change the objection function definition, just focuses on the calculation of point optimization668

PINN loss, which is distinct from our proposed region optimization paradigm.669

Besides, RoPINN is distinct from data augmentation or adversarial training. (1) Theorem difference: although670

our proposed practical algorithm is based on Monte Carlo sampling in a region, the underlying theoretical671

23

Universal
Components
Embedding

Initial
State

 vF

(a) Joint Training on Diverse PDEs

a

Dirichlet
BC

Patch
Embed

Layer
Norm

Scale
&

Shift

Self-
Attention Select Layer

Norm

Scale
&

Shift

Feed
Forward Select+ + De-

patch

PDE-Conditional Transformer N x

Point-wise
Deep Conditions

Domain
Geometry

External
Force

Boundary
Value

PatchEmb PatchEmb PatchEmb

Domain-wise
Deep Conditions

Equation
Symbols

PDE
Coefficients

Boundary
Type

LLM MLP MLP

Solving
Results

Initial
State

vF

Varied
Initial
State

Varied
Domain

Geometry

Varied
External

Force

Varied
Boundary

Value

Varied
Equation
Symbols

Varied
PDE

Coefficients

Varied
Boundary

Type

Unisolver

Unseen Initial State
Periodic

Boundary

Robin
Boundary

Navier-Stokes
Equation

Diffusion-Reaction
Equation

Shallow-Water
Equation

Dirichlet
Boundary

T

T

T

T

T

T

T

T
Unseen
Domain

Geometry

Unseen
External

Force

Unseen
Boundary

Value

Unseen
PDE

Coefficients

Unseen
Boundary

Type

Unseen
Equation
Symbols

Equation
Boudary
ŏ

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The PDE-solving task is to approximate the input-PDE-output mapping G : (X, M, CPDE) ! Y.
For instance, in fluid prediction, we need to predict the future vorticity field (Y) from the initial field
(X), observation grid (M), as well as PDE equations, viscosity coefficients, and force terms (CPDE).

3.1 COMPLETE PDE COMPONENTS

To enable complete modeling of the PDE, we attempt to incorporate all the underlying components
that affect solutions into neural solvers. Here, we propose the complete PDE components by con-
sidering the classical vibrating string equation (2011) with fixed endpoints as a motivating example:

@ttu � a2@xxu = f(x, t), (x, t) 2 (0, L) ⇥ (0, T), (1a)
u(0, t) = 0, u(L, t) = 0, t 2 (0, T], (1b)
u(x, 0) = �(x), @tu(x, 0) = (x), x 2 [0, L]. (1c)

Coefficient a is determined by physical properties. f represents the external force that drives the
string’s vibrations. The domain geometry spans the range [0, L] ⇥ [0, T], which affects the mesh
discretization in numerical solving. Eq. (1b) sets zero-displacements Dirichlet boundary conditions
at the endpoints. Eq. (1c) specifies the string’s position �(x) and velocity (x) at the initial. These
equation components theoretically determine a unique solution. Next, we dive into the PDE-solving
process of this example and explore how the complete equation components affect the final solution.

Theorem 1 (The connections between solutions and complete components in the motivating
example). The solution of Eq. (1a) with boundary conditions (1b) and initial conditions (1c) is

u(x, t) =
1

2
(�(x + at) + �(x � at)| {z }

Initial position

)+
1

2a

Z x+at

x�at

 (⇠)

| {z }
Initial velocity

d⇠+
1

2a

Z t

0

d⌧

Z x+a(t�⌧)

x�a(t�⌧)| {z }
Geometry

f(⇠, ⌧)| {z }
Force

d⇠, (2)

where �(x), (x) and F (x, t) are odd, periodic functions with period 2L defined on the upper half
plane, extended from �(x), (x) and f(x, t). The boundary conditions will be explicit by extending
the equation to the upper half plane and solving it by operator splitting and characteristic lines.

Proof. See Appendix D for the explicit solution and the complete proof.

From the analytical solution of the above motivating example, we pinpoint that the PDE is solved
under the complex interactions between a series of equation components. Specifically, the coeffi-
cient a exerts a consistent influence over the domain, while the impact of the external force f is
imposed point-wisely. This distinction inspires us to classify the PDE components into two cate-
gories, domain-wise and point-wise, which better capture the intricate interactions.

Table 1: A detailed categorization of complete PDE components with corresponding examples.

Groups Input Domain-wise components Point-wise components

Components Initial Equation Equation Boundary External Domain Boundary
condition symbols coefficient condition type force geometry value function

Example Eq. (1c) Eq. (1a) a Robin f(x, t) [0, L] ⇥ [0, T] Eq. (1b)

As presented in Table 1, the complete PDE components consist of six elements. The equation for-
mulation is defined as a domain-wise component due to its consistency across all locations. Domain
geometry is categorized as a point-wise component since it is usually recorded as a binary mask
and each point’s inclusion is determined individually. Boundary conditions are more complicated
due to their diverse forms, e.g. periodic and Robin boundary conditions. As a result, we use two
components to represent boundary conditions precisely: the boundary condition type, treated as a
domain-wise component, and the boundary value function, considered as a point-wise component.

3.2 UNIVERSAL COMPONENTS EMBEDDING

As described in Section 3.1, PDE solutions are obtained by intricate interactions between initial con-
ditions and complete equation components which can be grouped into two categories. In previous
works (Brandstetter et al., 2022; Takamoto et al., 2023), these equation components are coarsely
and incompletely included as conditions to modulate the input observations. In this paper, we will
elaborate on how Unisolver finely and completely embeds all considered PDE components (Table 1)
into deep PDE conditions based on our insights from the mathematical analysis.

4

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The PDE-solving task is to approximate the input-PDE-output mapping G : (X, M, CPDE) ! Y.
For instance, in fluid prediction, we need to predict the future vorticity field (Y) from the initial field
(X), observation grid (M), as well as PDE equations, viscosity coefficients, and force terms (CPDE).

3.1 COMPLETE PDE COMPONENTS

To enable complete modeling of the PDE, we attempt to incorporate all the underlying components
that affect solutions into neural solvers. Here, we propose the complete PDE components by con-
sidering the classical vibrating string equation (2011) with fixed endpoints as a motivating example:

@ttu � a2@xxu = f(x, t), (x, t) 2 (0, L) ⇥ (0, T), (1a)
u(0, t) = 0, u(L, t) = 0, t 2 (0, T], (1b)
u(x, 0) = �(x), @tu(x, 0) = (x), x 2 [0, L]. (1c)

Coefficient a is determined by physical properties. f represents the external force that drives the
string’s vibrations. The domain geometry spans the range [0, L] ⇥ [0, T], which affects the mesh
discretization in numerical solving. Eq. (1b) sets zero-displacements Dirichlet boundary conditions
at the endpoints. Eq. (1c) specifies the string’s position �(x) and velocity (x) at the initial. These
equation components theoretically determine a unique solution. Next, we dive into the PDE-solving
process of this example and explore how the complete equation components affect the final solution.

Theorem 1 (The connections between solutions and complete components in the motivating
example). The solution of Eq. (1a) with boundary conditions (1b) and initial conditions (1c) is

u(x, t) =
1

2
(�(x + at) + �(x � at)| {z }

Initial position

)+
1

2a

Z x+at

x�at

 (⇠)

| {z }
Initial velocity

d⇠+
1

2a

Z t

0

d⌧

Z x+a(t�⌧)

x�a(t�⌧)| {z }
Geometry

f(⇠, ⌧)| {z }
Force

d⇠, (2)

where �(x), (x) and F (x, t) are odd, periodic functions with period 2L defined on the upper half
plane, extended from �(x), (x) and f(x, t). The boundary conditions will be explicit by extending
the equation to the upper half plane and solving it by operator splitting and characteristic lines.

Proof. See Appendix D for the explicit solution and the complete proof.

From the analytical solution of the above motivating example, we pinpoint that the PDE is solved
under the complex interactions between a series of equation components. Specifically, the coeffi-
cient a exerts a consistent influence over the domain, while the impact of the external force f is
imposed point-wisely. This distinction inspires us to classify the PDE components into two cate-
gories, domain-wise and point-wise, which better capture the intricate interactions.

Table 1: A detailed categorization of complete PDE components with corresponding examples.

Groups Input Domain-wise components Point-wise components

Components Initial Equation Equation Boundary External Domain Boundary
condition symbols coefficient condition type force geometry value function

Example Eq. (1c) Eq. (1a) a Robin f(x, t) [0, L] ⇥ [0, T] Eq. (1b)

As presented in Table 1, the complete PDE components consist of six elements. The equation for-
mulation is defined as a domain-wise component due to its consistency across all locations. Domain
geometry is categorized as a point-wise component since it is usually recorded as a binary mask
and each point’s inclusion is determined individually. Boundary conditions are more complicated
due to their diverse forms, e.g. periodic and Robin boundary conditions. As a result, we use two
components to represent boundary conditions precisely: the boundary condition type, treated as a
domain-wise component, and the boundary value function, considered as a point-wise component.

3.2 UNIVERSAL COMPONENTS EMBEDDING

As described in Section 3.1, PDE solutions are obtained by intricate interactions between initial con-
ditions and complete equation components which can be grouped into two categories. In previous
works (Brandstetter et al., 2022; Takamoto et al., 2023), these equation components are coarsely
and incompletely included as conditions to modulate the input observations. In this paper, we will
elaborate on how Unisolver finely and completely embeds all considered PDE components (Table 1)
into deep PDE conditions based on our insights from the mathematical analysis.

4

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The PDE-solving task is to approximate the input-PDE-output mapping G : (X, M, CPDE) ! Y.
For instance, in fluid prediction, we need to predict the future vorticity field (Y) from the initial field
(X), observation grid (M), as well as PDE equations, viscosity coefficients, and force terms (CPDE).

3.1 COMPLETE PDE COMPONENTS

To enable complete modeling of the PDE, we attempt to incorporate all the underlying components
that affect solutions into neural solvers. Here, we propose the complete PDE components by con-
sidering the classical vibrating string equation (2011) with fixed endpoints as a motivating example:

@ttu � a2@xxu = f(x, t), (x, t) 2 (0, L) ⇥ (0, T), (1a)
u(0, t) = 0, u(L, t) = 0, t 2 (0, T], (1b)
u(x, 0) = �(x), @tu(x, 0) = (x), x 2 [0, L]. (1c)

Coefficient a is determined by physical properties. f represents the external force that drives the
string’s vibrations. The domain geometry spans the range [0, L] ⇥ [0, T], which affects the mesh
discretization in numerical solving. Eq. (1b) sets zero-displacements Dirichlet boundary conditions
at the endpoints. Eq. (1c) specifies the string’s position �(x) and velocity (x) at the initial. These
equation components theoretically determine a unique solution. Next, we dive into the PDE-solving
process of this example and explore how the complete equation components affect the final solution.

Theorem 1 (The connections between solutions and complete components in the motivating
example). The solution of Eq. (1a) with boundary conditions (1b) and initial conditions (1c) is

u(x, t) =
1

2
(�(x + at) + �(x � at)| {z }

Initial position

)+
1

2a

Z x+at

x�at

 (⇠)

| {z }
Initial velocity

d⇠+
1

2a

Z t

0

d⌧

Z x+a(t�⌧)

x�a(t�⌧)| {z }
Geometry

f(⇠, ⌧)| {z }
Force

d⇠, (2)

where �(x), (x) and F (x, t) are odd, periodic functions with period 2L defined on the upper half
plane, extended from �(x), (x) and f(x, t). The boundary conditions will be explicit by extending
the equation to the upper half plane and solving it by operator splitting and characteristic lines.

Proof. See Appendix D for the explicit solution and the complete proof.

From the analytical solution of the above motivating example, we pinpoint that the PDE is solved
under the complex interactions between a series of equation components. Specifically, the coeffi-
cient a exerts a consistent influence over the domain, while the impact of the external force f is
imposed point-wisely. This distinction inspires us to classify the PDE components into two cate-
gories, domain-wise and point-wise, which better capture the intricate interactions.

Table 1: A detailed categorization of complete PDE components with corresponding examples.

Groups Input Domain-wise components Point-wise components

Components Initial Equation Equation Boundary External Domain Boundary
condition symbols coefficient condition type force geometry value function

Example Eq. (1c) Eq. (1a) a Robin f(x, t) [0, L] ⇥ [0, T] Eq. (1b)

As presented in Table 1, the complete PDE components consist of six elements. The equation for-
mulation is defined as a domain-wise component due to its consistency across all locations. Domain
geometry is categorized as a point-wise component since it is usually recorded as a binary mask
and each point’s inclusion is determined individually. Boundary conditions are more complicated
due to their diverse forms, e.g. periodic and Robin boundary conditions. As a result, we use two
components to represent boundary conditions precisely: the boundary condition type, treated as a
domain-wise component, and the boundary value function, considered as a point-wise component.

3.2 UNIVERSAL COMPONENTS EMBEDDING

As described in Section 3.1, PDE solutions are obtained by intricate interactions between initial con-
ditions and complete equation components which can be grouped into two categories. In previous
works (Brandstetter et al., 2022; Takamoto et al., 2023), these equation components are coarsely
and incompletely included as conditions to modulate the input observations. In this paper, we will
elaborate on how Unisolver finely and completely embeds all considered PDE components (Table 1)
into deep PDE conditions based on our insights from the mathematical analysis.

4

(b) Inference on unseen PDEs
Loss Function:

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The PDE-solving task is to approximate the input-PDE-output mapping G : (X, M, CPDE) ! Y.
For instance, in fluid prediction, we need to predict the future vorticity field (Y) from the initial field
(X), observation grid (M), as well as PDE equations, viscosity coefficients, and force terms (CPDE).

bY

3.1 COMPLETE PDE COMPONENTS

To enable complete modeling of the PDE, we attempt to incorporate all the underlying components
that affect solutions into neural solvers. Here, we propose the complete PDE components by con-
sidering the classical vibrating string equation (2011) with fixed endpoints as a motivating example:

@ttu � a2@xxu = f(x, t), (x, t) 2 (0, L) ⇥ (0, T), (1a)
u(0, t) = 0, u(L, t) = 0, t 2 (0, T], (1b)
u(x, 0) = �(x), @tu(x, 0) = (x), x 2 [0, L]. (1c)

Coefficient a is determined by physical properties. f represents the external force that drives the
string’s vibrations. The domain geometry spans the range [0, L] ⇥ [0, T], which affects the mesh
discretization in numerical solving. Eq. (1b) sets zero-displacements Dirichlet boundary conditions
at the endpoints. Eq. (1c) specifies the string’s position �(x) and velocity (x) at the initial. These
equation components theoretically determine a unique solution. Next, we dive into the PDE-solving
process of this example and explore how the complete equation components affect the final solution.

Theorem 1 (The connections between solutions and complete components in the motivating
example). The solution of Eq. (1a) with boundary conditions (1b) and initial conditions (1c) is

u(x, t) =
1

2
(�(x + at) + �(x � at)| {z }

Initial position

)+
1

2a

Z x+at

x�at

 (⇠)

| {z }
Initial velocity

d⇠+
1

2a

Z t

0

d⌧

Z x+a(t�⌧)

x�a(t�⌧)| {z }
Geometry

f(⇠, ⌧)| {z }
Force

d⇠, (2)

where �(x), (x) and F (x, t) are odd, periodic functions with period 2L defined on the upper half
plane, extended from �(x), (x) and f(x, t). The boundary conditions will be explicit by extending
the equation to the upper half plane and solving it by operator splitting and characteristic lines.

Proof. See Appendix D for the explicit solution and the complete proof.

From the analytical solution of the above motivating example, we pinpoint that the PDE is solved
under the complex interactions between a series of equation components. Specifically, the coeffi-
cient a exerts a consistent influence over the domain, while the impact of the external force f is
imposed point-wisely. This distinction inspires us to classify the PDE components into two cate-
gories, domain-wise and point-wise, which better capture the intricate interactions.

Table 1: A detailed categorization of complete PDE components with corresponding examples.

Groups Input Domain-wise components Point-wise components

Components Initial Equation Equation Boundary External Domain Boundary
condition symbols coefficient condition type force geometry value function

Example Eq. (1c) Eq. (1a) a Robin f(x, t) [0, L] ⇥ [0, T] Eq. (1b)

As presented in Table 1, the complete PDE components consist of six elements. The equation for-
mulation is defined as a domain-wise component due to its consistency across all locations. Domain
geometry is categorized as a point-wise component since it is usually recorded as a binary mask
and each point’s inclusion is determined individually. Boundary conditions are more complicated
due to their diverse forms, e.g. periodic and Robin boundary conditions. As a result, we use two
components to represent boundary conditions precisely: the boundary condition type, treated as a
domain-wise component, and the boundary value function, considered as a point-wise component.

3.2 UNIVERSAL COMPONENTS EMBEDDING

As described in Section 3.1, PDE solutions are obtained by intricate interactions between initial con-
ditions and complete equation components which can be grouped into two categories. In previous

4

Relative L2 of

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The PDE-solving task is to approximate the input-PDE-output mapping G : (X, M, CPDE) ! Y.
For instance, in fluid prediction, we need to predict the future vorticity field (Y) from the initial field
(X), observation grid (M), as well as PDE equations, viscosity coefficients, and force terms (CPDE).

(Y, bY)

3.1 COMPLETE PDE COMPONENTS

To enable complete modeling of the PDE, we attempt to incorporate all the underlying components
that affect solutions into neural solvers. Here, we propose the complete PDE components by con-
sidering the classical vibrating string equation (2011) with fixed endpoints as a motivating example:

@ttu � a2@xxu = f(x, t), (x, t) 2 (0, L) ⇥ (0, T), (1a)
u(0, t) = 0, u(L, t) = 0, t 2 (0, T], (1b)
u(x, 0) = �(x), @tu(x, 0) = (x), x 2 [0, L]. (1c)

Coefficient a is determined by physical properties. f represents the external force that drives the
string’s vibrations. The domain geometry spans the range [0, L] ⇥ [0, T], which affects the mesh
discretization in numerical solving. Eq. (1b) sets zero-displacements Dirichlet boundary conditions
at the endpoints. Eq. (1c) specifies the string’s position �(x) and velocity (x) at the initial. These
equation components theoretically determine a unique solution. Next, we dive into the PDE-solving
process of this example and explore how the complete equation components affect the final solution.

Theorem 1 (The connections between solutions and complete components in the motivating
example). The solution of Eq. (1a) with boundary conditions (1b) and initial conditions (1c) is

u(x, t) =
1

2
(�(x + at) + �(x � at)| {z }

Initial position

)+
1

2a

Z x+at

x�at

 (⇠)

| {z }
Initial velocity

d⇠+
1

2a

Z t

0

d⌧

Z x+a(t�⌧)

x�a(t�⌧)| {z }
Geometry

f(⇠, ⌧)| {z }
Force

d⇠, (2)

where �(x), (x) and F (x, t) are odd, periodic functions with period 2L defined on the upper half
plane, extended from �(x), (x) and f(x, t). The boundary conditions will be explicit by extending
the equation to the upper half plane and solving it by operator splitting and characteristic lines.

Proof. See Appendix D for the explicit solution and the complete proof.

From the analytical solution of the above motivating example, we pinpoint that the PDE is solved
under the complex interactions between a series of equation components. Specifically, the coeffi-
cient a exerts a consistent influence over the domain, while the impact of the external force f is
imposed point-wisely. This distinction inspires us to classify the PDE components into two cate-
gories, domain-wise and point-wise, which better capture the intricate interactions.

Table 1: A detailed categorization of complete PDE components with corresponding examples.

Groups Input Domain-wise components Point-wise components

Components Initial Equation Equation Boundary External Domain Boundary
condition symbols coefficient condition type force geometry value function

Example Eq. (1c) Eq. (1a) a Robin f(x, t) [0, L] ⇥ [0, T] Eq. (1b)

As presented in Table 1, the complete PDE components consist of six elements. The equation for-
mulation is defined as a domain-wise component due to its consistency across all locations. Domain
geometry is categorized as a point-wise component since it is usually recorded as a binary mask
and each point’s inclusion is determined individually. Boundary conditions are more complicated
due to their diverse forms, e.g. periodic and Robin boundary conditions. As a result, we use two
components to represent boundary conditions precisely: the boundary condition type, treated as a
domain-wise component, and the boundary value function, considered as a point-wise component.

3.2 UNIVERSAL COMPONENTS EMBEDDING

As described in Section 3.1, PDE solutions are obtained by intricate interactions between initial con-
ditions and complete equation components which can be grouped into two categories. In previous

4

Universal
Components
Embedding

Figure 3: Overview of Unisolver. We universally embed all PDE components into deep conditions
and employ a conditional Transformer to aggregate deep conditions in the decoupled subspace.

Equation formulation Since the mathematical symbols convey rich mathematical information,
we utilize a Large Language Model (LLM) for symbolic embedding. Specifically, we adopt the
recently released LLaMA-3 8B model 1 to embed the equation formulation. We attempt to leverage
its understanding of prior mathematical information, which was learned from pre-training on 15 TB
of language tokens, as well as its flexible encoding of unstructured PDE information. Technically,
the input to the LLM is the LaTeX code of the equation. For example, the Eq. (1a) is prompted as

Prompt: "u_{tt} - aˆ2 u_{xx} = f(x,t)"

Then we take the output of the last Transformer block of the LLM and average representations along
the sequence dimension, resulting in a 4096-dimensional embedding for each PDE. Notably, in the
LLM embedding stage, we utilize mathematical symbols of the remaining equation components
(e.g. coefficients and force terms) rather than their actual values in the prompt. For instance, we
adopt symbol “a” in the above prompt rather than its concrete value to make the LLM focus on the
key physics meaning of PDEs. The embedding of concrete values for the other components will be
detailed in the next paragraph. After the LLM embedding stage, the hidden representations of PDE
symbols are encoded by an MLP to align channel dimensions and obtain deep conditions.

Other components As we illustrated in Table 1, other components can be categorized as domain-
wise and point-wise according to their effect on the final solution. Correspondingly, we adopt dif-
ferent embedding methods for these two types. For domain-wise components, including coefficients
represented as real-valued vectors and boundary types similar to class labels, we embed them using
two linear layers with an in-between SiLU activation function (Elfwing et al., 2018). Moreover,
point-wise components like external force, binary geometry mask, and boundary value functions are
essentially physical fields observed on mesh M. We apply the same patchify embedding method
used for input observations, transforming them into deep representation sequences.

Deep condition consolidation As shown in Figure 3, after universal components embedding, deep
conditions within the same category are added together to consolidate their impact. This strategy
prevents excessive separation of deep PDE conditions that could weaken the model’s expressive
capabilities, and thus will enhance representation learning for diverse PDE solving via joint training.

3.3 PDE-CONDITIONAL TRANSFORMER

We propose a conditional Transformer to adaptively fuse deep PDE conditions, embedded from the
complete equation components, into hidden representations of inputs within decoupled subspaces.

Subspace decoupling We evenly split the hidden representations of the inputs along the channel
dimension, with one half influenced by domain-wise deep conditions and the other half by point-
wise deep conditions. Especially in multi-head attention (Vaswani et al., 2017), our proposed sub-
space decoupling is equivalent to assigning some heads to learn the impact of domain-wise condi-
tions while others focusing on point-wise conditions. This leads to improved representation learning
for both categories, and minimized interference between deep PDE conditions from two categories.

1https://ai.meta.com/blog/meta-llama-3/

5

https://ai.meta.com/blog/meta-llama-3/

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Deep condition aggregation We utilize MLPs to individually project domain-wise conditions and
point-wise conditions into the corresponding subspace. After projection, domain-wise conditions are
repeated along the sequence dimension to match the length of token sequence and ensure consistent
physical guiding throughout the entire sequence. The transformed conditions convey both domain-
wise and point-wise information, which are then integrated adaptively by aggregation functions.

As shown in Figure 3, we aggregate conditions either before or after the attention and feedforward
modules within Transformer. Inspired by recent conditional Transformers like DiT (Peebles & Xie,
2023) and other conditional normalization approaches (Park et al., 2019; Perez et al., 2018), we
take the aggregation paradigm to finely capture the intricate correlations between hidden inputs
of initial observations and deep equation conditions. Specifically, we scale and shift the hidden
representations of inputs based on the equation conditions. After passing through the Transformer
modules, we use the equation conditions to softly select whether this information should be retained.

Overall design Summarizing the above designs, we propose the Unisolver (Figure 3). Given input
X, it is projected to embeddings X0 using a patchify layer (Dosovitskiy et al., 2020). The complete
PDE equation components CPDE are embedded into deep conditions Cdomain and Cpoint following
Section 3.2. Suppose there are N layers, the n-th layer of Unisolver can be formalized as:

I∗ = Concat
(
MLP∗(Cdomain).repeat,MLP∗(Cpoint)

)
, ∗ ∈ {scale, shift, select}

X̂n−1 = Iselect ⊙ SelfAttention
(
Iscale ⊙ LayerNorm(Xn−1) + Ishift

)
+Xn−1,

Î∗ = Concat
(
M̂LP∗(Cdomain).repeat, M̂LP∗(Cpoint)

)
, ∗ ∈ {scale, shift, select}

Xn = Îselect ⊙ FeedForward
(
Îscale ⊙ LayerNorm(X̂n−1) + Îshift

)
+ X̂n−1,

(2)

where n ∈ {1, . . . , N}, and Xn is the output of the n-th layer. Since the PDE components have
a crucial impact on the range of the output, we scale and shift XN based on the deep equation
conditions, and then linearly project XN to obtain the final output as predictions of Y.

4 EXPERIMENTS

We conduct extensive experiments to evaluate Unisolver on three challenging large-scale bench-
marks, covering a wide range of PDE components and diverse generalization scenarios.

Benchmarks As summarized in Table 2, three experimental large-scale benchmarks cover varied
dimensions, resolutions and PDE components. The HeterNS is an extension of the NS dataset from
FNO (2021a), incorporating multiple viscosity coefficients and external forces to enhance diversity.
The 1D time-dependent PDEs, introduced by PDEformer (2024), is a large-scale dataset containing
three million structured 1D PDE samples and evaluate the zero-shot generalization performance on
PDEBench (2022). The 2D mixed PDEs, collected by DPOT (2024), include 12 diverse datasets
from four well-established benchmarks. More details can be found in Appendix F.

Table 2: Summary of benchmarks. #GPU hours are calculated by averaging the training time of all
models on one A100 GPU. Detailed compute resources can be found in Appendix H.7. ✓ indicates
the PDE component will change among different samples, while × refers to unchanged ones.

Benchmarks #Dim #Resolution #Samples #GPU hours Symbols Coefficient Force Geometry Boundary

HeterNS 2D+Time (64,64,10) 15k ∼60h × ✓ ✓ × ×
1D time-dependent PDEs 1D+Time (256,100) 3M ∼3000h ✓ ✓ ✓ × ✓

2D mixed PDEs 2D+Time (128,128,10) 74.1k ∼800h ✓ ✓ ✓ ✓ ✓

Baselines We compare Unisolver with six advanced baselines on the HeterNS to demonstrate its
generalizability under varied PDE components: the well-established FNO (2021a), PINO (2021b)
and ViT (2020) and current state-of-the-art methods Factformer (2023b), ICON (2023) and MPP
(2023). We augment these baselines by providing sufficient physics information to ensure a fair
comparison, either by concatenating the inputs with varied PDE components, providing prompting
trajectories (ICON) or applying physics-informed loss (PINO). Furthermore, we compare Unisolver
with two generalizable solvers—PDEformer (2024) and DPOT (2024) on zero-shot generalization
performance in a head-to-head manner. We refrain from including additional baselines on these two
benchmarks due to the substantial computational cost of using million-scale samples.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 3: Performance comparison (relative L2) on HeterNS with different viscosity coefficients and
fixed force frequency coefficient ω = 2. For clarity, the best result is in bold and the second best is
underlined. Promtotion refers to the relative improvement over the second-best method.

HeterNS
Params

Viscosity In-distribution Test Zero-shot Generalization

ν = 1e-5 ν = 5e-5 ν = 1e-4 ν = 5e-4 ν = 1e-3 ν = 8e-6 ν = 3e-5 ν = 8e-5 ν = 3e-4 ν = 8e-4 ν = 2e-3

FNO 4.7M 0.0669 0.0225 0.0114 0.0031 0.0011 0.0702 0.0373 0.0141 0.0088 0.0084 0.2057
PINO 4.7M 0.1012 0.0443 0.0263 0.0073 0.0031 0.1014 0.0646 0.0299 0.0142 0.0081 0.1894
ViT 4.8M 0.0432 0.0206 0.0098 0.0031 0.0015 0.0458 0.0353 0.0119 0.0100 0.0174 0.1878

Factformer 5.1M 0.0571 0.0259 0.0148 0.0018 0.0010 0.0489 0.0642 0.0167 0.1808 0.0639 0.3224
ICON 4.5M 0.0585 0.0267 0.0144 0.0054 0.0029 0.0606 0.0387 0.0169 0.0246 0.0110 0.2149
MPP 4.9M 0.0775 0.0496 0.0321 0.0098 0.0043 0.0796 0.0648 0.0376 0.0387 0.0236 0.2595

Unisolver 4.1M 0.0321 0.0094 0.0051 0.0015 0.0008 0.0336 0.0178 0.0064 0.0066 0.0096 0.1504
Promotion / 25.7% 54.4% 48.0% 16.7% 20.0% 26.6% 49.6% 46.2% 25.0% / 19.9%

Implementations All methods in the HeterNS benchmark are trained for 300 epochs using rela-
tive L2 loss and the ADAM optimizer (Kingma & Ba, 2015) with an initial learning rate of 0.0005
and a cosine annealing learning rate scheduler (Loshchilov & Hutter, 2016). The batch size is set to
60. For the 1D time-dependent PDEs and 2D mixed PDEs, we follow the training strategies from
PDEformer (2024) and DPOT (2024) to ensure a fair comparison. Relative L2 is used as the eval-
uation metric. See Appendix G for full implementation details and hyper-parameter configurations.
The inference code and checkpoint for 1D PDEs have been provided in supplementary materials.

4.1 HETEROGENEOUS 2D NAVIER-STOKES EQUATION (HETERNS)

Unseen IC (In-distribution test) Unseen IC & Viscosity (zero-shot)

Unseen IC & Force (zero-shot) Unseen IC & Viscosity & Force (zero-shot)

T=0 T=20 T=0 T=20

T=0 T=20 T=0 T=20

Figure 4: Visualization of various evalua-
tion scenarios on the HeterNS benchmark.

Setups We introduce HeterNS, an extension of the
widely used 2D NS dataset (Li et al., 2021a), to as-
sess how models handle diverse PDE components,
particularly viscosity coefficients and force terms. It
comprises five viscosity coefficients ν and three force
terms differentiated by frequency ω, resulting in 15
combinations of PDE components and 15,000 train-
ing samples. As depicted in Figure 4, we evaluate
the model performance on in-distribution test with
only unseen initial conditions and zero-shot general-
ization involving both unseen initial conditions and
variations in viscosity coefficients or force terms.

Results As shown in Tables 3-4, Unisolver achieves the best performance in 10 of 11 tasks, cov-
ering both in-distribution test and zero-shot generalization settings. It is worth noting that external
force generalization is a highly difficult task, as the force term fundamentally determines the fluid
evolution patterns. Still, Unisolver surpasses other methods in this challenging task, with signifi-
cantly greater promotions in zero-shot generalization settings (average 43.9%) than in-distribution
test settings (average 27.4%), demonstrating the effectiveness of our design in capturing generaliz-
able physics relations between external force and model inputs. Even though we explicitly concate-
nate the varied PDE components with the model inputs, most advanced neural operators perform
poorly on HeterNS. Specifically, all compared neural operators fail to solve the case of ω = 0.5 in
Table 4 with the relative error exceeding 0.5, further highlighting the generalizability of Unisolver.
We also include experiments in Appendix H.1, where both viscosity and force are unseen. Unisolver
still achieves considerable improvement (average 41.3%) on this challenging double unseen setting.

4.2 1D TIME-DEPENDENT PDES

In Distribution Test

PDEBench-Burgers (zero-shot)

In Distribution Test

PDEBench-Advection (zero-shot)

T
T

Figure 5: Showcases from various evaluation
scenarios on the 1D time-dependent PDEs.

Setups This benchmark contains three million
high-quality 1D time-dependent PDE samples with
varying equation formulations, coefficients, force
terms and boundary conditions. We perform joint
training on this extensive dataset, where the input for
the training task includes all relevant PDE compo-
nents, and the output records full space-time fields.
After training, the model is evaluated across multi-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Comparison (relative L2) on HeterNS with varied force and fixed viscosity ν = 10−5.

HeterNS
Params

Force In-distribution Test Zero-shot Generalization

ω = 1 ω = 2 ω = 3 ω = 0.5 ω = 1.5 ω = 2.5 ω = 3.5

FNO 4.7M 0.0640 0.0661 0.1623 1.1100 0.1742 0.1449 0.2974
PINO 4.7M 0.0914 0.1012 0.2707 1.0570 0.5010 0.4660 0.8380
ViT 4.8M 0.0348 0.0432 0.1000 0.7900 0.1412 0.1240 0.2080

Factformer 5.1M 0.0409 0.0570 0.0982 0.8591 0.1207 0.1243 0.2047
ICON 4.5M 0.0435 0.0585 0.1345 1.1950 0.5295 0.5009 0.8231
MPP 4.9M 0.0596 0.0775 0.1620 0.5532 0.2224 0.2180 0.3803

Unisolver 4.1M 0.0244 0.0321 0.0720 0.0980 0.0770 0.0720 0.1740
Promotion / 29.9% 25.7% 26.7% 82.3% 36.2% 41.9% 15.0%

Table 5: Comparison (relative L2) of in-distribution test and zero-shot generalization on 1D time-
dependent PDEs. Viscosity ν and advection velocity β are dominated components of target PDEs.

1D Time-dep
endent PDEs Params

Tasks In-distribution
Test

Zero-shot Burgers Zero-shot Advection

ν = 0.1 ν = 0.01 ν = 0.001 β = 0.1

PDEformer 22M 0.0225 0.00744 0.0144 0.0393 0.0178
Unisolver 19M 0.0108 0.00513 0.00995 0.0299 0.0138
Promotion / 52.0% 31.0% 30.9% 23.9% 22.5%

ple test settings, including in-distribution test, as well as zero-shot generalization on the Burgers and
Advection equations from PDEBench (Takamoto et al., 2022), which is an another unseen dataset.

Results Table 5 presents that the in-distribution test performance of Unisolver is significantly bet-
ter than that of PDEformer, indicating that our design of incorporating complete PDE components is
more effective than the computational graph utilized by PDEformer in representing intricate phys-
ical relations. Additionally, Unisolver achieves better performance in four zero-shot generalization
scenarios, with an average improvement of 27.1% over PDEformer, even with fewer parameters.

4.3 2D MIXED PDES

Varying Geometry Varying Force

Varying Boundary Condition Varying Coefficients

Figure 6: Showcases from in-distrib-
ution test sets on the 2D mixed PDEs.

Setups This benchmark involves 12 datasets from four
prominent benchmarks, covering a wide range of PDEs.
After joint training on these diverse datasets, we perform
in-distribution tests on each dataset. Notably, the in-
distribution test set also involves challenging variations
in the PDE components. Moreover, unlike the balanced
data in HeterNS, these datasets exhibit significant imbal-
ances across different PDE components. To mitigate this
issue, we adopt the balanced data sampling method from
DPOT (Hao et al., 2024); however, it still poses consider-
able challenges in managing such diverse PDE samples.

Results As shown in Table 6, Unisolver outperforms DPOT (Hao et al., 2024) in 11 out of 12 in-
distribution test sets with an remarkable average promotion of 17.5% (5.50→ 4.54), except for the
small Diffusion-Reaction (DR) dataset whose relative L2 is less than 5%, verifying the effectiveness
of our design in modeling such complex relations. Unisolver shows consistently superior perfor-
mance in PDE component-dominated tasks, including coefficient generalization in FNO (2021a),
force generalization in PDEArena (2023), and geometry generalization in CFDBench (2023), high-
lighting its ability to capture generalizable representations from complete PDE components.

4.4 MODEL ANALYSIS

Ablations As shown in Table 7, we further investigate the effect of LLM embeddings and condi-
tion modeling modules on 50,000 samples from the 1D time-dependent PDEs benchmark.

Firstly, in the LLM ablations, without LLM embedding, performance is the worst among all cases,
even worse than replacing by orthogonal random vector. LLaMA-3 brings a 5.76% averaged pro-
motion compared to models without LLM embedding, indicating its essential role in learning PDEs.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 6: Performance comparison (relative L2 (×10−2)) across 12 in-distribution test sets. For
conciseness, we use a “source-PDE” format to denote different tasks (e.g. FNO-NS). The second
row lists the primary PDE components considered for each dataset. See Appendix F.3 for details.

2D
Mixed PDEs

Params

Tasks FNO-NS-ν PDEBench-CNS-(M,ζ) PDEBench PDEArena CFDBench-NS Average
Error1e-5 1e-4 1e-3 (1, 0.1) (1, 0.01) (0.1, 0.1) (0.1, 0.01) DR SWE NS NS-Force Geometry

DPOT 30M 5.53 4.42 1.31 1.53 3.37 1.19 1.87 3.79 0.66 9.91 31.6 0.70 5.50
Unisolver 33M 4.17 3.36 0.61 1.23 2.89 1.01 1.59 4.39 0.45 6.87 27.4 0.54 4.54

Promotion (%) / 24.6 24.0 53.4 19.6 14.2 15.1 15.0 / 31.8 30.7 13.3 22.9 17.5

Table 7: Ablation results on the LLM embeddings and the Condition Modeling. Variants of the
former include without LLM embeddings (w/o LLM) and replacing by orthogonal random vectors
(Random Vector), and variants of the latter include without subspace decoupling (w/o Subspace) and
directly concatenating components (Concat). “Unchanged” means no changes to the default design.

Relative L2
LLM

Embeddings
Condition
Modeling

In-distribution
Test

Zero-shot Generalization

1D Time-dep
endent PDEs

Burgers Burgers Burgers Advection
ν = 0.1 ν = 0.01 ν = 0.001 β = 0.1

Unisolver
Ablations

w/o LLM Unchanged 0.0295 0.0189 0.0692 0.1432 0.0637
Random Vector Unchanged 0.0290 0.0185 0.0675 0.1471 0.0632

Unchanged w/o Subspace 0.0287 0.0187 0.0675 0.1478 0.0625

Unchanged Concat 0.0317 0.0236 0.0802 0.1586 0.0732
*final Unchanged Unchanged 0.0277 0.0176 0.0659 0.1350 0.0603

Notably, since the LLM only encodes one of six components, the equation symbols, a promotion
of around 5% is a significant margin. Moreover, we compare the Unisolver’s performance across
different language models in Figure 7, including LLaMA-3, LLaMA-2 and T5. The results are com-
parable, indicating each model possesses sufficient ability to encode prior mathematical information.

Secondly, in condition modeling ablations, removing subspace decoupling introduces interference
between different groups of PDE conditions, significantly impairing performance in zero-shot gen-
eralization settings, with an average drop of 5.45%. Moreover, direct concatenation of PDE compo-
nents severely hinders relation learning (21.0% average drop), indicating the benefits of our design.

Visualization of the learned PDE embeddings As depicted in Figure 7(b-c), we apply the prin-
cipal component analysis (PCA) (Jolliffe & Cadima, 2016) to intuitively visualize the LLM embed-
dings of equation symbols and deep PDE conditions learned by Unisolver for 1D time-dependent
PDEs. In Figure 7(b), we observe that PDEs with similar complexity are encoded into similar em-
beddings, highlighting that LLM can indeed effectively capture prior mathematical information. In

(a) Comparison of different LMs (b) PCA visualization of LLM embeddings (c) PCA visualization of learned PDE conditions

Learned PDE conditions with varying
Learned PDE conditions with varying
Learned PDE conditions with varying

In-distribution test

Burgers
v = 0.1

LLaMA3
LLaMA2
T5

Burgers
v = 0.01

Burgers
v = 0.001

Advection
β = 0.1

0.0275

0.0281

0.02870.0176

0.0180
0.0184

0.0645

0.0657

0.0679

0.1350

0.1370

0.1390

0.0600
0.0632

0.0664

Relative L2

Figure 7: (a) Comparison of different language models. (b) PCA visualization of LLM embeddings.
The considered PDE family contains six coefficients, such as c01, c02, c03. Different colors represent
the number of non-zero coefficients, intuitively indicating the complexity of PDEs. A zero coeffi-
cient results in the removal of a term from the equation, impacting the representations embedded by
the LLM. (c) PCA visualization of learned deep PDE conditions, Iselect in Eq. (2). We vary only one
coefficient at a time and keep the others fixed at zero, forming the shown parabolic-like trajectories.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

ω = 1 ω = 2 ω = 3

Re
la

tiv
e

L2

ω = 1 ω = 2 ω = 3 ω = 1ω = 1 ω = 2 ω = 3 ω = 2 ω = 3 ω = 1 ω = 2 ω = 3
(a) HeterNS v = 1e-5 (b) HeterNS v = 5e-4 (c) HeterNS v = 1e-4 (d) HeterNS v = 5e-4 (e) HeterNS v = 1e-3

FNO (incomplete) FNO (complete) Unisolver (incomplete) Unisolver (complete)

Figure 8: Capability of Unisolver to handle partial-observed data simulated on the HeterNS.

Figure 7(c), the trajectories of deep conditions resemble parabolas with varying degrees of curvature,
indicating that the learned deep conditions successfully capture the variations of PDE components.

Incomplete component scenario In real-world applications, we may lack complete PDE compo-
nents. To demonstrate the capability of Unisolver in handling such situations, we randomly replace
PDE components with learnable tokens at a 30% probability in the HeterNS benchmark to simu-
late partially observed real-world data. For inference, we can flexibly choose whether to provide
PDE components as inputs. As shown in Figure 8, even with incomplete components, Unisolver
surpasses FNO (2021a) in most cases, especially in more complex cases with lower viscosity coef-
ficients. Moreover, complete PDE information further improves the model’s performance (average
21.6%), supporting our motivation that complete information is essential for PDE solving.

0.0608

0.0407

0.0273

0.0183

0.0123

In-distribution test
Burgers = 0.01

50k 100k 200k 3M 3M 10M 19M 63M

0.0608

0.0407

0.0273

0.0183

(a) Data Scalability (Samples) (b) Model Scalability (Parameters)

In-distribution test
Burgers = 0.01

Re
la

tiv
e

L2

Figure 9: Data scalability (60x) and model scala-
bility (21x) on the 1D time-dependent PDEs. Rel-
ative L2 results are plotted on a log-log scale.

Scalability Scalability is crutial for building
a universal neural PDE solver. Figure 9 il-
lustrates Unisolver’s scalability, where we pro-
gressively increase the training data by 60
times and the model parameters by 21 times.
Unisolver exactly displays the scaling law,
achieving better performance with increased
data and parameters, posing the potential for a
practically universal neural PDE solver.

Case study To provide a clear comparison,
we provide showcases on the HeterNS in Figure 10. All the presented trajectories are generated
from the same initial condition but exhibit distinct final fields, underscoring the determining role of
PDE components. Further, we observe that Unisolver significantly outperforms FNO under com-
plex conditions, such as smaller viscosity ν and larger force coefficient ω, particularly in zero-shot
generalization settings. More showcases can be found in Appendix D.

Figure 10: Error maps (the absolute difference between model predictions and ground truth) of FNO
and Unisolver on the HeterNS, where all cases share the same initial condition but differ in viscosity
(ν) and force (ω) (shown in the first row by the pairs (ν, ω)). The left panel shows in-distribution
tests, while the right panel shows zero-shot generalization settings.

5 CONCLUSION

To break the generalization bottleneck, this paper presents Unisolver as a PDE-conditional Trans-
former, which stems from the theoretical analysis of the PDE-solving process. Concretely, Uni-
solver identifies and systematically encodes a complete set of PDE components into domain-wise
and point-wise deep conditions separately and specifically. By integrating these conditions with
Transformers through a decoupled mechanism, Unisolver can handle universal PDE components and
achieve consistent state-of-the-art results across three challenging, large-scale benchmarks. Exten-
sive analyses are provided to verify the effectiveness, generalizability and scalability of our model.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

William F Ames. Numerical methods for partial differential equations. Academic press, 2014.

Vladimir Igorevich Arnol’d. Mathematical methods of classical mechanics. Springer Science &
Business Media, 2013.

Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers. In
ICLR, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In NeurIPS, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. In ICLR, 2020.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 2018.

Lawrence C Evans. Partial differential equations. American Mathematical Society, 2022.

Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized pde
modeling. TMLR, 2023.

Zhongkai Hao, Chengyang Ying, Zhengyi Wang, Hang Su, Yinpeng Dong, Songming Liu,
Ze Cheng, Jun Zhu, and Jian Song. Gnot: A general neural operator transformer for operator
learning. In ICML, 2023.

Zhongkai Hao, Chang Su, Songming Liu, Julius Berner, Chengyang Ying, Hang Su, Anima Anand-
kumar, Jian Song, and Jun Zhu. Dpot: Auto-regressive denoising operator transformer for large-
scale pde pre-training. In ICML, 2024.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In CVPR, 2022.

Maximilian Herde, Bogdan Raonić, Tobias Rohner, Roger Käppeli, Roberto Molinaro, Emmanuel
de Bézenac, and Siddhartha Mishra. Poseidon: Efficient foundation models for pdes. In NeurIPS,
2024.

Ian T Jolliffe and Jorge Cadima. Principal component analysis: a review and recent developments.
Philosophical transactions of the royal society A: Mathematical, Physical and Engineering Sci-
ences, 2016.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 2021.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nat. Rev. Phys., 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces
with applications to pdes. JMLR, 2023.

Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential equations’
operator learning. TMLR, 2023a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zijie Li, Dule Shu, and Amir Barati Farimani. Scalable transformer for pde surrogate modeling. In
NeurIPS, 2023b.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. In ICLR, 2021a.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. J. Data Sci., 2021b.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator
with learned deformations for pdes on general geometries. JMLR, 2023c.

Yuxuan Liu, Zecheng Zhang, and Hayden Schaeffer. Prose: Predicting operators and symbolic
expressions using multimodal transformers. arXiv preprint arXiv:2309.16816, 2023.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In ICCV, 2021.

Cooper Lorsung, Zijie Li, and Amir Barati Farimani. Physics informed token transformer for solving
partial differential equations. Mach. Learn.: Sci. Technol, 2024.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In ICLR,
2016.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators. Nat.
Mach. Intell, 2021.

Yining Luo, Yingfa Chen, and Zhen Zhang. Cfdbench: A comprehensive benchmark for machine
learning methods in fluid dynamics. arXiv preprint arXiv:2310.05963, 2023.

Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Holden Parker, Ruben Ohana, Miles Cran-
mer, Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois Lanusse,
et al. Multiple physics pretraining for physical surrogate models. In NeurIPS AI for Science
Workshop, 2023.

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis with
spatially-adaptive normalization. In CVPR, 2019.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In ICCV, 2023.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In AAAI, 2018.

Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-no: U-shaped neural oper-
ators. TMLR, 2023.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. J. Comput. Phys., 2019.

Rajhans Singh, Ankita Shukla, and Pavan Turaga. Polynomial implicit neural representations for
large diverse datasets. In CVPR, 2023.

Shashank Subramanian, Peter Harrington, Kurt Keutzer, Wahid Bhimji, Dmitriy Morozov,
Michael W Mahoney, and Amir Gholami. Towards foundation models for scientific machine
learning: Characterizing scaling and transfer behavior. In NeurIPS, 2023.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani,
Dirk Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine
learning. NeurIPS, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Makoto Takamoto, Francesco Alesiani, and Mathias Niepert. Learning neural pde solvers with
parameter-guided channel attention. In ICML, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak,
Shengchao Liu, Peter Van Katwyk, Andreea Deac, et al. Scientific discovery in the age of artificial
intelligence. Nature, 2023.

Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M Benson. U-
fno—an enhanced fourier neural operator-based deep-learning model for multiphase flow. Adv.
Water Resour., 2022.

Haixu Wu, Tengge Hu, Huakun Luo, Jianmin Wang, and Mingsheng Long. Solving high-
dimensional pdes with latent spectral models. In ICML, 2023.

Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver: A fast
transformer solver for pdes on general geometries. In ICML, 2024.

Liu Yang, Siting Liu, Tingwei Meng, and Stanley J Osher. In-context operator learning with data
prompts for differential equation problems. PNAS, 120(39):e2310142120, 2023.

Zhanhong Ye, Xiang Huang, Leheng Chen, Hongsheng Liu, Zidong Wang, and Bin Dong. Pde-
former: Towards a foundation model for one-dimensional partial differential equations. In ICLR
AI4Differential Equations In Science Workshop, 2024.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? NeurIPS, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A FINE-TUNING PERFORMANCE

Zero-shot generalization serves as a valuable metric, but in scenarios where datasets differ substan-
tially from the training set, the model’s zero-shot performance may be limited. In such instances,
fine-tuning performance is critical, since it reflects the model’s ability to learn fundamentally gen-
eralizable representations through large-scale training. We present Unisolver’s fine-tuning perfor-
mance on 1D time-dependent and 2D mixed PDEs in Figures 11-12, with 100 epochs for 1D time-
dependent PDEs and 200 epochs for 2D mixed PDEs, both amounting to 20% of the total training
epochs from scratch, demonstrating fast adaptation.

Re
la

tiv
e

L2

Burgers v = 0.01 Burgers v = 0.001Burgers v = 0.1 Advection β = 0.1

Figure 11: Fine-tuning performance on 1D
time-dependent PDEs. “FT-100” means
fine-tuning on each dataset for 100 epochs.

For 1D time-dependent PDEs, as shown in Figure 11,
fine-tuning 100 epochs on the Burgers and Advection
equations from PDEBench (Takamoto et al., 2022)
significantly enhances Unisolver’s performance, re-
ducing error by 61% compared to zero-shot re-
sults and achieving a 59.3% improvement over PDE-
former (Ye et al., 2024) under the same fine-tuning
conditions. These results prove the condition model-
ing in Unisolver is more effective than the computa-
tional graph proposed by PDEformer, especially for
fast adaptation. For 2D mixed PDEs, as shown in
Figure 12, after 200 epochs of fine-tuning for each
dataset, Unisolver reduces error by more than 12% compared to zero-shot generalization perfor-
mance and outperforms DPOT (Hao et al., 2024) under the same fine-tuning conditions by 14%,
showcasing its ability to extract generalizable knowledge from diverse training datasets.

Re
la

tiv
e

L2

FNO v = 1e-5 CNS (1,0.1) CNS (1,0.01) CNS (0.1,0.1) CNS (0.1,0.01) DR SWE CFDBench PDEArena PDEArena-Force Average Error

(a) FNO-NS- (b) PDEBench & CFDBench
FNO v = 1e-4

(c) PDEArena & Average
FNO v = 1e-3

Figure 12: Performance comparison (relative L2) on 2D mixed PDEs after 200 epochs of fine-tuning.

B MORE ABLATIONS ABOUT LLM EMBEDDINGS

To further verify the role of LLM embeddings in encoding PDE information, we conduct three
more additional ablation experiments. In the first experiment, the LLM only encodes the number
of non-zero terms in the 1D PDE. In the second experiment, the LLM encodes the “wrong” PDE
information. Specifically, we replace “*” with “/” and adjust polynomial orders to their reciprocals.
For example, the original latex code ut + c01 ∗ u+ c02 ∗ u2 + s(x) + (c11 ∗ u+ c13 ∗ u3)x = 0 is
transformed into ut+ c01/u+ c02/u1/2+s(x)+(c11/u+ c13/u

1/3)x = 0. In the third experiment,
we manually construct a one-hot vector for each PDE term and combining them to represent a full
PDE. Then the combined one-hot vector is directly used by Unisolver without being encoded by an
LLM. The results of these three ablation studies are shown in Table ??.

The results indicate that the model indeed obtains additional information beyond merely the count
of non-zero terms from the LLM embeddings. Moreover, embedding “wrong” mathematical in-
formation generally leads to a decline in performance, highlighting the importance of accurately
embedding the PDE information. While we cannot definitely claim that the LLM “understands”
mathematical knowledge, we can confirm that the use of LLM enables us to encode useful mathe-
matical information into deep representations. Besides, we observe that the LLM embedding case
consistently outperforms the manually constructed representation case in both in-distribution tests
and four zero-shot generalization settings, showing a 4.23% average improvement. Although the
manually constructed representation aims to preserve the mathematical structure of the PDE as much
as possible, the handcrafted features struggle to perfectly capture the mathematical structure pro-
vided by LLMs visualized in Figure 7, leading to a decrease in performance.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 8: More ablations about LLM embeddings. We include three more ablations to further demon-
strate the rationale for using LLM embeddings. Relative L2 loss is reported.

Abaltion type In-distribution Burgers Burgers Burgers Advection
Test ν = 0.1 ν = 0.01 ν = 0.001 β = 0.1

Number of non-zero terms encoded by LLM 0.0285 0.0180 0.0665 0.1391 0.0618

“Wrong” expression encoded by LLM 0.0289 0.0181 0.0672 0.1361 0.0619

Manually constructed representation 0.0282 0.0184 0.0675 0.1386 0.0679

Ours 0.0277 0.0176 0.0659 0.1350 0.0603

C MORE EXPERIMENTS ABOUT GENERALIZABILITY

We conduct two additional experiments to evaluate the generalization capability of Unisolver: first,
we verify the benefits of joint training on different types of PDEs rather than training on them
independently; second, we evaluate Unisolver’s capability to generalize to new types of PDEs.

C.1 THE BENEFIT OF JOINT TRAINING

We design a new experiment to evaluate the benefit of joint training on the 1D time-dependent PDE
benchmark. As stated in Appendix F, the general equation formulations used in this benchmark
include two polynomials, f0 and f1, both with a maximum order of 3. We construct three distinct
sub-datasets, each with 10,000 samples, to test the impact of joint training. The polynomials in each
dataset are fixed to orders of 1, 2, and 3, respectively, ensuring that the PDEs contained in these three
datasets do not overlap. For instance, in the dataset with polynomials of order 3, only c03 and c13
are non-zero terms, while c01, c02, c11 and c12 are fixed to zero. We conduct both joint training and
independent training for 500 epochs on these 3 subdatasets. The results are shown in the Table 9.

Table 9: The benefit of joint training. We consider three distinct subset, where the polynomials are
fixed to orders of 1, 2 and 3, respectively. The performance (relative L2) of the joint training model
is compared against the same model trained on each subset independently.

Polynomial order 1 2 3

Independent Training 0.0792 0.1161 0.1236

Joint Training 0.0555 0.0738 0.0695
Promotion 29.9% 36.5% 43.7%

C.2 EQUATIONS GENERALIZATION VIA FINETUNING

We design a new equation generalization scenario based on the 1D time-dependent PDEs bench-
mark. As stated in Appendix F, the general equation formulations used in this benchmark include
two polynomials, f0 and f1, both with a maximum order of 3. We pretrain Unisolver on 50,000
samples of PDEs with polynomial orders of up to 2, and then fine-tune it for 200 epochs on PDEs
with polynomial orders of 3. The fine-tuned model is compared against the same model trained from
scratch for 500 epochs, with relative L2 error reported in Table 10. Results indicate that Unisolver
pretrained on equations of polynomial order up to 2 can be efficiently fine-tuned to handle equations
of polynomial order 3. Unisolver demonstrates strong generalization capabilities to unseen PDEs,
significantly reducing the need for large training datasets when addressing new equations.

Table 10: Generalization to unseen equations. Unisolver is initially trained on equations with a
polynomial order of up to 2, and subsequently fine-tuned for 200 epochs on equations with a poly-
nomial order of 3. The performance (relative L2) of the fine-tuned model is compared against the
same model trained from scratch for 500 epochs.

Finetuning Examples 5000 10000 20000

Unisolver-from-scratch-500 0.3308 0.1913 0.1327

Unisolver-fine-tune-200 0.1624 0.1036 0.0891
Promotion 50.9% 45.8% 32.9%

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

D MORE SHOWCASES

We provide additional showcases here to supplement the numerical results presented in the main text.
First, we visualize the in-distribution test and zero-shot generalization cases on the HeterNS dataset
in Figure 13 and Figure 14, respectively. Next, we present visualizations for 1D time-dependent
PDEs in Figure 15. Finally, we illustrate the 12 diverse datasets from 2D mixed PDEs in Figure 16.

Figure 13: Error maps (the absolute difference between model predictions and ground truth) for in-
distribution tests with top three baselines on the HeterNS dataset. See Table 3 and 4 for numerical
comparison (relative L2). All data has the same initial condition and differs in viscosity (ν) and
force (ω) (shown in the first row by the pairs (ν, ω)). Unisolver achieved the best visual performance
among the compared baselines.

Figure 14: Error maps for zero-shot generalization settings with top three baselines on the HeterNS
dataset with the same initial conditions and differs in viscosity (ν) and force (ω) (shown in the first
row by the pairs (ν, ω)). See Table 3 and 4 for numerical comparison.

Figure 15: Error maps on the in-distribution test and zero-shot generalization (Burgers and Advec-
tion equation from PDEBench (Takamoto et al., 2022)) settings in 1D time-dependent PDEs. See
Table 5 for numerical comparison. We visualize two cases: periodic boundary conditions and Robin
boundary conditions in in-distribution tests. The number in the Burgers columns is the diffusion
coefficient ν while the number in the Advection column is the advection speed β.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 16: Unisolver predictions and error maps on 2D mixed PDEs. See Table 6 for numerical
comparison with DPOT. Both predictions and error maps are provided. As shown in the CFDBench-
NS columns, Unisolver presents an impressive ability to handle different geometry conditions.

E ANALYTICAL SOLUTION FOR THE STRING VIBRATION EQUATION

The solution of Eq. (1a) with boundary conditions (1b) and initial conditions (1c) is

u(x, t) =
1

2
(Φ(x+ at) + Φ(x− at)︸ ︷︷ ︸

Initial position

) +
1

2a

∫ x+at

x−at

Ψ(ξ)

︸ ︷︷ ︸
Initial velocity

dξ +
1

2a

∫ t

0

dτ

∫ x+a(t−τ)

x−a(t−τ)︸ ︷︷ ︸
Geometry

f(ξ, τ)︸ ︷︷ ︸
Force

dξ,

(3)
where Φ(x), Ψ(x) and F (x, t) are odd, periodic functions with period 2L defined on the upper half
plane, extended from ϕ(x), ψ(x) and f(x, t). The boundary conditions will be explicit by extending
the equation to the upper half plane and solving it by operator splitting and characteristic lines.

Detailed proof can be found in (Evans, 2022) or other relevant books.

F BENCHMARKS

We provide a detailed description of the three large-scale benchmarks in our experiments here: a
challenging, self-generated heterogeneous 2D Navier-Stokes Equations dataset (HeterNS) and two
large-scale benchmarks, one proposed by PDEformer (Ye et al., 2024), and the other collected by
DPOT (Hao et al., 2024). These benchmarks cover a wide range of PDEs and diverse generalization
scenarios, which can test the generalizability of PDE solvers well.

F.1 HETERNS

Similar to FNO (Li et al., 2021a), we consider the 2D Navier-Stokes equation in vorticity formula-
tion for the viscous, incompressible fluid on a unit torus. We consider both in-distribution test and
zero-shot generalization settings on HeterNS. See Figure 13 and 14 for a visual representation.

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈ (0, 1)2, t ∈ (0, T]. (4a)

∇ · u(x, t) = 0, x ∈ (0, 1)2, t ∈ [0, T]. (4b)

w(x, 0) = w0(x), x ∈ (0, 1)2. (4c)

Train set The problem involves two key PDE components: the viscosity coefficient and the force
term. We experiment with viscosity coefficients ν ∈ [8 × 10−6, 2 × 10−3] and force terms in the
form f(x) = 0.1(sin(ωπ(x1 + x2)) + cos(ωπ(x1 + x2))). Specifically, our training set consists of
ν ∈ {1× 10−5, 5× 10−5, 1× 10−4, 5× 10−4, 1× 10−3} and ω ∈ {1, 2, 3}, resulting in 15 unique

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

combinations of PDE components. For each combination, we generate 1000 samples, yielding a
total of 15,000 training samples. The dataset can be accessed at the following anonymous link.2

In-distribution test set For testing, we first evaluate the in-distribution test sets, each containing
200 samples. In this setting, only the initial conditions differ from the training dataset, while all
other PDE components remain the same.

Zero-shot generalization set Zero-shot generalization settings present much greater challenges,
as both the initial conditions and the viscosity coefficient or force terms may be entirely unseen
during training. We assess the model’s zero-shot performance on 200 samples, offering a more
rigorous test of its ability to learn generalizable representations.

F.2 1D TIME-DEPENDENT PDES

This benchmark is proposed by PDEformer (Ye et al., 2024). It contains 3 million high-quality 1D
time-dependent PDEs with various equation components for training and then evaluates the model
performance using in distribution test sets and zero-shot generalization performance on Burgers and
Advection equation from PDEBench (Takamoto et al., 2022), which is another distinct benchmark.
See Figure 15 for a visual representation.

Train set The training dataset is generated by the following PDE family:

∂tu+ f0(u) + s(x) + ∂x(f1(u)− κ(x)∂xu) = 0, (x, t) ∈ [−1, 1]× [0, 1]. (5a)
u(0, x) = g(x), x ∈ [−1, 1]. (5b)

where fi(u) = ci1u + ci2u
2 + ci3u

3, i = 0, 1. Each coefficient cik is set to zero with a proba-
bility of 0.5, and otherwise uniformly sampled from the interval [−3, 3]. The variables κ(x) and
s(x) can be zero, constant or physical fields, which are all randomly sampled from pre-defined dis-
tributions, as detailed in PDEformer’s original paper (Ye et al., 2024). The initial condition g(x)
is randomly generated within the family of trigonometric functions, a super-position of sinusoidal
waves as, u0(x) =

∑
ki=k1,...,kN

Ai sin(kix + ϕi), where ki = 2πni/Lx are wave numbers and
ni ∈ N are selected randomly in [1, nmax], which is same as the zero-shot generalization tasks from
PDEBench (Takamoto et al., 2022).

The dataset includes both periodic and non-periodic boundary conditions, with 1.5 million sam-
ples each. For the non-periodic cases, the boundary condition type at each endpoint are randomly
selected from three pre-defined types: Dirichlet, Neumann, and Robin. The Dirichlet conditions
specify the solution value at the boundary, while the Neumann conditions set the derivative value
at the boundary, and the Robin conditions are a linear combination of the Dirichlet conditions and
Neumann conditions. Therefore, Dirichlet and Neumann boundary conditions are regarded as corner
cases of the Robin conditions.

We now provide a summary from the perspective of the complete PDE components. The domain-
wise components of the training dataset include equation symbolic expression, i.e. Eq. (5), boundary
condition types, and coefficients in two polynomials fi while the point-wise components include the
physical fields s(x) and κ(x), which are considered as force terms and boundary value functions.
The input observations are the initial conditions, discretized spatially at a resolution of 256. The
output is the final solution u(x, t), discretized spatially at 256 and temporally at 100.

Symbolic variations Additionally, there is one important aspect to consider regarding the sym-
bolic variations of equation symbols. A zero coefficient in the two polynomials fi results in the
removal of a term from the equation. If the physical fields κ(x) or s(x) are zero, the corresponding
term is removed from the prompt. When κ(x) is constant, it is replaced by κ to more accurately
reflect the constant value, and the same applies to s(x). These symbolic variations directly affect the
equation formulations further embedded by the LLM, resulting in 26 × 3× 3 = 576 types of LLM
embeddings, corresponding to 576 distinct equation types.

2https://drive.google.com/drive/folders/142c518gF9DWDD9FOx7TvtEwaNb5nHZUa

18

https://drive.google.com/drive/folders/142c518gF9DWDD9FOx7TvtEwaNb5nHZUa

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

In-distribution test set We generate 10,000 samples strictly following the configurations of the
training dataset to ensure that all PDE components are within the same distribution. However, being
in the same distribution does not mean that they have been seen before. Given to the multitudi-
nous PDE family, all PDE components, besides the equation symbols, can still exhibit significant
variations, making in-distribution tests is also a highly challenging task.

Zero-shot generalization set We employ the following two 1D PDE datasets from
PDEBench (Takamoto et al., 2022) as zero-shot generalization tasks. All zero-shot generaliza-
tion tasks follow periodic boundary conditions and the same initial condition family as the training
dataset. The resolution of these samples is 1024× 201. For each dataset, we use 1000 test samples.
We downsample the spatial resolution of these datasets to 256 and maintain the temporal resolution
unchanged. The zero-shot PDEs consist of the Burgers equation and the Advection equation.

(1) Burgers equation Burgers equation, as the fundamental equation in fluid mechanics, models
the non-linear behavior and diffusion process of fluid dynamics as:

∂tu(t, x) + ∂x(u(t, x)
2
/2) = ν/π∂xxu(t, x), x ∈ (0, 1), t ∈ (0, 2]. (6a)

u(0, x) = u0(x), x ∈ (0, 1). (6b)

where ν is the diffusion coefficient. In our zero-shot generalization settings, the Burgers equation
dataset consists of three subsets, distinguished by the diffusion coefficient: ν = 0.1, 0.01, 0.001. The
diffusion coefficient represents the intensity of fluid variation, with smaller values corresponding to
more complex fluid dynamics.

(2) Advection equation The advection equation models pure advection behavior without non-
linearity, which can be formalized as:

∂tu(t, x) + β∂xu(x, t) = 0, x ∈ (0, 1), t ∈ (0, 2]. (7a)
u(0, x) = u0(x), x ∈ (0, 1), (7b)

where the constant advection speed β and equation symbols are considered domain-wise compo-
nents in this dataset. In our zero-shot generalization settings, we use an advection speed of β = 0.1.
It is worth noting that the advection equation has an analytic solution, given by u(t, x) = u0(x−βt).

Fine-tuning We also provide fine-tuning results on 1D time-dependent PDEs in Appendix A.
Compared to zero-shot generalization, we fine-tune the model using an additional 9,000 samples
while testing on the same 1,000 samples.

Domain alignment Notably, the spatiotemporal domain of the equations in PDEBench is [0, 1]×
[0, 2], whereas the training dataset uses the domain[−1, 1]× [0, 1]. To directly infer from the model
trained on 1D time-dependent PDEs, we need to align the spatiotemporal domains through spatial-
temporal coordinate transformations, which will result in corresponding changes to the PDE com-
ponents. Technically, the zero-shot PDEs after the coordinate transformation are given by:

• Burgers equation: ∂t′u+ ∂x′(2u2)− 8ν
π ∂x′x′u = 0, where t′ = t

2 , x
′ = 2x− 1.

• Advection equation: ∂t′u+ ∂x′(4βu) = 0, where t′ = t
2 , x

′ = 2x− 1.

F.3 2D MIXED PDES

This benchmark is collected by DPOT (Hao et al., 2024), which consists of the following 12 diverse
subsets from 4 benchmarks. We only conduct in-distribution tests in the 2D mixed PDEs. Notably,
the in- distribution test set also involves challenging variations in the PDE components. See Figure
16 for a visual representations.

FNO-ν (Li et al., 2021a) This well-established benchmark considers the 2D Navier-Stokes equa-
tion for a viscous, incompressible fluid in vorticity form on the unit torus. The task is to estimate the
vorticity field of the future ten timesteps on a regular 64× 64 grid based on the initial ten timesteps
observations of the vorticity field. The only varying PDE component in this dataset is the viscosity
coefficient, which takes values from the set {1×10−5, 1×10−4, 1×10−3}. We use 1,000 instances

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

for the viscosity value 1× 10−5, 9,800 instances for 1× 10−4, and 1,000 instances for 1× 10−3 to
pre-train or fine-tune our model. The remaining 200 instances are used for testing its performance.
In in-distribution tests, the initial conditions vary across samples.

PDEBench (Takamoto et al., 2022) The following three subsets are derived from
PDEBench (Takamoto et al., 2022), encompassing three distinct equations: the compressible Navier-
Stokes equation (CNS), the diffusion-reaction equation (DR), and the shallow-water equation (SWE).
All datasets considered in PDEBench adhere to periodic boundary conditions. The spatial resolution
of this benchmark is 128× 128.

(1) The compressible Navier-Stokes equation models compressible fluid dynamics, includ-
ing phenomena such as shock wave formation and propagation. In this dataset, two dominant
domain-wise components are considered: the Mach number (M) and shear viscosity (ζ). The
dataset includes four combinations of these components, represented as coefficient pairs (M, ζ):
(1, 0.1), (1, 0.01), (0.1, 0.1), (0.1, 0.01). Each combination provides 9,000 instances for training
and 200 for testing. The task involves predicting the next 11 timesteps of multiple physical
fields—vorticity, pressure, and density—given the initial 10 timesteps of observations. In in-
distribution tests, the initial conditions vary across samples.

(2) The shallow-water equation, derived from the general Navier-Stokes equations, models free-
surface flow problems like coastal tides, storm surges, and shallow lake flows. This equation is
formalized as,

∂th+∇ · (hu) = 0, (8a)

∂t(hu) +∇ ·
(
1

2
hu2 +

1

2
grh

2

)
= −grh∇b. (8b)

where h describes the water depth, b describes a spatially varying bathymetry, gr describes the
gravitational acceleration, and ∇ · (hu) can be interpreted as the directional momentum. A key
characteristic of this dataset is its long prediction horizon. The task of interest is to predict the
future 91 timesteps of water depth based on the first 10 timesteps of observations. In in-distribution
tests, the initial conditions vary across samples.

(3) The 2D Diffusion-Reaction Equation involves two non-linearly coupled variables, namely the
activator u = u(t, x, y) and the inhibitor v = v(t, x, y). It is primarily applicable for modeling
biological pattern formation, such as the development of animal coat patterns, skin pigmentation
and cellular organization. This equation is formalized as,

∂tu = Du∂xxu+Du∂yyu+Ru. (9a)
∂tv = Dv∂xxv +Dv∂yyv +Rv. (9b)

whereDu = 1×10−3 andDv = 5×10−3 are the diffusion coefficient for the activator and inhibitor,
respectively, and Ru = Ru(u, v) and Rv = Rv(u, v) are the corresponding reaction functions for
the activator and inhibitor, which are defined by the Fitzhugh-Nagumo equation as,

Ru(u, v) = u− u3 − k − v, (10a)
Rv(u, v) = u− v, (10b)

where k = 5×10−3. The initial condition is generated as standard normal random noise u(0, x, y) ∼
N (0, 1.0) for x ∈ (−1, 1) and y ∈ (−1, 1). The dataset is temporarily discretized into Nt = 101. A
key characteristic of this dataset is its long prediction horizon. The task of interest is to predict the
future 91 timesteps of u and v given the initial 10 timesteps of observations. In in-distribution tests,
the initial conditions vary across samples.

PDEArena (Gupta & Brandstetter, 2023) This well-established benchmark considers the ve-
locity function formulation of the incompressible Navier-Stokes equations, which is widely used in
real-world applications, such as fluid flow in pipes, aerodynamic simulations, and weather prediction
models. This equation is formalized as,

∂tv = −v · ∇v + µ∇2v −∇p+ f , (11a)
∇ · v = 0. (11b)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

where v · ∇v represents convection, meaning the rate of change of v along its own direction, µ∇2v
is the viscosity, i.e.the diffusion or net movement of v, ∇p corresponds to the internal pressure, and
f represents the external buoyancy force. The inclusion of the incompressibility constraint ∇·u = 0
ensures mass conservation within the equations.

The spatial resolution of PDEArena is 128 × 128. This benchmark includes two subsets: one with
a fixed external force and another with a varied external force. In the fixed-force subset, the initial
conditions vary across samples and the task is to predict the next 4 timesteps of velocity based on
the initial 10 timesteps of observations, with 3,100 samples used for training and 200 samples for
testing. In contrast, the more complex varied-force subset, where the initial conditions and force
terms vary across samples, requires predicting 46 future timesteps, with 6,500 samples for training
and 650 samples for testing.

CFDBench (Luo et al., 2023) We consider three important and representative fluid dynamics
problems that provide a comprehensive evaluation of a method’s ability to generalize to unseen PDE
components. These problems are: (1) flow in a lid-driven cavity, (2) flow through a circular tube,
and (3) flow around a cylinder. The equation is formalized as follows:

∂t(ρu) +∇ · (ρu2) = −∇p+∇ · µ(∇u+∇uT), (12a)
∇ · (ρu) = 0. (12b)

where ρ is the constant density, µ is the dynamic viscosity, u = (u, v)T is the velocity field, and p
is the pressure.

In in-distribution test settings, flows are generated for each problem with different PDE components,
which are a combination of three types: (1) boundary conditions, (2) fluid physical coefficients such
as density and viscosity, and (3) the geometry of the field. The boundary conditions refer to the
inlet velocity or movement velocity, depending on the specific case. Each type of PDE component
corresponds to a distinct subset. In each subset, the corresponding PDE components are varied while
other parameters remain constant. We mix the three subsets following DPOT’s configuration (Hao
et al., 2024), resulting in 9,000 training samples and 1,000 testing samples. The initial resolution is
64 × 64, which is then interpolated to 128 × 128. The task is to predict the next 10 timesteps of
velocity given the first 10 timesteps of observations.

Fine-tuning We also provide fine-tuning results on 2D mixed PDEs in Appendix A. Given the
significant diversity across the 12 subsets, we fine-tune the model using a specific training subset to
allow it to focus on the target subset and achieve improved performance.

G IMPLEMENTATION DETAILS

In this section, we provide a detailed description of the implementation, covering three key aspects:
metrics, implementations for each benchmark and LLM embeddding details.

G.1 LOSS AND METRICS

Relative L2 for physics fields We can calculate the relative L2 distance between ground truth u
and model prediction û as follows:

Relative L2 of (u, û) =
∥u− û∥L2

∥u∥L2

. (13)

where ∥u− û∥L2 is the L2-distance between the predicted solution û and the ground-truth solution
u, and ∥u∥L2 is the L2-norm of the ground-truth solution. Relative L2 is used as both training loss
and evaluation metric.

Relative Promotion Given the error of our model ϵours and the error of the second best model
ϵsecond-best model, we can calculate the relative promotion as follows:

Relative Promotion = 1− ϵours

ϵsecond-best model
. (14)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Relative promotion is widely used in the comparison and analytical experiments across the three
large-scale benchmarks to measure the improvement of the Unisolver relative to the base models.

Relative Drop Given the error of our model ϵours and the error of the ablation model ϵablation model,
we can calculate the relative drop to quantify the extent of performance degradation in the ablation
experiments as follows:

Relative Drop =
ϵablation

ϵours
− 1. (15)

Relative drop is only used in the ablation experiments in Section 4.4 to quantify the performance
loss caused by removing or replacing a specific module.

G.2 IMPLEMENTATIONS FOR EACH BENCHMARK

HeterNS As outlined in Section 4, all the baseline models are trained under the same training
strategy. We train the model using one-step predictions and test the model in an autoregressive
manner. Specifically, all the models are trained for 300 epochs using the relative L2 loss and the
ADAM optimizer (Kingma & Ba, 2015) with an initial learning rate of 0.0005, along with a cosine
annealing learning rate scheduler (Loshchilov & Hutter, 2016). The batch size is set to 60. After the
training process, we use the checkpoint from the last epoch to evaluate the model performance.

We also provide the detailed model architecture hyperparameters in Table 11. We configure each
model to align their model parameter numbers to ensure a fair comparison. Note that for MPP
(2023), We utilize the parameter configuration of the tiny version containing approximately five
million trainable parameters, which is comparable to Unisolver and other baselines.

The varying PDE components in this benchmark include the viscosity coefficient and the external
force. This physics information is provided to each baseline in an explicit or implicit way to ensure a
fair comparison. For FNO (2021a), ViT (2020), Factformer (2023b), and MPP (2023), we explicitly
concatenate the viscosity coefficient and the external force to the model input along the channel
dimension to ensure a fair comparison. As the viscosity coefficient is essentially a scalar, we repeat
it along the spatial dimensions and then perform the channel-concatenating process. ICON (2023)
is a special baseline which takes prompting trajectories as additional inputs to implicitly extract the
physics information. Consequently, instead of providing the PDE components, we augment the input
to ICON with five additional prompting trajectories with the same viscosity and external force as
the target trajectory. Note that ICON also needs additional prompting trajectories when conducting
evaluation. For PINO (2021b), we follow the experiment setting in the original paper and train the
model with physics-informed loss as a soft regularization. The proportion of physics-informed loss
with regard to data loss is set to 0.1.

1D Time-dependent PDEs We compare Unisolver with PDEformer-L in the 1D time-dependent
PDEs benchmark, evaluating their in-distribution test and zero-shot generalization performance. We
also report the model performance after fine-tuning in Appendix A. The pre-training and fine-tuing
configurations for Unisolver and the fine-tuing configurations for PDEformer are listed in Table 12.

Following PDEformer’s training strategies, we train the model to predict the solution at specific
spatial-temporal coordinates through an INR. After the pre-training process, we use the checkpoint
from the last epoch to evaluate the model performance for the in-distribution test and zero-shot
generalization test in Section 4.2. For fine-tuning tasks, we utilize the fine-tuning script provided in
the original repository of PDEformer and set the finetuning epochs to 100 for a fair comparison.

The model we use to compare with PDEformer-L with contains 19M trainable parameters, which is
comparable to the 22M parameters of PDEformer-L. The model scalability experiments in Section
4.4 also show model configurations with different number of trainable parameters. We progressively
increase the Unisolver parameter from 3M to 63M, thus resulting in 4 different model configurations.
We present the detailed configurations of these models in Table 13. Note that in this benchmark,
we utilize an adapted version PolyINR (Singh et al., 2023) to decode the encoder output from the
Transformer backbone.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 11: Model hyperparameters of Unisolver and all baselines on the HeterNS benchmark.

Hyperparameter Value Description
FNO
modes 12 The truncation number of Fourier modes
channels 64 The number of channels in the hidden layers
depth 4 The number of Fourier Layers in the neural network

PINO
modes 12 The truncation number of Fourier modes
channels 64 The number of channels in the hidden layers
depth 4 The number of Fourier Layers in the neural network

ViT
Attention dim 256 The hidden dimension of the transformer attention layer
MLP dim 256 The hidden dimension of the transformer FFN layer
patch size 4 The height and width of the ViT patches
n head 8 The number of attention heads
dim head 32 The hidden dimension of each attention heads
depth 12 The number of Transformer Blocks in the neural network

Factformer
dim 128 hidden dimension of the transformer
n head 12 The number of attention heads
dim head 64 hidden dimension of each attention heads
depth 8 The number of Transformer Blocks in the neural network

ICON
Attention dim 256 The hidden dimension of the transformer attention layer
MLP dim 256 The hidden dimension of the transformer FFN layer
patch size 4 The height and width of the ViT patches
n head 8 The number of attention heads
dim head 32 The hidden dimension of each attention heads
depth 12 The number of Transformer Blocks in the neural network
prompting numbers 5 number of prompting trajectories

MPP
Embed dim 192 Dimension of internal representation
n head 3 The number of attention heads
depth 8 The number of Transformer Blocks in the neural network
patch size 8 The height and width of the ViT patches

Unisolver
Attention dim 256 The hidden dimension of the transformer attention layer
MLP dim 256 The hidden dimension of the transformer FFN layer
patch size 4 The height and width of the Unisolver patches
n head 8 The number of attention heads
dim head 32 The hidden dimension of each attention heads
depth 8 The number of Transformer Blocks in the neural network

2D Mixed PDEs We compare Unisolver with DPOT-S with comparable model parameters in the
2D mixed PDEs benchmark. The training hyperparameter and model configurations are presented
in Table 14. Similar to the HeterNS benchmark, We train the model using one-step predictions and
test the model in an autoregressive manner.

This benchmark includes multiple diverse PDEs, each including its unique PDE components as
illustrated in Appendix F. For example, the viscosity coefficient is the varying PDE components
in the FNO-ν benchmark, while the shallow-water equation does not include this PDE component.
Therefore, we must notice Unisolver whether a PDE component exists in a certain benchmark. To
do so, Specifically, we introduce a binary masking channel to represent the existence of a certain
PDE component. For example, when a PDE component exists in a benchmark, we concatenate an
“1” with this component, indicating that this component is a valid one. When this PDE component

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 12: Pre-training and finetuning configurations on the 1D time-dependent PDE benchmark.

Parameter Value Description
Unisolver Training
batch size 1024 Total batchsize used in one iteration
learning rate 6e-4 The initial learning rate for the optimizer
epochs 500 The total number of training epochs
loss type Relative-l2 Use relative L2-Norm for pretraining
optimizer Adam The optimization algorithm
lr scheduler Cosine Annealing The learning rate scheduler

Unisolver Finetuning
batch size 256 Total batchsize used in one iteration
learning rate 1e-5 The initial learning rate for the optimizer
epochs 100 The total number of training epochs
loss type Relative-l2 Use relative L2-Norm for finetuning
optimizer Adam The optimization algorithm
lr scheduler Cosine Annealing The learning rate scheduler

PDEformer Finetuning
batch size 80 Total batchsize used in one iteration
learning rate 5e-6 The initial learning rate for the optimizer
epochs 100 The total number of training epochs
loss type Relative-l2 Use relative L2-Norm for finetuning
optimizer Adam The optimization algorithm
lr scheduler Cosine Annealing The learning rate scheduler
warmup epochs 10 Epochs to linearly increase the learning rate

Table 13: Model configurations of Unisolver with different sizes.

Parameter Count Attention dim MLP dim Layers (Backbone) Heads Layers (INR)
3M 256 256 6 4 4

10M 384 384 8 8 8
19M 512 512 8 8 8
63M 768 768 12 12 12

does not exist in a benchmark, we concatenate an “0” with it, indicating that this is an invalid one.
While the LLM embedding can provide some indication of this information, it does not serve as the
input to the encoders of other components. This binary mask, however, aids the encoders’ learning
and further clarifies the information without introducing significant computational overhead.

G.3 DETAILS OF THE LLM EMBEDDINGS

Here we give a detailed description of the prompts we use to encode the equation symbols. We
will also discuss the impact of expressing the same PDE using different notations or mathematically
equivalent transformations.

Note that the pre-training dataset of PDEformer (Ye et al., 2024) contains the PDE family following
the formulation:

∂tu+ f0(u) + s(x) + ∂x(f1(u)− κ(x)∂xu) = 0, (x, t) ∈ [−1, 1]× [0, 1] (16)

where fi(u) = ci1u + ci2u
2 + ci3u

3, i = 0, 1. Each cij can be zero or non-zero. The source term
s(x) and the viscosity term κ(x) can be zero, a non-zero constant or a non-uniform function. As
stated in Section 3.2, we use the LaTeX code of the equation as a prompt, and the output from the
last Transformer block of the LLM serves as the symbol embedding of the equation. Table 15 gives
some concrete samples of the LaTex code we use. There are 576 different equation symbols in total
in the PDEformer benchmark.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 14: Training configurations on the 2D mixed PDE benchmark.

Parameter Value Description
Unisolver Training Configurations
batch size 320 Total batchsize used in one iteration
learning rate 1e-3 The initial learning rate for the optimizer
epochs 1000 The total number of training epochs
loss type Relative-l2 Use relative L2-Norm for pretraining
optimizer AdamW The optimization algorithm
lr scheduler OneCycle The learning rate scheduler
warmup epochs 200 Epochs to linearly increase the learning rate

Unisolver Model Configurations
Attention dim 768 The hidden dimension of the transformer attention layer
MLP dim 768 The hidden dimension of the transformer FFN layer
patch size 8 The height and width of the ViT patches
n head 8 The number of attention heads
dim head 96 The hidden dimension of each attention heads
depth 6 The number of Transformer Blocks in the neural network

Table 15: Sample LaTeX codes for different equations used in the PDEformer benchmark.

LaTeX Code of Differential Equations Problem Description
u t + (c {12} * uˆ2) x = 0 Inviscid Burgers Equation

u t + (c {12} * uˆ2 + kappa * u x) x = 0 Viscid Burgers Equation

u t + (c {11} * u) x = 0 Advection Equation

u t + (c {11} * u + kappa * u x) x = 0 Advection-Diffusion Equation

u t + c {01} * u + (kappa * u x) x = 0 Reaction-Diffusion Equation

u t + c {01} * u + c {02} * uˆ2 + (c {12} *
uˆ2 + kappa * u x) x = 0

Fisher-KPP Equation

u t + c {01} * u + c {02} * uˆ2 + c {03} *
uˆ3 + s(x) + (c {11} * u + c {12} * uˆ2 +
c {13} * uˆ3 + kappa(x) * u x) x = 0

More General 1D Equations

Note that a differential equation may have multiple equivalent representations, and different people
may express the same equation differently. A potential solution is to design targeted prompts and
employ advanced prompting techniques, such as chain of thought, to standardize these variations
into a unified form, which is clearly within the capabilities of modern LLMs. This standardized
form can then be used to enhance the learning of the solver.

H ADDITIONAL ANALYSES

H.1 UNSEEN VISCOSITY AND UNSEEN EXTERNAL FORCE ON HETERNS

In addition to Tables 3 and 4, we further assess Unisolver’s generalization on HeterNS compared to
other baselines under more challenging conditions, where both the viscosity coefficient and external
force are unseen. Specifically, we generate nine different component pairs (ν, ω), each with 200
testing samples. Notably, one case features ω = 6 , which significantly exceeds the maximum value
of ω = 3 used during training, making it particularly difficult. The full results are presented in Table
16. Unisolver consistently outperforms all baselines, especially in the most challenging case with
ω = 6, with a relative promotion of 37.1%.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 16: Performance comparison (relative L2) on zero-shot generalization settings with unseen
viscosity (ν) and unseen force (ω). The pairs in the first row are in the form of (ν, ω). For clarity,
the best result is in bold and the second-best is underlined.

L2RE (2e-5, 0.7) (2e-5, 1.7) (2e-5, 2.7) (2e-5, 3.7) (2e-5, 4.7) (4e-5, 0.8) (4e-5, 1.4) (4e-5, 2.3) (4e-5, 6)

FNO 0.1862 0.0640 0.1176 0.2404 0.4226 0.0873 0.1516 0.0655 1.3102
PINO 0.7002 0.2887 0.4776 0.8991 0.9187 0.3793 0.5596 0.3349 0.9634
ViT 0.1961 0.0690 0.1075 0.2057 0.2226 0.0488 0.1305 0.0772 0.2276

Factformer 0.2070 0.0720 0.0891 0.1594 0.1868 0.0892 0.1456 0.0618 0.2465
ICON 0.4729 0.3693 0.5202 0.8719 0.7891 0.2212 0.5112 0.3652 0.9058
MPP 0.4532 0.4029 0.5155 0.8421 0.8484 0.2961 0.4084 0.4801 1.0240

Unisolver 0.0781 0.0378 0.0471 0.1421 0.1364 0.0399 0.0433 0.0374 0.1431
Promotion 58.06% 40.94% 47.71% 10.85% 26.98% 18.24% 66.82% 39.48% 37.13%

Table 17: Ablations with different viscosity coefficient ν and fixed force ω = 2 on the HeterNS on
removing some PDE components (W/o), and replacing domain-wise or point-wise conditions from
our design to directly concat (Concat).

HeterNS
Params

Viscosity In-distribution Test Zero-shot Generalization

ν = 1e-5 ν = 5e-5 ν = 1e-4 ν = 5e-4 ν = 1e-3 ν = 8e-6 ν = 3e-5 ν = 8e-5 ν = 3e-4 ν = 8e-4

W/o viscosity 4.1M 0.0388 0.0127 0.0084 0.0031 0.0015 0.0410 0.0367 0.0099 0.0068 0.0119
W/o force 4.1M 0.0353 0.0123 0.0074 0.0027 0.0017 0.0378 0.0198 0.0086 0.0096 0.0124

Concat viscosity 4.1M 0.0343 0.0107 0.0058 0.0017 0.0011 0.0359 0.0192 0.0071 0.0278 0.0243
Concat force 4.1M 0.0331 0.0103 0.0061 0.0018 0.0010 0.0357 0.0191 0.0071 0.0104 0.0101

Unisolver 4.1M 0.0321 0.0094 0.0051 0.0015 0.0008 0.0336 0.0178 0.0064 0.0066 0.0096

H.2 MORE ABLATION STUDIES ON PDE COMPONENTS AND CONDITIONAL MODELING

In addition to the ablation experiments presented in Table 7, we further conduct ablations on Het-
erNS to assess whether the proposed PDE information set is essential and whether the condition
modeling is effective for the solver’s learning. This is demonstrated by removing specific compo-
nents and replacing Unisolver’s condition modeling with direct concatenation of PDE information.

As shown in Tables 17 and 18, removing the information leads to a significant drop in performance
compared to vanilla Unisolver, and concatenating the information directly also results in a huge
decline. It is worth noting that the absence of external force information or its improper use (e.g. via
direct concatenation) significantly degrades performance even in zero-shot viscosity generalization
tasks, and vice versa, further highlighting the importance of including complete PDE components.
Table 18: Ablations with different force ω and fixed viscosity ν = 10−5 on the HeterNS on removing
some PDE components (W/o), and replacing domain-wise or point-wise conditions from our design
to directly concat (Concat).

HeterNS
Params

Force In-distribution Test Zero-shot Generalization

ω = 1 ω = 2 ω = 3 ω = 0.5 ω = 1.5 ω = 2.5 ω = 3.5

W/o viscosity 4.1M 0.0310 0.0388 0.0926 0.261 0.250 0.258 0.424
W/o force 4.1M 0.0267 0.0353 0.0804 0.553 0.618 0.657 0.913

Concat viscosity 4.1M 0.0265 0.0343 0.0786 0.1267 0.2057 0.2771 0.2689
Concat force 4.1M 0.0259 0.0331 0.0764 0.5386 0.3392 0.2841 0.2753

Unisolver 4.1M 0.0244 0.0321 0.0720 0.0980 0.0770 0.0720 0.1740

H.3 LONG TRAJECTORY PREDICTION

We extend the temporal evolution steps of HeterNS to 30 steps, corresponding to 30 seconds of com-
plex fluid dynamics, and report the zero-shot performance comparison between Unisolver and the

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

baselines in the Table 19. We present the performance on the subdataset with a viscosity coefficient
of ν = 1 × 10−5 and a force coefficient of ω = 2. This is a particularly challenging task, as these
models have never seen such long trajectories in the training data (at most 20 seconds). Despite this,
Unisolver still achieves the best performance compared with the top three baselines.

Table 19: Zero-shot performance comparison (relative L2) with top three baselines about long tra-
jectory prediction tasks (30 seconds) on the HeterNS.

Unisolver FNO ViT Factformer

Relative L2 0.1956 0.3105 0.2527 0.2962

H.4 FULL SCALABILITY

As a supplement to Figure 9 in the main text, we also conduct experiments on different zero-shot
generalization tasks from (Takamoto et al., 2022) and record the concrete data in Table 20 for clarity.

Table 20: Scalability results on in-distribution test sets and zero-shot generalization tasks, as de-
picted in Figure 9.

L2RE Data Scalability (Samples) Model Scalability (Parameters)

Scale 50k 100k 200k 3M 3M 10M 19M 63M

In-distribution test 0.0232 0.0202 0.0170 0.0106 0.0342 0.0226 0.0202 0.0156

Zero-shot Burgers ν = 0.1 0.0161 0.0116 0.0081 0.0051 0.0143 0.0134 0.0116 0.0091
Zero-shot Burgers ν = 0.01 0.0649 0.0412 0.0260 0.0144 0.0552 0.0421 0.0412 0.0351

Zero-shot Burgers ν = 0.001 0.1399 0.1003 0.0689 0.0299 0.1188 0.0976 0.1003 0.0889

H.5 EFFICIENCY ANALYSIS

We provide the inference time and memory consumption for each model to predict a single frame
on the HeterNS dataset, along with the calculation time and memory consumption for the numerical
solver, which is used to generate the HeterNS dataset, to calculate the next frame, as summarized
in the Table 21. The results are measured on an A100 GPU with a batch size of 1. Unisolver
demonstrates comparable inference speed to FNO, while consuming less memory. Besides, all
neural PDE solvers are approximately 1,000 times faster than the numerical solver, highlighting
their potential as efficient surrogate models.
Table 21: Efficiency Analysis. The inference (calculation) time and memory consumption for each
model and numerical solver to predict a single frame on the HeterNS dataset.

FNO PINO ViT Factformer ICON MPP Unisolver Numerical Solver

Average Inference 0.0042 0.0042 0.0045 0.0103 0.0057 0.0120 0.0054 7.26
(Calculation) Time / s

Average Memory 730 730 558 758 784 1200 554 524Usage / MB

H.6 STANDARD DEVIATIONS

We repeat the experiments three times on the HeterNS benchmark and provide standard deviations
here. As shown in Table 22-23, Unisolver surpasses the previous state-of-the-art models with high
confidence. Note that we compare Unisolver with the second-best model, which is a strong baseline
as it is not achieved by a single model. The results demonstrate that Unisolver significantly out-
performs baseline models, with the second-best result falling more than three standard deviations
behind, except in the case of viscosity ν = 8e− 4.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 22: Standard Deviations on the HeterNS benchmark with different viscosity coefficients and
fixed force frequency coefficient ω = 2.

Viscosity ν
In-distribution Test Zero-shot Generalization

ν = 1e-5 ν = 5e-5 ν = 1e-4 ν = 5e-4 ν = 1e-3 ν = 8e-6 ν = 3e-5 ν = 8e-5 ν = 3e-4 ν = 8e-4

Second-best model 0.0432 0.0206 0.0098 0.0018 0.0010 0.0458 0.0353 0.0119 0.0088 0.0081

Unisolver 0.0321 0.0094 0.0051 0.0015 0.0008 0.0336 0.0178 0.0064 0.0066 0.0096
Standard Deviation ±0.0005 ±0.0003 ±0.0001 ±0.0001 ±0.00006 ±0.0008 ±0.0002 ±0.0004 ±0.0007 ±0.00007

Confidence Level 99% 99% 99% 99% 99% 99% 99% 99% 99% /

Table 23: Standard Deviations on the HeterNS benchmark with different force (ω) and fixed viscos-
ity coefficient ν = 2.

Force ω
In-distribution Test Zero-shot Generalization

ω = 1 ω = 2 ω = 3 ω = 0.5 ω = 1.5 ω = 2.5 ω = 3.5

Second-best Model 0.0348 0.0432 0.0982 0.5532 0.1207 0.1240 0.2047

Unisolver 0.0244 0.0321 0.0720 0.0980 0.0770 0.0720 0.1740
Standard Deviation ±0.0003 ±0.0002 ±0.0003 ±0.0015 ±0.0048 ±0.0051 ±0.0021
Confidence Level 99% 99% 99% 99% 99% 99% 99%

H.7 DETAILED COMPUTE RESOURCES

Our models were trained on servers with 32 NVIDIA A100 GPUs, each with 40GB memory. Here
we present the compute resources in terms of GPU hours, where one GPU hour represents the time
spent training on a single A100 GPU for one hour. This metric reflecting the resources required to
reproduce the experimental results are shown in Table 24.

Table 24: Computational costs in GPU hours, measured on NVIDIA A100 GPUs (40 GB memory).

Benchmarks HeterNS 1D Time-dependent PDEs 2D Mixed PDEs

Models FNO Factformer ViT PINO ICON MPP Unisolver Unisolver Unisolver

#GPU hours 12 100 24 12 24 30 24 3000 800

I FULL TRAJECTORY VISUALIZATIONS

To better understand the temporal evolution of the benchmark, we visualize the full trajectory of the
ground truth and Unisolver predictions on HeterNS and 2D mixed PDEs. To further enhance clarity
and provide a more intuitive understanding of these temporal dynamics, we have included videos to
illustrate the trajectories frame by frame. Please refer to the supplementary material for details.

J LIMITATIONS AND FUTURE WORK

This paper presents Unisolver to solve PDEs under universal PDE components, which achieves im-
pressive performance supported by extensive analyses and visualizations. However, our method is
currently limited to grid data due to the patchifying process during the embedding of point-wise com-
ponents. Actually, this limitation is shared in all the generalizable PDE solvers, such as MPP (Mc-
Cabe et al., 2023), Poseidon (Herde et al., 2024), PDEformer (Ye et al., 2024) and DPOT (Hao
et al., 2024). One fundamental reason is the lack of suitable and large-scale irregular-mesh PDE
datasets, which will require extremely high computation costs for generation and massive resources
for collection. Since our primary focus in this paper is on the study of model architecture design
and generalization capabilities, we would like to leave the irregular-mesh PDE dataset as a future
work. Also, the capability to handle irregular meshes of Unisolver can be achieved by replacing the
canonical Transformer with the latest geometry-general PDE solver: Transolver (Wu et al., 2024).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 17: Visualization of the full trajectories in the 2D mixed PDEs, with the names of the subsets
displayed on the right. Ground truth and Unisolver predictions are presented, visually highlighting
the complexity and diversity of the 2D mixed PDEs.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 18: Visualization of the full trajectories in the HeterNS, where all trajectories share the same
initial condition but differ in viscosity (ν) and force (ω) (shown beside each case by the pairs (ν, ω)).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

K FULL PCA VISUALIZATION OF THE LLM EMBEDDINGS

0

1

2

3

4

5

6

Figure 19: Full PCA visualiza-
tion of LLM embeddings (varying
source terms and viscosity terms).
Different colors represent the num-
ber of non-zero coefficients, same
as Figure 7. Further, we highlight
the embeddings related to the Ad-
vection equation in dark green.

Here we present the full visualization of the LLM embeddings
for 1D PDEs. As stated in Appendix F.2, the 1D PDEs con-
tain six coefficients as well as the source term and the vis-
cosity term. For ease of view, the PCA visualization in Fig-
ure 7 contains PDEs with a zero source term and a zero vis-
cosity term only. Figure 19 provides the full PCA visualiza-
tion of the LLM embeddings containing varying source terms
and viscosity terms. The coefficients can be zero or non-zero,
and the source term and the viscosity term can be zero, a non-
zero number or a function. Specifically, the equations sharing
the same coefficients as the Advection equation but with vary-
ing source terms and viscosity terms are highlighted in dark
green, showing that these similar equations are truly encoded
into similar embeddings. The full visualization further illus-
trates how LLM embeddings retain the mathematical structure
of the target PDE family. However, the orthogonal random
vectors in Table 7 and the manually constructed encodings in
Table 8 fail to maintain such a intricate mathematical structure.

31

	Introduction
	Related Work
	Neural PDE Solvers
	Generalizable PDE Solvers

	Unisolver
	Complete PDE Components
	Universal Components Embedding
	PDE-Conditional Transformer

	Experiments
	Heterogeneous 2D Navier-Stokes Equation (HeterNS)
	1D Time-Dependent PDEs
	2D Mixed PDEs
	Model Analysis

	Conclusion
	Fine-tuning Performance
	More Ablations about LLM Embeddings
	More Experiments about Generalizability
	The Benefit of Joint Training
	Equations Generalization via Finetuning

	More Showcases
	Analytical Solution for the String Vibration Equation
	Benchmarks
	HeterNS
	1D Time-dependent PDEs
	2D Mixed PDEs

	Implementation Details
	Loss and Metrics
	Implementations for Each Benchmark
	Details of the LLM embeddings

	Additional Analyses
	Unseen Viscosity and Unseen External Force on HeterNS
	More Ablation Studies on PDE Components and Conditional Modeling
	Long Trajectory Prediction
	Full Scalability
	Efficiency Analysis
	Standard Deviations
	Detailed Compute Resources

	Full Trajectory Visualizations
	Limitations and Future Work
	Full PCA Visualization of the LLM Embeddings

