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Abstract. The lack of a descriptive schema for an RDF dataset has
motivated several research works addressing the problem of automatic
schema discovery. The goal of these approaches is to generate a structural
schema of a given RDF dataset from its instances. However, as new
instances are added, the generated schema may become inconsistent with
the dataset.
In this paper, we propose an incremental schema discovery approach for
massive RDF datasets. It is based on a scalable and incremental density-
based clustering algorithm which propagates the changes occurring in the
dataset into the clusters corresponding to the classes of the schema. Our
approach is implemented using big data technology to scale up schema
discovery while providing a high quality clustering result. We present
some experiments which demonstrate the efficiency of our proposal on
both synthetic and real datasets.

Keywords: Incremental Schema Discovery · RDF Data · Big Data ·
Clustering.

1 Introduction

The Web of data represents a huge information space consisting of an increasing
number of interlinked datasets described using the Resource Description Frame-
work (RDF)1. One important feature of such datasets is that they contain both
the data and the schema describing the data. However, these schema-related
declarations are not mandatory, and are not always provided. As a consequence,
the schema may be incomplete or missing.

The lack of schema offers a high flexibility while creating interlinked datasets,
but can also limit their use. Indeed, it is not obvious to query or explore a dataset
without any knowledge on its resources, classes or properties. The exploitation
of an RDF dataset would be easier with a schema describing the data.

We have proposed in previous works a schema discovery approach suitable
for very large datasets, which relies on a scalable density-based clustering algo-
rithm [3]. It enables fast density-based clustering on large datasets and provides

1 RDF: https://www.w3.org/RDF/



2 R. Bouhamoum et al.

a good quality schema. However, RDF datasets are subject to frequent evolutions
over time, and new instances may be inserted. For example, between version 3.5
and version 3.9 of DBpedia2, the number of triples having the class Person as
their object has been multiplied by 45 [14]. Due to such evolution, the ability to
perform incremental updates on the schema has emerged as a new challenge.

In this work, we introduce an incremental schema discovery approach for
large RDF datasets. Our contribution is an incremental density-based clustering
algorithm for building and updating the clusters that represent the classes of
the schema. Our algorithm incrementally updates the classes describing an RDF
dataset in order to keep the schema consistent with the evolution of the data
and ensures that the result is the same as if the clustering algorithm has been
executed on the whole dataset in one go. In addition, the incremental clustering
process is parallelized to be efficient on large datasets. The source code of the
implementation of our algorithm, based on the distributed processing framework
Apache Spark[18] is available online 3.

The rest of the paper is organized as follows. Section 2 presents the problem
addressed in this paper and provides some preliminary notations. The general
idea of our approach is introduced in section 3. Section 4 presents our data distri-
bution principle. Section 5 describes the computation of the neighborhood of the
newly inserted entities. Section 6 presents the generation of the new schema. Ex-
perimental results are presented in section 7, and section 8 discusses the related
works. Finally, a conclusion is provided in section 9.

2 Problem Statement

An RDF dataset is a set of RDF(S)/OWL triples D ⊆ (R ∪ B) × P × (R ∪
B ∪ L), where R, B, P and L represent resources, blank nodes (anonymous
resources), properties and literals respectively. In such dataset, an entity e is
either a resource or a blank node, that is, e ∈ R∪B. We denote by D the set of
entities of the dataset D. We define a function, denoted , which returns the
set of properties of an entity: e = {p ∈ P | 〈e, p, o〉 ∈ D}. This function can be
extended for a set of entities E ⊆ D: E =

⋃
e∈E e. The dataset D is described

by the schema S, defined as follows.

Definition 1. A schema S describing a dataset D is composed of a set of
classes {C1, . . . , Cn}, where each Ci is described by the set of properties Ci =
{pi1, . . . , pimi}.

Consider that over time, new sets of entities are added incrementally to the
dataset D. The addition of a set of entities denoted ∆D to the dataset D may
result in S to become incoherent with the new dataset D ∪∆D.

To deal with this problem, we make the following assumptions:

1. The dataset D and the newly inserted set of entities ∆D can both be massive.

2 https://www.dbpedia.org/
3 https://github.com/BOUHAMOUM/incremental_sc_dbscan.git

https://github.com/BOUHAMOUM/incremental_sc_dbscan.git
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2. The schema S describing the dataset D has been generated using a density-
based clustering approach. Among the clustering algorithms, our work fo-
cuses on density-based clustering (DBSCAN) [7] which has been used for
schema discovery on RDF data and has provided good results [11,3]. We as-
sume in the present work that the schema is produced using this algorithm.

3. The entities of the dataset are compared using the Jaccard index which is
defined as the size of the intersection of the property sets divided by the size

of their union [10]: ∀ei, ej ∈ D,J(ei, ej) =
|ei∩ej |
|ei∪ej |

Fig. 1: Example of a Set of Entities and the Corresponding Schema

Figure 1 presents a set of entities (figure 1.a) grouped into three clusters
(figure 1.b) using DBSCAN. The similarity threshold ε is set to 0.7 and the
density threshold minPts to 2. The resulting clusters represent the classes of
the schema (figure 1.c).

In this work, our aim is to update the schema S considering the entities within
∆D. In order to update this schema, we have to modify the classes impacted by
the insertion of the new entities, or create new classes when necessary. The
resulting schema after the propagation of updates in the set of existing classes
is a descriptive schema which represents the whole dataset, consisting of both
the initial dataset D and the set of newly inserted entities ∆D.

3 General Approach

We design in this paper an incremental, distributed, density-based clustering
algorithm to extract a schema from large RDF datasets that evolve over time. It
allows to keep the schema coherent with the dataset when new entities are added.
In order to efficiently manage incrementally growing big datasets, the cluster-
ing is restricted to new entities and their neighborhood within the old entities.
Clustering the new entities and updating the clusters within their neighborhoods
ensures providing the same result as executing DBSCAN on the global data [6].

Our approach is composed of three main steps parallelized and implemented
using big data technology. Figure 2 illustrates these different steps.

First, data are split into subsets, called chunks, in order to distribute the
entities over the different processes (see figure 2.a). The chunks contain entities
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Fig. 2: Overview of the Incremental Schema Discovery Approach

sharing some properties and which are likely to be similar. The new entities from
∆D are distributed, then the identifiers of the created chunks are used for the
assignment of old entities from D. This way, all the entities that could be similar
to new ones, whether in D or ∆D, are grouped in at least one chunk.

Second, in parallel on each node, the neighborhood for each new entity is
computed (see figure 2.b). At the end of this step, entities having dense neigh-
borhoods, called core entities, are identified.

Finally, based on the neighborhood of the new entities, the set of clusters is
built locally in each chunk. The clusters produced within each chunk are then
merged to generate the new clusters that represent the classes of the new schema
as illustrated in figure 2.c.

We have implemented our algorithm using Spark [18], a big data technology
offering a fast distributed execution of the approach and allowing to manage
massive datasets. The following sections detail our proposal.

4 Data Distribution Principle for Neighborhood
Computation

Computing the neighborhood of the new entities may require a very high number
of comparisons. We propose to distribute these new entities according to the
distribution principle introduced in [3], where the entities of the dataset are split
into different subsets according to their properties. The comparison of entities is
performed within each chunk in parallel, thus speeding up the clustering process.

The intuition behind our distribution method is to group entities sharing
some properties into chunks to ensure that all the pairs of similar entities will
be detected. Indeed, according to the similarity index, two entities are similar if
they share a number of properties higher than a given threshold. Thus, entities
that could be similar are grouped together in at least one chunk, and will be
compared during the computation of their neighborhood. If two entities are not
grouped in any of the resulting chunks, this means that they are not similar. This
distribution principle allows to skip meaningless comparisons as the similarity
between entities in different chunks is not evaluated.

In this section, we first describe how to split the new dataset into chunks, then
we show how to assign the initial entities to the created chunks by identifying
the ones that could be similar to one of the newly inserted entities.
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4.1 Distributing New Entities Over Chunks

In our incremental algorithm, we distribute the new entities according to the
properties describing them. An entity is distributed according to its properties
over several chunks to ensure that it will be compared to all of its neighbors.
To optimize the distribution of entities in our approach, we do not consider
all the properties of the entities. Thus we limit the duplication of entities in
the different chunks and reduce the cost of the comparison process by skipping
useless comparisons.

To this aim, the notion of prefix-filter is adapted [4]. The intuition behind
this notion is that, to be similar, two sets have to share a sufficient number of
elements. This number of elements depends on the similarity threshold and on
the size of the sets. Moreover, elements must always be chosen in the same order,
and thus a total ordering on the elements has to be defined. This result allows
to filter candidates considering only their prefix.

From this notion, we define a dissimilarity threshold for an entity e as follows:

Definition 2. Let ε be the similarity threshold chosen by the user. The dissim-
ilarity threshold for an entity e is the number dtε(e) = |e| − dε× |e|e+ 1.

This threshold represents the number of properties to consider in order to
decide whether this entity could be similar to any other one. It allows to reduce
the number of entities to be considered when searching for the neighborhood
of a given entity. Note that the dissimilarity threshold as defined in our work
is based on the Jaccard similarity index. Using another index would require to
propose another definition of this threshold based on this index.

As mentioned above, in order to choose the properties for the prefix, we define
a total ordering on the properties.

Definition 3. Let <P be a total order on the properties describing a dataset, e
an entity with e = {p1, p2, . . . , pn} and pi <P pi+1 for 1 ≤ i < n. The compari-
son set of e denoted by cs(e) is the set of properties {p1, p2, . . . , pdtε(e)}.

We will now introduce the definition of a chunk.

Definition 4. A chunk for a property p ∈ P denoted by [p] is a subset of entities
having the property p in their comparison set: [p] = {e | p ∈ cs(e)}.

Previous results about prefix-filter ensure that by comparing only entities
inside chunks, all the comparisons required for the clustering will be performed
at least once [4]. The proof of the correctness of this proposition is provided
in [3]. For example, if ε = 0.7, the entity e′1 described by e′1 = {p1, p5, p8} is
assigned to the chunk [p1] since dt(e′1) = 1 and cs(e′1) = {p1}, and e′2 described
by e′2 = {p1, p3, p5, p8} is assigned to [p1] and [p3] since dt(e′2) = 2 and cs(e′2) =
{p1, p3}. These two entities are similar, they are grouped and compared in [p1].

Algorithm 1 describes the distribution of the new entities over the chunks.
It requires as input the list of new entities and the similarity threshold ε. The
distribution of entities is performed in parallel and defines for each entity the
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Algorithm 1 Distributing new entities

Require: the new dataset ∆D, the similarity threshold ε
1: for all entity e′ in ∆D do in parallel
2: for all property p ∈ cs(e′) do
3: [p] = [p] ∪ {e′}
4: Merge the chunks generated by the parallel execution for the same properties
5: return the chunks

chunks it is assigned to (line 1-3) resulting in partial chunks, which are then
merged to build the final chunks.

Entities of ∆D are distributed over chunks. As they can be in the neighbor-
hood of entities of D, we need to identify which entities of D have to be added
to the generated chunks. This is the focus of the following subsection.

4.2 Assigning Initial Entities to Chunks

As previously stated, the clusters that could be updated due to the insertion of
new entities are those within the neighborhood of the new entities. Thus, the
entities in D that are in the neighborhood of a newly inserted entity have to be
identified. To this end, old entities that share common properties with the new
ones are distributed over the generated chunks. By initial entities, we mean the
entities in the dataset D prior to the addition of ∆D, the set of new entities.

To distribute the entities in D, we first determine which properties have to
be considered: for each entity e ∈ D, we compute its comparison set cs(e) to
select the properties to be considered in order to determine the chunks it will be
assigned to. The entities are assigned to the existing chunks according to their
comparison set. Note that no new chunk is created: old entities are only assigned
to chunks already created during the distribution of the new entities. An old
entity e is assigned to a chunk [p] if p ∈ cs(e) and ∃e′ ∈ ∆D, e

′ ∈ [p]. For example,
suppose that the created chunks are [p1] and [p3]. The old entity e2 described
by e2 = {p1, p2, p3, p4} is assigned to the chunk [p1]. Indeed, cs(e1) = {p1, p2},
however, the chunk [p2] is not created and e1 is only assigned to [p1].

The distribution principle used in this paper ensures that each new entity is
grouped with all its candidate neighbors in D ∪∆D. New entities are compared
with all their candidate similar entities in order to define their neighborhood,
and then the clusters that should be updated or created are identified.

5 Computing the Neighborhood of the New Entities

In order to propagate the insertion of new entities into the existing schema,
we need to compute the neighborhood of the new entities considering both the
newly added entities and the old ones which have been previously assigned to
existing clusters. This section first describes neighborhood computation for each
new entity, then presents the identification of core entities in order to build the
clusters.
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As the chunks contain entities which are likely to be similar, the ε-neighborhood
of a new entity is identified by computing the similarity between this new entity
and all the other ones in the same chunk. We evaluate the similarity between
two entities ei and ej using the Jaccard index.

Definition 5. The ε-neighborhood of an entity e′ is the set of entities similar
to e′ with a threshold of ε: neighborhoodε(e

′) = {e ∈ D ∪∆D | J(e′, e) ≥ ε}

We distinguish between three kinds of entities: core entities with at least
minPts entities in their ε-neighborhood, border entities, that are not core entities
but have at least one core entity in their ε-neighborhood, and noise entities, that
are not core entities and have no core entity in their ε-neighborhood. The latters
are never assigned to a cluster.

The ε-neighborhood is computed for each new entity e′ in each chunk by
comparing e′ to all the entities (new or old) within the same chunk. The ε-
neighborhood is calculated in parallel in the different chunks, independently. The
computation of the ε-neighborhood of the old entities is not required since they
have already been clustered in previous iterations. However, the neighborhood
of an old entity is updated if it is similar to a new entity. Indeed, old entities that
were either border or noise entities can become cores or borders, which would
result in updating the old clusters.

Since the neighborhood of entities can be distributed over different chunks,
the neighbors discovered in each chunk are consolidated, and the list of neighbors
for each entity in the whole dataset is built.

This process leads to the identification of the core entities, from which the
clusters will be initiated; the cores are the entities having a number of neighbors
greater or equal to minPts. The old border and noise entities that are similar
to new ones can become core or border entities; adding new entities to their
ε-neighborhood could make the number of their neighbors higher or equal to
minPts and they will therefore become core entities, or they can be neighbors
of a new core. As a consequence to such change occurring for an old entity, the
clusters existing prior to the insertion of the new entities have to be updated.

Old entities that are not similar to a new one within a chunk are removed
since they will not induce any change on the existing clusters and they will not
be assigned to any new cluster.

6 Generating the New Schema

In order to update the schema, we first modify the clusters locally in the chunks
based on the neighborhood of the new entities. This is performed in parallel
within each chunk, providing the local clusters, which are then processed in
order to determine the ones that have to be merged. Finally, the new schema is
generated by propagating the updates on the old clusters.
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6.1 Updating Clusters in Each Chunk

After adding the set of entities ∆D, three situations may occur: (i) existing
clusters could be updated by adding new elements, (ii) some clusters could be
merged and (iii) new clusters could be created from new core entities.

In a density-based clustering algorithm, the clusters are built according to
the density-reachability principle, introduced by the DBSCAN algorithm [7].

Definition 6. An entity e is density-reachable from an entity e′ wrt. ε and
minPts if there is a chain of entities e1, . . . , ez, e1 = e′, ez = e such that ei+1

is a core entity and ei is in its ε-neighborhood, ∀i ∈ {1, . . . , z-1}.

Based on the core entities, the following change operations can be performed:

– If the ε-neighborhood of a new core e′ ∈ ∆D contains an old core entity e ∈ D
which belongs to an old cluster C, then the entity e′ is assigned to C and C
is also expanded with entities that are density-reachable from e′.

– If a core entity e ∈ D∪∆D has no old core entity in its ε-neighborhood, then
a new cluster is created and the entities that are density-reachable from e
are added to this cluster.

– If the ε-neighborhood of a core entity e ∈ D∪∆D contains two of more old core
entities, which belong to distinct clusters, then these clusters are merged and
the resulting cluster is expanded with the entities that are density-reachable
from e.

– If an old core entity has a new entity which is not a core within its neigh-
borhood, then the corresponding new entity is absorbed by the cluster con-
taining this old core entity.

Note that the number of cores is lower than the total number of entities
within a chunk. Therefore, iterating over the cores instead of all the entities
improves the efficiency of the process.

During this stage, we update the clusters in the neighborhood of the new
entities according to the rules defined above. These rules are executed in parallel
in the different chunks based on the neighborhood of the entities. Updating the
clusters in each chunk is performed considering similar entities within this chunk,
providing local clusters.

Algorithm 2 describes the update of the set of clusters within each chunk.
It iterates over each core entity within the chunks (line 3); these core entities
could be new entities or old ones that have a newly inserted entity in their
neighborhood. Then, the algorithm identifies the cluster of the current core in
order to expand it (line 6-7) or create a new cluster for this core (line 9), and
the cluster is expanded by adding the neighbors of the core (line 10). Next,
the algorithm identifies among the added neighbors, those which are cores (line
11), and adds their neighbors to the cluster if they do not belong to any other
cluster (line 12-13). If the created cluster C contains a core entity that belongs
to another cluster C ′, then these two clusters are merged (line 15-16).

At the end of this stage, clusters are produced in each chunk. The next section
describes the process of building the final clustering result.
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Algorithm 2 New Local Clusters

Require: CH: the chunks, Cores: the new core entities
1: for all [p] ∈ CH do in parallel
2: is-visited = ∅
3: for all e ∈ Cores do
4: if e 6∈ is-visited then
5: is-visited = isVisited ∪ {e}
6: if e.cluster 6= null then
7: C = e.cluster
8: else
9: Create a new cluster C = {e}

10: C = C ∪ neighborhoodε(e)
11: for all e′ ∈ C | e′ ∈ cores and e′ 6∈ is-visited do
12: if e′.cluster = null then
13: C = C ∪ {e′} ∪ neighborhoodε(e′)
14: else
15: c′ = e′.cluster
16: c = c ∪ c′
17: local-clusters = local-clusters ∪ C′

18: return local-clusters

6.2 Generating the Final Clusters

Due to data distribution, some clusters may span across multiple chunks. First,
the clusters updated independently within the chunks could have elements dis-
tributed into different chunks. These clusters share some core entities and will
therefore be merged. Second, the clustered entities are either new entities or old
entities in the neighborhood of new ones. In order to provide the final result,
the updates performed on the clusters have to be propagated in the old entities
which have not been distributed in the chunks and have not been considered
during the clustering.

In this section, we first describe the identification of the clusters that span
across several chunks, and the way the corresponding local clusters are merged.
This process is executed on one computing node and is not parallelized. Then,
we present the generation of the new schema according to the computed clusters.

According to the density-based clustering algorithm, an entity e is assigned
to a cluster C if e is density-reachable from a core entity in C. If this same
entity e is also in another local cluster C ′, e is also density-reachable from a
core entity in C ′. If e is a core, it represents a bridge between the entities in
the clusters C and C ′, making them density-reachable. The clusters that span
across several chunks are therefore identified by finding out the local clusters that
share a common core entity within the newly inserted entities. These clusters
are merged to produce the final result. For example, the clusters Cp1.1 and Cp3.1
produced respectively within the chunks [p1] and [p3], are merged if they share
a common core entity e′1. The border entities assigned to different clusters are
randomly assigned to one of these clusters.
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After producing the final clusters representing the new entities and their
neighborhood, this result is propagated in the old clusters to construct the new
schema. The old clusters to consider at this stage are those which have been
merged as a consequence of the insertion of a new core in their neighborhood.
The entities previously assigned to these old clusters should therefore be re-
assigned to the new cluster resulting from the merging.

If two old clusters Ci and Cj are merged to produce a new cluster C ′, all
the elements of these clusters should be assigned to C ′. However, not all the
old entities are distributed over the chunks. We therefore need to change the
assignment of old entities which have not been distributed in the chunks and
which belong to clusters that have been merged into a new one.

Finally, all the entities that are not assigned to a cluster, are considered as
noise.

Fig. 3: Updating the Schema after the Insertion of New Entities

Figure 3 presents the updates on the classes introduced in figure 1 following
the insertion of a set of new entities. For instance, the set of properties describing
class1 has been updated in order to represent the new entity e′6 within the
corresponding cluster C1. The classes Class2 and Class3 are merged into Class′2
since the corresponding clusters C2 and C3 have a common core e′7 that is similar
to one of their entities, e4 and e9 respectively. Additionally, new classes (class′2
and class′3) are created, representing the newly generated clusters.

This process provides the final clusters, ensuring that they are the same as
the ones a sequential DBSCAN algorithm would have generated if executed on
the global dataset in one batch.

7 Experimental Evaluations

As previously explained, clustering a dataset using our incremental approach
provides the same result as clustering the dataset with the DBSCAN algorithm
in one batch. This feature of our approach is important since it ensures the
good quality of the extracted schema when using DBSCAN for clustering RDF
datasets, which has been shown in previous works [11,3].

In this paper, our experiments are therefore focused on the performances
of our approach when applied to large evolving datasets. In our experiments,
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we evaluate the efficiency of our incremental clustering algorithm compared to
the scalable DBSCAN proposed in [3], and derive the speed-up factor when
using our incremental approach to reflect the insertion of sets of entities in the
clustering result instead of using the scalable DBSCAN algorithm on the dataset
composed of the old entities and the newly inserted ones. Both algorithms rely
on the Apache Spark 2.0 framework. We have used our implementation of the
scalable DBSCAN algorithm, available online4.

Each time a set of entities ∆D is added to the initial dataset D, we evaluate
the execution time needed by our incremental algorithm to update the clustering
result obtained on D so as to reflect the insertion of ∆D. The execution time of
this scenario is compared to the execution time needed by the scalable DBSCAN
algorithm in order to cluster the dataset composed of both the initial dataset
and the inserted set of entities, i.e. D ∪∆D.

First, we have used a synthetic multidimensional dataset of 4 million enti-
ties, generated using ”IBM Quest Synthetic Data Generator” 5. In our context,
the generator produces the properties of each entity that will be used in our
experiments. Second, as the complexity of our incremental approach depends
on the number of inserted entities, we have therefore evaluated the incremental
algorithm by inserting sets of entities of different sizes. Finally, we illustrate the
efficiency of our approach on real datasets. To this end, we apply our approach on
1.2 million entities extracted from DBpedia6 [1]. All the experiments have been
conducted on a cluster running Ubuntu Linux consisting of 5 nodes (1 master
and 4 slaves), each one equipped with 30 GB of RAM and a 12-core CPU.

We have first evaluated the scalability of our approach and compared it to
the scalable DBSCAN algorithm using several synthetic datasets where we have
added datasets of different sizes. Figures 4a, 4b and 4c show both algorithms’
runtime as a function of the dataset size. The scalable DBSCAN takes as input
the global dataset while the incremental algorithm takes as input the clusters of
the previous execution and the newly inserted entities.

The results show that clustering a small dataset is faster using the scalable
DBSCAN than using the incremental DBSCAN. This is due to the fact that
clustering a small number of entities is very fast and requires a few seconds (22
seconds to clusters 200k entities). Besides, the incremental algorithm executes
extra operations such as the assignment of old entities and the union of the result
produced by this assignment with the chunks created during the distribution
of the new entities, which makes it slower on small datasets compared to the
scalable algorithm.

However, when the number of entities is higher, clustering a dataset using
the incremental DBSCAN algorithm is faster. This is due to the fact that the
clustering is applied on new entities and their neighborhoods, which counterbal-
ances the extra operations, while the scalable DBSCAN algorithm has to build
the clusters by computing the neighborhood of all the entities, which is a more

4 https://github.com/BOUHAMOUM/SC-DBSCAN
5 IBM QSDG: https://sourceforge.net/projects/ibmquestdatagen/
6 http://downloads.dbpedia.org/3.9/

https://github.com/BOUHAMOUM/SC-DBSCAN
http://downloads.dbpedia.org/3.9/
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Fig. 4: Incremental vs. Sequential Scalable Algorithm

expensive operation. In addition, the incremental approach produces a lower
number of new clusters compared to the scalable algorithm. Thus, when merg-
ing the clusters determined within each chunk, a process which is executed in
one node, the incremental algorithm has to deal with a lower number of clusters
which makes it faster.

We can observe that the bigger the dataset, the larger the gap between the
execution time of both algorithms, and the higher the gain achieved by the
incremental approach.

Since the complexity of the incremental algorithm is defined by the number
of new entities and their neighborhood, we have experimented the insertion of
sets of entities ∆D of different sizes. The results show that the advantage of the
incremental algorithm compared to the scalable DBSCAN is noticed at different
levels according to the size of the added set of entities. The smaller the sets of
added entities, the faster the clustering using the incremental algorithm. In our
experiments, when adding 200k entities at each step, the incremental algorithm
becomes faster than the scalable algorithm when the whole dataset reaches the
size of 1.6M entities, while when adding 20k at each step, it becomes faster when
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the dataset reaches the size of 140k entities (figure 4b). When the size of the
inserted datasets is smaller, the gain achieved by the incremental algorithm is
more important, as shown in figure 4c after the second insertion. These results are
explained by the fact that the incremental algorithm generates the clusters only
for the new entities and their neighborhood. It does not take into consideration
all the dataset. The smaller the inserted set of entities, the fewer the number of
entities which have to be managed by the algorithm, which makes its execution
faster.

Finally, we have evaluated the efficiency of our approach on real datasets. Fig-
ure 5 illustrates the ability of our incremental algorithm to cluster real datasets,
such as DBpedia, a large RDF source from which we have extracted more than
1.2 million entities. Similar to the evaluations on the synthetic datasets, we have
added in each insertion to the initial dataset D, a set of entities ∆D containing
100k entities. Then the execution time of the incremental algorithm is compared
to the scalable DBSCAN when executed on the entire dataset.
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Fig. 5: Clustering a Subset of DBpedia

This evaluation shows that the incremental algorithm overcomes the scalable
algorithm in terms of performances. In addition, entities in DBpedia have a
high number of properties; some entities have more than 600 properties. As a
consequence, the scalable algorithm creates big sized chunks; this has a negative
impact on its performances because it reaches the calculation’s limit of the cluster
when computing the ε−neighborhood of the entities, as we notice on the dataset
having 1 million entities. However, the incremental algorithm is not impacted by
entities having a high number of properties since it manages in each clustering
only a limited subset of the dataset and computes the ε-neighborhood for the
new entities only.
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8 Related Work

Several approaches have been proposed for schema discovery in RDF datasets.
Some of them use clustering algorithms to group similar entities in order to form
the classes of the schema [5,11]. Other approaches have used frequent pattern
mining algorithms to find the most frequent properties describing the schema
[17]. However, these approaches have not dealt with scalability issues, and do
not scale to process large datasets.

To manage the incrementality issues, the approach presented in [11] proposes
a supervised learning step in order to define the type of a new incoming entity, by
introducing the concept of fictive entity representing a class, and by comparing a
new entity to each fictive entity to determine its type. However, the goal of this
approach is to assign an existing type to an instance, and it does not generate
new types.

Some approaches have specifically addressed the scalability of schema dis-
covery, providing algorithms capable of managing large datasets, implemented
using big data technology such as Hadoop or Spark. However, unlike our ap-
proach, these algorithms rely on type declarations to group entities into classes,
and then provide a representative schema to help understand the data [2,15].
Such approaches can not be used when these declarations are not provided. To
the best of our knowledge, there is no proposal addressing schema discovery
for massive RDF datasets without the assumption that type declarations are
provided in the dataset.

Our clustering algorithm is inspired by DBSCAN, which is well suited to the
requirements of RDF datasets, mainly because it provides clusters of arbitrary
shape, which is important in our context where entities of the same type can
be described by heterogeneous property sets. However, the main weakness of
DBSCAN is its computational complexity which is O(n2), where n is the number
of entities.

Many works have proposed scalable DBSCAN algorithms by parallelizing
their execution, such as [16,12,9], but these approaches are not incremental.
Using these algorithms on an evolving dataset would require repeating their
execution on the global dataset after each insertion.

Some approaches have proposed an incremental version of DBSCAN. In [6],
the neighborhood of an inserted or deleted entity is computed and some rules
are proposed in order to update the corresponding clusters. However, this ap-
proach processes one entity at a time. In addition, updating the clusters after
the insertion of an entity requires its comparison with the entire dataset, which
is a costly operation. [13] proposes to enhance the previous approach by limit-
ing the search space during the neighborhood computation. The dataset is split
into partitions based on partition centers, and a new entity is assigned to the
partition with the closest center. The neighborhood of the new entity is com-
puted within this partition only. However, defining a center in an RDF dataset
is not straightforward. In addition, partitioning data based on centers does not
ensure that the result is the same as the one of the DBSCAN algorithm, which
could decrease the quality of the clustering. RT-DBSCAN [8] proposes to define



Incremental Schema Discovery at Scalefor RDF Data 15

the ((minPts-1) × ε)-neighborhood of the new inserted entity and to perform
the clustering in this region using DBSCAN. It parallelizes the execution of the
approach by dividing the dataset into cells where the incremental algorithm is
executed in parallel, then the clusters produced for each cell are merged to build
the final clustering result. This algorithm is implemented using Spark streaming.
However, this approach is designed for data represented in a 2D space and is not
suitable for RDF data.

9 Conclusion

In this work, we have addressed the problem of incremental evolution of the
schema of large RDF datasets as new entities are inserted.

We have proposed a novel incremental density-based clustering algorithm
which scales up the schema discovery process, making it effective for very large
RDF datasets. It builds the clusters which group similar entities by updating
the existing clusters or creating new ones according to the neighborhood of
the newly inserted entities, and ensures that the resulting set of clusters is the
same as the one generated using DBSCAN on the global dataset. The clusters
produced by our approach represent the classes of the schema, which capture
the structure of the entities contained within an RDF dataset. Our proposal has
been implemented using Spark, which has enabled the clustering of large RDF
datasets. The performed experiments have shown that incrementally extracting
a schema from an RDF dataset using our approach outperforms the existing
scalable schema discovery approach using scalable DBSCAN when applied on
the global dataset, with both synthetic and real data.

In our future works, we will explore the possible ways of enriching the set
of classes provided by our approach, by generating the semantic links between
these classes as well as providing some semantic annotations. Besides, as some
schema-related declarations could be available in the dataset, another possible
way of improving our approach is to extend our algorithms in order to exploit
partially available schema-related declarations to guide the discovery process,
which could improve significantly the quality of the resulting schema.
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