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Abstract

Multi-armed bandit (MAB) is a widely adopted framework for sequential decision-
making under uncertainty. Traditional bandit algorithms rely solely on online data,
which tends to be scarce as it must be gathered during the online phase when
the arms are actively pulled. However, in many practical settings, rich auxiliary
data, such as covariates of past users, is available prior to deploying any arms.
We introduce a new setting for MAB where pre-trained machine learning (ML)
models are applied to convert side information and historical data into surrogate
rewards. A prominent feature of this setting is that the surrogate rewards may
exhibit substantial bias, as true reward data is typically unavailable in the offline
phase, forcing ML predictions to heavily rely on extrapolation. To address the issue,
we propose the Machine Learning-Assisted Upper Confidence Bound (MLA-UCB)
algorithm, which can be applied to any reward prediction model and any form
of auxiliary data. When the predicted and true rewards are jointly Gaussian, it
provably improves the cumulative regret, provided that the correlation is non-zero –
even in cases where the mean surrogate reward completely misaligns with the true
mean rewards. Notably, our method requires no prior knowledge of the covariance
matrix between true and surrogate rewards.

1 Introduction

The multi-armed bandit (MAB) framework is a widely adopted framework for sequential and
interactive decision-making under incomplete information. In the MAB setting, a decision maker
interacts with an unknown environment by sequentially selecting from a pre-specified set of actions
(a.k.a. pulling arms). Each selected action yields a random reward from an action-dependent
distribution that is unknown to the decision maker. A common objective is to choose actions to
maximize cumulative rewards over time or to minimize cumulative regret. It is widely used in real-
world applications, such as identifying effective treatments in clinical trials [17, 5] and optimizing
recommendations in real time for online platforms [12, 8, 15].

Despite the appealing theoretical guarantees, most existing algorithms, such as the upper confidence
bound (UCB) algorithm [4] and the Thompson sampling algorithm [1, 13], operate solely in the online
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phase where the decision maker is actively pulling arms, without taking advantage of offline/historical
data that is prevalent in practice. Although rewards are not directly observable in the offline phase
before an arm is pulled, other variables may be informative about the reward distributions. To extract
information, we can leverage machine learning algorithms, including pre-trained AI models like large
language models (LLMs), to convert these offline variables into surrogate rewards. If ML-generated
surrogate rewards are correlated with unrealized true rewards through the input to the ML model, they
have the potential to reduce regret even in the early stage by increasing the effective number of pulls.

However, directly using the ML-generated surrogate rewards as a replacement for the true rewards is
often unreliable, as they may contain bias and not preserve the ranking of the true mean rewards. To
safely exploit the information from surrogate rewards without being potentially hurt by the bias, we
propose the Machine Learning-Assisted Upper Confidence Bound (MLA-UCB) algorithm, which
combines the online true rewards with ML-generated surrogate rewards for both offline and online
units. MLA-UCB integrates the prediction-powered inference (PPI) approach [2, 3] to improve
estimation precision of mean rewards for each arm by leveraging the surrogate rewards. Algorithmi-
cally, unlike most UCB algorithms, our MLA-UCB algorithm does not require the knowledge of the
variance, or the sub-Gaussian parameter, of the true or surrogate rewards.

Under the assumption that the true and surrogate rewards are bivariate Gaussian, with an arbitrary
unknown mean and covariance matrix, we derive a theoretical upper bound on the cumulative regret.
The bound is never worse than the regret lower bound for MAB problems without surrogate rewards
and strictly improves upon it when the correlation between surrogate and true rewards is non-zero for
any suboptimal arm. In particular, the surrogate rewards is allowed to have arbitrarily large bias – the
regret reduction is achieved through variance reduction instead of direct data aggregation. Even when
the correlations are all zero, our regret bound strictly outperforms the best available UCB algorithm
[9] at the second order in MAB problems with unknown reward variance and no surrogate rewards.

2 Preliminaries

2.1 Standard MAB setting

In an MAB problem, there are K arms (each corresponds to an action), index by k = 1, · · · ,K. We
denote by nk,t the total number of pulls for arm k right before any arm is pulled at time t. Pulling
arm k at time t yields a random reward Rk,nk,t+1, which is assumed to be drawn independently from
some distribution PRk

with mean µk. When no confusion can arise, we may use the notation Rt to
represent the reward observed in time t without specifying the arm being pulled. For each time step,
an algorithm specifies a decision At ∈ [K] based on the history (A1, R1, A2, R2, · · · , At−1, Rt−1).
The objective is to maximize the cumulative reward or minimize the cumulative regret over a time
horizon T , defined as RegT =

∑T
t=1 (µ

⋆ − µAt
) , where µ⋆ = maxk µk is the mean reward of the

optimal arm. In particular, we assume that the distribution of each arm is fixed ahead, and there is no
ties between arms, meaning that µi ̸= µj if i ̸= j. We also define k⋆ = argmaxk µk as the optimal
arm and ∆k = µ⋆ − µk as the sub-optimality gap of each arm k.

In this paper, we primarily focus on the Gaussian bandit setting, where the distribution PRk
is

Gaussian, and the mean and variance are unknown to the decision maker. For this setting, [9] proposed
the asymptotically optimal algorithm based on the upper confidence bound (UCB) algorithm [11]
that achieves the following regret bound for any T ≥ 3K:

E[RegT] ≤
∑
k ̸=k⋆

2∆k log T

log
(
1 +

∆2
k

σ2
k

) +O((log T )3/4 log log T ). (1)

We set this optimal algorithm as the baseline to compare with, and refer as the classical UCB
algorithm thereafter.

2.2 MAB with surrogate rewards

We formally introduce the setting of MAB with surrogate rewards. In the online phase, if the arm k is
pulled for the s-th time, the decision maker can observe a surrogate reward R̂k,s alongside a true re-
ward Rk,s as in the standard MAB setting. In the offline phase, the decision maker has access to a static
pool of surrogate rewards {R̂off

k,s}
Nk
s=1 for arm k. We assume that R̂off

k,1, . . . , R̂
off

k,Nk
, R̂k,1, R̂k,2, . . . are
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independent and identically distributed (i.i.d.). As discussed in Section 1, the surrogate rewards can
be generated by ML models. For example, if a feature vector Xoff

k,s and Xk,s is available for each unit
during both the offline and online phases, a predictive model fk can be applied to produce surrogate
rewards R̂off

k,s = fk(X
off

k,s) and R̂k,s = fk(Xk,s). Here, fk may be trained using historical data or be
a pre-trained AI model.

For regret analysis, we assume that the true and surrogate rewards are bivariate Gaussian with
unknown mean and covariance matrix:(

Rk,s

R̂k,s

)
∼ N

((
µk

µ̃k

)
,

(
σ2
k ρkσkσ̃k

ρkσkσ̃k σ̃2
k

))
, ∀s = 1, 2, · · · . (2)

Here, σ2
k and σ̃2

k are the variances of the true reward and prediction, and ρk is the correlation
coefficient measuring the quality of the ML model. Importantly, we allow the means µk and µ̃k to be
arbitrarily different. Moreover, unlike [7], we do not even require access to any partial knowledge of
the bias µ̃k − µk. Therefore, to effectively leverage the correlation between the true and surrogate
rewards, it is crucial to jointly observe both of them in the online phase. This marks a departure from
prior work on MAB with offline data [14, 6, 18, 7], where auxiliary information is available only
during the offline phase.

3 MLA-UCB: Algorithm and Regret Analysis

3.1 Machine learning-assisted mean estimator

The core building block of the UCB algorithm is the estimation of the mean reward for each arm.
With surrogate rewards, we can apply the debiasing technique to reduce the variance of the sample
average. We define the machine learning-assisted mean estimator for the mean reward µk of arm k as

µ̂MLA

k,t =
1

nk,t

nk,t∑
s=1

Rk,s − λ̂k,t

(
1

nk,t

nk,t∑
s=1

R̂k,s −
1

Nk

Nk∑
s=1

R̂off

k,s

)
. (3)

where

λ̂k,t =
Nk

nk,t +Nk

Ĉov(Rk, R̂k)

V̂ar(R̂k)
, (4)

and Ĉov(Rk, R̂k), V̂ar(R̂k) are the corresponding sample covariance computed on {Rk,s, R̂k,s}nk.t
s=1 .

The expression of (3) is motivated by the PPI++ method [3]. For any non-random λ̂k,t, µ̂MLA

k,t is an
unbiased estimate of µk as surrogate rewards are i.i.d. across both the offline and online phases. When
λ̂k,t = 1, the estimator can be written as ( 1

nk,t

∑nk,t

s=1 Rk,s − 1
nk,t

∑nk,t

s=1 R̂k,s) +
1
Nk

∑Nk

s=1 R̂
off

k,s,
where the last term is the biased offline estimate of µk and the difference of the first two terms can be
viewed as a bias estimate. The choice of λ̂k,t in (4) is the plug-in estimate of the variance minimizer –
it ensures that the µ̂MLA

k,t is no worse than the sample mean estimator.

3.2 MLA-UCB algorithm and regret analysis

We introduce our MLA-UCB algorithm in Algorithm 1. As with the standard UCB algorithm, the
MLA-UCB algorithm pulls the arm with the largest upper confidence bound defined in (16). To kick
off the process with an initial variance estimate, we need to pull each arm four times. After the initial
pulls, the significance level is set at 1

2t
√
log t

at time t. Note that the algorithm of [16] can be viewed
as a special case of MLA-UCB when Nk = ∞, except that it uses a smaller significance level 1/t2,
which may lead to suboptimal performance.

Next, we analyze the regret of the MLA-UCB algorithm. Intuitively, reducing the variance of the
mean reward estimate results in a sharper regret bound. The formal result is presented in the following
theorem.

Theorem 1. Under the Gaussian reward model (2), for any T ≥ 4K, if offline sample size satisfies
Nk ≥ 1

δk

(
2 log T/log

(
1 +

∆2
k

24σ2
k

)
+ 3
)
,∀k ∈ [K], then the expected regret of Algorithm 1 can be

3



ALGORITHM 1: Machine Learning-Assisted Upper Confidence Bound (MLA-UCB)
Initialization: Pull each arm four times.
for t = 4K + 1 to T do

Compute the machine learning-assisted mean estimator µ̂MLA

k,t for each arm.
Compute the variance estimate Zk,t, σ̂

2
R,k,t, σ̂

2
ϵ,k,t for each arm.

Pull the arm

At = argmax
k

µ̂MLA

k,t + qnk,t−2

(
1

2t
√
log t

)√ σ̂2
R,k,t

nk,t +Nk
+

√
Zk,tσ̂2

ϵ,k,t

nk,t

 .

end for

bounded by:

E[RegT] ≤
∑
k ̸=k⋆

2∆k log T

log

(
1 +

∆2
k

σ2
k

1

(
√

1−ρ2
k+

√
δk)2

) +O
(
(log T )2/3

)
.

(5)

Compared to the regret bound of the classical UCB algorithm in (1), the regret bound in (5) has an
extra factor of (

√
1− ρ2k +

√
δk)

2 multiplied by the reward variance σ2
k on the first term. In the

following corollary, we further show that the factor can be reduced to (1 − ρ2k) as long as Nk is
poly-logarithmic in T .

Corollary 1. Under the Gaussian data generation model (2), if Nk = Ω((log T )5/3),∀k ∈ [K],
then the expected regret of Algorithm 1 can be bounded by:

E[RegT] ≤
∑
k ̸=k⋆

2∆k log T

log
(
1 +

∆2
k

σ2
k(1−ρ2

k)

) +O
(
(log T )2/3

)
. (6)

We highlight a few implications of Corollary 1:

1. If ρk = 1,∀k = 1, · · · ,K, the surrogate rewards are unbiased, yielding effectively Nk

additional reward observations for each arm. As Nk grows, the leading term in the regret
vanishes, even though the MLA-UCB algorithm is agnostic to the high quality of the
surrogates.

2. If ρk = 0,∀k = 1, · · · ,K, the predictions are independent of the true rewards under the
Gaussian model (2) and hence provide no information. In this scenario, the regret bound
(6) of MLA-UCB matches the leading term of the regret bound (1), which is known to be
asymptotically optimal [11].

3. In the general case, if ρk are neither all 1s nor all 0s, the predictions are informative but
are not perfect to infer the true reward. In this case, the regret of our MLA-UCB algorithm
interpolates the two extreme cases, without prior knowledge of the bias or the correlation.

4 Conclusion

In this paper, we introduce the setting of MAB with surrogate rewards and explain how ML and AI
models can be applied to convert side information into surrogate rewards to assist online decision-
making. Within this framework, we develop the MLA-UCB algorithm that provably outperforms the
optimal regret bound achievable without surrogate rewards under Gaussian rewards – even when the
surrogate rewards have arbitrarily large bias and the amount of offline data is limited. Furthermore,
MLA-UCB does not require knowledge of the variance of and correlation between true and surrogate
rewards.
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A Numerical Simulations

In this section, we conduct numerical simulations to evaluate the performance of our MLA-UCB
algorithm and compare it with the standard UCB algorithm without surrogate rewards. In Section A.1,
we directly simulate surrogate rewards from the Gaussian model (2). In Section A.2, we simulate
individual feature vectors and apply actual ML algorithms to produce surrogate rewards. While these
surrogate rewards are typically non-Gaussian, meaning that our theory does not strictly apply, we
nonetheless observe a sizable reduction in regret.

A.1 Non-ML generated Gaussian surrogate rewards

We simulate a multi-arm bandit model with K = 5 arms and time horizon T = 1000. The
true and surrogate rewards from a bivariate Gaussian distribution (2) with the mean of true rewards
[∆, 0, 0, 0, 0] for some ∆ > 0 and the mean of surrogate rewards [0, 0.25, 0.5, 0.75, 1]. For simplicity,
we set the correlation ρk = ρ and offline sample size Nk = N to be equal across arms. We vary the
values of ρ,N,∆ in different ranges and compare the cumulative regret of MLA-UCB to the UCB
algorithm [9]. Each experiment is repeated 100 times to report the average cumulative regrets. The
experimental results are shown in Figure 1.
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Figure 1: Cumulative regret of the MLA-UCB algorithm (Algorithm 1) and the classical UCB
algorithm) under a Gaussian model. For Figure 1a to 1c, we report the final cumulative regret at
T = 1000 steps. For Figure 1d, we choose ρ2 = 0.5,∆ = 0.5, N = 100.

From Figure 1, we observe that the MLA-UCB algorithm can significantly improve upon the classical
UCB algorithm under various settings. In particular, Figure 1a demonstrates that as the number
of offline predictions N grows, the cumulative regret decreases and finally converges to a limit
determined by the correlation ρk. For this experiment setting, collecting around N = 1000 offline
predictions for each arm is enough to reach the optimal regret. Figure 1b illustrates that as ρ grows,
the cumulative regret decays approximately linearly in ρ2. In particular, we observe that as long as
N ≥ 2000, the MLA-UCB algorithm can improve upon the baseline UCB algorithm under any ρ2k
above 0.1. Figure 1c illustrates the behavior of regret w.r.t. the gap ∆, it shows that our algorithm
can provide significant improvement when ∆ is relatively large. In Figure 1d, we demonstrate that
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the shape of the cumulative regret curve of the MLA-UCB algorithm is similar to the UCB algorithm,
and it is shrunk towards 0 due to the variance reduction. Overall, it confirms that the MLA-UCB
algorithm improves cumulative regret in various settings.

A.2 ML-generated non-Gaussian surrogate rewards

Next, we generate surrogate rewards from actual ML models. We consider the following reward
generation process:

Rk = sin(wk,1x
2
1 + wk,2x

2
2) + ϵ,

where x = (x1, x2)
⊤ is the feature vector, wk = (wk,1, wk,2) is the arm-specific weight parameter,

ϵ is the random noise. The features are assumed to be only visible when generating the predictions
and we do not use them directly to make decisions. We generate X ∼ N (0, I2) and ϵ ∼ N (0, σ2),
due to the square and sine operation, the dependency of Rk on the x are highly nonlinear and hence
its distribution is different from a Gaussian distribution.
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Figure 2: The conditional expectation and distribution of the true rewards. The true reward is
generated using wk,1 = wk,2 = 1 and σ = 0.1. The reward function is highly nonlinear and the
reward distribution is different from the Gaussian distribution.

We consider using four different ML algorithms in MLA-UCB to predict the reward for each arm
based on the features: (1) linear regression, (2) support vector regression (SVR), (3) two-layer neural
networks, and (4) decision trees. For each arm, we train an individual model to fit its reward. The
correlation of predictions with the true reward of each model is summarized in Table 1, and the
experimental results of the MLA-UCB algorithm using these predictions are shown in Figure 3.

Average ρ2k Linear Regression Support Vector Regression Neural Nets Decision Tree
σ = 0 0.002 0.662 0.675 0.849
σ = 0.2 0.002 0.571 0.572 0.655
σ = 0.4 0.002 0.390 0.402 0.314
σ = 0.6 0.002 0.248 0.276 0.157

Table 1: Average ρ2k between predictions and true rewards among all arms.

From Figure 3, we observe that the MLA-UCB algorithm can effectively reduce the cumulative
regret for predictions from various ML models, even if the Gaussianity assumption (2)does not
hold. The regret reduction is more significant with better prediction models in terms of their ρ2k,
while the exact relationship is more complicated than the experiments in Section A.1 since the
correlation differs between arms. In particular, we found that although linear models fail to make
meaningful predictions since the underlying function is highly nonlinear, the algorithm can still
achieve comparable performance to the classical UCB algorithm. Overall, these experiments confirm
that our algorithm can improve upon the classical UCB algorithm in various settings.

B Proof

In this section, we provide the proof for the regret analysis in Theorem 1 and Corollary 1.
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Figure 3: Cumulative regret of the MLA-UCB algorithm and the classical UCB algorithm under
different settings. The true correlations of predictions of each setting are shown in Table 1. We
repeat each experiment 100 times under the same data-generating model and machine learning model
to report the average regret.

B.1 Analysis of the machine learning-assisted mean estimator

First, we analyze the property of the machine learning-assisted mean estimator (3). We begin by
defining several quantities

Ek,t[R] =
1

nk,t

nk,t∑
s=1

Rk,s, Ek,t[R̂] =
1

nk,t

nk,t∑
s=1

R̂k,s, Eoff

k [R̂] =
1

Nk

Nk∑
s=1

R̂off

k,s,

and

Ĉov(Rk, R̂k) =
1

nk,t

nk,t∑
s=1

(Rk,s−Ek,t[R])(R̂k,s−Ek,t[R̂]), V̂ar(R̂k) =
1

nk,t

nk,t∑
s=1

(R̂k,s−Ek,t[R̂])2

Proposition 1. Denote by the pooled sample mean of the online and offline predictions

Eall

k,t[R̂] =
1

nk,t +Nk

(nk,t∑
s=1

R̂k,s +

Nk∑
s=1

R̂off

k,s

)
.

Then µ̂MLA

k,t is given by the intercept of the following ordinary least squares (OLS) estimator, i.e.,

µ̂MLA

k,t = argmin
µ

min
β

nk,t∑
s=1

(
Rk,s − µ− β

(
R̂k,s − Eall

k,t[R̂]
))2

. (7)

Proof. Recall that the definition of the machine learning-assisted mean estimator is

µ̂MLA

k,t = Ek,t[R]− λk,t

(
Ek,t[R̂]− Eoff

k [R̂]
)
,
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where λk,t =
Nk

nk,t+Nk

Ĉov(Rk,R̂k)

V̂ar(R̂k)
. By the standard regression result, we know that the solution of

the ordinary least squares problem (7) is:

βk,t =
Ĉov(Rk, R̂k − Eall

k,t[R̂])

V̂ar(R̂k − Eall

k,t[R̂])
=

Ĉov(Rk, R̂k)

V̂ar(R̂k)

αk,t =Ek,t[R]− βk,t(Ek,t[R̂]− Eall

k,t[R̂])

=Ek,t[R]− Ĉov(Rk, R̂k)

V̂ar(R̂k)

(
Ek,t[R̂]− 1

nk,t +Nk

(
nk,tEk,t[R̂] +NkEoff

k [R̂]
))

=Ek,t[R]− Nk

nk,t +Nk

Ĉov(Rk, R̂k)

V̂ar(R̂k)

(
Ek,t[R̂]− Eoff

k [R̂]
)

=µ̂MLA

k,t ,

(8)

which finishes the proof.

Proposition 1 builds the equivalence with an OLS estimator, we can then use it to derive the following
characterization of the distribution of µ̂MLA

k,t .

Proposition 2. Define Fk,t = σ
(
{R̂off

k,s}
Nk
s=1, {R̂k,s}

nk,t

s=1

)
as the σ-field generated by all surrogate

rewards for arm k up to time t. Then µ̂MLA

k,t can be decomposed as

µ̂MLA

k,t = µk + S1 + S2, (9)

where S1 and S2 are independent random variables, with S1 ∈ Fk,t,

S1 ∼ N
(
0,

1

nk,t +Nk
ρ2kσ

2
k

)
, S2

∣∣Fk,t ∼ N
(
0,

1

nk,t
Zk,t(1− ρ2k)σ

2
k

)
, (10)

and Zk,t ∈ Fk,t is defined as

Zk,t = 1 +
nk,t(Ek,t[R̂]− Eall

k,t[R̂])2∑nk,t

s=1(R̂k,s − Ek,t[R̂])2
.

Proof. From (8), we know that

µ̂MLA

k,t =Ek,t[R]− βk,t(Ek,t[R̂]− Eall

k,t[R̂]). (11)

From the data generation distribution 2, using the conditional distribution of multivariate Gaussian
variables, we can decompose the reward as

Rk,s = µk + ρk
σk

σ̃k
(Eall

k,t[R̂]− µ̃k) + ρk
σk

σ̃k
(R̂k,s − Eall

k,t[R̂]) + ϵk,s, (12)

where ϵk,s ∼ N (0, (1− ρ2k)σ
2
k) is independent of R̂k,s − Eall

k,t[R̂]. Then it gives us

µ̂MLA

k,t − µk

=ρk
σk

σ̃k
(Ek,t[R̂]− µ̃k) +

1

nk,t

nk,t∑
s=1

ϵk,s −

(∑nk,t

s=1 ϵk,s(R̂k,s − Ek,t[R̂])∑nk,t

s=1(R̂k,s − Ek,t[R̂])2
+ ρk

σk

σ̃k

)(
Ek,t[R̂]− Eall

k,t[R̂]
)

=ρk
σk

σ̃k
(Eall

k,t[R̂]− µ̃k) +

nk,t∑
s=1

(
1

nk,t
− (R̂k,s − Ek,t[R̂])∑nk,t

s=1(R̂k,s − Ek,t[R̂])2

(
Ek,t[R̂]− Eall

k,t[R̂]
))

ϵk,s.

(13)
Notice that Eall

k,t[R̂] is the complete sufficient statistics for the prediction mean µ̃k with data
{R̂k,s}

nk,t

s=1 ∪ {R̂off

k,s}
Nk
s=1, and R̂k,s − Ek,t[R̂], Ek,t[R̂] − Eall

k,t[R̂] are ancillary statistics for the

9



prediction mean µ̃k. Therefore, by Basu’s theorem, Eall

k,t[R̂] is independent of R̂k,s − Ek,t[R̂] and
Ek,t[R̂]− Eall

k,t[R̂]. Therefore, define

S1 =ρk
σk

σ̃k
(Eall

k,t[R̂]− µ̃k)

S2 =

nk,t∑
s=1

(
1

nk,t
− (R̂k,s − Ek,t[R̂])∑nk,t

s=1(R̂k,s − Ek,t[R̂])2

(
Ek,t[R̂]− Eall

k,t[R̂]
))

ϵk,s,
(14)

then we have S1 and S2 are independent. Then it is straightforward to verify that S1 ∈ Fk,t and

S1 ∼ N
(
0, 1

nk,t+Nk
ρ2kσ

2
k

)
. For S2, conditional on Fk,t, it is a linear combination of ϵk,s, hence it

is a Gaussian random variable with mean 0, and the variance is

Var(S2|Fk,t) =(1− ρk)
2σ2

k

nk,t∑
s=1

(
1

nk,t
− (R̂k,s − Ek,t[R̂])∑nk,t

s=1(R̂k,s − Ek,t[R̂])2

(
Ek,t[R̂]− Eall

k,t[R̂]
))2

=(1− ρk)
2σ2

k

nk,t∑
s=1

( 1

nk,t

)2

+

(
(R̂k,s − Ek,t[R̂])∑nk,t

s=1(R̂k,s − Ek,t[R̂])2

(
Ek,t[R̂]− Eall

k,t[R̂]
))2


=(1− ρk)

2σ2
k

(
1

nk,t
+

(Ek,t[R̂]− Eall

k,t[R̂])2∑nk,t

s=1(R̂k,s − Ek,t[R̂])2

)
=

1

nk,t
Zk,t(1− ρ2k)σ

2
k,

(15)
which finishes the proof.

Proposition 2 demonstrates that the estimation error of µ̂MLA

k,t can be decomposed into two components:
the first component S1 represents the bias of using the empirical mean of surrogate rewards instead
of the true mean in the regressor, and the second component represents the uncertainty of intercept
estimation in the linear regression model. As a corollary, we can obtain the conditional distribution
of µ̂MLA

k,t on Zk,t, which will be useful in the proof of Theorem 1 later.

Corollary 2. Define Sk,t as the sigma field generated by {R̂k,s−Ek,t[R̂]}nk,t

s=1 and Ek,t[R̂]−Eall

k,t[R̂],
then Zk,t ∈ Sk,t ⊂ Fk,t, and

µ̂MLA

k,t − µ|Sk,t ∼ N
(
0,

1

nk,t +Nk
ρ2kσ

2
k +

1

nk,t
Zk,t(1− ρ2k)σ

2
k

)
Proof. By definition, Zk,t ∈ Sk,t ⊂ Fk,t holds. And by Basu’s theorem, Eall

k,t[R̂] is independent of
R̂k,s − Ek,t[R̂] and Ek,t[R̂]− Eall

k,t[R̂]. Hence, S1 is independent of Sk,t. Moreover, conditional on
Sk,t, S2 is still a linear combination of ϵk,s, it is independent of S1 and the variance is the same as in
(15). Hence, we know that S1 and S2 are two independent Gaussian random variable conditional on
Sk,t, and the variance is 1

nk,t+Nk
ρ2kσ

2
k + 1

nk,t
Zk,t(1− ρ2k), which finishes the proof.

Despite the clean distributional characterization, it does not directly imply an upper confidence
bound on µk since the variance σ2

k and the correlation ρk are unknown. While both can be estimated
consistently via plug-in methods, as previously noted, standard consistency alone is not enough.
Following the logic of Student’s t-tests, if we can construct an unbiased estimator σ̂2

1 of ρ2kσ
2
k that is

independent of S1 and k1σ̂
2
1 is χ2-distributed with k1 degrees of freedom, and an unbiased estimator

σ̂2
2 of (1− ρ2k)σ

2
k that is independent of S2 and k2σ̂

2
2 is χ2-distributed with k2 degrees of freedom,

then

P

(
−S1

σ̂1
≤ qk1(δ)

√
1

nk,t +Nk

)
≥ 1− δ, and P

(
−S2

σ̂2
≤ qk2(δ)

√
Zk,t

nk,t

)
≥ 1− δ.

This can yield an upper confidence bound on µk by (10) and a union bound. We prove that the
empirical variance of true rewards can be used as a conservative version of σ̂1, since Var(Rk) =
σ2
k ≥ ρ2kσ

2
k, and the residual mean square error of the regression (7) can be used as σ̂2

2 , since
Var(Rk|R̂k) = (1− ρ2k)σ

2
k. We are unable to find an unbiased estimator of ρ2kσ

2
k that is independent

of S1, though we show it has a negligible effect when Nk >> nk,t for suboptimal arms.
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Proposition 3. Let

σ̂2
R,k,t =

1

nk,t − 1

nk,t∑
s=1

(Rk,s − Ek,t[R])
2
,

σ̂2
ϵ,k,t =

1

nk,t − 2

nk,t∑
s=1

(
Rk,s − µ̂MLA

k,t − βk,t

(
R̂k,s − Eall

k,t[R̂]
))2

.

Then, for any δ ∈ ( 12 , 1) we have

P

µk ≤ µ̂MLA

k,t + qnk,t−2(δ)

√ σ̂2
R,k,t

nk,t +Nk
+

√
Zk,tσ̂2

ϵ,k,t

nk,t

 ≥ 1− 2δ, (16)

where qd(δ) is the 1− δ quantile of the Stundet’s t-distribution of d degrees of freedom.

Proof. To prove the concentration bound (16), we handle the two quantities S1 and S2 separately.
First, for S1, we have proven that S1 ∼ N (0, 1

nk,t+Nk
ρ2kσ

2
k), and by definition,

σ2
R,k,t =

1

nk,t − 1

nk,t∑
s=1

(Rk,s − Ek,t[R])
2 ∼ σ2

k(nk,t − 1)χ2
nk,t−1. (17)

Again, by Basu’s theorem, S1 is independent of σ2
R,k,t, hence

S1√
σ2
R,k,t

∼

√
1

nk,t +Nk
ρktnk,t−1.

Therefore, we can use the quantile of Student’s t-distribution and obtain that

P

S1 ≤ −qnk,t−1(δ)

√
σ̂2
R,k,t

nk,t +Nk
|ρk|

 ≤ δ. (18)

Next, for S2, from (15) we know that

S2|Fk,t ∼ N
(
0,

1

nk,t
Zk,t(1− ρ2k)σ

2
k

)
.

Moreover, using Proposition 1, we know that σ̂2
ϵ,k,t is the average sum of residuals for the ordinary

least squares problem (7). Therefore, using the linear representation (12), the classical results in OLS
suggest that

σ̂2
ϵ,k,t|Fk,t ∼ (1− ρ2k)σ

2
k(nk,t − 2)χ2

nk,t−2, (19)

and σ̂2
ϵ,k,t is independent of αk,t, βk,t conditional on Fk,t. Notice that S2 = µ̂MLA

k,t − µk − S1,
S1 ∈ Fk,t, and µ̂MLA

k,t = αk,t by Proposition 1, thus σ̂2
ϵ,k,t and S2 are independent conditional on

Fk,t. Therefore, we know that

S2√
σ̂2
ϵ,k,t

∣∣∣Fk,t ∼

√
Zk,t

nk,t
tnk,t−2,

Again, we can use the quantile of Student’s t-distribution and obtain that

P

S2 ≤ −qnk,t−2(δ)

√
Zk,tσ̂2

ϵ,k,t

nk,t

∣∣∣∣∣Fk,t

 ≤ δ. (20)

In particular, it is well known that for any fixed c > 0, the tail probability P(td > c) is decreasing with
respect to d (a proof can be found in Corollary 4.3 in [10]). Hence, we have qnk,t−2(δ) ≥ qnk,t−1(δ)

11



for any δ ∈ ( 12 , 1). Combining (18) and (20) together, we can obtain that

P

µk > µ̂MLA

k,t + qnk,t−2(δ)

√ σ̂2
R,k,t

nk,t +Nk
+

√
Zk,tσ̂2

ϵ,k,t

nk,t


=P

S1 + S2 < −qnk,t−2(δ)

√ σ̂2
R,k,t

nk,t +Nk
+

√
Zk,tσ̂2

ϵ,k,t

nk,t


≤P

S1 < −qnk,t−2(δ)

√
σ̂2
R,k,t

nk,t +Nk

+ P

S2 < −qnk,t−2(δ)

√
Zk,tσ̂2

ϵ,k,t

nk,t


≤P

S1 < −qnk,t−1(δ)

√
σ̂2
R,k,t

nk,t +Nk
|ρk|

+ E

P
S2 < −qnk,t−2(δ)

√
Zk,tσ̂2

ϵ,k,t

nk,t

∣∣∣∣∣Fk,t

 ≤ 2δ,

which finishes the proof.

By the law of large numbers, the empirical variance should converge to the true variance, i.e.,
as nk,t → ∞ we have σ̂2

R,k,t → σ2
k, σ̂

2
ϵ,k,t → (1 − ρ2k)σ

2
k, and similarly Zk,t → 1. There-

fore, as long as Nk ≫ nk,t, the confidence bound in (16) will be approximately µ̂MLA

k,t +

qnk,t−2

(
1

2t
√
log t

)√
(1−ρ2

k)σ
2
k

nk,t
when nk,t is large. This demonstrates that the surrogate rewards

effectively reduce the variance by ρ2k.

Compared to the upper confidence bound constructed in [9] for standard normal bandits, we use the
exact quantile of t-distribution qnk,t−2

(
1

2t
√
log t

)
to scale the standard deviation, while they use a

scaling parameter of
√
nk,t(t

2
nk,t−2 − 1). As we shall see in the following proposition, their scaling

parameter can be viewed as an upper bound for the exact quantile.

Proposition 4. For any real number s > 0 and integer d ≥ 2 we have

qd

(
1

2s
√
log s

)
≤
√

d(s
2

d−1 − 1)

Proof of Proposition 4. It suffices to prove that for a random variable Td ∼ td, the following inequal-
ity holds:

P
(
Td ≥

√
d(s

2
d−1 − 1)

)
≤ 1

2s
√
log s

. (21)

By the definition of the t-distribution, let X ∼ N (0, 1) and Y ∼ χ2
d be two independent random

variables, then X√
Y/d

∼ td, and then by the Mill’s inequality P(X > t) ≤ 1√
2π

1
t exp(−

t2

2 ),

P
(
Td ≥

√
d(s

2
d−1 − 1)

)
= P

(
X ≥

√
Y (s

2
d−1 − 1)

)
≤ 1√

2π(s
2

d−1 − 1)

E
[
Y − 1

2 e−
1
2Y (s

2
d−1 −1)

]
,

(22)
for the expectation on the right hand side, notice that for any k > 0

E[Y −1/2e−
1
2kY ] =

∫ ∞

0

1

2d/2Γ(d/2)
x(d−1)/2−1e−(1+k)x/2dx

=
1

(1 + k)
d−1
2

∫ ∞

0

1

2d/2Γ(d/2)
x(d−1)/2−1e−x/2dx

=
1

√
2(1 + k)

d−1
2

Γ((d− 1)/2)

Γ(d/2)
,

(23)
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take k = s
2

d−1 − 1, we have E
[
Y − 1

2 e−
1
2Y (s

2
d−1 −1)

]
= 1√

2s

Γ((d−1)/2)
Γ(d/2) . Moreover, it is easy to

prove by induction that

Γ((d− 1)/2)

Γ(d/2)
≤
√

2π

d
, ∀d ≥ 2, d ∈ N+,

therefore we can derive from (22) that

P
(
Td ≥

√
d(s

2
d−1 − 1)

)
≤ 1

√
2ds
√
s

2
d−1 − 1

≤ 1
√
2ds
√

2 log s
d−1

≤ 1

2s
√
log s

B.2 Regret bound

After establishing the confidence bound for the machine learning-assisted mean estimator, now we
are prepared to provide the regret analysis. We will use the following technical lemma on the tail
bound of χ2 distribution from Lemma 1.
Lemma 1 (Proposition 8 from [9]). If a random variable X ∼ χ2

d, then for any δ > 0, we have

P(X > d(1 + δ)) ≤
(
e−δ(1 + δ)

)k/2
Using Lemma 1, we can prove the tail bound for σ̂2

R,k,t and σ̂2
ϵ,k,t.

Lemma 2. For any δ > 0, the following inequalities holds:

P(σ2
R,k,t > (1 + δ)σ2

k) ≤
(
e−δ(1 + δ)

)nk,t−1

2 ,

P(σ2
ϵ,k,t > (1 + δ)(1− ρ2k)σ

2
k) ≤

(
e−δ(1 + δ)

)nk,t−2

2 .

Proof. Since we have proven that σ2
R,k,t ∼ σ2

kχ
2
nk,t−1 and σ̂2

ϵ,k,t|Fk,t ∼ (1− ρ2k)σ
2
kχ

2
nk,t−2 in (17)

and (19), directly apply Lemma 1 on σ̂2
R,k,t and σ̂2

ϵ,k,t will finish the proof.

Similarly, we can prove the tail bound for Zk,t.
Lemma 3. For any δ > 0, if nk,t ≥ 6, the following inequality holds:

P(Zk,t ≥ 1 + δ) ≤ 3

δ2
1

(nk,t − 3)(nk,t − 5)

Proof. Recall that by definition (2),

Zk,t = 1 +
nk,t(Ek,t[R̂]− Eall

k,t[R̂])2∑nk,t

s=1(R̂k,s − Ek,t[R̂])2
.

Notice that

Ek,t[R̂]− Eall

k,t[R̂] =

(
1

nk,t
− 1

nk,t +Nk

) nk,t∑
s=1

R̂k,s −
1

nk,t +Nk

Nk∑
s=1

R̂off

k,s,

thus Ek,t[R̂]− Eall

k,t[R̂] is a Gaussian random variable with mean 0 and variance

Var(Ek,t[R̂]− Eall

k,t[R̂]) =

(
N2

k

nk,t(nk,t +Nk)2
+

Nk

(nk,t +Nk)2

)
σ2
k =

Nkσ
2
k

nk,t(nk,t +Nk)
.

On the other hand, we know that
nk,t∑
s=1

(R̂k,s − Ek,t[R̂])2 ∼ σ2
kχ

2
nk,t−1.
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Moreover,

Cov(R̂k,s − Ek,t[R̂],Ek,t[R̂]− Eall

k,t[R̂])

=Cov(R̂k,s,Ek,t[R̂]− Eall

k,t[R̂])− Cov(Ek,t[R̂],Ek,t[R̂]− Eall

k,t[R̂])

=Cov(R̂k,s,Ek,t[R̂]− Eall

k,t[R̂])− 1

nk,t

nk,t∑
j=1

Cov(R̂k,j ,Ek,t[R̂]− Eall

k,t[R̂]) = 0.

Therefore, (Ek,t[R̂]−Eall

k,t[R̂])2 and
∑nk,t

s=1(R̂k,s −Ek,t[R̂])2 are independent random variables, and
thus

Zk,t − 1 =
nk,t(Ek,t[R̂]− Eall

k,t[R̂])2∑nk,t

s=1(R̂k,s − Ek,t[R̂])2
∼ Nk

(nk,t +Nk)(nk,t − 1)
t2nk,t−1.

Using Markov’s inequality, we can conclude that

P(Zk,t ≥ 1 + δ) = P
(

Nk

(nk,t +Nk)(nk,t − 1)
t2nk,t−1 ≥ δ

)
≤ 1

δ2

(
Nk

(nk,t +Nk)(nk,t − 1)

)2

E[t4nk,t−1] =
3

δ2

(
Nk

nk,t +Nk

)2
1

(nk,t − 3)(nk,t − 5)

≤ 3

δ2
1

(nk,t − 3)(nk,t − 5)

which finishes the proof.

Now we are ready to prove the regret bound of the MLA-UCB algorithm in Theorem 1. We will start
with the following generalized version of regret bound.
Theorem 2. Under the Gaussian data generation model (2), for any ϵ ∈ (0, 1) and T ≥ 4K, if the
sample size of offline predictions satisfies

Nk ≥ 1

δk

 2 log T

log
(
1 +

∆2
k

24σ2
k

(1−ϵ)2

1+ϵ

) + 3

 ,∀k ∈ [K] (24)

then the expected regret of Algorithm 1 can be bounded by:

E[RegT] ≤
∑
k ̸=k⋆

 2 log T

log

(
1 +

∆2
k

σ2
k

(1−ϵ)2

(1+ϵ)
1

(
√

1−ρ2
k+

√
δk)2

) + 2
√
log T +

2(1 + ϵ)σ2
k

ϵ2∆2
k

+
125

ϵ2
+ 4

∆k

(25)

Proof of Theorem 2. For any ϵ ∈ (0, 1), define ϵ̃k = ∆kϵ. Define the confidence bound in Algorithm
1 as

B̂k,t = qnk,t−2

(
1

2t
√
log t

)√ σ̂2
R,k,t

nk,t +Nk
+

√
Zk,tσ̂2

ϵ,k,t

nk,t

 , (26)

and define the following events

Ak,t ={At = k} = {µ̂MLA

k,t + B̂k,t ≥ µ̂k⋆,t + B̂k⋆,t},

Bk,t ={µk + B̂k,t + ϵ̃k ≥ µ⋆},
Dk,t ={µ̂MLA

k,t ≤ µk + ϵ̃k},
E1
k,t ={σ2

R,k,t ≤ (1 + ϵ)σ2
k},

E2
k,t ={σ2

ϵ,k,t ≤ (1 + ϵ/3)(1− ρ2k)σ
2
k},

E3
k,t ={Zk,t ≤ (1 + ϵ/3)},

Ek,t = ∩3
i=1 E i

k,t.

(27)
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Then we can express the expected regret as

E[RegT] = E
∑
k ̸=k⋆

nk,T∆k =
∑
k ̸=k⋆

∆kE
T∑

t=1

IAk,t
. (28)

Furthermore, we can decompose the expectation as follows

E
T∑

t=1

IAk,t
=E

T∑
t=4K

IAk,t∩Bk,t∩Dk,t∩Ek,t
+ E

T∑
t=4K

IAk,t∩BC
k,t∩Dk,t∩Ek,t

+ E
T∑

t=4K

IAk,t∩DC
k,t∩Ek,t

+ E
T∑

t=4K

IAk,t∩EC
k,t

+ 4,

(29)

and we are going to bound these terms separately in the following analysis. For the first term of (29),

E
T∑

t=4K

IAk,t∩Bk,t∩Dk,t∩Ek,t

(1)

≤ E
T∑

t=4K

IAk,t
IEk,t

I{∆k(1− ϵ) ≤ B̂k,t}

(2)
=E

T∑
t=4K

IAk,t
IEk,t

I

∆k(1− ϵ) ≤ qnk,t−2

(
1

2t
√
log t

)√σ2
ϵ,k,tZk,t

nk,t
+

√
σ2
R,k,t

nk,t +Nk


(3)

≤E
T∑

t=4K

IAk,t
IEk,t

I

{
∆k(1− ϵ) ≤ qnk,t−2

(
1

2t
√
log t

)√
1 + ϵ

(√
(1− ρ2k)σ

2
k

nk,t
+

√
σ2
k

nk,t +Nk

)}
(4)

≤E
T∑

t=4K

IAk,t
IEk,t

I

{
∆k(1− ϵ) ≤

√
(1 + ϵ)(t

2
nk,t−3 − 1)

(√
(1− ρ2k)σ

2
k +

√
σ2
knk,t

nk,t +Nk

)}
(5)

≤E
T∑

t=4K

IAk,t
I

{
∆k(1− ϵ) ≤

√
(1 + ϵ)(t

2
nk,t−3 − 1)

(√
(1− ρ2k)σ

2
k +

√
σ2
knk,t

nk,t +Nk

)}
.

(30)
Here, the inequality (1) is from the definition of Bk,t and the fact that IDk,t

≤ 1; the equality (2) is
from the definition of B̂k,t in (26); the inequality (3) is from the definition of Ek,t and the fact that
(1 + ϵ/3)2 ≤ 1 + ϵ,∀ϵ ∈ (0, 1); the inequality (4) is from Proposition 4; and the inequality (5) uses
the fact that IEk,t

≤ 1.

Define the event

Gk,t =

{
∆k(1− ϵ) ≤

√
(1 + ϵ)(t

2
nk,t−3 − 1)

(√
(1− ρ2k)σ

2
k +

√
σ2
knk,t

nk,t +Nk

)}
.

Then under the sample size condition

Nk ≥ 1

δk

 2 log T

log
(
1 +

∆2
k

4σ2
k

(1−ϵ)2

1+ϵ

) + 3

 ,

we can control the ratio of online and offline samples on the event Gk,t by

Gk,t ⊆
{
∆k(1− ϵ) ≤

√
(1 + ϵ)(t

2
nk,t−3 − 1)2σk

}
⊆
{
log

(
1 +

∆2
k

4σ2
k

(1− ϵ)2

1 + ϵ

)
≤ 2 log t

nk,t − 3

}

⊆

nk,t ≤
2 log T

log
(
1 +

∆2
k

4σ2
k

(1−ϵ)2

1+ϵ

) + 3

 ⊆
{

nk,t

nk,t +Nk
≤ δk

}
.

(31)
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Combine it with (30), we have

E
T∑

t=4K

IAk,t∩Bk,t∩Dk,t∩Ek,t

(1)

≤ E
T∑

t=4K

IAk,t
IGk,t

(2)
= E

T∑
t=4K

IAk,t
IGk,t

I
{

nk,t

nk,t +Nk
≤ δk

}
(3)

≤E
T∑

t=4K

IAk,t
I
{

nk,t

nk,t +Nk
≤ δk

}
I
{
∆k(1− ϵ) ≤

√
(1 + ϵ)(t

2
nk,t−3 − 1)

(√
(1− ρ2k)σ

2
k +

√
σ2
kδk

)}

(4)

≤E
T∑

t=4K

IAk,t
I

nk,t ≤
2 log T

log

(
1 +

∆2
k

σ2
k

(1−ϵ)2

1+ϵ
1

(
√

1−ρ2
k+

√
δk)2

) + 3


(5)

≤E
∞∑

nk,t=4

I

nk,t ≤
2 log T

log

(
1 +

∆2
k

σ2
k

(1−ϵ)2

1+ϵ
1

(
√

1−ρ2
k+

√
δk)2

) + 3

 =
2 log T

log

(
1 +

∆2
k

σ2
k

(1−ϵ)2

1+ϵ
1

(
√

1−ρ2
k+

√
δk)2

) + 3

(32)
Here, the inequality (1) is by (30) and the definition of Gk,t; equality (2) is by (30); inequality (3)
and (4) are straightforward algebra; inequality (5) uses the fact that Ak,t = {nk,t+1 = nk,t + 1}

and I

nk,t ≤ 2 log T

log

(
1+

∆2
k

σ2
k

(1−ϵ)2

1+ϵ
1

(
√

1−ρ2
k
+
√

δk)2

) + 3

 depends on t only through nk,t, thus we can

transform the sum over t into the sum over nk,t.

For the second term of (29),

E
T∑

t=4K

IAk,t∩BC
k,t∩Dk,t∩Ek,t

≤ E
T∑

t=4K

IAk,t∩BC
k,t∩Dk,t

≤
T∑

t=4K

P
(
µ̂MLA

k,t + B̂k,t ≥ µ̂k⋆,t + B̂k⋆,t, µk + B̂k,t + ϵ̃k < µ⋆, µ̂MLA

k,t ≤ µk + ϵ̃k

)
≤

T∑
t=4K

P
(
µ⋆ > µ̂k⋆ + B̂k⋆,t

) (1)

≤
T∑

t=4K

1

t
√
log t

≤
∫ T

t=3

dt

t
√
log t

≤ 2
√

log T − 2.

(33)

Here, the inequality (1) is from the definition of confidence band B̂k,t in (26) and Proposition 3.

For the third term of (29),

E
T∑

t=4K

IAk,t∩DC
k,t∩Ek,t

≤ E
T∑

t=4K

IAk,t
IE3

k,t
IDC

k,t

(1)

≤ E
∞∑

nk,t=4

IE3
k,t
IDC

k,t

(2)

≤
∞∑

nk,t=4

E
[
IE3

k,t
P
(
µ̂MLA

k,t > µk + ϵ̃k|Sk,t

)]
(3)

≤
∞∑

nk,t=4

E

[
IE3

k,t
exp

(
− ∆2

kϵ
2

2( 1
nk,t+Nk

ρ2kσ
2
k + 1

nk,t
Zk,t(1− ρ2k)σ

2
k)

)]
(4)

≤
∞∑

nk,t=4

E
[
IE3

k,t
exp

(
− nk,t∆

2
kϵ

2

2(1 + ϵ)σ2
k

)]
≤

∞∑
nk,t=4

exp

(
− nk,t∆

2
kϵ

2

2(1 + ϵ)σ2
k

)

≤ 1

exp
(

∆2
kϵ

2

2(1+ϵ)σ2
k

)
− 1

≤ 2(1 + ϵ)σ2
k

ϵ2∆2
k

< ∞.

(34)

Here, inequality (1) is from the fact that Ek,t = Ek,t′ ,Dk,t = Dk,t′ for any time step t, t′ such that
nk,t = nk,t′ ; inequality (2) is from the fact that Zk,t ∈ Sk,t in Corollary 2; inequality (3) is from
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Corollary 2 and Hoeffding’s inequality of Gaussian random variable; inequality (4) is from the
definition of E3

k,t.

For the fourth term of (29),

E
T∑

t=4K

IAk,t
IEC

k,t

(1)

≤ E
∞∑

nk,t=4

I(E1
k,t)

C + I(E2
k,t)

C + I(E3
k,t)

C

(2)

≤
∞∑

nk,t=4

(
P(σ2

R,k,t > (1 + ϵ)σ2
R) + P(σ2

ϵ,k,t > (1 + ϵ/3)(1− ρ2k)σ
2
R) + P(Zk,t > (1 + ϵ/3))

)
(3)

≤
∞∑

nk,t=4

(e−ϵ/3(1 + ϵ/3))
nk,t−2

2 + (e−ϵ(1 + ϵ))
nk,t−1

2 + 2 +

∞∑
nk,t=6

27

ϵ2
1

(nk,t − 3)(nk,t − 5)

(4)

≤ 1√
eϵ/3

1+ϵ/3 − 1
+

1√
eϵ

1+ϵ − 1
+ 2 +

27

ϵ2
π2

6

(5)

≤ 125

ϵ2
+ 2 < ∞.

(35)
Here, inequality (1) is from the fact that Ek,t = Ek,t′ for any time step t, t′ such that nk,t = nk,t′ ;
inequality (2) is by the definition of E1

k,t, E2
k,t, E3

k,t; inequality (3) is from Lemma 2 and 3; inequality

(4) is straightforward algebra; inequality (5) uses the fact that ex

1+x ≥ (1 + x2

8 )2.

Combining all four terms together, we obtain that

E[RegT] ≤
∑
k ̸=k⋆

 2 log T

log

(
1 +

∆2
k

σ2
k

(1−ϵ)2

(1+ϵ)
1

(
√

1−ρ2
k+

√
δk)2

) + 2
√
log T +

2(1 + ϵ)σ2
k

ϵ2∆2
k

+
125

ϵ2
+ 4

∆k,

(36)
which finishes the proof.

Furthermore, we can remove the dependency on ϵ in Theorem 2 using the following technical lemma:

Lemma 4 (Proposition 10 from [9]). For any G > 0, ϵ ∈ [0, 1
2 ], the following holds:

1

log
(
1 +G (1−ϵ)2

1+ϵ

) ≤ 1

log(1 +G)
+

10G

(1 +G)(log(1 +G))2
ϵ (37)

Proof of Theorem 1. Using Lemma 4, denote Gk =
∆2

k

σ2
k

1

(
√

1−ρ2
k+

√
δk)2

we can derive from (36) that

E[RegT] ≤
∑
k ̸=k⋆

 2 log T

log

(
1 +

∆2
k

σ2
k

(1−ϵ)2

(1+ϵ)
1

(
√

1−ρ2
k+

√
δk)2

) + 2
√
log T +

2(1 + ϵ)σ2
k

ϵ2∆2
k

+
125

ϵ2
+ 4

∆k

≤
∑
k ̸=k⋆

(
2 log T

log (1 +Gk)
+

10Gk log T

(1 +Gk)(log(1 +Gk))2
ϵ+ 2

√
log T +

2(1 + ϵ)σ2
k

ϵ2∆2
k

+
125

ϵ2
+ 4

)
∆k.

(38)
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Take ϵ = 1
2(log T )1/3

, since T ≥ 4K ≥ 8, we know that ϵ = 1
2(log T )1/3

< 1
2 , therefore the sample

size condition in Theorem 1 is satisfied, and we have

E[RegT] ≤
∑
k ̸=k⋆

(
2 log T

log (1 +Gk)
+

5Gk(log T )
2/3

(1 +Gk)(log(1 +Gk))2
+ 2
√
log T

+
σ2
k

∆2
k

(8(log T )2/3 + 4(log T )1/3) + 500(log T )2/3 + 4

)
∆k

≤
∑
k ̸=k⋆

 2 log T

log

(
1 +

∆2
k

σ2
k

1

(
√

1−ρ2
k+

√
δk)2

) +O
(
(log T )2/3

)∆k

(39)

which concludes the proof.

Proof of Corollary 1. Take ak = 1 +
∆2

k

σ2
k

1

(
√

1−ρ2
k+

√
δk)2

, and bk = 1 +
∆2

k

σ2
k(1−ρ2

k)
, then ak ≤ bk.

Using the convexity of the function log(x), we have log(ak) ≥ log(bk)− bk−ak

ak
, and hence

1

log(ak)
≤ 1

log(bk)
+

bk − ak
ak log(ak) log(bk)

≤ 1

log(bk)
+

bk − ak
ak log(ak)2

.

Notice that as long as δk ≤ 1 and δk = O((log T )−2/3), we have

ak = 1 +
∆2

k

σ2
k

1

(
√
1− ρ2k +

√
δk)2

≥ 1 +
∆2

k

4σ2
k

bk − ak =
∆2

k

σ2
k

δk + 2
√
δk
√

1− ρ2k
(
√

1− ρ2k +
√
δk)2(1− ρ2k)

≤ ∆2
k

σ2
k

δk + 2
√
δk
√
1− ρ2k

(1− ρ2k)
2

= O((log T )−1/3).

Therefore, combining it with Theorem 1, we know that under the condition Nk = Ω((log T )5/3), we
have δk = O((log T )−2/3) and

E[RegT] ≤
∑
k ̸=k⋆

 2 log T

log

(
1 +

∆2
k

σ2
k

1

(
√

1−ρ2
k+

√
δk)2

) +O
(
(log T )2/3

)∆k

=
∑
k ̸=k⋆

(
2 log T

log(ak)
+O

(
(log T )2/3

))
∆k

≤
∑
k ̸=k⋆

(
2 log T

log(bk)
+

(bk − ak) log T

ak log(ak)2
+O

(
(log T )2/3

))
∆k

=
∑
k ̸=k⋆

 2 log T

log(1 +
∆2

k

σ2
k(1−ρ2

k)
)
+O

(
(log T )2/3

)∆k,

(40)

which finishes the proof.
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