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ABSTRACT

Molecule generation remains a core challenge in computational chemistry. Prac-
tical use of generative models is complicated by strict chemical, structural,
and biological constraints: candidate compounds must satisfy physicochemical
bounds, avoid reactive or toxic substructures, be synthesizable, and plausibly
bind a target. We are the first to perform such comprehensive analysis of mod-
ern molecule generators via the Five-Stage Filtering Pipeline, a target-agnostic,
practice-oriented benchmark for evaluating de novo generators using the follow-
ing stages: (i) physicochemical descriptors; (ii) structural alerts; (iii) synthesis
feasibility; (iv) docking and binding affinity estimation; and (v) blind medici-
nal chemist review. We compare 18 generators across three families (uncondi-
tional, ligand-based, and protein-based), and to make it practically relevant, apply
the pipeline to KRAS G12D switch-II pocket for conditional design case study.
Less than 1% of molecules pass all stages, exposing a gap between high scores on
standard generative metrics and practical medicinal chemistry usage. We release
our benchmark, and code to enable reproducible evaluation and to focus future
model development on practically useful chemical space.

1 INTRODUCTION

One of the central challenges of biomedicine of the 21st-century is to prevent and treat complex
diseases, improve population health, and extend human longevity (Hood et al., |2004; Kirkwood|
2005; Murray et al.|[2012). Early drug discovery addresses this challenge through a staged pipeline:
(1) identify a biological target associated with a disease; (ii) identify a surface, known as a pocket,
using crystallography or pocket prediction software; and (iii) design a small molecule, known as a
ligand, that binds and modulates the target. Despite decades of progress, identifying high-quality
ligands remains labor-intensive, time-consuming, and expensive (Paul et al., 2010).

Machine learning is reshaping this landscape by accelerating design—make—test cycles for de novo
molecular generation (Zhavoronkov et al., |2019). To be considered a viable drug candidate, a
molecule must satisfy multiple criteria (Hughes et al.| 2011; [Waring et al., |2015}; |Lipinski, [2004).
First, physicochemical properties must fall within reasonable bounds, e.g., limited rotatable bonds
and polar surface area controlling permeability and oral exposure (Veber et al., 2002). Second, re-
active chemotypes and structural alerts associated with toxicity should be removed or flagged, e.g.,
PAINS substructures filter out potential assay-interference compounds (Baell & Holloway, 2010;
Huggins et al.| [2011; Sushko et al.,2012). Third, the candidate should be practically synthesizable,
which is estimated with heuristic scores and retrosynthesis planning (Ertl & Schuffenhauer, 2009
Coley et al.| [2017; |Genheden et al., 2020).

However, recent studies show that high scores on popular generative benchmarks often fail to trans-
late into synthesizable, medicinally plausible compounds (Bodenreider et al., 2021)). Efficient fil-
tering of generated molecules is therefore essential prior to hit identification and lead optimization
(Schneider & Fechner, 2010 [Hughes et al., 2011)). Without rigorous filtration, computational and
experimental resources are wasted on non-viable candidates; with it, molecules meeting chemical,
medicinal, and task-dependent criteria proceed further, improving success rates and reducing costs.

To the best of our knowledge, we introduce the first comprehensive, practice-oriented benchmark
for evaluating de novo molecular generators under realistic medicinal chemistry constraints. We
compare three generator families - (i) unconditional generators, (ii) ligand-based models, and
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(iii) structure-aware protein-based models - and investigate whether they generate molecules that
pass a realistic multi-stage filter cascade. As a biologically relevant case study, we focus on
KRAS G12D mutant, for which no approved inhibitors exist; by contrast, KRAS G12C mutant
has FDA approved drugs - sotorasib (Blair, |2021; |Hong et al., |2020) and adagrasib (Jdnne et al.|
2022; |Canon et al., [2019). For protein-based tasks, we focus generation on the switch-II pocket of
KRAS G12D using PDB 7EW9 (PDB ID: pdb_00007ew9), a GDP-bound KRAS G12D structure in
complex with TH-Z816. For ligand-based tasks, we condition generation on known KRAS G12D
inhibitors (Ghazi Vakili et al.||2025)).

Our contributions are:

* We propose the Five-Stage Filtering Pipeline for molecule evaluation with: coarse physico-
chemical descriptors, medicinal chemistry alerts, synthetic feasibility, docking and binding
affinity estimation, and blind medicinal chemistry scoring.

* We propose a standardized target-agnostic filtering and evaluation process applicable to
unconditional, ligand-based, and protein-based generators; as a case study, we employ a
unified evaluation via docking and binding affinity estimation against KRAS G12D.

e We show that under our pipeline, only a small fraction (less than 1%) of generated
molecules pass all filters and remain applicable for future work.

* We demonstrate that unconditional models show the highest pass rates among other fam-
ilies; ligand-based models more often violate coarse descriptor bounds; and protein-based
models show the lowest pass rate.

Overall, our benchmark prioritizes stress-testing diverse molecular generators against constraints
that matter in drug discovery settings, and shifts evaluation toward actionable chemical space. The
protocol is extensible to new targets by swapping the pocket definition and ligand sets while keeping
the filter cascade unchanged, enabling reproducible comparisons.

2 RELATED WORK

We categorize molecular generators by generative strategy and architecture because both impose
distinct inductive biases - validity and grammar errors for strings, geometry handling for 3D models,
pocket alignment for pocket-based models (David et al., 2020; [Bilodeau et al., |2022)). Table E]
summarizes the mapping and models are described below.

Table 1: Taxonomy of molecular generators considered in our benchmark, by architecture (rows)
and generative strategy (columns)

Architecture /Model Type UNCONDITIONAL LIGAND-BASED PROTEIN-BASED
Genetic Algorithm — MolFinder (Kwon & Lee,[2021) =
HierGraphVAE (Jin et al.}[2020)
Variational Autoencoder JT-VAE (Jin et al.]2018) GENTRL (Zhavoronkov et al.|[2019) =
MoLeR (Maziarz et al.|[2021)
GCPG (Zou et al.}[2025) Dragonfly (Atz et al.,|2024)
Autoregressive MolGPT (Bagal et al.,[2021) PGMG (Zhu et al.]2023) Pocket2Mol (Peng et al.||2022)

REINVENT4 (Loettler et al.||2024) ResGen (Zhang et al.[|2023)

DiffSBDD (Schneuing et al.![2024)
Diffusion Egli/]l)- D[;Ilfll\-l/lo‘(ggsrl:()(:tnﬁl azl(.),za(;ZZ) — ProtoBind-Diff (Mistryukova et al.,[2025)
g 2 TargetDiff (Guan et al.,[2023)

Flow matching — — DrugFlow (Schneuing et al.}[2025)

Genetic algorithm (GA) GA is a heuristic optimizer that evolves molecules via crossover and
mutation operations. MolFinder (Kwon & Lee, |2021) applies Conformational Space Annealing to
SMILES (Weininger, | 1988)), and requires no generative model to pretrain for ligand-based design.

Variational autoencoder (VAE) VAE models learn a latent distribution over chemical space with
an encoder-decoder pair optimized via the ELBO (Kingma & Welling, [2013). JT-VAE (Jin et al.
2018), HierGraphVAE (Jin et al.| [2020), MoLeR (Maziarz et al., 2021) operate on graphs with
scaffold-aware decoders. They typically yield high validity and diversity, but as unconditional gen-
erators, they do not ensure target relevance. GENTRL (Zhavoronkov et al., [2019) is a string VAE
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with Reinforcement Learning (RL) fine-tuning, which generates molecules with high similarity to
target molecules.

Autoregressive models String models factorize the sequence likelihood as [ [, P(¢; | t<;). Mol-
GPT (Bagal et al., 2021)) is a decoder-only Transformer, with no target protein or ligands hints.
REINVENT (Olivecrona et al.,[2017) fine-tunes a SMILES Prior into an Agent via policy gradient
to maximize a scoring function. REINVENT4 (Loeffler et al., [2024) generalizes REINVENT to
RNN or Transformer priors, combining transfer learning, curriculum learning, or RL with a multi-
component scoring system for goal-directed design.

For structure-based design, 3D autoregressive models condition on a pocket P and learn conditional
likelihood of a molecule M as py(M | P) = H?Zl po(zt | z<t, P), where each step z; adds
atom, bond, or coordinates. Pocket2Mol (Peng et al., [2022), ResGen (Zhang et al.| [2023), and
Dragonfly (Atz et al., [2024) encode pocket geometry with SE(3) or E(3) equivariant encoders, and
decode pocket-aware ligands.

Pharmacophore-based models use c as a set of 3D interaction features and geometry, introducing
latent z which, via p(z | ¢) = [ pg(x|c, z)p(z) dz, models the many-to-many relationship between
pharmacophores and ligands. PGMG (Zhu et al., 2023) represents a pharmacophore as a fully con-
nected graph, encodes it with a GNN, and uses a Transformer decoder to generate SMILES; stereo-
chemistry tokens are omitted since the pharmacophore graph lacks stereo information. GCPG (Zou
et al.,|2025) is a Transformer encoder—decoder whose hidden state is modulated by gating on phar-
macophore embeddings and user-set targets to property-controlled sampling.

Diffusion models Diffusion models are trained to approximate the reverse process of a prede-
fined forward noising process (Ho et al., 2020). E(3)DM (Hoogeboom et al., |2022) is an E(3)-
equivariant model that jointly denoise atom coordinates and types. DiffSBDD (Schneuing et al.,
2024) is an SE(3)-equivariant 3D-conditional model that processes both atomic coordinates and cat-
egorical atom features while conditioning on the protein pocket. TargetDiff (Guan et al., [2023)
conditions the diffusion process on a protein binding site (SE(3)-equivariant), generating ligand co-
ordinates and atom types. Beyond 3D structure, TGM-DLM (Gong et al., |2024) denoises token
embeddings with non-target specific prompts and post-hoc validity repair. ProtoBind-Diff (Mis-
tryukova et al., 2025) is a structure-free diffusion language model, that takes a protein’s amino-acid
sequence, and generates target-specific ligand candidates.

Flow matching Flow matching models learn continuous-time velocity fields transporting a base
distribution to the data distribution. DrugFlow (Schneuing et al., 2025)) is a pocket-conditioned
ligand generation model with flow-based sampling.

3 BENCHMARK CONSTRUCTION

We evaluate three generator families - unconditional, ligand-based, and protein-based - under a
unified, reproducible Five-Stage Filtering Pipeline (Fig.[I). The pipeline thresholds and processing
are target-agnostic; for structure-based stages we instantiate experiments on KRAS G12D (switch-1I
pocket; PDB ID: pdb_00007ew9).

Before any filtering, we standardize molecules with RDKit (Landrum) 2013) and Dimorphite-
DL (Ropp et al.,[2019). As part of the preparation stage, duplicate molecules were removed within
each model’s generation set, while duplicates across different models were retained. Validity is
checked with RDKit. Then we do the following steps: (i) remove salts and solvents and keep largest
organic fragment; (ii) add hydrogens to complete valences; (iii) normalize valence, kekulize, and
sanitize; (iv) generate ionization states at pH 7.4 & 0.0; (v) preserve declared stereochemistry and,
where unspecified, generate up to 8 stereocenters; (vi) generate 3D conformers via distance geome-
try, minimize them, and retain the lowest-energy conformer for each state.

Specific algorithms and configurations for molecule preprocessing are described in Appendix[A.



Under review as a conference paper at ICLR 2026

. [ Remove Salts ][ Kekulize ][ Add Hydrogens ] Keep Largest Organic

g Preprocessing [ Remove Solvents A55|gn Aromatlcny Fragment Results
3 ) £
% 9 (DESCRIPTORS STRUCTURAL SYNTHESIS DOCKING MEDICINAL

o
s < FILTERS FEASIBILITY & BINDING CHEMISTS
3 g (Rigid Bonds | TPsA | [pas][Giaro [ e m AFFINITY EVALUATION
g > [ Ring Size ][ QED ] Mo\ecularGraph Bredt SYBA score [ GNINA ] [ Geometry validation ]
5 Complexlty rule AIZynthFlnder [ smina ] [ Unplaced HBA fix ]
0] — ] ( Boltz-2 || J

Stago: 1 Stage: 2 Stage: 3 Stage: 4 Stage: 5

Figure 1: Five-stage filtering pipeline to evaluate generative models. At each stage molecules must
satisfy all stage-specific thresholds to proceed. Starting from valid, unique generated molecules, we
(1) standardize and generate chemically relevant microstates; (ii) apply physicochemical descriptor
filtering; (iii) screen structural and medicinal chemistry alerts; (iv) assess synthesis feasibility and
require at least one AiZynthFinder route; (v) evaluate binding compatibility and binding affinity to
the KRAS G12D switch-II pocket; (vi) compounds that passed all previous stages receive a blind
medicinal chemist review.

3.1 STAGE 1: PHYSICOCHEMICAL DESCRIPTORS

We compute 18 two-dimensional physicochemical descriptors (MW, logP, TPSA, HBDs, HBAs,
rotatable bonds, number of rings, fs,3, QED, etc.) using RDKit after the preprocessing workflow.
Rather than applying any single canonical rule set (e.g., strict Lipinski Rule-of-Five (Lipinski, [2004)
or Veber’s Rules (Veber et al., [2002)), we combined multiple rule sets and extended thresholds
to remove clearly outliers and chemically implausible structures while retaining diversity. This
approach reflects the fact that no single rule set covers all descriptors, and our aim of a general, task-
agnostic filtration. Appendix [B.T] reports exact per-descriptor definitions, bounds, and per-model
pass rates.

3.2 STAGE 2: STRUCTURAL FILTERS

Molecules that pass the Descriptors stage are further screened with public structural alert sets and
graph sanity check to remove reactive, unstable, and toxic molecules: PAINS (Baell & Holloway,
2010), Glaxo (Hann et al.|[1999), Inpharmatica (Emmanuel et al., 2025)), SureChEMBL (Papadatos
et al.||2016)); a molecular graph filter (e.g., removal of molecules containing atoms embedded in mul-
tiple 3—4-membered rings); a complexity outlier filter (e.g., Bertz (Bertz,|198 1)), Whitlock (Whitlock,
1998), SMCM (Allu & Oprea, [2005), TWC (Gutman et al., [2001)); the Novartis hit-triage (NIBR)
filter (Schuffenhauer et al.,|[2020); and a Bredt-rule check (Fawcett, [1950). Implementation details,
rule lists, and alert sets samples are provided in Appendix [B.2.

3.3 STAGE 3: SYNTHESIS FEASIBILITY

We assessed synthesizability with three independent predictors: Synthetic Accessibility score (SA
score) (Ertl & Schuffenhauer, [2009), Retrosynthetic Accessibility score (RA score) (Thakkar et al.|
2021), and Synthetic Bayesian Accessibility (SYBA) score (Vorsilak et al., [2020). SA score com-
bines fragment frequencies (from PubChem (Kim et al.,|2023)) to yield a synthetic complexity score
from 1 (easy) to 10 (hard). RA score is a classifier predicting probability of being a synthetic path
for a compound. SYBA is a fragment-based Bernoulli Naive Bayes classifier - trained on ZINC15
“easy” and Nonpher-generated “hard” molecular sets - that classifies structures as easy or hard to
synthesize.

We then attempt route finding with AiZynthFinder (Genheden et al., 2020). AiZynthFinder is a
machine-learning-guided retrosynthetic workflow. It performs Monte Carlo Tree Search guided by a
neural network policy over reaction templates (extracted from USPTO and applied with RDChiral),
stopping when all precursors are in stock or the search depth is exceeded. Each compound was
processed independently with a maximum reaction depth of 5 steps and tree search budget of 300 s
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per molecule. Implementation details - e.g., exact SA score, RA score, SYBA score threshold, and
AiZynthFinder configuration - are provided in Appendix [B.3.

3.4 STAGE 4: DOCKING SCORE AND BINDING AFFINITY ESTIMATION

We dock all molecules that passed previous stages into the KRAS G12D switch-II pocket (PDB ID:
pdb_00007ew9). Before docking, the protein structure was prepared by removing water molecules
and ligands, and by adding hydrogens and charges using AutoDockTools (Forli et al., 2016)). Molec-
ular docking was performed using smina (Koes et al.,2013)), and GNINA (McNutt et al., 2021). We
estimated target binding affinity with deep learning approach Boltz-2 (Passaro et al., 2025), with a
100pM threshold.

A ligand passes Stage 4 if its best docking score is not higher than 74, = —6.5 kcal/mol in both
engines and binding affinity score is less than 100uM. Docking parameters are detailed in Ap-

pendix [B.4.
3.5 STAGE 5: MEDICINAL CHEMISTS EVALUATION

Molecules that passed all previous stages are scored by a senior medicinal chemist, blinded to model
identity. We used PoseBusters (Buttenschoen et al.,[2024), RDKit (Landrum|2013), ProLIF (Bouys-
set & Fiorucci, 2021). The evaluation follows five criteria designed to capture general medicinal
chemistry principles and target-specific knowledge:

* (i) Pose validation by geometry using PoseBusters: molecules exhibiting unnatural tor-
sions, distorted bond angles, or severe intramolecular and intermolecular clashes were ex-
cluded.

* (ii) Pose validation by conformational energy using PoseBusters: docking programs fre-
quently place ligands in energetically unfavorable conformations in order to maximize lo-
cal protein-ligand interactions. If the docked pose was substantially higher in energy than
alternative conformers, it was deemed unlikely to represent a realistic binding mode and
the molecule was deprioritized.

* (ii1) Hydrogen bond donors and acceptors using ProLIF and RDKit: unoccupied hydrogen
bond donors (HBDs) and acceptors (HBAs) are penalized, as polar groups are energetically
favored to remain solvent-exposed. Their presence in a buried pocket is only justified if
supported by strong interactions. Particular attention was given to HBDs, whose number
is more stringently limited in drug-like compounds, whereas HBAs can be somewhat more
tolerated.

* (iv) Pocket burial using RDKit: to ensure that the ligand fits entirely within the binding
pocket rather than protruding into solvent, the maximum distance of any ligand atom to the
nearest protein atom was measured. Molecules with atoms extending farther than 5 A were
discarded.

* (v) Target-specific interaction with Asp12 using ProLIF: selectivity for KRAS G12D over
wild-type KRAS critically depends on interactions with Aspl2. Molecules failing to en-
gage Aspl2 were deprioritized, as their likelihood of selective binding was considered low.

4 RESULTS

We compare three generator families with six unconditional generators, seven ligand-based gener-
ators, and nine protein-based generators. For each model we sample Ny, = 10,000 molecules.
Validity is checked with RDKit; invalid samples are discarded and resampled; duplicates are re-
moved and resampled within each model’s batch. This yields 60,000 molecules for unconditional
models, 70,000 molecules for ligand-based models, and 80,000 molecules for protein-based models.
Table [2| Table 3] and Table 4| report cumulative pass rates after each step of the pipeline for each
model.

We frame a set of architecture-informed hypotheses and then test them under the Pipeline. Equiv-
ariant diffusion models explicitly model 3D coordinates and Euclidean symmetries, so they are
expected to produce geometrically plausible ligand poses and improved docking performance
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(E(3)DM, DiffSBDD, TargetDiff). Graph-based VAEs with scaffold-aware decoders have shown
to yield high validity, but may sample synthetically complex chemotypes that are hard to synthesize
without additional constraints (JT-VAE, HierGraphVAE, MoLeR). Autoregressive SMILES models
are highly sensitive to the learned prior, which substantially alter novelty, similarity to training set,
and downstream filtering rates (REINVENT4). Genetic optimizers can rapidly find high scoring
and novel molecules without pretraining but may increase structural-alert incidence and reduce syn-
thetic success (MolFinder). Flow matching approaches have reported stable training and efficient
sampling that preserves training distribution fidelity (DrugFlow). Pharmacophore-guided methods
explicitly bias generation toward interaction motifs and therefore are expected to increase dock-
ing enrichment (GCPG, PGMG). Finally, prior work has repeatedly shown that high performance
on common generative benchmarks does not guarantee synthesizability in practice, motivating our
explicit retrosynthesis and AiZynthFinder gate.

Overall pass rate is low for all families: 364 molecules (0.607% of 60,000) from unconditional
generators, 287 molecules (0.41% of 70,000) from ligand-based generators, and 318 molecules
(0.398% of 90,000) from protein-based generators. Unconditional models are the most successful,
with 0.607% from initial number of molecules passing all stages, showing that such models are
able to capture general molecular constraints much better than conditioned models. This may be
due to overfitting to features that do not translate into tractable, candidates acceptable for medicinal
chemistry.

Figure[2a]shows the top three molecules from each model family. Consensus scores were calculated
as the arithmetic mean of the inverted and min-max normalized values of smina and GNINA docking
scores, and the Boltz-2 binding affinity predictions. Figure|2b|shows some synthesis path calculated
via AiZynthFinder tool for the top molecules. Rest paths are available in the Appendix [B.3.
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Figure 2: The top nine generated molecules with their synthesis paths.

4.1 UNCONDITIONAL MOLECULE GENERATORS

We evaluate E(3)DM, HierGraphVAE, JT-VAE, MoLeR, MolGPT, and TGM-DLM. These models
do not condition on target ligands or pocket structure. Results are presented in Table[2] VAE models
(especially JT-VAE) retain markedly more candidates through structural filters and synthetic acces-
sibility estimation stages than E(3)DM or MolGPT models, showing that these models are able to
sample molecules that are valid and not chemically complex; E(3)DM collapses at synthetic acces-
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sibility stage and no candidates remain after this stage; TGM-DLM leaves with the least candidates,
mostly due to struggle with validity, filtering out most molecules on descriptors stage.

Table 2: Comparison of unconditional models, each with initial number of molecules Ny, = 10,000

Stage /Model E(3)DM  HIERGRAPHVAE JT-VAE MoOLER MoLGPT TGM-DLM

Descriptors 3520 3579 7586 3193 3474 1216
Structural Filters 75 1176 2765 718 1029 100
Synthesis Feasibility 0 975 1549 557 679 35
Docking & Binding Aff. 0 477 816 323 340 10
Med.Chem. Evaluation 0 53 181 65 64 1
Pass 0 53 181 65 64 1

4.2 LIGAND-BASED MOLECULE GENERATORS

For benchmarking, we compare baselines: GCPG, GENTRL, MolFinder, PGMG, and three dif-
ferent setups of REINVENT4: REINVENT4 (V), REINVENT4 (P), REINVENT4 (TL) described
below. We examine multiple REINVENT4 setups because sampling behavior depends strongly on
the learned prior and fine-tuning strategy; comparing variants isolates how prior choice and transfer
learning affect diversity, novelty, synthesizability, and downstream performance.

REINVENT4 (V) (vanilla) uses the out-of-the-box prior released by the authors, and no further
modifications applied to the model.

REINVENT4 (P) (prior) is a similarity-based REINVENT4 prior released by the authors that was
trained under a medium Tanimoto similarity sampling mode.

REINVENT4 (TL) (transfer learning) is our transfer-learned prior, fine-tuned on known
KRAS G12D inhibitors to bias sampling toward the target chemical space. Training and imple-
mentation details are provided in Appendix [C]

Results are presented in Table GCPG sustains the highest end-to-end retention, resulting in
110 molecules after medicinal chemists evaluation stage. REINVENT4 (V) yields more success
molecules (93) than REINVENT4 (P) and REINVENT4 (TL) with 17 and 32 molecules respec-
tively, showing that a broader prior favored downstream filtering pipeline, although sampling 10,000
molecules for REINVENT4 (V) required more attempts. PGMG underperforms early at the de-
scriptors stage and retains the fewest candidates, however, the fraction of molecules that passed
docking and binding affinity estimation stage with respect to synthetic feasibility stage is the high-
est (19/22 = 0.864), indicating that pharmacophore-based models tend to generate molecules, that
are indeed likely to capture pocket shape geometry and complementarity, but PGMG struggles with
overall molecule validity.

Table 3: Comparison of ligand-based models, each with initial number of Ny, = 10,000 molecules

Stage /Model GCPG GENTRL MOLFINDER PGMG REINVENT4 (V) REINVENT4 (P) REINVENT4 (TL)

Descriptors 6616 5669 1592 195 4089 936 1204

Structural Filters 4168 1925 366 37 1325 593 413
Synthesis Feasibility 1064 303 265 22 918 222 276
Docking & Binding Aff. 648 238 200 19 518 72 164
Med.Chem. Evaluation 110 24 7 4 93 17 32
Pass 110 24 7 4 93 17 32

4.3 PROTEIN-BASED MOLECULE GENERATORS

For benchmarking, we compare baselines: DiffSBDD, Dragonfly, Dragonfly biased (b), DrugFlow,
Pocket2Mol, ResGen, TargetDiff. We evaluated two different Dragonfly setups to investigate the
overall performance of an unmodified model provided by the authors, and a fine-tuned model biased
with only one target compound descriptors.

Dragonfly is an out-of-the-box model released by the authors with no modifications applied to the
model.

Dragonfly (b) (biased) leverages built-in ability to condition sampling on target compound descrip-
tors. Specifically, bias is applied toward molecular weight, number of rotatable bonds, hydrogen
bond donors and acceptors, topological polar surface area, and logP, thereby steering the generation
toward molecules with physicochemical properties aligned with the target profile.
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Results are presented in Table 4] Although Dragonfly passes the first stage with only 27.79% of
initial molecules, the number of molecules that pass medicinal chemists evaluation is the highest
among all families, suggesting that Dragonfly is able to sample molecules that are likely to be valid
and useful. DiffSBDD, Dragonfly, DrugFlow, Pocket2Mol and TargetDiff strongly dominate other
models while passing descriptors stage. However, DiffSBDD, DrugFlow, Pocket2Mol, TargetDiff
loses more than a quarter of molecules after structural filters stage, suggesting that those models
struggle with synthesis of non toxic and pan-assay-free molecules. TargetDiff does not pass docking
and binding affinity estimation stage, and DiffSBDD does not pass medicinal chemistry evaluation
stage, while DrugFlow is the second most successful model.

Table 4: Comparison of protein-based models, each with initial number of molecules Nge, = 10,000

Stage /Model DIFFSBDD DRAGONFLY DRAGONFLY (B) DRUGFLOW POCKET2MOL PROTOBIND-DIFF RESGEN TARGETDIFF

Descriptors 3665 2779 1022 5464 2657 1466 1080 3444

Structural Filters 197 1459 218 1392 682 195 255 136
Synthesis Feasibility 24 1207 38 453 137 102 62 4
Docking & Binding Aff. 13 575 15 344 69 66 37 0
Med.Chem. Evaluation 0 227 4 62 12 7 6 0
Pass 0 227 4 62 12 7 6 0

5 DISCUSSION AND CONCLUSION

Applying the same five-stage filtration across unconditional, ligand-based, and protein-based mod-
els reveals that across 210,000 generated molecules only 969 (0.461%) of generated molecules
pass end-to-end screening. Empirically, unconditional models have the highest overall pass rate
of 0.607%, producing molecules that correlate with basic requirements of early drug discovery.
Ligand-based models achieved moderate retention with 0.41% pass rate. Protein-based models are
left with the smallest fraction of passed molecules (0.398%), with Dragonfly achieving the highest
final pass rate of 227 molecules despite low initial retention. Across all families, streepest attri-
tion occurs at synthetic feasibility (= 0.2501 molecules w.r.t. descriptors filtration) and medicinal
chemistry (= 0.1535 molecules w.r.t. synthesis feasibility evaluation stage) evaluation stages. This
confirms prior findings that benchmark metrics, such as validity is weak predictor of downstream
utility. The explicit retrosynthesis gate (AiZynthFinder) is therefore critical to separate benchmark
overfitting from true drug-likeness.

Our results highlight several architecture-dependent trends across molecule generators. Equivariant
diffusion models (E(3)DM, DiffSBDD, TargetDiff) exceed at encoding 3D symmetries and geo-
metric constraints, yet collapse under synthetic accessibility evaluation, suggesting that geometric
fidelity alone is insufficient for practical usage. Graph-based VAEs (JT-VAE, HierGraphVAE) bal-
ance validity and synthesizability better than other unconditional models, confirming the hypothesis
that scaffold-aware decoders reduce chemical complexity. REINVENT4 is highly sensitive to prior
choice: broad priors generalize well through the pipeline, while similarity-based or transfer-learned
priors reduce downstream retention. Genetic optimizers (MolFinder) find high-scoring candidates
without pretraining but enrich high structural alert rates, highlighting the exploration-safety trade-
off. Pharmacophore-based models (GCPG, PGMG) confirm the value of explicit interaction motif
bias, yielding high enrichment, although PGMG shows low overall pass-rate.

Our findings emphasize that standard generative benchmarks are not good proxies for real-world
performance. Optimizing for validity, synthesis, or pocket fidelity independently is insufficient for
actionable chemical space that requires alignment across all objectives simultaneously. That is why
evaluation should integrate: (i) multistage filtering pipeline (descriptors, structural alerts, synthe-
sis feasibility, docking and binding affinity, and medicinal chemistry stages); (ii) synthesis-aware
metrics beyond SA scores; and (iii) stage failures analysis.

While our pipeline integrates synthesis and docking gates, it does not yet capture long-range phar-
macokinetics, ADMET liabilities, or clinical viability. Future work should couple generative models
with multiscale predictions, and uncertainty-aware evaluation of generated molecules.
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