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ABSTRACT

AI image compression has outperformed traditional methods in both efficiency
and quality but remains vulnerable to adversarial attacks. Most attacks on deep
neural networks (DNNs) involve adding small perturbations to the input image to
deceive the system and produce incorrect results. While simple, these additive
perturbations affect pixels uniformly across different intensity levels, from dark to
bright regions. However the human eye is less sensitive to variations in dark areas
than in bright ones, making noise in brighter areas more visible. This observation
suggests a novel attack strategy that minimizes the visibility of adversarial noise
through adaptive perturbations. To achieve this, we propose a nonlinear log-exp
perturbation, which applies more noise to dark pixels while minimizing its impact
on bright areas.
We evaluated this perturbation model in two scenarios: one distorts the output of
decompression models and another one increases the bit rate of compressed im-
ages without visibly affecting quality. Our findings offer new strategies to protect
AI-driven image compression systems, ensuring both security and performance in
practical applications.

1 INTRODUCTION

The advent of Deep Neural Networks (DNNs) and Variational Autoencoders (VAEs) Kingma &
Welling (2014) has brought significant improvements into image compression. These technologies
enable the encoding of images into a compact latent space, facilitating efficient storage and transmis-
sion Ballé et al. (2016). However, these AI-based models have their own challenges. Deep neural
networks (DNNs) are generally large. For example, the Cheng2020-anchor model has a size of 120
MB, while the Attention TCM for AI compression has a size of almost 900 MB. Larger models are
more vulnerable to adversarial attacks. This vulnerability is demonstrated in the work by Tong Chen
and Zhan Ma Chen & Ma (2021), which shows that AI compression models can be attacked easily
with simple additive perturbations and the Projected Gradient Descent (PGD) method.

Adversarial attacks have become an important area of research in the field of deep learning. The
vulnerability of these models to specifically crafted perturbations is well-known.

For attacking AI compression models, one can adapt many existing methods for adversarial attacks
from other domains of applications, such as classification, text, and music. However, these methods
do not account for the characteristics of the human eye.

Most current adversarial attack noise models utilize simple additive noise, often without considering
the human visual system’s perception. This results in perturbations that may be overly visible to the
human eye, undermining the stealthiness of the attack. However, the human eye does not perceive
noise uniformly across different luminance levels. Accounting for this can lead to more perceptually
imperceptible yet effective adversarial attacks.

In order for the adversarial attacks to succeed, the need to craft perturbations which are invisible to
human eyes is important. In this paper, inspired by Weber’s Law for light incremental threshold, we
propose a new nonlinear perturbation model which is based on the log-exp function, can adapt to the
luminance of different regions in an image. This approach allows for more imperceptible adversarial
attacks, as the noise generated follows the light incremental threshold of the human visual system.
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Our method demonstrates that by aligning noise generation with the properties of human perception,
adversarial attacks can be made less detectable without compromising their effectiveness. This
opens new avenues for the development of advanced adversarial techniques that take human visual
perception into account, ensuring that perturbations are optimized for both efficacy against models
and invisibility to humans.

2 NEURAL IMAGE COMPRESSION FRAMEWORK

The application of deep learning to image compression has significantly advanced the field, particu-
larly through the use of autoencoder-based architectures. Balle et al. Ballé et al. (2018) proposed an
end-to-end variational autoencoder (VAE) model, compressing image representations into a latent
distribution and using a hyperprior to capture spatial dependencies. The framework optimizes rate-
distortion performance by balancing bit rate (entropy) and image quality (distortion), often using
Mean Squared Error (MSE) or Multi-Scale Structural Similarity (MS-SSIM) as metrics. Minnen
et al. Minnen et al. (2018) extended this with an autoregressive context model, while Cheng et al.
Cheng et al. (2020) further improved performance using Gaussian Mixture Models for more pre-
cise latent representation estimation. Specifically,they introduced two enhanced architectures: the
”Cheng-anchor2020” model, which incorporates residual blocks in the analysis and synthesis trans-
forms, and the ”Cheng-Atten” model, which combines both residual and attention modules in these
transforms.

In Liu et al. (2023), the Transformer-CNN Mixture (TCM) model combines CNNs’ local feature
modeling with Transformers’ non-local capabilities, achieving state-of-the-art rate-distortion per-
formance through an efficient hybrid design with Swin-transformer-based attention modules.

In these frameworks, the compression process involves transforming the image into a latent space,
quantizing the latent variables, and reconstructing the image from the quantized representation. The
optimization objective minimizes both the rate (bit usage) and distortion (image quality loss), mak-
ing these methods highly effective for compressing images without noticeable visual degradation.

2.1 ADVERSARIAL ATTACK METHODS

Adversarial attacks, particularly those utilizing additive perturbations, pose a serious threat to neural
image compression systems by introducing carefully crafted noise that can degrade the model’s per-
formance. These attacks aim to subtly alter the input image to either reduce compression efficiency
or impair the reconstructed output quality, often without perceptible changes to the human eye. The
most common attack methods include: Common attack methods include FGSM Goodfellow et al.
(2014), which adds noise in the gradient direction, PGD Madry et al. (2019) for iterative refine-
ment, BIM Kurakin et al. (2018) for repeated perturbations, Carlini and Wagner Lin et al. (2021) for
optimization-based minimal perturbations, and Wasserstein Attack Wu et al. (2020) for semantically
meaningful perturbations.

These methods are widely used due to their simplicity and effectiveness in generating adversarial ex-
amples. However, they face several challenges: perturbations may be more visible in bright regions,
uniform noise application can lead to suboptimal attacks, and large perturbations can noticeably de-
grade image quality. Additionally, these attacks are often vulnerable to defense techniques such as
adversarial training or preprocessing.

For neural image compression systems, these challenges are particularly critical, as visible pertur-
bations can disrupt the compression process and compromise image quality in visually sensitive
applications. As a result, this motivates us to develop advanced attack strategies that consider re-
gional sensitivity and compression-specific characteristics to improve the stealth and effectiveness
of adversarial attacks in this domain.

2.2 ROBUSTNESS OF AI IMAGE COMPRESSION

In Liu et al. (2022), the authors explored the robustness of deep learning-based image compression
models under adversarial attacks. They applied both white-box and black-box attacks to increase the
bitrate of compressed images significantly. Using a white-box approach with FGSM, they achieved
up to a 50% bitrate increase but applied perturbations globally across the entire image, resulting in

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

highly visible artifacts. In the black-box setting, their DCT-Net achieved a 4x increase in bitrate at
best, but again, the perturbations were clearly noticeable.

However, their work has notable limitations. No perceptual similarity metrics, such as PSNR or
SSIM, were used to evaluate how closely the attacked images resembled the originals. This is a
critical gap, as such metrics would provide a clearer picture of attack impact beyond bitrate changes.
Additionally, their approach does not address localized attacks, which could potentially lead to more
imperceptible perturbations with similar effectiveness.

Lei et al. (2021) explored out-of-distribution OOD-robust compression, using distributionally robust
optimization and structured coding to handle distribution shifts. However, it did not address adver-
sarial attacks or the challenge of ensuring imperceptible perturbations, focusing solely on OOD
scenarios.

A recent study introduced benchmarks (CLIC-C and Kodak-C) and spectral inspection tools to eval-
uate the out-of-distribution (OOD) robustness of neural image compression (NIC) models Lieber-
man et al. (2023), revealing key insights into their performance under distribution shifts. The work
highlighted NIC’s ability to handle high-frequency corruptions better than classic codecs but noted
challenges in generalizing to high-frequency shifts. Unlike our focus, this study did not explore
adversarial attacks designed to induce artifacts or increase bpp in NIC models.

3 NONLINEAR PERTURBATION

3.1 NOISE MODELING AND HUMAN VISUAL SENSITIVITY

Most current adversarial attack noise models utilize simple additive noise, often without considering
the human visual system’s perception. This results in perturbations that may be overly visible to the
human eye, undermining the stealthiness of the attack. However, the human eye does not perceive
noise uniformly across different luminance levels. Accounting for this can lead to more perceptually
imperceptible yet effective adversarial attacks.

A key principle that describes the sensitivity of the human visual system is Weber’s Law Weber
(1834). According to this law, the just noticeable difference (JND) in stimulus intensity, or the light
incremental threshold (δI), is proportional to the background intensity (I). Specifically, for low
luminance levels (darker areas), the ratio δI/I is relatively large. As luminance increases, this ratio
becomes smaller and tends to remain constant for mid-range luminance levels between 1 and 100
millilamberts. Brightness discrimination is poor (large Weber ratio) at low illumination levels and
improves significantly as I increases.

To illustrate this, consider the following examples of luminance and their corresponding threshold
ratios:

• For a luminance of 0.001 mL, the threshold ratio δI
I is approximately 0.2.

• For a luminance of 0.01 mL, the threshold ratio decreases to around 0.1.

• For a luminance of 1 mL, the threshold ratio is about 0.02.

This relationship highlights that the human visual system is less sensitive to brightness changes in
dark regions compared to brighter regions, where the eye struggles to discern small variations. The
dashed line in Figure 238 in Rutten & van Venrooij (2024) illustrates this concept.

3.2 VISUAL PERCEPTION AND ADAPTIVE PERTURBATIONS

The Weber-Fechner law Fechner (1860) further describes the non-linear relationship between stim-
ulus intensity (I) and perceived sensation (S)

S = 2.3k log10 I + C (1)

where k determines the steepness of the curve and C defines its vertical position. This law explains
why the eye’s sensitivity to brightness changes varies across luminance levels. In very low luminance
environments, background noise in the eye makes it difficult to detect small changes in light, while in
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extremely bright conditions, the eye becomes overwhelmed and loses sensitivity to minor differences
in luminanceRutten & van Venrooij (2024) .

This insight suggests that by accounting for the varying sensitivity of the human eye, adversarial
noise can be better tailored to different regions of an image.

3.3 LOG-EXP NOISE MODEL INSPIRED BY WEBER’S LAW

Building upon this understanding of human visual sensitivity, we propose a novel adversarial noise
model that leverages the light incremental threshold. The core idea is to generate noise that adapts
to the luminance of different regions within an image, ensuring that perturbations are less detectable
by the human eye while still effective in deceiving neural networks.

Specifically, we propose to model the adversarial noise as a function of the luminance I and the
random noise generated for a given pixel as follows

I ′ = log(expI +n), (2)

where n is small perturbation noise, and I ′ is the perturbed intensity from the luminance level I
of the pixel. Note that the noise n is usually small, ensuring that the logarithm function does not
encounter errors.

The Taylor expansion of the log-exp function in (2) around n = 0

I ′ = log(expI +n) = I + n exp(−I) +O(n) (3)

shows that δI = n exp(−I) represents the additive perturbation added to the pixel value I (lumi-
nance level). The perturbation δI adaptively changes to the pixel values I as an exponential decay
factor exp(−I). Note that the normalized pixel value I is in the interval of [0, 1]. In darker regions,
I ≈ 0, the perturbation δI is as the noise n, but it monotonically decreases as I increases to 1,
yielding δI ≈ 0.3679n, i.e., introducing less noise to the bright region.

This exponential decay model ensures that in darker regions, where the human eye is less sensitive
to small perturbations, the noise can be slightly stronger. Conversely, in brighter regions, the noise
is minimized to remain imperceptible.

The perturbation p(I) can be modified with a decaying factor κ

δI = n · exp(−κI) (4)

where κ can range from 1 to 3. This function grows quickly for large values of I (bright areas) and
slows for smaller values of I (dark areas), allowing for more control over perturbations in different
luminance regions.

3.4 JUST NOTICEABLE DIFFERENCE MODELS

Several existing models have explored the concept of JND to minimize the visibility of noise in
images. For instance, Hu et al. (2023) incorporate color sensitivity to adjust the sub-JND thresholds
of Y, Cb, and Cr components, creating a color-sensitivity-based JND model (CSJND). This model
reflects the visibility limitations of the human visual system and is commonly applied to perceptual
image and video processing.

Another example is the Just Noticeable Difference Model Zhang et al. (2023), which focuses on
estimating the JND based on the characteristics of the human visual system. This model considers
spatial contrast sensitivity functions and other factors to create a more accurate representation of
perceptual thresholds. These models aim to create noise that minimizes visibility, aligning with the
main idea of our proposed method.

In the context of adversarial attacks, the goal is to introduce small perturbations to an image that
cause a neural network to misclassify the image or degrade its performance, but without making the
perturbations visible to humans. Our adaptive noise model, guided by Weber’s law, is designed to
achieve this by ensuring that noise is proportional to the sensitivity of the human eye to brightness
changes in different regions of the image.

By incorporating principles from Weber’s law, specifically the relationship between luminance and
detection thresholds, we introduce a more sophisticated noise model that adapts to the luminance of
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different regions in an image. This approach allows for more imperceptible adversarial attacks, as
the noise generated follows the light incremental threshold of the human visual system.

4 MAXIMIZING DISTORTION IN ADVERSARIAL ATTACKS ON IMAGE
COMPRESSION

Following on the log-exp perturbation model proposed in the previous section, we propose a max-
distortion adversarial attack aimed at finding a noise pattern that maximizes the distortion in decom-
pressed images.

Consider an original image x, and let x⋆ be the perturbed version, defined as x⋆ = log(exp(x) +
na), where na represents the adversarial noise for the attack. The neural network’s decompressed
output is denoted by x̂ = f(x⋆). Similar to adversarial examples used in classification, the goal
here is to learn a noise pattern na that minimally alters x but significantly impairs the compression
model’s output quality. This is done by amplifying the difference between the decompressed images
f(x⋆) and f(x) or between f(x⋆) and x .

The attack objective can be formulated as

min
na

PSNR(f(x⋆),x) + λ∥na∥1 s.t. ∥na∥∞ ≤ δ, (5)

where ∥na∥∞ represents the infinity norm, and δ > 0 defines the allowable noise level. The noise
pattern na is reparameterized as na = δ tanh(κ · u), where u is an unconstrained variable and
κ controls the sharpness of the noise transition, ensuring that na approaches ±δ without reaching
those bounds.

To maximize distortion while maintaining imperceptibility, the attack focuses on local high-entropy
regions, which often contain more detail and are more sensitive to perturbations. A binary mask
identifies these regions by grouping similar pixels and selecting superpixels with the highest entropy,
indicating complex areas of the image. The mask marks significant regions for targeted distortion.

The optimization problem in (5) is rewritten as

min
u

PSNR(f(x⋆),x) + λ∥u∥1, (6)

where x⋆ = log(exp(x) + δ · mask · tanh(u)), mask represents the binary mask of the targeted
attack region.

To solve this optimization, methods such as Stochastic Gradient Descent (SGD) or ADAM are used
to estimate u. Larger values of u push the noise pattern n near the boundary, while reducing large
coefficients helps avoid local minima during optimization.

The proposed approach concentrates the attack on high-entropy regions, where image content is
more unpredictable. By constraining the noise using a nonlinear transformation, the perturbations
are significant enough to degrade image quality but remain imperceptible to the human eye, balanc-
ing effectiveness and subtlety.

The mask is smoothed using a Gaussian filter with σ = 21, which helps regulate the noise and
progressively reduce it toward the desired threshold. Through iterative updates, the mask is gradually
shrunk, focusing the attack on a smaller region and refining the perturbations for maximal distortion
with minimal visibility. For more detailes how the hyperparameters were selected please refer to A

As an example for the proposed method, Figure 1 demonstrates the noise filtering process for attack-
ing the image kodim19, compressed using the Cheng2020-anchor model. It shows the final attacked
image with the shrunken mask applied, the decompressed attacked image where artifacts are visible,
the corresponding noise mask, and the step-by-step progression leading to the final shrunken mask.

5 DEFENSE STRATEGIES

The goal of the defense strategy is to reduce the distortion D (maximizing PSNR) between the at-
tacked image x⋆, which has been compromised by adversarial perturbations, and the decompressed
output image xout = f(x⋆), which may contain significant artifacts. Without prior knowledge of
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Figure 1: kodim19, Cheng2020-anchor, Maxdistortion attack. Top: the attacked image, model’s
output (decompressed image), attack noise pattern. Bottom: entropy regions, smoothed mask, final
mask. PSNR(oi, oo) = 36.85 dB, PSNR(ai, ao) = 20.62 dB , BPP(oc) = BPP(ac) = 0.85, where
oi, oo, oc - original (input, output, compressed) image, and ai, ao, ac - attacked (input, output,
compressed) image.

the attack model, the defense aims to add corrective noise to the attacked image rather than recover-
ing the original perturbation. Specifically, we focus on learning an optimal noise pattern for defense,
nd, such that when added to the attacked image, it enhances the quality of the decompressed output.

The defense problem can be formulated as the following optimization task

min
nd

D (x⋆, f(x⋆ + nd)) + λ∥nd∥1, s.t. ∥nd∥∞ ≤ δ, (7)

or

max
nd

PSNR(x⋆, f(x⋆ + nd)) + λ∥nd∥1 s.t. ∥nd∥∞ ≤ δ, (8)

where f(x⋆+nd) represents the decompressed image after adding the corrective noise nd. The pa-
rameter δ defines the upper bound for the magnitude of the noise, while λ controls the regularization
for the sparsity constraints on the corrective noise pattern nd.

As in previous approaches, the noise nd is modeled as a hyperbolic tangent transformation of un-
constrained parameters u, expressed as nd = δ tanh(u). This ensures that the noise stays within
the predefined bounds. Stochastic Gradient Descent (SGD) is used to optimize the noise pattern,
aiming to reduce artifacts and enhance image quality.

Once the optimal noise nd is learned, it is added to the attacked image x⋆, yielding a refined image
xdef = x⋆ + nd. Compressing this refined image through the model results in an output with
significantly reduced artifacts, thereby improving the overall quality of the decompressed image.

Follow up the same example for the max-distortion attack, Table 1 presents the results of our defense
strategy for kodim19, where we achieved a PSNR(x⋆, f(xdef )) of 36.75 dB, which is very close to
the baseline. Additionally, the defended image closely resembles the original one, as confirmed by
the results of other metrics. Figure 2 provides a visual illustration of the defense process.
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Figure 2: Sequential visualization of the defense method for the kodim19 image infected by MaxDis-
tortion attack. Top: the attacked image and its decompressed image with disrupted pattern. Bottom:
noise pattern learnt by the defense method, and the decompressed image after removing the learnt
noise. The decompressed image after noise removal from the infected image has VIF = 0.9883.

6 RESULTS

We evaluated the proposed attack and defense algorithms on the Kodak dataset Kodak (1993), a
widely recognized benchmark for image quality assessment. The AI compression models used in
our experiments were sourced from the InterDigital CompressAI library Bégaint et al. (2020). All
experiments were conducted within the PyTorch framework, utilizing an Ubuntu server equipped
with an NVIDIA A100 GPU and 32 GB of RAM. In this section, we present the experimental
results for kodim images, demonstrating the performance of our attack and defense methods using
both the Cheng2020-anchor and TCM compression models.

6.1 ATTACKS AND DEFENSES ON CHENG2020-ANCHOR MODEL

Table 1 presents the results at each step of our proposed method. The initial significant drop in PSNR
is observed in the first step, where the Log-Exp noise function is applied to the mask derived from the
high-entropy filter. This filter identifies regions with more details in the image. Despite the PSNR
reduction, the refinement process involving mask smoothing and shrinking leads to better results in
terms of PSNR(oi, ai) where ai is the attacked image, i.e., x⋆, and oi is the original image,
i.e., x, with a 16 dB difference in PSNR(ai, ao) where ao is the attacked output, compared
to the baseline. Notably, the PSNR between the attacked and original image is higher when using
the mask shrink step, indicating that the attacked image appears more realistic. This observation is
further supported by the VIF metric, which confirms the visual quality preservation. In comparison,
the additive noise attack results in more visible noise, with a 4 dB reduction in the PSNR of the
attacked image, making it less realistic than in the Log-Exp noise case.

Figure 3 shows the comparison between the two methods of applying noise, Additive Noise and
Log-Exp Noise, using the Cheng anchor model with quality 6. We observe that PSNR(oi, ai) val-
ues demonstrate that Log-Exp Noise introduces less distortion to the original image compared to
Additive Noise, making the attacked image appear more realistic with less visible perturbations. In
terms of PSNR(ai, ao), both methods show significant degradation after decompression. However,
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Table 1: Comparison of PSNR (dB), BPP, SSIM, and VIF metrics at different stages of our log
exp method vs additive noise for kodim19. Abbreviations: oi, oo, oc - original (input, output,
compressed) image; ai, ao, ac - attacked (input, output, compressed) image.

Method PSNR(ai, ao) PSNR(oi, ai) BPP(ac) SSIM(ai, oi) VIF(oi, ai) VIF(oi, ao)
baseline full 36.85 0.85 0.9718 1.00 1.00
minpsnr 19.33 41.10 0.90 0.9503 0.98 0.45
highentropy minpsnr masksmooth 18.59 45.06 0.87 0.9487 0.91 0.40
highentropy minpsnr maskshrink 20.62 50.67 0.85 0.9567 0.98 0.53
highentropy minpsnr maskshrink additive 27.42 46.67 0.86 0.9681 1.00 0.87
def minpsnr 36.75 51.60 0.85 0.9717 1.00 1.00

Figure 3: Comparison between Additive Noise and Log-Exp Noise using the Cheng anchor model
with quality 6

although Additive Noise degrades the performance more than Log-Exp Noise, our main objective is
to make the applied noise less noticeable. Therefore, the Log-Exp Noise method achieves this goal
more effectively by keeping the perturbations subtle and less perceptible while maintaining a higher
image quality. Table 2 summarize the results of our attack method using Cheng-anchor model. The
PSNR drop between the attacked image ai and the decompressed attacked image ao varies across
quality levels. At the compression quality level q1, the PSNR drop ranges from 4.28 dB to 10.98 dB,
indicating a significant degradation in image quality. For the compression quality of 3, the drop is
slightly less severe, ranging from 6.10 dB to 8.99 dB, while at the compression quality of 6, the drop
ranges from 5.13 dB to 19.88 dB, with some images experiencing much larger reductions. Despite
the notable decline in PSNR, the BPP values remain consistent between the original and attacked
images, indicating that the attack does not significantly alter the file size. This demonstrates that the
attack is effective in degrading image quality while maintaining the same compression characteris-
tics.

We observe an average drop in PSNR(ai, ao) of -5.25, -3.5, and -12.21 compared to the baseline
PSNR for quality levels q1, q3, and q6, respectively. Notably, the BPP remains unchanged before
and after the attack, aligning with our objective to maintain the original file size while introducing
minimal noise(invisible to the human eye). This targeted noise application is designed to effectively
reduce PSNR, thereby introducing perceptible artifacts in the decompressed output of the attacked
image.

The results summarized in Table 3 illustrate the performance of our defense strategy against the
maxdistortion attack. Here, d i refers to the defended image input fed into the AI compression
model, while d o denotes its decompressed output produced by the same model. Notably, we ob-
served that the PSNR values of the defended images closely approach those of the original images,
indicating that our defense mechanism is effective in preserving image quality. Additionally, the
BPP(dc) values show that the file sizes of the defended images remain consistent with those of the
original images, highlighting the efficiency of our method.

Moreover, the SSIM (Structural Similarity Index) values further reinforce the notion that the de-
fended images retain structural similarities to the originals.
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Table 2: MaxDistortion attack on Cheng2020-anchor. Comparison of PSNR(ai, ao) - BPP(ac) pairs
across three different quality levels: q1, q3, and q6, which represent increasing quality levels, re-
spectively (ai, ac, ao - attacked: input, compressed, output images).

Image
name

original (q1) attacked (q1) original (q3) attacked (q3) original (q6) attacked (q6)
PSNR BPP PSNR BPP PSNR BPP PSNR BPP PSNR BPP PSNR BPP

kodim01 26.29 0.25 23.79 0.26 29.19 0.53 24.62 0.53 35.22 1.42 25.92 1.42
kodim02 30.37 0.14 25.37 0.14 32.32 0.22 25.43 0.23 36.97 0.69 23.66 0.70
kodim03 31.91 0.13 25.04 0.13 34.58 0.21 25.99 0.21 39.49 0.51 24.22 0.51
kodim04 30.19 0.15 25.33 0.15 32.61 0.25 25.89 0.25 37.28 0.70 27.78 0.71
kodim05 26.65 0.32 22.91 0.32 29.81 0.57 25.18 0.57 35.77 1.34 26.41 1.34
kodim06 27.71 0.22 22.51 0.23 30.54 0.40 56.96 0.40 36.58 1.07 26.29 1.07
kodim07 31.10 0.18 23.44 0.19 34.22 0.27 26.22 0.28 39.29 0.60 23.36 0.61
kodim08 26.43 0.35 23.32 0.35 29.14 0.58 25.21 0.57 34.81 1.44 24.29 1.44
kodim09 31.58 0.15 25.39 0.15 34.36 0.22 26.58 0.24 38.69 0.52 25.09 0.52
kodim10 31.35 0.16 26.11 0.17 34.16 0.24 26.44 0.25 38.58 0.56 24.22 0.56
kodim11 28.58 0.19 22.21 0.20 31.18 0.34 27.97 0.35 36.60 0.93 19.22 0.94
kodim12 31.52 0.13 24.56 0.14 33.78 0.20 26.77 0.21 38.46 0.57 22.83 0.57
kodim13 24.36 0.36 21.83 0.36 26.70 0.69 20.96 0.70 32.40 1.82 25.91 1.82
kodim14 27.39 0.23 23.23 0.24 30.20 0.43 26.45 0.44 35.60 1.17 23.66 1.17
kodim15 30.44 0.15 26.56 0.15 32.66 0.24 26.64 0.26 37.41 0.65 22.60 0.65
kodim16 29.82 0.15 23.53 0.16 32.45 0.26 26.01 0.27 38.02 0.75 23.75 0.75
kodim17 30.43 0.16 23.88 0.17 33.01 0.26 25.82 0.27 37.77 0.64 25.55 0.64
kodim18 26.87 0.24 23.76 0.25 29.55 0.44 24.62 0.46 34.43 1.15 27.59 1.15
kodim19 29.28 0.18 21.68 0.18 31.62 0.30 25.71 0.30 36.85 0.85 20.62 0.85
kodim20 31.17 0.15 23.66 0.16 33.46 0.22 26.11 0.23 38.36 0.59 26.71 0.59
kodim21 28.25 0.21 22.52 0.22 31.13 0.37 26.51 0.38 36.56 0.92 27.15 0.92
kodim22 28.43 0.17 22.34 0.18 31.01 0.32 25.87 0.33 36.09 0.94 21.48 0.95
kodim23 32.66 0.14 22.13 0.16 35.16 0.19 24.51 0.20 39.35 0.43 23.59 0.44
kodim24 26.98 0.26 23.73 0.26 29.46 0.45 25.10 0.46 35.16 1.13 23.83 1.13
Average 29.25 0.20 24.00 0.21 31.60 0.36 28.09 0.37 36.71 0.93 24.50 0.94

By comparing the average results of the defense from Table 3 with the average results of the original
from Table 2, we observe that the PSNR for the defended image (PSNR(di, do) = 36.81) is very close
to the baseline PSNR of the original image (PSNR = 36.71 for q6). Additionally, the high PSNR
value (PSNR(di, oi)) further ensures the similarity between the defended and original images. We
also note that the BPP for the defended image (0.90) is nearly identical to that of the original image
(0.93).

6.2 ATTACKS AND DEFENSES ON TCM MODEL

We aimed to demonstrate that our adversarial attack method is effective against the latest state-of-
the-art AI compression models. As a representative example, we selected the TCM model, with the
highest quality variant, the N128 architecture, Liu et al. (2023).

We selected Kodak images 2, 5, and 23 for their diverse characteristics: image 2 for low-detail
areas, image 5 for complex human features, and image 23 for high-detail, vibrant textures, to thor-
oughly test our attack and defense algorithms. By including these diverse images, we ensure that our
evaluation captures a wide range of scenarios, from low to high complexity, and reflects real-world
applicability for image compression and security challenges.

The average values in Table 4 demonstrate the impact of our attack and defense mechanisms. Specif-
ically, we observe a PSNR drop from 38.66 dB (PSNR(oi, oo)) to 22.89 dB (PSNR(ai, ao)) due to
the attack, representing a significant reduction of 13.77 dB. This drop is accompanied by a slight
increase in bit rate, with BPP rising from 0.54 (BPP(oc)) to 0.85 (BPP(ac)). Despite this, the high
PSNR(oi, ai) value of 47.21 dB indicates that the applied noise is imperceptible, maintaining a strong
similarity between the original and attacked images.

Using our defense algorithm, we successfully restored image quality, achieving a PSNR(di, do)
of 37.89 dB, which is very close to the original PSNR(oi, oo). Additionally, the BPP(dc) of 0.56
is nearly identical to the original BPP(oc), demonstrating that our defense algorithm effectively
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Table 3: MinPSNR defenses applied to attacked images using the Cheng2020-anchor compression
model at quality level 6. di, do, dc - are defended images: input, output, compressed. By ”output”
we refer to the decompressed image. PSNR(di, do) is the result after defense which is very close to
the baseline result.

Image PSNR(di, do) PSNR(di,oi) BPP(dc) SSIM(di,oi) VIF(di,oi) VIF(do,oi)

kodim01 35.14 52.16 1.42 0.9788 0.9990 0.9973
kodim02 36.88 51.79 0.70 0.9610 0.9951 0.9901
kodim03 39.46 57.27 0.51 0.9799 0.9990 1.0005
kodim04 37.04 48.36 0.71 0.9671 0.9927 0.9928
kodim05 35.72 54.53 1.34 0.9839 0.9995 0.9998
kodim06 36.55 54.99 1.06 0.9778 0.9988 0.9989
kodim07 39.22 54.43 0.61 0.9854 0.9988 1.0012
kodim08 34.78 54.02 1.44 0.9789 0.9997 1.0014
kodim09 38.58 54.16 0.52 0.9723 0.9982 0.9962
kodim10 38.42 51.67 0.56 0.9729 0.9967 0.9998
kodim11 36.34 47.32 0.94 0.9723 0.9945 0.9944
kodim12 38.45 57.12 0.57 0.9705 0.9989 1.0005
kodim13 32.28 51.46 1.82 0.9758 0.9991 0.9981
kodim14 35.55 53.01 1.17 0.9737 0.9988 0.9965
kodim15 37.29 52.12 0.65 0.9694 0.9977 0.9964
kodim16 37.97 55.71 0.75 0.9766 0.9984 1.0010
kodim17 37.66 56.56 0.64 0.9743 0.9989 1.0014
kodim18 34.39 55.84 1.15 0.9674 0.9994 1.0027
kodim19 36.75 51.59 0.85 0.9717 0.9984 0.9952
kodim20 38.28 54.41 0.59 0.9760 0.9987 1.0011
kodim21 36.51 55.57 0.92 0.9731 0.9992 1.0019
kodim22 35.96 48.51 0.95 0.9670 0.9939 1.0001
kodim23 39.16 52.18 0.44 0.9762 0.9974 0.9984
kodim24 35.07 53.52 1.14 0.9792 0.9991 1.0074
Average 36.81 53.26 0.89 0.97 0.998 0.999

mitigates the attack while preserving the compressed file size. We have included example figures in
the Appendix to illustrate the attack on the TCM model (see Figures 7 8).

Table 4: TCM model, N128. Log-Exp attack (full image, no mask applied) and defense. Abbrevia-
tions: oi, oo - original input and output; ai, ao - attacked input and output; di, do - defended input and
output. BPP oc, ac, dc values are given for compressed image files (original, attacked, defended).

Image PSNR(oi, oo) PSNR(oi, ai) PSNR(ai, ao) BPP(oc) BPP(ac) PSNR(oi, di) PSNR(di, do) BPP(dc)
kodim 2 37.74 45.76 22.95 0.64 1.14 37.21 45.81 0.67
kodim 5 38.21 47.88 23.91 0.64 0.78 36.83 47.96 0.67
kodim 23 40.02 49.98 21.82 0.34 0.63 39.63 50.07 0.35
Average 38.66 47.21 22.89 0.54 0.85 37.89 47.95 0.56

7 CONCLUSIONS

In this paper we introduced a novel adversarial attack method to impair the image compression
which is based on nonlinear log-exp perturbation. To maximize distortion we adapt the Hyperbolic
Transformation Method and the local high-entropy selected attack. In our experiments we have
demonstrated that these techniques can effectively disrupt the compression models by significantly
impacting the image quality and file size.

Our defense strategy proves to be capable of removing adversarial noise, allowing for high-quality
image compression. These methods not only enhance our understanding of adversarial tactics but
also introduces new applications for attack strategies to limit image compression.
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A HYPERPARAMETER SELECTION

The following hyperparameters are chosen to balance attack effectiveness and imperceptibility:

• λ = 0.0001: Selected empirically to achieve an optimal trade-off between distortion mini-
mization and perceptual similarity.

• σ = 21: The Gaussian filter’s standard deviation smooths the binary mask, ensuring that
the noise is distributed evenly across high-entropy regions. Lower σ values lead to visual
artifacts, while higher σ excessively smooths the noise.

• κ = 1: This factor controls the sharpness of transitions in the reparameterized noise. While
κ = 1 provides a smooth transition, sharper settings (κ = 2, 3) are also valid and may be
tuned for specific use cases.

• δ = 0.08: This represents the initial allowable noise level. During optimization, the noise
is progressively reduced, and in most cases, it converges to the minimum value of 0.02,
which corresponds to the perceptual limit of the applied noise.

B MINIMAL DETECTABLE CHANGE OVER VISUAL RANGE

According to Weber’s law, the ratio δI
I tends to remain constant for mid-range luminance levels.

Specifically, for luminance values typically between 1 and 100 millilamberts, the ratio of the Just
Noticeable Difference (JND) to the original luminance remains relatively constant, as shown in
Figure 4. Rutten & van Venrooij (2024)

However, for very low or very high luminance values, the JND generally follows a logarithmic
relationship with the luminance, which is better modeled by the Fechner’s law Fechner (1860)

C APPENDIX: ADDITIONAL RESULTS

We provide more experiment results in Tables 5-8 for the Cheng2020-attention, which is known
more efficient than some other neural compression models. Figure 6 demonstrates the noise filtering
process for attacking the image kodim23, compressed using the Cheng2020-attention model with
quality 6.

Table 5: Comparison of PSNR (dB), BPP, SSIM, and VIF metrics at different stages of our log exp
method vs additive noise for kodim01 compressed by Cheng2020-attention model. Abbreviations:
oi, oo, oc - original (input, output, compressed) image; ai, ao, ac - attacked (input, output, com-
pressed) image.

Method PSNR(ai, ao) PSNR(oi, ai) BPP(ac) SSIM(ao) VIF(oi, ai) VIF(oi, ao)
baseline 35.08 1.4114 0.0213 0.9999 0.9974
masksmooth 29.92 45.20 1.4258 0.0242 0.9949 0.9531
maskshrink 29.96 45.20 1.4246 0.0241 0.9949 0.9549
defense 34.67 45.52 1.4245 0.0225 0.9953 0.9947
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Figure 4: Minimal detectable change over visual range.
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Table 6: Comparison of PSNR (dB), BPP, SSIM, and VIF metrics at different stages of our log exp
method vs additive noise for kodim03 compressed by Cheng2020-attention model. Abbreviations:
oi, oo, oc - original (input, output, compressed) image; ai, ao, ac - attacked (input, output, com-
pressed) image.

Method PSNR(ai, ao) PSNR(oi, ai) BPP(ac) M-SSIM(ai, ao) VIF(oi, ai) VIF(oi, ao)
baseline 39.35 0.5047 0.0204 0.9999 0.9991
minpsnr 17.79 36.25 0.6549 0.0594 0.8844 0.2271
masksmooth 23.09 43.05 0.5462 0.0318 0.9747 0.5186
maskshrink 22.78 46.84 0.5261 0.0297 0.9897 0.5088
def minpsnr 38.82 47.49 0.5204 0.0220 0.9909 0.9950

Table 7: Comparison of PSNR (dB), BPP, SSIM, and VIF metrics at different stages of our log exp
method vs additive noise for kodim04 compressed by Cheng2020-attention model. Abbreviations:
oi, oo, oc - original (input, output, compressed) image; ai, ao, ac - attacked (input, output, com-
pressed) image.

Method PSNR(ai, ao) PSNR(oi, ai) BPP(ac) M-SSIM(ai, ao) VIF(oi, ai) VIF(oi, ao)
baseline 37.25 0.70 0.0324 0.9999 0.9967
minpsnr 21.06 41.76 0.73 0.0474 0.9686 0.3665
masksmooth 19.44 41.02 0.75 0.0517 0.9682 0.3503
maskshrink 23.97 48.16 0.71 0.0398 0.9937 0.5963
defense 37.03 49.43 0.70 0.0331 0.9952 0.9959

Table 8: Comparison of PSNR (dB), BPP, SSIM, and VIF metrics at different stages of our log
exp method vs additive noise for kodim23 compressed by Cheng2020-attention model. Abbrevia-
tions: oi, oo, oc - original (input, output, compressed) image; ai, ao, ac - attacked (input, output,
compressed) image.

Method PSNR(ai, ao) PSNR(oi, ai) BPP(ac) M-SSIM(ai, ao) VIF(oi, ai) VIF(oi, ao)
baseline 39.14 0.43 0.0238 0.9999 0.9987
minpsnr 26.61 36.12 0.53 0.03886 0.9114 0.6616
masksmooth 29.01 40.96 0.48 0.03077 0.9677 0.7942
maskshrink 28.88 40.96 0.48 0.0309 0.9677 0.7918
defense 37.02 41.22 0.48 0.0283 0.9696 0.9735

Figure 5 demonstrates another example of the noise filtering process for attacking the image
kodim24, compressed using the Cheng2020-anchor model with quality 6.

Figure 5: kodim24, Cheng2020-anchor, Maxdistortion attack. Top: the attacked image, model’s
output (decompressed image), attack noise pattern. Bottom: entropy regions, smoothed mask, final
mask. PSNR(oi, oo) = 35.16 dB, PSNR(ai, ao) = 23.83 dB , BPP(oc) = BPP(ac) = 1.13, where
oi, oo, oc - original input, output, compressed image, and ai, ao, ac - attacked input, output, and
compressed image.
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Figure 6: kodim23, Cheng2020-anchor, Maxdistortion attack. Top: the attacked image, model’s
output (decompressed image), attack noise pattern. Bottom: entropy regions, smoothed mask, final
mask. PSNR(oi, oo) = 39.14 dB, PSNR(ai, ao) = 28.88 dB , BPP(oc) = 0.43, BPP(ac) = 0.48,
where oi, oo, oc - original (input, output, compressed) image, and ai, ao, ac - attacked (input, output,
compressed) image.

D ATTACKS AND DEFENSE ON CHENG2020-ATTN MODEL

In addition to the two original victim models, we have extended our experiments to include the
Cheng attention model at quality level 6. Table 9 below illustrates the results, showing that our
attack performs consistently well, achieving a significant degradation in quality metrics for the at-
tacked images while maintaining imperceptible noise. This further demonstrates the robustness and
generalizability of our method across different AI compression models.

Using our attack method, we observed that the average BPP(ac) closely matches the BPP(oc) (oc,
ac - original and attacked images’ compressions), demonstrating the efficiency of the attack in pre-
serving file size. Despite an average PSNR drop of 11.63, the high PSNR(oi, ai) of 44.66 ensures
that the attacked images remain visually similar to the original ones. Furthermore, as detailed in
the defense section, we successfully countered the attack, achieving a PSNR(di, do) of 36.13, which
is comparable to the baseline (di, do - defended input and output images). This was accomplished
while maintaining a high PSNR between the defended images and the original ones, underscoring
the robustness of our defense approach.

E FIGURES FOR ATTACKS TO TCM MODEL

Figure 7 represents TCM model (N128) Log-Exp attack. Image: kodim14. Left to right: optimized
noise, attacked image, TCM output. More attacked images can be found in the collage 8

Figure 7: TCM model (N128) Log-Exp attack. Image: kodim14. Left to right: optimized noise,
attacked image, TCM output.
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Table 9: PSNR and BPP metrics for all images from Kodak dataset using Cheng2020-attn model
with quality 6. Abbreviations: oi, oo, oc - original (input, output, compressed) image; ai, ao, ac -
attacked (input, output, compressed) image; di, do, dc - defended (input, output, compressed) image.

Image PSNR(oi, oo) PSNR(ai, ao) PSNR(oi, ai) BPP(oc) BPP(ac) PSNR(di, do) PSNR(di, oi) BPP(dc)
kodim01 35.08 29.92 34.67 1.41 1.42 34.67 45.52 1.42
kodim02 36.85 18.83 41.31 0.70 0.72 35.95 42.50 0.71
kodim03 39.35 22.78 46.84 0.50 0.52 38.82 47.49 0.52
kodim04 37.25 23.97 48.16 0.70 0.71 37.03 49.43 0.70
kodim05 35.70 23.89 43.04 1.35 1.38 34.96 43.35 1.38
kodim06 36.48 30.24 46.58 1.07 1.07 35.68 47.22 1.08
kodim07 39.15 25.13 44.10 0.61 0.64 38.24 44.33 0.64
kodim08 34.61 28.41 43.47 1.45 1.46 34.13 43.98 1.46
kodim09 38.70 25.09 53.32 0.52 0.52 38.58 54.16 0.52
kodim10 38.52 24.12 46.66 0.56 0.57 38.11 47.75 0.57
kodim11 36.50 24.76 42.48 0.93 0.94 34.82 43.03 0.94
kodim12 38.48 20.89 50.06 0.57 0.57 38.46 57.12 0.57
kodim13 32.49 25.65 44.27 1.80 1.81 31.79 44.60 1.81
kodim14 35.49 25.27 41.90 1.17 1.19 34.89 42.24 1.19
kodim15 37.35 22.05 48.10 0.65 0.67 37.13 49.17 0.67
kodim16 37.96 24.29 44.25 0.75 0.77 37.25 44.62 0.77
kodim17 37.70 22.98 47.05 0.65 0.66 37.20 48.13 0.65
kodim18 34.49 26.18 42.98 1.15 1.16 32.62 63.65 1.16
kodim19 36.77 25.14 44.12 0.86 0.88 36.05 44.47 0.86
kodim20 38.27 22.27 47.11 0.59 0.61 37.95 48.28 0.60
kodim21 36.45 30.45 44.31 0.91 0.92 35.84 44.76 0.92
kodim22 36.01 25.70 43.81 0.94 0.95 35.61 44.24 0.95
kodim23 39.14 28.88 40.96 0.43 0.48 37.02 41.22 0.47
kodim24 35.10 27.93 42.23 1.13 1.15 34.20 42.49 1.15
Average 36.83 25.20 44.66 0.89 0.91 36.13 46.82 0.90

Figure 8: TCM model (N128) Log-Exp noise attack compression-decompression outputs collage.

F MAX(BPP) ATTACK AND DEFENSE

In addition, we tested another type of attack using the same algorithm, called MaxBPP attack, The
goal is to increase the file size without introducing artifacts in the decompressed image, ensuring
that PSNR(ai, ao) matches PSNR(oi, oo). Attack and defense for kodim07 image are presented in
the figure 9. The results using Cheng-anchor model with quality 6 are illustrated in table 10.
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Figure 9: Image: kodim07, model: cheng2020-anchor quality 6. Top: Max(BPP) attacked image,
attack noise, model output. Bottom: defended image, defnsive noise, model output of the defended
image.

Table 10: MaxBPP attack and defense using Cheng-anchor model with quality 6 for all images in
Kodak dataset. Abbreviations: oi, oo, oc - original (input, output, compressed) image; ai, ao, ac -
attacked (input, output, compressed) image.

Kodim BPP(oc) BPP(ac) PSNR(oi, ai) PSNR(oi, oo) PSNR(ai, ao) PSNR(di, do) PSNR(di, oi) BPP(dc)
kodim01 1.42 8.93 46.42 35.22 35.18 34.86 44.00 1.44
kodim02 0.69 7.83 44.17 36.93 36.45 36.03 42.41 0.66
kodim03 0.51 7.15 39.82 39.53 39.49 37.33 40.95 0.51
kodim04 0.70 7.30 40.93 37.31 40.93 35.34 38.48 0.72
kodim05 1.33 7.72 42.72 35.77 35.45 35.15 41.63 1.36
kodim06 1.06 5.32 36.60 36.60 42.51 36.43 41.34 1.05
kodim07 0.60 7.05 49.19 39.30 39.13 38.87 48.56 0.61
kodim08 1.44 6.67 48.56 34.83 34.58 34.75 49.24 1.45
kodim09 0.52 6.85 43.10 38.72 38.49 38.46 41.83 0.57
kodim10 0.56 6.38 46.05 38.58 38.35 37.68 43.45 0.59
kodim11 0.93 7.32 41.14 36.60 35.99 35.61 40.14 1.06
kodim12 0.57 4.48 51.35 38.50 38.44 37.74 44.84 0.57
kodim13 1.18 4.67 40.32 32.39 32.37 31.67 43.61 1.82
kodim14 1.17 6.50 49.16 35.60 35.57 35.47 48.87 1.18
kodim15 0.65 7.90 48.32 37.38 37.26 36.84 44.54 0.65
kodim16 0.75 6.74 52.01 38.01 37.80 38.00 50.04 0.75
kodim17 0.64 5.60 50.86 37.74 37.65 37.12 44.96 0.64
kodim18 1.15 7.74 46.75 43.43 34.41 34.16 43.51 1.22
kodim19 0.85 7.07 46.02 36.87 36.62 36.17 43.30 0.88
kodim20 0.59 5.03 42.84 38.33 37.66 36.19 39.33 0.66
kodim21 0.92 4.84 42.59 36.55 36.29 35.87 41/01 0.97
kodim22 0.94 9.95 44.73 36.10 35.83 35.50 42.97 0.98
kodim23 0.43 5.49 43.93 39.28 38.68 37.93 41.85 0.47
kodim24 1.13 6.35 41.15 35.11 34.90 33.27 36.23 1.23
Avg(ours) 0.86 6.70 (8.62x) 44.95 37.28 37.09(-0.5%) 36.10 43.21 0.92
Avg(Liu et.alLiu et al. (2022)) 0.86 (19.83x) - 37.28 21.25(-43%) - - -
FactorAtt(Liu et.alLiu et al. (2022)) 0.90 2.38 (2.64x) - 35.05 - - - -

Table 11 presents the impact of applying a MaxBPP attack and defense using Cheng-anchor quality
3. The results indicate a significant increase in BPP(ac) values compared to the original, achieving
an effective manipulation of file size. Despite this increase, the PSNR(oi, ai) values remain close to
acceptable levels, which ensures that the perceptual quality is mostly preserved.

In comparison to Liu et al. (2022), our results using Cheng-anchor with quality 6 show an average
8.62x increase in BPP for the attacked images compared to the original ones, while maintaining
a very high PSNR(oi, ai) that ensures the similarity among them. In contrast, Liu et al. (2022)
achieved a 19.83x increase in BPP but at the cost of a -43% drop in PSNR(ai, ao), rendering the
attacked images unrealistic and noticeably different from the originals with clear artifacts in the
decompressed attacked images. Figure 9 shows an example of MaxBPP attack and defense. Rather
than developing a defense algorithm,Liu et al. (2022) trained a new model, FactorAttn, and evaluated
its performance against the same attack they proposed. From the table (last row), it is evident that
their approach resulted in only a 2.64x increase in BPP(ac) compared to BPP(oc). However, they
did not compute or report any metrics to demonstrate the similarity between the attacked image and
the original image.
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For quality 3, Liu et al. (2022) achieved a 9.9x increase in BPP but with a -5.1% reduction in
PSNR(ai, ao). In comparison, our method achieved a 5.82x increase in BPP with only -3.3% re-
duction in PSNR(oi, ai). while preserving a high PSNR(oi, ai), indicating that the attacked images
remain visually indistinguishable from the originals, with the applied noise being imperceptible to
the human eye.

Instead of designing a defense algorithm, Liu et al. (2022) also trained a new model, FactorAttn,
and assessed its performance against their proposed attack. As shown in the table (last row), their
method achieved only a 1.96x increase in BPP(ac) compared to BPP(oc). However, they did not
provide any metrics to evaluate the similarity between the attacked image and the original image.

Table 11: MaxBPP Attack and defense using Cheng-anchor model with quality 3 for all images in
Kodak dataset

Index BPP(oc) BPP(ac) PSNR(oi, ai) PSNR(oi, oo) PSNR(ai, ao) PSNR(di, do) PSNR(di, oi) BPP(dc)
kodim01 0.53 1.80 33.31 29.18 28.54 25.60 27.15 0.65
kodim02 0.14 2.19 36.17 32.31 31.51 28.98 30.87 0.29
kodim03 0.20 2.85 35.29 34.56 32.75 29.60 30.62 0.24
kodim04 0.25 1.31 32.17 32.59 31.14 27.73 28.27 0.31
kodim05 0.57 1.89 39.82 29.81 29.71 29.08 35.77 0.58
kodim06 0.40 0.93 33.87 30.53 29.72 29.17 34.38 0.41
kodim07 0.27 1.59 29.22 34.18 33.43 33.24 32.15 0.28
kodim08 0.59 2.63 39.29 29.12 28.94 28.01 33.71 0.60
kodim09 0.23 1.17 34.21 34.34 32.35 32.86 33.70 0.26
kodim10 0.24 0.96 33.35 34.14 33.54 32.93 31.54 0.25
kodim11 0.33 1.86 31.78 31.16 30.23 29.80 32.09 0.35
kodim12 0.20 0.90 33.76 33.79 32.30 32.99 33.36 0.22
kodim13 0.69 3.22 36.25 26.70 26.56 26.35 35.47 0.71
kodim14 0.43 2.36 31.17 30.19 28.90 29.39 30.75 0.45
kodim15 0.24 4.97 35.84 32.69 31.62 30.11 30.94 0.25
kodim16 0.27 2.48 35.52 32.45 31.70 30.04 32.22 0.28
kodim17 0.26 1.23 31.23 32.99 32.40 30.24 30.28 0.29
kodim18 0.45 1.27 32.64 29.54 28.67 28.96 29.88 0.48
kodim19 0.30 1.41 30.02 31.67 29.87 29.99 31.98 0.31
kodim20 0.22 1.70 36.49 33.44 32.76 32.67 30.95 0.23
kodim21 0.37 1.36 30.72 31.14 29.66 29.48 34.13 0.38
kodim22 0.33 1.86 33.81 31.02 30.24 30.47 37.35 0.34
kodim23 0.19 0.99 32.90 35.20 32.22 33.51 37.36 0.20
kodim24 0.45 4.50 31.64 29.47 28.33 30.06 29.76 0.57
Avg(ours) 0.34 1.98 (5.82x) 33.77 31.76 30.71(-3.3%) 30.05 32.28 0.37
Avg(Liu et.alLiu et al. (2022)) 0.34 (9.9x) - 31.76 30.14(-5.1%) - - -
FactorAtt(Liu et.alLiu et al. (2022)) 0.26 0.51 (1.96x) - 29.59 - - - -

G ATTACKS FOR IMAGE CLASSIFICATION

We extended our analysis to a classification task as a complementary experiment. Using EfficientNet
and a class from the COCO dataset with the highest confidence prediction (”tubby cat,” class 281),
we applied our attack. Post-attack, the model misclassified the image as class 933. The applied
noise remained imperceptible, with a high PSNR of 32.77 dB without using the mask, while it was
41.59 using the entropy mask and the attack reduced the classification confidence to 9.03% (lower
is better).

For comparison, applying the FGSM attack on the same task yielded a PSNR of 13.77 dB with a
significantly higher confidence of 48.77%, underscoring the efficiency and subtlety of our method.
Figure 10

H EVALUATION ON EXTERNAL IMAGES

We extended our experiments to include images from the COCO dataset. This allowed us to eval-
uate the generalizability of our approach on a broader set of natural images. Figure 11 illustrates
the results for a natural image (giraffe) from the COCO dataset, including the defense algorithm’s
output. Table 12 summarizes the metrics for this experiment. Key observations include:

• A significant drop in PSNR (−8 dB) for the attacked image while maintaining the same
bits per pixel (bpp) rate.

• The PSNR between the original and attacked image remains high, demonstrating that the
applied noise is imperceptible to the human eye.
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(a) original (b) Full attack (c) Masked attack (d) FGSM

(e) Full noise wo mask (f) Masked noise (g) Binary mask

Figure 10: Local vs spatial vs FGSM attacks for an image form Coco dataset

• The defense algorithm successfully restores the image quality, achieving results close to
the original image with minimal artifacts.

Table 12: Metrics for the attack of the Giraffe image from the COCO dataset, Cheng2020-anchor
model, quality 6. Abbreviations: oi - original input; ai, ac, ao - attacked (input, compressed, output)
image.

Method PSNR(ai, ao) PSNR(oi, ai) BPP(ac) SSIM(ao, oi) VIF(oi, ai) VIF(oi, ao)
baseline full 26.77 2.36 0.97 1.00 0.98
minpsnr 18.17 42.74 2.36 0.95 0.99 0.75
highentropy minpsnr masksmooth 17.53 42.87 2.36 0.94 0.99 0.73
highentropy minpsnr maskshrink 19.08 48.17 2.36 0.95 0.99 0.78
def minpsnr 26.78 48.82 2.36 0.97 1.00 0.98
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(a) Original (b) Entropy (c) Initial Mask

(d) Smoothed Mask (e) Shrinked Mask (f) Attacked Image

(g) Attacked Output (h) Final Applied Noise (i) Defended Image

(j) Defended Image,
Compressed-Decompressed (k) Applied Noise to Defend

Figure 11: Results of various stages in the attack and defense process for the Giraffe example,
Cheng2020-anchor model, quality 6.
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