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Abstract
The efficient and theoretically sound uncertainty
quantification is crucial for building trust in deep
learning models. This has spurred a growing
interest in conformal prediction (CP), a power-
ful technique that provides a model-agnostic and
distribution-free method for obtaining conformal
prediction sets with theoretical guarantees. How-
ever, the vulnerabilities of such CP methods with
regard to dedicated data poisoning attacks have
not been studied previously. To bridge this gap,
for the first time, we in this paper propose a new
class of black-box data poisoning attacks against
CP, where the adversary aims to cause the desired
manipulations of some specific examples’ predic-
tion uncertainty results (instead of misclassifica-
tions). Additionally, we design novel optimization
frameworks for our proposed attacks. Further, we
conduct extensive experiments to validate the ef-
fectiveness of our attacks on various settings (e.g.,
the full and split CP settings). Notably, our exten-
sive experiments show that our attacks are more
effective in manipulating uncertainty results than
traditional poisoning attacks that aim at inducing
misclassifications, and existing defenses against
conventional attacks are ineffective against our
proposed attacks.

1. Introduction
Deep Neural Networks (DNNs) have achieved remarkable
success in recent years. Although deep learning models
work well in numerous fields, deploying such models in real-
world applications often requires to appropriately quantify
the uncertainty of their predictions. To tackle uncertainty
issues, people have developed different uncertainty quan-
tification techniques, including Bayesian neural networks
(Trinh et al., 2022; Hobbhahn et al., 2022).
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Among different uncertainty quantification techniques, con-
formal prediction (CP), pioneered by Vovk et al. (2005),
has become a popular distribution-free technique to per-
form uncertainty quantification (Ndiaye, 2022; Fisch et al.,
2022; Stutz et al., 2021; Fisch et al., 2021; Qian et al.,
2024). The model-agnostic and distribution-free nature
of CP makes it particularly suitable for large neural net-
works. Concretely, we are mainly interested in a confor-
mal set prediction setting where we are given n examples
(Xi, Yi) ∈ X × Y, i = 1, · · · , n as calibration data, that
are drawn exchangeably from some underlying distribu-
tion P (Humbert et al., 2023; Fisch et al., 2022; Lin et al.,
2022; Teng et al., 2022). Let Xn+1 ∈ X be a new ex-
changeable test example for which we would like to predict
Y ∗
n+1 = f(Xn+1; θ) ∈ Y , where θ ∈ Θ is a well-trained

model. CP aims to construct a conformal prediction set, i.e.,
Cε(xn+1; θ), that contains Y ∗

n+1 with marginal coverage at
a significance level ε ∈ (0, 1), i.e.,

P(Y ∗
n+1 ∈ Cε(Xn+1; θ)) ≥ 1− ε. (1)

A conformal model is considered to be valid if the frequency
of error, Y ∗

n+1 /∈ Cε(Xn+1; θ), remains below the threshold
ε. CP offers straightforward uncertainty estimates, where
larger conformal sets C generally convey higher uncertainty.

Although CP is being increasingly used in safety-critical
and security related applications, there’s still a gap in un-
derstanding the effects of poisoning attacks on CP, an area
that remains largely unexplored. In practice, the risk of data
poisoning attacks (Yang et al., 2023; Jagielski et al., 2021;
Qian et al., 2023) intensifies in DNNs, since they rely on
large and diverse datasets and their size makes it difficult
to guarantee the trustworthiness of the training data. As a
result, models trained on such datasets are susceptible to
data poisoning attacks, wherein an adversary places specifi-
cally constructed poisoned examples into the training data
with harmful intentions (e.g., leading to unequalized and
unfair coverage outcomes). In Schwarzschild et al. (2021),
industry practitioners have identified data poisoning as the
most significant concern among various threats.

In this work, we perform the first study on data poisoning at-
tacks against CP, where the adversary aims to undermine the
use of CP techniques by manipulating conformal prediction
sets while ensuring label correctness. Consider a scenario
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where a doctor relies on conformal prediction to distinguish
if a model prediction is reliable enough or requires more at-
tention from the doctor. An adversary can compromise this
process through poisoning attacks. Such attacks affect the
model’s ability to accurately estimate uncertainty, leading to
potential risks in medical decision-making. Traditional data
poisoning attacks (Zhao et al., 2024; Jagielski et al., 2021;
Li et al., 2021; Geiping et al., 2021b; Peri et al., 2020; Foret
et al., 2020; Qian et al., 2023) mainly focus on inducing
misclassifications, whereas we focus on vulnerabilities re-
lated to the model’s prediction uncertainties. Data poisoning
attacks against CP could be more subtle and harder to detect
compared to traditional poisoning attacks, since these at-
tacks manipulate the model’s prediction uncertainties rather
than directly altering label predictions and might bypass
existing defenses that are dependent on label changes.

While there are a few existing works (Ghosh et al., 2023;
Gendler et al., 2021; Zhao et al., 2023) addressing test-time
adversarial attacks on CP, they do not consider the risks of
data poisoning attacks during the training process. Com-
pared with these existing adversarial attacks, performing
data poisoning attacks in the above discussed CP setting. is
more stealthy, due to the preservation of the data exchange-
ability assumption in such scenarios. Notably, among the
limited existing works on adversarial attacks against CP,
they usually focus on how to ensure the validity (i.e., the cov-
erage guarantee in Eq. (1)) under the violations of the data
exchangeability, and fail to consider the maliciously manip-
ulated efficiency, where the adversary targets prediction con-
fidence. For example, the adversary might deliberately craft
the poisoning training data to cause unequalized coverage
probabilities that fail for specific sub-populations. There-
fore, these adversarial robust CP methods are not equipped
to counteract our proposed data poisoning attacks.

Motivated by the above, we thus believe that studying poi-
soning attacks targeting the prediction uncertainty is essen-
tial for safety applications of CP. In this work, we move
the first step towards this direction, i.e., understanding the
effects of data poisoning attacks on CP. To this end, we
design a novel bi-level poisoning attack framework to craft
effective poisoning points in the black-box setting. In the
proposed framework, we first design approximate relaxation
to handle the discrete conformal sets and the non-differential
quantile. We also present a new worst-case adversarial loss
to maximize the poisoning effect on the worst-case model
for a strong poisoning effect. Further, we present novel
efficient optimization methods by rigorously refining our
attacks of generating effective poisoning points through the
closed-form updates, thus eliminating the need for extensive
model retraining or full access to training data. We con-
duct thorough experiments to verify the effectiveness of our
attacks in various scenarios, including both full and split
settings. Our detailed analysis reveals that these attacks are

more successful at manipulating uncertainty outcomes than
conventional poisoning attacks. Moreover, we found that
current defenses against traditional poisoning attacks do not
effectively counter our proposed attacks, underscoring the
need for new strategies to address these advanced forms
of data poisoning. The findings underscore the potential
negative impacts of poisoning attacks on CP, aiming to raise
awareness within the research community about this issue.

2. Related Work
Compared with traditional uncertainty estimation tech-
niques, CP (Vovk et al., 2005) is a general framework for
constructing conformal confidence sets, with the remark-
able properties of being distribution-free, having coverage
guarantees, and being able to be adapted to any estimator.
However, previous literature on uncertainty estimation (Ren
et al., 2023; Ledda et al., 2023; Alarab & Prakoonwit, 2022;
Wicker et al., 2020; Yuan et al., 2020; Wang et al., 2018;
2022) has not delved into the vulnerability of CP to data
poisoning attacks. On the other hand, data poisoning attacks
at training time have emerged as a threat perceived to be
of significant potential threat. Traditional poisoning attacks
primarily deceive the model into making incorrect predic-
tions. However, the distinct characteristics of both split CP
and full CP (e.g., the coverage guarantees) pose challenges
in directly applying these conventional poisoning attacks.

On the other hand, existing defenses against data poisoning
attacks primarily depend on either anomaly detection based
on nearest neighbors, training loss, singular-value decom-
position, clustering (Peri et al., 2020; Cretu et al., 2008;
Tran et al., 2018; Chen et al., 2018; Steinhardt et al., 2017),
or robust training based on randomized smoothing, ensem-
bling, data augmentation, and adversarial training (Weber
et al., 2023; Li et al., 2021; Tao et al., 2021; Levine & Feizi,
2020; Ma et al., 2019; Abadi et al., 2016). For example,
Peri et al. (2020) filters examples whose class labels differ
from those of their nearest neighbors in the feature space.
However, our proposed attacks are tailored to exploit vulner-
abilities related to prediction uncertainty via CP, a nuance
that these existing defenses may not be designed to handle.
Additionally, compared with existing works (Jagielski et al.,
2021; Geiping et al., 2021b; Koh & Liang, 2017) that do not
consider retraining in the end-to-end manner, our proposed
attacks maximize the poisoning effects of the worst-case
model during optimization, resulting in enhanced stability
for strong attack performance. Additionally, our proposed
attacks also present a more rigorous derivation of our attack
optimization methodology through the closed-form gradient
updates between the poisoned and benign models. Impor-
tantly, these closed-form updates afford our optimization
framework the ability to modulate its precision and compu-
tational cost by adjusting the model update precision.
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3. Preliminaries
We assume pairs (X,Y ) ∈ X × Y have a joint distribution
denoted as P , with the marginal distributions of X and
Y and the conditional distribution Y |X denoted as PX ,
PY , and PY |X , respectively. Given a new sample X , for
every candidate label Y ∈ Y , CP applies a simple test to
either accept or reject the null hypothesis that pair (X,Y )
is correct (Fisch et al., 2021). The test statistic for this test
is a nonconformity measure, S((X,Y ); θ), where θ is a
model fit to the training data using some learning algorithm.
Informally, a lower value of S reflects (X,Y ) conforms to
the training data, whereas a higher value of S reflects that
(X,Y ) is atypical relative to the training data.

Assumption 3.1 (Exchangeability). Consider the calibra-
tion data Z1 = (X1, Y1), · · · , Zn = (Xn, Yn) and the test
data Zn+1 = (Xn+1, Yn+1). The examples are exchange-
able if any permutation yields the same distribution, i.e.,

(Z1, · · · , Zn+1)
d
= (Zτ (1), · · · , Zτ(n+1)), (2)

with arbitrary permutation τ of the integers 1, · · · , n+ 1.

Let D = {Zi = (Xi, Yi)}ni=1 denote a calibration set of
exchangeable (see Assumption 3.1) and correctly labeled
examples. To determine the conformal prediction set for a
test sample X , the classifier tests the nonconformity score
for each potential label Y , against a pre-defined significance
level ε, and includes all Y for which the null hypothesis—
that the candidate data pair (X,Y ) is conformal—is not
rejected. This is achieved by comparing the nonconformity
score of the test candidate against the nonconformity scores
computed over the calibration dataset D. This comparison
uses the below quantile

Q1−ε(D, θ) := Quantile(1− ε; {S((Xi, Yi); (3)
θ)}ni=1 ∪ {∞}).

Note that compared with full CP, split CP is fast and easy to
implement and model.

Theorem 3.2 (Vovk et al., 2005). Assume that examples
(Xi, Yi), i = 1, · · · , n + 1 are exchangeable. For any
nonconformity measure S and ε, define the conformal set
(based on the first n examples) at Xn+1 ∈ X as

Cε(Xn+1; θ) = {Yn+1 ∈ Y : S(Xn+1, Yn+1) ≤ (4)
Quantile(1− ε; {S((Xi, Yi); θ)}ni=1 ∪ {∞})}.

Then Cε(X; θ) satisfies Eq. (1).

4. Problem Statement
4.1. Threat Model

We consider a realistic threat model, where the adversary
has no knowledge of the internal model parameters and the

training process of the victim model, and is unable to alter
test data during the model’s testing phase. Additionally, the
adversary cannot gain knowledge of the data points adopted
for training, and can inject a limited number of manipulated
new points into the training data. This situation depicts an
attack setting where the adversary spreads poisoned data
that developers unknowingly compile, along with vast be-
nign data, to form the model’s training set. However, we
allow the adversary to have the computational capability
required to train a pre-trained model θ∗(D) with a sepa-
rate auxiliary dataset D, which is comparable to the victim
model (Jagielski et al., 2021; Geiping et al., 2021b). D is
similar to the training data owned by the model owner and
sampled from the distribution. Note that, for the assump-
tion that the adversary is able to access a pre-trained model
trained over an auxiliary dataset, it is reasonable given the
widespread availability of public data. It has been a com-
mon assumption for black-box attacks in existing literature
(Jagielski et al., 2021). Additionally, we also consider the
white-box setting (Chen & Gu, 2020; Huai et al., 2020a;
Neekhara et al., 2021; Wang et al., 2021; Huai et al., 2022;
Gluch & Urbanke, 2021; Liu et al., 2024; Suya et al., 2021;
Schwarzschild et al., 2021). In this scenario, the adver-
sary has full access to the threat model’s training data and
network architecture.

The adversary aims to interfere with conformal predictions
either by inducing overconfidence CP attacks, leading the
model to underestimate prediction uncertainty, or under-
confidence CP attacks, making the model underconfident
by widening its conformal prediction sets. Additionally,
to ensure stealth, we also consider maintaining the same
coverage guarantees and executing targeted attacks with-
out compromising uncertainty accuracy in benign samples.
Note that our proposed data poisoning attacks can also be
utilized to cause unequalized coverage subgroups.

4.2. Attack Formulation

Here, we propose our attacks for crafting poisoning samples
against CP. As discussed in Section 3, in CP, we first split the
auxiliary datasetD into a training foldDtr and a calibration
fold Dca. Then, based on the learning algorithm A and the
training data Dtr, the adversary can train a model f with pa-
rameters θ which correctly classifies as many data points as
possible, maximizing EX,Y∼Dtr I(f(X; θ) = Y ), where I
is the indicator function. We denote the training loss over the
training data as L(θ;Dtr) = 1

n

∑n
i=1 l(f(Xi; θ), Yi). We

denote the set of victim target samples as {(Xv, Yv)}Vv=1.
We assume that the adversary selects a subset Dtr

p from Dtr

which takes an ξ1 ∈ [0, 1] percentage of Dtr, and replaces
it with a poisoning set D̃tr

p . We denote the remaining clean
data as Dtr

c = Dtr \ Dtr
p . For simplicity, we will omit the

superscripts for Dtr
p , Dtr

c and D̃tr
p in the following. The

effective poisoning points can be obtained by solving the
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following formulated optimization problem

D∗
p ← argmax

D̃p

ℓ1({Xv}Vv=1; θ(D̃p), Q1−ε(θ(D̃p)))

=

V∑
v=1

|Cε(Xv; θ(D̃p))|+
V∑

v=1

I(Y ∗
v = f(Xv; θ(D̃p)))

+

V∑
v=1

I(Y ∗
v ∈ C(Xv; θ(D̃p))), (5)

where θ(D̃p) is obtained by training on the poisoned data
D̃tr = D̃p ∪ Dc, and Cε(Xv; θ(D̃p)) = {Y ∈ Y :

S(Xv, Y ; θ(D̃p)) < Q1−ε(Dca, θ(D̃p))}. Q1−ε(θ(D̃p)) is
the new quantile calculated from the poisoned model θ(D̃p).
Without loss of generality, we here focus on scenarios where
the adversary aims to increase the prediction uncertainty by
enlarging the sizes of conformal prediction sets. The second
and third loss terms in the above equation are designed to en-
sure correct label predictions and the inclusion of true labels
in post-attack conformal prediction sets, respectively. This
enhances attack stealthiness without impacting coverage
results and altering label predictions. Note that the above
equation is a bi-level optimization problem—the minimiza-
tion for D̃p involves the model parameters θ(D̃p), which are
themselves the minimizer of the following training problem

θ(D̃p) = argmin
θ∈Θ

L(θ; D̃tr = D̃p ∪ Dc). (6)

Note that Eq. (5) and (6) provide a high-level formulation for
crafting poisoning examples D̃p to increase the conformal
set sizes (i.e., |Cε(Xv; θ(D̃p))|). However, directly solving
this framework is infeasible due to the discrete nature of
the conformal sets. Recall that the conformal prediction set
Cε(Xv; θ(D̃p)) (defined in Eq. (4)) is based on comparing
nonconformity scores to a threshold. A straightforward way
is to directly adopt the quantile to formulate the relative com-
parison. However, this is impractical due to the difficulty
of expressing the quantile Q1−ε(θ(D̃p)) in a continuous
and differential way. To overcome this, we develop a more
feasible method, drawing upon the derivation method of
Q1−ε(θ(D̃p)) in Eq. (3). Based on this, we can have

min
D̃p

ℓ2({Xv}Vv=1; θ(D̃p), Q1−ε(θ(D̃p))) =

V∑
v=1

nca
ε∑

i=1

[∑
Y ∈Cε(Xv ;θ(D̃p))∪Ya

max(S(Xv, Y ; θ(D̃p))− (7)

S(Xi, Y
∗
i ; θ(D̃p)), 0)] +

V∑
v=1

max( max
Y ̸=Y ∗

v

fY (Xv; θ(D̃p))

− fY ∗
v
(Xv; θ(D̃p)),−β),

where nca
ε = ⌈(1−ε)∗|Dca|⌉, Ya is the set of labels we aim

to add into the prediction set, and β is a constant. Since the

second and third terms are non-convex and non-differential,
we design the surrogate losses to approximate them.

Note that the above optimization in Eq. (7) and (6) is de-
signed to craft effective poisoning samples to fulfill the
adversary’s objectives, which are then injected into the
dataset of the model owner. However, during re-training
for optimization, the poisoned model θ(D̃p) can converge
differently due to training uncertainties like model initial-
ization and hyperparameter choice. Consequently, this can
diminish the effectiveness of these poisoning samples and
reduce their overall poisoning impact. To address this,
we propose to focus on the worst-case poisoned model,
which is the inner minima in Eq. (6) that has the worst
poisoning effect (Andriushchenko & Flammarion, 2022;
Wen et al., 2022). Our key idea here is to maximize
the poisoning effect of the worst-case model to ensure
that a high poisoning effect is preserved for other models.
We then can formulate the worst-case poisoned model as
θ′ = argmax

θ∈Θp

ℓ2({Xv}Vv=1; θ(D̃p), Q1−ε(θ(D̃p))), where

Θp = {θ : L(θ; D̃tr = D̃p ∪ Dc) ≤ τ1} is the poi-
soned model space that is the set of all models that are
trained on poisoned dataset and have a small training
loss. Then, based on the notion of model sharpness
(Foret et al., 2020), we can approximate the worst-case
loss ℓ2(θ′) by ℓ2(θ

′) ≈ max||ζ||q≤ρ ℓ2({Xv}Vv=1; θ(D̃p) +

ζ,Q1−ε(θ(D̃p))). Therefore, we can obtain

D∗
p ← argmin

D̃p

ℓ3({Xv}Vv=1; θ(D̃p), Q1−ε) (8)

= argmin
D̃p

max
∥ζ∥p≤ρ

ℓ2({Xv}Vv=1; θ(D̃p) + ζ,Q1−ε),

where θ(D̃p) is the minimizer of the training problem in
Eq. (6). In the above, we locally maximize the loss by
perturbing θ(D̃p) with a vector ζ (constrained by a norm
limit ∥ζ∥p ≤ ρ). In this way, the perturbed model θ(D̃p)+ζ

has a worst poisoning effect compared to θ(D̃p).

The attack framework described in Eq. (8) and Eq. (6) is a bi-
level optimization problem, where the outer optimization in
Eq. (8) defines the adversarial attack objective and the inner
problem in Eq. (6) specifies the model’s learning objective
using both the clean and poisoning data. Notably, compared
with the original adversarial objective in Eq. (7), for the
worst-case optimization in Eq. (8), the perturbations on the
inner minima help achieve a strong poisoning effect.

4.3. Optimization

Fundamentally, the formulated bi-level optimization prob-
lem in Eq. (8) and Eq. (6) can be computationally expensive
especially for DNNs, since we need to fully solve the inner
problem in Eq. (6) to update the outer variables. Besides
the high computation complexity, the inner optimization
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also incurs significant storage costs to maintain the entirety
of the large training dataset. These raise a critical ques-
tion: “Is it possible to craft effective poisoning points with-
out needing to retrain DNNs and accessing the entire train-
ing dataset?” This question underscores the need for more
resource-efficient strategies that circumvent the extensive
computational and storage requirements typically associated
with such end-to-end poisoning attacks (Foret et al., 2020).

To address the above challenges, we resort to formulating
the optimization as a closed-form update of the original
pre-trained model θ∗, while only knowing the subset Dp.
Specifically, we adopt influence functions (Hampel, 1974)
to find an closed-form model update Ψ(Dp, D̃p) that we
add to the original model θ∗ (trained over Dtr = Dp ∪
Dc) for the generated poisoning samples. In this way, by
capturing the changes to the pre-trained model θ∗ in a closed-
form update, we can provide significant speed-ups over
existing retraining based methods (Huang et al., 2020). Our
closed-form updates are not only limited to the feature-level
manipulations, but also the labels. To map the changes of
the training data in retrospection to close-form updates of
model parameters, we can formulate

θ∗
ξ,Dp→D̃p

= argmin
θ
Lξ(θ;Dtr) = L(θ;Dtr)+

ξ
∑

Z̃p∈D̃p

l(Z̃p, θ)− ξ
∑

Zp∈Dp

l(Zp, θ). (9)

The above generalization allows for the substitution of Zp

with Z̃p by slightly increasing the weight of Z̃p by a small
value ξ and correspondingly decreasing Zp. Below, we
introduce our rigorously refined attacks based on the first-
order and second-order closed-form gradient updates.

First-order case. To derive the first-order based update,
when ξ is small and l is differential with respect to θ, we
can use a first-order Taylor series at θ∗ to approximate
Lξ(θ;Dtr) in Eq. (9) by

Lξ(θ
∗
ξ,Zp→Z̃p

;Dtr) ≈ L(θ∗;Dtr) + ξ(l(Z̃p, θ
∗)

− l(Zp, θ
∗)) + Ψ(Dp, D̃p) · (∇θL(θ∗;Dtr)

+ ξ(∇θl(Z̃p; θ
∗)−∇θl(Zp; θ

∗))), (10)

where θ∗ is obtained over Dtr. Given that the poisoned
model θ∗

ξ,Zp→Z̃p
is a minimum of Lξ(·;Dtr), we can as-

sume that Lξ(θ
∗
ξ,Zp→Z̃p

;Dtr) < Lξ(θ
∗;Dtr). Integrating

this into the Taylor series approximation and using the con-
dition that ∇θL(θ∗;Dtr) = 0, based on Eq. (9), we now
can have ξΨ(Dp, D̃p) · (∇θl(Z̃p, θ

∗) − ∇θl(Zp, θ
∗)) <

0. Given ξ > 0, our attention shifts to analyzing the
dot product within the equation. For two given vectors
µ1, µ2, the dot product can be expressed as µ1 · µ2 =
||µ1||||µ2|| cos (µ1, µ2), where cos (µ1, µ2) is the cosine be-
tween µ1 and µ2. The minimum cosine, −1, occurs when

µ1 = −µ2. Therefore, we can arrive at

Ψ(Dp, D̃p) =
∑

Zp∈Dp

∇θl(Zp, θ
∗)−

∑
Z̃p∈D̃p

∇θl(Z̃p, θ
∗),

which indicates the optimal direction for adjustment from
θ∗ is

∑
Z̃p∈D̃p

∇θl(Z̃p, θ
∗) −

∑
Zp∈Dp

∇θl(Zp, θ
∗). The

actual step size is unknown and requires calibration with a
small constant τ to determine the appropriate update magni-
tude. Based on this, we can have

θ∗
ξ,Dp→D̃p

≈ θ∗− (11)

τ(
∑

Z̃p∈D̃p

∇θl(Z̃p, θ
∗)−

∑
Zp∈Dp

∇θl(Zp, θ
∗)).

Intuitively, this update shifts the model parameters from∑
Z̃p∈D̃p

∇θl(Z̃p, θ
∗) to

∑
Zp∈Dp

∇θl(Zp, θ
∗), with τ dic-

tating the update’s step size.

Next, we can use a first-order Taylor series around θ∗ to
approximate ℓ3(Xv; θ

∗
ξ,Dp→D̃p

, Q1−ε) in Eq. (8) as follows

min
D̃p

ℓ3(Xv; θ
∗
ξ,Dp→D̃p

, Q1−ε) (12)

=min
D̃p

ℓ3(Xv; θ
∗
ξ,Dp→D̃p

, Q1−ε)− ℓ3 (Xv; θ
∗, Q1−ε)

≈min
D̃p

∇θℓ3(Xv; θ
∗, Q1−ε) · [θ∗ξ,Dp→D̃p

− θ∗]

=min
D̃p

−τ∇θℓ3(Xv; θ
∗, Q1−ε) ·Ψ(Dp, D̃p).

Therefore, to induce a modification θ∗
ξ,Dp→D̃p

− θ∗ that can
most increase the adversarial loss ℓ3 on victim examples
{(Xv, Yv)}Vv=1, we can minimize the above equation when
ξ is small, i.e., maximizing ∇θℓ3({Xv}Vv=1; θ

∗, Q1−ε) ·
Ψ(Dp, D̃p). Now the objective is to solve

argmax
D̃p

Φ(D̃p, θ) = ∇θℓ3({Xv}Vv=1; θ
∗, Q1−ε) ·Ψ(Dp,

D̃p)/(∥∇θℓ3({Xv}Vv=1; θ
∗, Q1−ε)∥∥Ψ(Dp, D̃p)∥), (13)

which achieves the maximized attack goal by aligning the di-
rections of ∇θℓ3({Xv}Vv=1; θ

∗, Q1−ε) and Ψ(Dp, D̃p). To
compute the adversarial loss ∇θℓ3({Xv}Vv=1; θ

∗, Q1−ε),
we adopt the technique in Foret et al. (2020) to first ap-
proximate ℓ3 by leveraging a first-order method

ζ̂ = ρ · sign(∇θℓ2({Xv}Vv=1; θ
∗, Q1−ε))|∇θℓ2({Xv}Vv=1;

θ∗, Q1−ε)|q−1/(||∇θℓ2({Xv}Vv=1; θ
∗, Q1−ε)||qp)

1
p , (14)

where 1/p+ 1/q = 1. We set p = 2, following Foret et al.
(2020), unless otherwise stated. Then, we can have the
approximation to calculate ∇θℓ3({Xv}Vv=1; θ

∗, Q1−ε) via
replacing θ∗ with θ∗ + ζ̂

∇θℓ3({Xv}Vv=1; θ
∗, Q1−ε) ≈ ∇θℓ2({Xv}Vv=1;

θ,Q1−ε)|θ=θ∗+ζ̂ . (15)
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In this way, by fixing ∇θℓ3, we can solve Eq. (13) to find
effective poisoning samples D̃p via gradient descent. In this
way, the poisoned model is specifically tailored to exhibit
malicious behavior towards the victim’s data samples.

Second-order case. When the loss L(θ;Dtr) is twice dif-
ferentiable and strictly convex, there exists an inverse Hes-
sian matrix H−1

θ∗ , which allows for the approximation of
changes to the model (Ling, 1984). In particular, the opti-
mality conditions for Eq. (9) can be directly determined by
0 = L(θ∗;Dtr) + ξ(l(Z̃, θ∗

ξ,Z→Z̃
)− l(Z, θ∗

ξ,Z→Z̃
)). If ξ is

sufficiently small, we can use a first-order Taylor series at
θ∗ to approximate the conditions as

0 ≈ L(θ∗;Dtr) + ξ(l(Z̃, θ∗)− l(Z, θ∗)) + (θ∗
ξ,Z→Z̃

− θ∗)·

(∇2L(θ∗;Dtr) + ξ(∇2l(Z̃; θ∗)−∇2l(Z; θ∗))). (16)

Given the optimality condition ∇L(θ∗;Dtr) = 0 for
θ∗, using the Hessian of the loss function, we can
rearrange this solution and get θ∗

ξ,Dp→D̃p
− θ∗ =

−ξH−1
θ∗ (

∑
Z̃p∈D̃p

∇θl(Z̃p, θ
∗) −

∑
Zp∈Dp

∇θl(Zp, θ
∗)),

where we additionally omit higher-order terms. Then, we
can set ξ = 1 to replace sample Z completely by Z̃, which
leads to the below second-order update

θ∗Dp→D̃p
≈ θ∗ −H−1

θ∗ (
∑

Z̃p∈D̃p

∇θl(Z̃p, θ
∗) (17)

−
∑

Zp∈Dp

∇θl(Zp, θ
∗)).

Combining this with Eq. (13), we can easily derive the
second-order based attack framework.

Theorem 4.1. Assume that L(θ) is local convex and dif-
ferentiable. Let Dp = {(Xi, Yi)}Pi=1, L(θ∗) be the initial
optimal solution, and L(θ∗u) be the updated optimal solu-
tion. Given a bound ϵ > 0 with the perturbation ∥δi∥2 ≤ ϵ,
assume that ∥θ∗− θ∗u∥2 has a upper bound Bθ, the gradient
∇l is Lz-Lipschitz with respect to X at θ∗ and L1 -Lipschitz
with respect to θ. We get θ∗Dp→D̃p

from θ∗ by our closed-
form updates. Then the following upper bounds hold: For
the first-order update of our approach, if τ ≤ 1

L1
we have

Lξ(θ
∗
Dp→D̃p

)−L (θ∗u) ≤ ϵLz|Dp|Bθ. For the second-order
update of our approach, we have Lξ(θ

∗
Dp→D̃p

)− L (θ∗u) ≤
ϵBθLz|Dp|+

(
1 + 1

2L
2
1

)
L1(ϵLz|Dp|)2.

Theorem 4.1 gives a finite-sample bound to quantify the
difference between our two approximation methods and the
optimal solution. It demonstrates that as we decrease the
perturbation bound ϵ and the number of poisoned data |Dp|,
our methods approximate L(θ∗u) more closely. The proce-
dure for optimizing the above losses is postponed to the
full version of this paper. Notably, we can easily generalize
this algorithm to perform other different attack types, e.g.,

adding irrelevant labels or removing specific labels regard-
less of the correctness of labels. This further demonstrates
the significant threats of poisoning attacks against CP. Theo-
rem 4.2 shows that under specific conditions regarding step
sizes, the victim model will converge to a stationary point of
the adversarial loss when the main training loss is optimized
using stochastic gradient descent.

Theorem 4.2. Let ℓ3(θ) be bounded below and have
a Lipschitz continuous gradient with constant L > 0.
Assume that the victim model is trained by stochastic
gradient descent (SGD) with step sizes αt , i.e. by
sampling a random index ĩt uniformly from {1, . . . , n}
and then updating θt+1 = θt − αt∇Lĩt

(θt). If
the gradient descent steps αt > 0 satisfy αtL <

ωΦ(Dp, θ
t)
∥∇ℓ3(θt)∥
∥∇L(θt)∥ and E

[∥∥∇Lĩt
(θt)

∥∥2] ≤
∥∇L (θt) ∥2 for some fixed ω < 2, then
E
[
ℓ3

(
θt+1

)]
< E [ℓ3 (θ

t)]. If in addition ∃µ > 0,
t0 and ∀t ≥ t0,Φ(Dp, θ

t) > µ, we then can have
limt→∞ ∥∇ℓ3 (θt)∥ → 0.

Proof. For ℓ3
(
θt+1

)
, we can have the following

ℓ3
(
θt+1

)
=ℓ3

(
θt − αt∇Lĩt

(
θt
))

≤ℓ3
(
θt
)
− αt∇Lĩt

(
θt
)⊤∇ℓ3 (θt)

+
1

2
α2
tL

∥∥∇Lĩt

(
θt
)∥∥2 . (18)

If we take the expected value of both sides of this expression
(where the expectation is taken over the randomness in the
sample selection ĩt), we get

E
[
ℓ3

(
θt+1

)]
≤ E

[
ℓ3

(
θt
)]
− αtE

[
∇Lĩt

(
θt
)⊤∇ℓ3 (θt)]

+
α2
tLE

[∥∥∇Lĩt
(θt)

∥∥2]
2

. (19)

Now, the expected value of ∇Lĩt
(θt) given θt is

E
[
∇Lĩt

(θt) | θt
]
=

∑n
i=1∇Li (θ

t) · P
(̃
it = i | θt

)
=∑n

i=1∇Li (θ
t) · 1n = ∇L (θt) . Based on this, we can have

E
[
ℓ3

(
θt+1

)]
≤ E

[
ℓ3

(
θt
)]
− αt∇L

(
θt
)⊤∇ℓ3 (θt)

+
α2
tLE

[∥∥∇Lĩt
(θt)

∥∥2]
2

. (20)

According to the assumption E
[∥∥∇Lĩt

(θt)
∥∥2] ≤

∥∇L (θt) ∥2, we get

E
[
ℓ3

(
θt+1

)]
≤ E

[
ℓ3

(
θt
)]
− (αt

∥∇ℓ3 (θt)∥
∥∇L (θt)∥

cos
(
γt
)

− 1

2
α2
tL)

∥∥∇L (θt)∥∥2 . (21)
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Figure 1. Performance of overconfidence CP attacks on CIFAR-10 and CIFAR-100, and underconfidence CP attacks on Tiny-ImageNet.

As such, the adversarial loss decreases for nonzero step sizes

if ∥∇ℓ3(θt)∥
∥∇L(θt)∥ cos (γt) > 1

2αtL for some 1/2 < c < ∞.
This follows from our assumption on the parameter ω.
Therefore, we can get E

[
ℓ3

(
θt+1

)]
< E [ℓ3 (θ

t)]. Rein-
serting this estimate into Eq. (21) reveals that

E
[
ℓ3

(
θt+1

)]
≤ E

[
ℓ3

(
θt
)]
− cos2 γt

2L

∥∥∇ℓ3 (θt)∥∥2 .
Due to monotonicity we may sum over all descent in-
equalities, yielding

∑t=T−1
t=0 E [ℓ3 (θ

t)]− E
[
ℓ3

(
θt+1

)]
≥∑t=T−1

t=0
cos2 γt

2L ∥∇ℓ3 (θt)∥
2, then

ℓ3
(
θ0
)
− ℓ∗3 ≥ ℓ3

(
θ0
)
− E

[
ℓ3

(
θT

)]
≥

t=T−1∑
t=0

cos2 γt

2L

∥∥∇ℓ3 (θt)∥∥2 (22)

where ℓ∗3 is the global optimum of ℓ3. When T → ∞ we
can find

∞∑
t=0

cos2 γt

2L

∥∥∇ℓ3 (θt)∥∥2 <∞. (23)

According to the assumption that cos γt is bounded below
by some fixed µ > 0 except finitely many iterates for all
(i.e., the angle between adversarial and training gradient is
less than 90◦), we have the convergence to a stationary point
as

∑∞
t=0

µ2

2L ∥∇ℓ3 (θ
t)∥2 <∞. Therefore, we can get

lim
t→∞

∥∥∇ℓ3 (θt)∥∥→ 0. (24)

Discussions on poisoning attacks against full conformal
prediction. In full conformal prediction, it assumes that
both training and test data are exchangeable. Therefore, di-
rectly crafting perturbation-based poisoning samples would
violate the data exchangeability assumption. This would in-
crease the risks of being detected by just checking coverage
results. One straightforward way is to inject exchangeable

samples without perturbations. However, such a method is
limited in attack effectiveness and the availability of a large
number of exchangeable points. To study the effects of poi-
soning attacks on full conformal prediction while maintain-
ing validity, we can employ transfer learning-based attack
settings (Shen et al., 2021; Shafahi et al., 2018), where the
adversary has knowledge of a pre-trained model and the
victim model is fine-tuned on this pre-trained model. Due
to space limitation, more details about poisoning attacks
against full conformal prediction can be found in the full
version of this paper.

5. Experiments
In this section, we perform extensive experiments to validate
our proposed poisoning attacks against conformal predic-
tion. Due to space limitation, more experimental details
and results (e.g., more datasets, and attacks scenarios for
unequalized and unfair coverage subgroups) are given in the
full version of this paper.

Datasets and models. In experiments, we adopt the fol-
lowing image classification datasets: Tiny-ImageNet (Deng
et al., 2009) and CIFAR-10/100 (Krizhevsky et al.). We con-
sider various DNN models, including MobileNet-V2 (San-
dler et al., 2018), ResNet-18 (He et al., 2016), VGG-16 (Si-
monyan & Zisserman, 2014), and a 5-layer ConvNet.

Baselines. As there is no existing work on data poisoning
attacks against conformal prediction, in our experiments,
we adopt the RandUn and RandGa baselines to assess the
effectiveness of the proposed poisoning strategies. Specif-
ically, we use random uniform noise and Gaussian noise
as poisoning perturbations for the RandUn and RandGa
baselines, respectively.

Evaluation metrics. To evaluate the attack effectiveness,
we measure the set size reduction ratio as (set sizebenign −
set sizevictim)/set sizebenign and set size expansion ratio as
(set sizevictim−set sizebenign)/set sizebenign of the target sam-
ples on the victim model. In addition, we analyze prediction

7
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Table 1. Set size reduction ratio of overconfidence CP attacks under data poisoning defenses.
Defense method HPS APS RAPS RSCP

Ours + No defense 0.46± 0.02 0.47± 0.04 0.54± 0.04 0.49± 0.05

Ours + MaxUp (Gong et al., 2021) 0.34± 0.05 0.32± 0.07 0.49± 0.06 0.26± 0.07
Ours + Adversarial Poisoning (Geiping et al., 2021a) 0.39± 0.04 0.28± 0.09 0.41± 0.06 0.24± 0.07

Ours + EPIC (Yang et al., 2022) 0.38± 0.06 0.33± 0.09 0.42± 0.07 0.38± 0.10

consistency (whether the prediction labels are consistent)
and empirical coverage rate between benign and victim
models to show the stealthiness of our attacks.

The adopted conformal methods. In experiments,
we adopt the following popular conformal methods:
RSCP (Gendler et al., 2021), an adversarial robust
CP method against adversarial attacks; APS (Romano
et al., 2020), designed to improve conditional coverage;
RAPS (Angelopoulos et al., 2020), a regularized variant of
APS for generating smaller sets; and HPS (Lei et al., 2013;
Vovk et al., 2005), which relies on softmax output.

Implementation details. In experiments, we allocate 10%
data for calibration and maintain a default coverage rate
(1− ε) of 0.9. We limit the perturbation bound ϵ to 16/255.
The poisoning attacks are implemented through training
the models from scratch (Huang et al., 2020; Huai et al.,
2020b), utilizing the SGD optimizer with a learning rate of
0.01 and a batch size of 128. We evaluate the attack results
in each experiment by randomly sampling a target class. We
generate poisons and evaluate them on 8 newly initialized
victim models. We repeat each experiment 10 times and
report the mean and standard errors.

5.1. Attack Performance against Conformal Prediction

In Figure 1, we present the performance of overconfidence
CP attacks on CIFAR-10 and CIFAR-100, as well as the
underconfidence CP attacks on Tiny-ImageNet. We observe
that our proposed attacks significantly outperform RandUn
and RandGa baselines in terms of set size reduction ratio
and set size expansion ratio across various poison budgets.
For example, consider Figure 1a, where overconfidence CP
attacks are conducted on CIFAR-10 with HPS and RAPS.
The benign set size of HPS is 2.0 (implying a maximum
reduction ratio of 0.5 in order to obtain a set size of 1), and
the benign set size of RAPS is about 2.84 (with a maximum
reduction ratio of 0.64). Our proposed attacks achieve a
reduction ratio of 0.48 with HPS and 0.54 with RAPS using
2% poison budget, while the baselines achieve reduction
ratios below 0.32. Therefore, our proposed attacks can ef-
fectively manipulate the uncertainty of CP and successfully
trick the model into being overconfident or underconfident
for target samples.

In addition, in Figure 2, we demonstrate the stealthiness
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Figure 2. Stealthiness of overconfidence CP attacks on CIFAR-10.

of overconfidence CP attacks on CIFAR-10 with HPS. Our
proposed attacks achieve a high prediction consistency and
similar empirical convergence rates compared to the benign
model. This underscores the stealthiness of our attacks when
targeting uncertainty in CP.

5.2. Attack Performance under Data Poisoning Defenses

In this section, we explore the performance of our proposed
attacks under existing data poisoning defenses. In Table 1,
we report the set size reduction ratio of overconfidence CP
attacks under MaxUp (Gong et al., 2021), Adversarial Poi-
soning (Geiping et al., 2021a), and EPIC (Yang et al., 2022),
using 2% poison budget on CIFAR-10. Specifically, MaxUp
generates augmented data with random perturbations, aim-
ing to minimize the worst-case loss of the augmented data.
Adversarial Poisoning is a variant of adversarial training
that builds a robust model using adversarially poisoned data.
EPIC identifies and eliminates effective poison data in gra-
dient space during training to prevent poisoning attacks.
Notably, our proposed attacks remain effective even un-
der these existing poisoning defenses since we specifically
target the nonconformity scores in our attack framework.
For example, it still achieves a reduction ratio of 0.34 un-
der MaxUp with HPS, compared to 0.46 without defense.
Therefore, our proposed attacks demonstrate a satisfying
set size reduction ratio across existing defense mechanisms,
indicating the utility and effectiveness of our approach.

5.3. Ablation Study

First, we compare the performance and running time of over-
confidence CP attacks with different optimizations against
HPS on CIFAR-10. The results in Table 2 reveal that our
proposed attacks, both in first-order and second-order op-
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Table 2. Set size reduction ratio and running time (min) of overconfidence CP attacks with varying optimizations.

Poison budget Ours – first-order Ours – second-order MetaPoison (Huang et al., 2020)

Reduction ratio Running time Reduction ratio Running time Reduction ratio Running time

0.5% 0.36± 0.03 12.75± 0.09 0.38± 0.05 95.76± 0.37 0.31± 0.04 233.48± 0.38
1% 0.39± 0.05 14.96± 0.25 0.40± 0.05 179.77± 0.96 0.36± 0.05 300.04± 1.93
2% 0.46± 0.02 19.26± 0.14 0.48± 0.02 369.23± 4.81 0.38± 0.07 494.72± 2.35
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Figure 5. Impact of perturbation bound.

timizations, achieve a significantly higher set size reduc-
tion ratio and require much less running time compared to
MetaPoison (Huang et al., 2020) optimization.

Next, we examine the performance of overconfidence CP
attacks using the ℓ2 loss and ℓ3 loss on various poison bud-
gets in the practical black-box scenario. Note that unlike
ℓ2, ℓ3 considers the worst-case poisoned model. As shown
in Figure 3, our attacks demonstrate significantly higher
set size reduction ratios compared to the RandUn baseline.
When comparing the two loss functions, we observe that
under budgets of 0.5% and 1%, attacks employing the ℓ3
loss achieve higher reduction ratios of 0.01 and 0.02, re-
spectively, than the ℓ2 loss. This indicates we can make an
improvement by taking into account the worst case of the
model when conducting the poisoning attacks.

Furthermore, we conduct overconfidence CP attacks on
varying benign set sizes, using 2% poison budget on CIFAR-
10. As shown in Figure 4, our proposed attacks consistently
reduce the uncertainty for target samples across different
benign set sizes. Typically, a larger prediction set implies
more uncertainty and poses a greater challenge for attacks
due to the need to manipulate more labels. Nonetheless, our
attacks persist in showcasing their capability to reduce the
set size. Our optimization approach specifically targets each
nonconformity score associated with labels in the prediction
set, ensuring that the attacked prediction set exclusively
contains the predicted label, thereby reducing uncertainty.

Lastly, in Figure 5, we illustrate the performance of over-
confidence CP attacks across different perturbation bounds
employing ℓ3 loss, using 2% poison budget on CIFAR-10 in
the practical black-box scenario. The results show that our
proposed attacks generally achieve higher set size reduction
ratios with larger perturbation bounds. Even with a small
perturbation bound (e.g., 16/255), our proposed attacks ex-

hibit remarkable performance. The reason is that, as the
perturbation bound increases, the adversary has more space
to adjust the features of victim samples, allowing them to
explore a broader range and find perturbations that deceive
the model more effectively.

6. Conclusion and Future Work
For the first time to our best knowledge, in this paper, we
study the vulnerabilities of CP to data poisoning attacks,
and devise a bi-level attack framework for crafting effective
poisoning points in black-box scenarios. Specifically, in our
proposed strategy, we first propose to calculate the worst poi-
soning model before using it to update poisoning points, to
maintain a strong poisoning effect across various models for
maximizing the impact of our attacks. Additionally, we also
design approximate relaxations for handling the discrete
uncertainty set sizes and the non-convex, non-differentiable
quantile. Further, we introduce rigorous optimization meth-
ods that refine our strategies for efficiently creating effective
poisoning points using closed-form updates, thus bypassing
the need for full model retraining or complete dataset ac-
cess. Our extensive experiments in both full and split CP
settings demonstrate our attacks’ effectiveness in manipulat-
ing uncertainty, surpassing traditional poisoning methods.
Moreover, we discover that existing defenses are inadequate
against our advanced attack strategies.

In the future, we will extend our proposed attacks to a
broader range of machine learning models, CP methods,
and larger datasets. Notably, the attack strategies proposed
in this paper could potentially be used by malicious users to
attack real CP systems. To mitigate the potential negative
consequences and impacts, we will design robust CP algo-
rithms that can effectively defend against such poisoning
attacks in our future work.
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Impact Statement
In this paper, we introduce a novel class of data poison-
ing attacks tailored to compromise conformal prediction
systems by manipulating the uncertainty estimate. This
approach reveals vulnerabilities of conformal prediction,
thereby shedding light on potential security breaches in the
predicted conformal results for uncertainty estimation. Our
results highlight the urgent need for further research to pro-
tect against such significant threats and improve the security
and reliability of such uncertainty estimation methods.
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