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Abstract Any supervised machine learning analysis is required to provide an estimate of the out-of-

sample predictive performance. However, it is imperative to also provide a quantification of

the uncertainty of this performance in the form of a confidence or credible interval (CI) and

not just a point estimate. In an AutoML setting, estimating the CI is challenging due to the

“winner’s curse", i.e., the bias of estimation due to cross-validating several machine learning

pipelines and selecting the winning one. In this work, we perform a comparative evaluation

of 9 state-of-the-art methods and variants in CI estimation in an AutoML setting on a corpus

of real and simulated datasets. The methods are compared in terms of inclusion percentage

(does a 95% CI include the true performance at least 95% of the time), CI tightness (tighter

CIs are preferable as being more informative), and execution time. The evaluation is the first

one that covers most, if not all, such methods and extends previous work to imbalanced and

small-sample tasks. In addition, we present a variant, called BBC-F, of an existing method

(the Bootstrap Bias Correction, or BBC) that maintains the statistical properties of the BBC

but is more computationally efficient. The results support that BBC-F and BBC dominate

the other methods in all metrics measured.

1 Introduction
In any practical application of supervised machine learning, one needs to provide an estimate of the

out-of-sample (hereafter, oos) performance (i.e., an estimate of generalization performance) of the

final model. However, it is also important to quantify the uncertainty of this performance estimate.

This quantification is often presented in the form of a confidence interval, or CI hereafter for short
1
.

A 𝑎-CI is defined as an interval that includes the true performance of the model with (at least, if

being conservative) probability 𝑎 in identical repetitions of the analysis with new datasets from the

same data distribution. In the rest of the paper, by default 𝑎 = 0.95 and the term CI refers to a 95%

CI, unless otherwise stated. Following the literature [19] of CIs of predictive performance, we focus

on one-sided CI. In one-sided intervals the upper bound of the interval is the maximum possible

performance; the lower bound of the interval is adjusted so that the the true performance falls

above that level (at least) 95% of the time. In contrast, two-sided intervals "allow" some of these 5%

failing cases to fall higher than the upper bound of the interval. The reason for this preference is

that in practice it is important to find the tighter lower bound of performance. The importance of

quantifying uncertainty is shown in this simple example: a model with 0.70 AUC could be as good

as random guessing if the CI is the interval [0.3, 1.0]. CIs can also facilitate comparison of models:

two models with respective AUC performances of 0.85 and 0.90, may actually be on par if their CIs

are [0.70, 1.0] and [0.75, 1.0].

1
In Bayesian statistics, uncertainty is quantified with credible intervals instead. For all practical purposes, both CIs

and credible intervals are employed in the same way for decisions. In the rest of the paper, we will focus on CIs.
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Important properties for CI estimation are the inclusion percentage and the interval lower bound
tightness. For a 95% CI estimate the inclusion percentage should ideally also be 95%. If it is higher

the estimate is unnecessarily wide and conservative, but still acceptable. If the inclusion percentage

is lower than 95%, the estimate is optimistic and, arguably, misleading. Tightness is defined as the

difference between the true performance and the lower bound of the interval. Between two CI

estimates with an inclusion percentage of at least 95%, the tighter interval is the most informative

(smaller positive tightness is better). Ideally, a CI estimate should cover exactly 95% of probability

with the smallest tightness possible. For example, the interval [0.00, 1.00] is a 95% CI of the AUC

for any binary classification task, but so conservative that is completely useless.

Accurately estimating CIs is challenging, particularly in the context of AutoML. In most AutoML

systems, numerous machine learning pipelines (a.k.a., configurations) are tried and the winning

one is employed to construct the final model [18]. Returning the cross-validated performance

estimate and the CI of the winning configuration exhibits the “winner’s curse" bias [27, 28], which

can be up to 0.2 AUC [29]. Intuitively, the phenomenon of “winner’s curse" can be explained as an

increasing probability to overfit the test set or sets (in cross-validation) as many models are tried

[17, 28].

In this paper, we examine and benchmark the state-of-the-art methods proposed for CI estima-

tion applicable to an AutoML context. We employ JADBio [30] as our AutoML platform of choice

to generate, fit, and cross-validate numerous configurations on a corpus of real binary classification

datasets covering imbalanced classes and small-sample scenarios. The configurations include the

application of feature selection algorithms and linear and non-linear classifiers with different values

for their hyper-parameters. Experiments on real datasets are complemented with ones on synthetic

datasets under controlled conditions. The oos predictions of these configurations on each sample in

the cross-validation test folds are employed to select the winning configuration. The final predictive

model is built using the winning configuration. The 95% CI of its performance is estimated from

the matrix of oos predictions using 9 different state-of-the-art methods and variants. All algorithms

employed are model agnostic; they only require the prediction matrix to provide estimates and do

not depend on the inner workings of the configurations. The methods are compared and evaluated

with respect to their inclusion percentage and tightness. The methods benchmarked include a new

variant called BBC-F standing for Bootstrap Bias Correction on Folds. BBC-F extends the previous

BBC method [27] that was shown to remove the bias due to the winner’s curse and return accurate

estimations of performance. However, an evaluation of BBC w.r.t. providing CI estimates was

lacking.

The results demonstrate that BBC and BBC-F dominate all other methods in all metrics measured.

BBC-F is on par with BBC in terms of inclusion percentage or tightness, but it is computationally

more efficient. Hence, within the scope of our experiments, we would suggest BBC-F as the method

of choice for CI estimation. The contributions of the paper are to extend previous evaluations to

(a) all available methodologies for CI estimation, (b) extend previous evaluations to imbalanced

and small-sample tasks, and (c) propose the BBC-F variant and conclude with a clear winning

methodology. While informative, the evaluation still has numerous limitations. The limitations,

open problems, future directions, and the impact of this work are discussed in separate sections

that conclude the paper.

2 Bootstrap Bias Correction for Performance and CI Estimation
We now present in detail the main ideas of Bootstrap Bias Correction (BBC) and its new variant

BBC Fold (BBC-F). The input to these methodologies is an oos prediction matrix produced during

model training and cross-validation. Hence, we start by describing this process first. In the context

of AutoML, numerous configurations, denoted by𝑚𝑖 , are trained. The configurations may include

several types of algorithms (preprocessing, imputation, feature selection, and modeling) and their

hyper-parameters. The choice of the algorithm for each step can also be thought of as another
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Figure 1: A schematic depiction of the BBC-F algorithm. CVT leads to an out-of-sample prediction

matrix Π. Π is used to compute the matrix Π′, containing the performance 𝑝𝑖 𝑗 for each

configuration𝑚𝑖 on each test fold 𝑓𝑗 . The winning configuration 𝐽
∗
is used to create the final

model 𝑀 of CVT. Next, Π′ is bootstrapped w.r.t. to rows. In each bootstrap iteration, the

winning configuration 𝐽𝑏 is selected (displayed as plain 𝐽 in the figure as it is itself a subscript

at various places) based on the average in-bag performances. Its average performance 𝐿𝑏 on

the out-of-bag performances is stored. The distribution of {𝐿1, . . . , 𝐿𝐵} is used to provide a

point estimate (the mean of the distribution) and a CI.

hyper-parameter so that all choices of the configuration are captured in a single vector 𝜃𝑖 . Instead

of considering as having available numerous learning pipelines, we can equivalently consider that

we have available only a single learning function 𝑓 parameterized by 𝜃 as its hyper-parameters.

A static search strategy (i.e., a strategy where the set of configurations is pre-determined) in the

space of all possible configurations can be encoded by a set of vectors 𝜃 : Θ = {𝜃𝑖 , 𝑖 = 1, . . . , 𝑛}. Such
search strategies include grid search and random search, both of which have been employed in an

AutoML context [33]. During execution, the configurations in Θ are 𝐾-fold cross-validated. The

cross-validation procedure identifies the winning configuration according to some performance

criterion (AUC, accuracy, 𝑅2, c-index) which is employed to train the final model on all available

data. We denote this procedure as Cross-Validation with Tuning or 𝐶𝑉𝑇 (𝑓 , 𝐷,Θ), where 𝑓 is the
learning method, 𝐷 the training data (partitioned to folds), and Θ the set of configurations to

execute. The pseudo-code is in [27], omitted due to space limitations. The function call returns

⟨𝑀,Π⟩, where𝑀 is the final model, and Π is the matrix with the predictions of each configuration

on each test sample. Specifically, Π𝑖, 𝑗 contains the prediction of a model produced by configuration

𝑚 𝑗 on sample with index 𝑖 , when 𝑖 was in the test fold of cross-validation. Hence, Π𝑖, 𝑗 contains
only oos predictions.

To produce an unbiased estimate of the performance of the final model returned by𝐶𝑉𝑇 (𝑓 , 𝐷,Θ)
one needs to account for the fact that the winning configuration is selected among many candidates.

Hence, one needs to create an estimation procedure that produces untainted test sets that have not
been used to select the winning model. One option is to cross-validate CVT itself, i.e., cross-validate

a procedure that already uses cross-validation to select the best model. This leads to the nested

cross-validation protocol [21]. Each outer fold of the nested cross-validation is used only once to

estimate the performance of the winning model for the corresponding training set, avoiding the

winner’s curse bias.
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Another option is to bootstrap the CVT procedure [11]; we will call this the direct bootstrap
approach to distinguish it from the BBC. In the direct approach, the samples of dataset 𝐷 are

selected with replacement creating datasets {𝐷1, . . . , 𝐷𝐵} where 𝐵 is the number of bootstraps.

𝐷𝑏 are called the in-bag samples, while the samples not selected 𝐷\𝑏 ≡ 𝐷 \ 𝐷𝑏 are called the

out-of-bag samples. The performance 𝐿𝑏 of the winning model returned by CVT on 𝐷𝑏 is estimated

on 𝐷\𝑏 . Notice that the samples in 𝐷\𝑏 are not used in training of the final model for dataset 𝐷𝑏 , but
also importantly, they have not been used to select the winning configuration either. The average
performance over all bootstraps is returned as a point estimate of performance, while the interval

that covers 95% of the performance values {𝐿1, . . . , 𝐿𝐵} is returned as the CI. Both methodologies

are computationally expensive: each of them reruns CVT and retrains |Θ| models on 𝐾 folds for

each outer fold of the nested cross-validation or bootstrap to perform. However, notice that neither
procedure loses samples to estimation: the final model is trained on all available data by applying CVT
on the original dataset [28]. This is why nested cross-validation was employed in one of the first

AutoML tools [23] that targeted low-sample, bioinformatics analyses.

The key enabling idea of BBC is to bootstrap the oos prediction matrix Π, instead of the original
dataset 𝐷 . Equivalently, instead of retraining models on each 𝐷𝑏 and selecting the winner in

each bootstrap, BBC only selects the winner for each Π𝑏 . In other words, it approximates directly

bootstrapping the complete CVT procedure with bootstrapping only the step that selects the

winning model, the step that creates the estimation bias. More specifically, BBC creates a bootstrap

population of prediction matrices {Π1, . . . ,Π𝐵}. It then identifies the winning model𝑀𝑏
in each

one of them. Assuming that the index of 𝑀𝑏
is 𝐽𝑏 , an estimate of the oos performance of 𝑀𝑏

is

the average performance in the out-of-bag predictions 𝐿𝑏 = Π\𝑏 (:, 𝐽𝑏). In the latter equation, we

make use of the notation Π\𝑏 (:, 𝐽𝑏) to denote the 𝐽𝑏 column of the matrix. From the distribution of

{𝐿1, . . . , 𝐿𝐵} BBC can produce a point estimate of performance. The two sided 𝑎-CI is computed

by taking the interval [𝐿(𝑎/2) , 𝐿( (1−𝑎)/2) ] (in the paper higher 𝐿 is considered better performance),
where 𝐿(𝑖 ) denotes the 𝑖-th quantile of the distribution of 𝐿. For 𝑎 = 0.95 this corresponds to

[𝐿(0.025) , 𝐿(0.975) ]. The one-sided 𝑎-CI is computed as [𝐿(𝑎) , 𝐿𝑚𝑎𝑥 ].
BBC does not require training any new models, just the operations of bootstrapping a matrix

and identifying the column with the maximum performance. Intuitively, we expect BBC to provide

correct estimations because the winning configurations are identified from predictions on samples

not used for training models in each Π𝑏 , and the performance of the winner is estimated from

samples not used to select the winner in Π\𝑏 . The time complexity of BBC is as follows: Given

the prediction matrix Π, BBC will repeat 𝐵 times (for each bootstrap) the calculation of 𝐶 average

performances, where 𝐶 is the number of the configurations. For simplicity, let us assume that each

performance is computed in time linear to the sample size 𝑁 (this is true for accuracy, but AUC

requires sorting the values so it has complexity 𝑂 (𝑁 log𝑁 ) instead). To identify the winner is a

linear operation in 𝐶 time; checking the average performance of the winner in the out-of-bag data

takes time at most 𝑁 . The total complexity of BBC is thusO(𝐵 ·𝐶 ·𝑁 +𝐵 ·𝐶), or simplyO(𝐵 ·𝐶 ·𝑁 ).
BBC-F is shown schematically in Figure 1; the pseudo-code is in Algorithm 1. The BBC-F

algorithm is the same as BBC with one difference: the bootstrapping procedure of Π does not

resample over samples (rows) of the matrix but over cross-validation folds, i.e., groups of samples.

To obtain BBC-F from BBC we convert the Π𝑁×𝐶 matrix to Π′
𝐾×𝐶 , where 𝐾 is the number of folds

of cross-validation. Each element Π′𝑖, 𝑗 contains the average performance of a model produced

by configuration𝑚 𝑗 on samples of fold 𝑓𝑖 . The time complexity of the conversion of Π to Π′ is
O(𝐶 · 𝐹 · 𝑁 /𝐹 ) (computation of 𝐹 average performances, each including 𝑁 /𝐹 samples for each

configuration 𝐶). Hence, the total complexity of the algorithm is found by substituting 𝐹 for 𝑁

in the complexity of BBC and adding the complexity of the conversion step: O(𝐵𝐶𝐹 +𝐶𝑁 ). For a
large number of bootstraps the first term dominates; the ratio of the complexity of BBC to BBC-F is

in the order of 𝑁 /𝐹 , which equals 10 for a dataset with 1000 samples being 10-fold cross-validated.
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Algorithm 1 BBC-F CV (𝑓 , 𝐷 = {𝐹1, ..., 𝐹𝐾 },Θ) : Cross-Validation with Tuning, Bias removal using

the BBC-F method

Input: Learning method 𝑓 , Data matrix 𝐷 = {⟨𝑥 𝑗,𝑦 𝑗⟩}𝑁
𝑗=1

partitioned into approximately equally-sized folds 𝐹𝑖 , set

of configurations Θ
Output: : Model𝑀 , Performance point estimation 𝐿𝐵𝐵𝐶−𝐹 , (1 − 𝛼) · 100% one-sided confidence interval [𝑏𝑙 , 𝑏𝑢 ]

1: ⟨𝑀,Π⟩ ← 𝑪𝑽𝑻 (𝑓 , 𝐷,Θ) ⊲ Notice: the final Model is the one generated by CVT

2: Convert Π𝑁×𝐶 matrix to Π′
𝐾×𝐶 by computing the performance of a configuration on a given fold.

3: for 𝑏 = 1 to 𝐵 do
4: Π𝑏 ← sample with replacement 𝐾 rows of Π′

𝐾×𝐶
5: Π\𝑏 ← Π′ \ Π𝑏 ⊲ Obtain the out-of-bag samples in Π and not in Π𝑏

6: 𝐽𝑏 ← argmax𝑗 (𝑎𝑣𝑔(Π𝑏 (:, 𝑗))) ⊲ Select the best performing configuration on average

7: ⊲ Use min instead if lower values imply better performance.

8: 𝐿𝑏 ← 𝑎𝑣𝑔(Π\𝑏 (:, 𝐽𝑏 )) ⊲ Estimate performance of the selected configuration from its out-of-bag fold

performances

9: end for
10: 𝐿𝐵𝐵𝐶−𝐹 = 1

𝐵

∑𝐵
𝑏=1

𝐿𝑏 ⊲ Point estimate of average performance of𝑀

11: [𝑏𝑙 , 𝑏𝑢 ] = [𝐿(𝛼 ) , 𝐿max] ⊲ Use [𝑏𝑙 , 𝑏𝑢 ] = [𝐿(𝛼/2) , 𝐿(1−𝛼/2) ] for a two sided interval

12: return ⟨𝑀, 𝐿𝐵𝐵𝐶−𝐹 , [𝑏𝑙 , 𝑏𝑢 ]⟩

BBC-F follows the same principles as BBC to ensure unbiased estimations while being more

computationally efficient. On the other hand, a bootstrapping of a matrix with 1000 rows, one for

each sample, will turn into bootstrapping a matrix with 10 rows, one for each fold, potentially

losing information. The comparative evaluation examines the trade-off between the quality of

estimation and computational complexity.

3 Related work

The topic of providing a point estimate of the predictive performance of machine learning models

has been studied in the context of supervised machine learning. Typical methodologies include

the hold-out, repeated hold-out, and 𝑘-Fold Cross Validation protocols [28]. Some recent works

include [14, 32] and we do not attempt a full review of the literature.

Arguably, the first method for providing point estimates of predictive performance in the

context of model selection or AutoML where numerous configurations are tried is the nested-cross

validation protocol [21, 1, 22]. The first method to try to remove the bias of estimation due to

the winner’s curse is the Tibshirani and Tibshirani method (TT) [26]. The TT method did not

require nesting the cross-validation step, but it did not provide accurate estimations either [29].

Nevertheless, it did inspire future work in bias removal of the winner’s curse.

One of the first works for providing confidence intervals, instead of just point estimations, of

performance in the context of AutoML was the Bootstrap Bias Correction Cross-validation (BBC)

method [27]. The MABT [19] was recently proposed for the same problem. In addition, several other

methodologies that implicitly deal with CI estimation in the presence of multiple models have been

proposed or are easily adapted. We include these works as they have also been compared against

MABT: these are the Tilted Bootstrapping (BT) [7], Hanley-McNeil (HM) [9], and DeLong (DL) [24],

in both the standard and 10p variation, where an auxiliary two-step selection process is employed

[19]. While all methods take the same input (the oos prediction matrix, labels, and fold indices), the

MABT, DL, HM and BT methods follow a different model selection process than BBC and BBC-F.

We note that they have several drawbacks compared to BBC: (a) they don’t return performance

point estimates, (b) apply only to binary classification tasks, while BBC is metric agnostic and can

be computed for other tasks, such as multi-class classification, regression or time-to-event analysis,

and (c) the 10p variation doesn’t perform well on problems with low sample size or imbalanced

classes, due to the two-step configuration selection process. They also require the user to set the
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Name Instances Training Samples Features Classes Balance ratio Reference

Small
Sample
Size

credit-g 1000 50 21 2 0.300 [5]

spambase 4601 50 58 2 0.394 [10]

musk 6598 50 168 2 0.154 [4]

phoneme 5404 50 6 2 0.293 [6]

phishing 11055 50 31 2 0.443 [15]

Large
Sample
Size

electricity 45312 500 9 2 0.425 [8]

mozilla4 15545 500 6 2 0.329 [12]

nomao 34465 500 119 2 0.286 [3]

adult 48842 500 15 2 0.239 [2]

bank-marketing 45211 500 17 2 0.117 [16]

eeg-eye-state 14980 500 15 2 0.449 [20]

Table 1: Benchmark Datasets used in the experiments.

proportions to split the dataset to validation/evaluation sets. The only hyper-parameter of BBC

and BBC-F is the number of bootstraps to run which is intuitively easy to decide.

4 Experimental Set up

In the experiments, we compare BBC-F to several algorithms for CI estimation, in terms of the quality

of the estimated 95% confidence intervals of the area under the ROC curve (AUC). Furthermore,

we also compare the running times and scaling behavior of BBC-F and BBC. The algorithms were

compared on simulated and real-world data. We only focus on low-sample settings, as (a) it has

been shown that the bias of the uncorrected estimate by CVT approaches zero regardless of the

number of configurations [27] (i.e., it’s less than 1% for 1000 samples), and (b) CI estimates are

mainly useful in low-sample settings where performance estimates have high variance (i.e., in the

limit one would expect the CI range to converge to zero). We use two metrics to compare the

algorithms: inclusion percentage and tightness. For real data, we use the performance on the holdout

set as an estimate of true performance, which is large enough to ensure an accurate estimate. Next,

we provide additional details about the algorithms, data and protocols used in the experiments.

Algorithms and Implementations. We compare BBC-F against two state-of-the-art algorithms for

confidence interval estimation, the original BBC algorithm [27], and MABT [19]. We also compare

them to standard approaches: Tilted Bootstrapping (BT) [7], Hanley-McNeil (HM) [9] and DeLong

(DL) [24], both with the standard and the 10p variation [19]. For MABT, BT, HM and DL we used

the implementation of [19] available at https://github.com/pascalrink/mabt-experiments. As
a baseline, we also directly bootstrapped the performance estimates of the selected model only,

ignoring the “winner’s curse" problem, referred to as Naive Bootstrapping (NB). For the comparisons

on the real-world data we used JADBio [30] as the CVT method to generate and execute several

configurations to run and compute the prediction matrices Π. JADBio is a commercial software-as-

a-service for AutoML; it uses various feature selection methods, such as SES [13] and LASSO [25],

and modeling algorithms, such as logistic regression, support vector machines, decision trees and

random forests. Implementations of BBC-F and BBC, as well as all JADBio results (fold indices,

configuration predictions, and outcome labels) and code for reproducing the results are available at

https://github.com/kparaschakis/BBC_algorithm.
Real Data. We use datasets from OpenML [31], shown in Table 1. The datasets were selected to

contain at least 1000 samples, to have enough samples for accurate performance estimation.

Generation of Simulated Data. We consider the following settings: sample size 𝑁 ∈ {50, 500},
number of candidate configurations 𝐶 ∈ {100, 500}, majority class balance 𝑏 ∈ {0.1, 0.5}, and
number of folds set to 𝐹 = min{10, 𝑁𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦}. First, for given values of 𝑁 and 𝑏, an outcome 𝑌 is

sampled from a Bernoulli distribution. Then, AUC performances are sampled for all configurations

6
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Config. parameters Methods

(𝛼, 𝛽 ) N M b BBC BBC-F DL HM BT DL10p HM10p BT10p MABT NB

(24,6)

500

100
0.1 0.99 (0.07) 0.98 (0.07) 0.90 (0.06) 0.86 (0.04) 0.93 (0.08) 0.54 (0.00) 0.26 (-0.02) 0.75 (0.03) 0.81 (0.04) 0.55 (0.00)

0.5 1.00 (0.04) 0.98 (0.04) 0.91 (0.04) 0.90 (0.03) 0.95 (0.05) 0.79 (0.02) 0.49 (0.00) 0.93 (0.04) 0.93 (0.04) 0.75 (0.01)

500
0.1 1.00 (0.06) 0.98 (0.07) 0.86 (0.05) 0.83 (0.03) 0.9 (0.06) 0.31 (-0.01) 0.12 (-0.03) 0.68 (0.01) 0.82 (0.03) 0.42 (0.00)

0.5 0.98 (0.03) 0.98 (0.03) 0.88 (0.03) 0.88 (0.03) 0.94 (0.04) 0.67 (0.01) 0.32 (-0.01) 0.97 (0.04) 0.98 (0.04) 0.69 (0.00)

50

100
0.1 0.99 (0.31) 0.92 (0.32) - - - - - - - -

0.5 1.00 (0.16) 1.00 (0.20) 0.73 (0.14) 0.72 (0.10) - 0.10 (-0.09) 0.06 (-0.10) - - -

500
0.1 0.97 (0.32) 0.93 (0.35) - - - - - - - -

0.5 1.00 (0.17) 0.97 (0.21) 0.79 (0.17) 0.77 (0.13) - 0 (-0.11) 0 (-0.11) - - -

(9,6)

500

100
0.1 0.97 (0.09) 0.98 (0.09) 0.83 (0.06) 0.70 (0.03) 0.86 (0.07) 0.71 (0.03) 0.31 (-0.03) 0.82 (0.06) 0.83 (0.06) 0.67 (0.01)

0.5 0.98 (0.05) 0.96 (0.05) 0.89 (0.05) 0.84 (0.04) 0.93 (0.06) 0.91 (0.04) 0.57 (0.00) 0.95 (0.06) 0.95 (0.06) 0.79 (0.01)

500
0.1 0.97 (0.09) 0.97 (0.09) 0.89 (0.08) 0.84 (0.05) 0.91 (0.10) 0.61 (0.02) 0.24 (-0.03) 0.82 (0.06) 0.85 (0.06) 0.62 (0.01)

0.5 0.99 (0.04) 0.99 (0.05) 0.92 (0.04) 0.87 (0.03) 0.96 (0.05) 0.88 (0.03) 0.39 (-0.01) 0.97 (0.06) 0.96 (0.06) 0.74 (0.01)

50

100
0.1 1.00 (0.43) 0.98 (0.46) - - - - - - - -

0.5 0.99 (0.22) 0.98 (0.25) 0.82 (0.19) 0.75 (0.12) - 0.43 (-0.04) 0.2 (-0.11) - - -

500
0.1 0.99 (0.42) 0.95 (0.44) - - - - - - - -

0.5 1.00 (0.22) 0.99 (0.25) 0.74 (0.16) 0.70 (0.10) - 0.04 (-0.18) 0.01 (-0.19) - - -

Avg Rnk 1.00 2.13 5.13 6.63 3.38 8.00 10.00 5.00 5.00 8.50

Table 2: Inclusion percentages (closer to 95% is better) and tightness (lower is better) on the simulated

data. Bold numbers indicate that we don’t reject the hypothesis that the value is at least 0.95.

from a 𝐵𝑒𝑡𝑎(𝛼, 𝛽). In our experiments, we used (𝛼, 𝛽) ∈ {(9, 6), (24, 6)}, which correspond to mean

performances of 0.6 and 0.8 with variances of 0.015 and 0.0052 respectively. Given an outcome 𝑌

and the AUC of a configuration, a prediction𝑋0 is drawn fromN (0, 1) when𝑌 = 0, and a prediction

𝑋1 from N (𝜇, 1) when 𝑌 = 1. Then:

𝑋0 ∼ 𝑁 (0, 1), 𝑋1 ∼ 𝑁 (𝜇, 1) ⇒ 𝑧 :=
𝑋1 − 𝑋0 − 𝜇√

2

∼ 𝑁 (0, 1) .

𝐴𝑈𝐶 = 𝑃 (𝑋1 > 𝑋0) = 𝑃
(
𝑋1 − 𝑋0 − 𝜇√

2

> − 𝜇
√
2

)
= 𝑃

(
𝑧 <

𝜇
√
2

)
= Φ

(
𝜇
√
2

)
⇒ 𝜇 =

√
2Φ−1(𝐴𝑈𝐶),

where Φ(·) is the CDF of the standard normal distribution, which determines 𝜇 unequivocally.

Evaluation Protocol. For the simulated data, each combination of settings was repeated 200 times

to generate prediction matrices and compute CIs using all methods. For the real data, we performed

100 repetitions of a train/hold-out split. For small datasets (see Table 1), 50 samples were randomly

sampled as the training set, while 500 were used for the larger datasets. For each split, JADBio

was used (with 10-fold CV and a grid search of 766 configurations) to get the oos predictions and

their fold index. Finally, each method is applied on these results, and the winning configuration

is then applied on the hold-out set to get an estimate of its theoretical performance. Note, that a

potentially different "winner" configuration can be selected by each of the three groups of methods:

{BBC, BBC-F}, {DL, MH, BT}, and {DL10p, MH10p, BT10p, MABT}.

5 Experimental Results

In this section, we present the results of the experiments. We compare BBC-F to all other algorithms

on simulated and real data in terms of inclusion percentage and tightness, as well as the running

times of BBC-F and BBC. We also include results showing the hold-out performance of models

selected by each method, as they use different model selection methods. Exact binomial tests are

performed to test whether the inclusion percentage matches the theoretical CI range. Furthermore,

we note that some methods failed to execute on some datasets, particularly in cases with a low-

frequency minority class or extra validation/evaluation partitions.
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Dataset BBC BBC-F DL HM BT DL10p HM10p BT10p MABT NB

credit-g 0.95 (0.24) 0.95 (0.22) 0.86 (0.23) 0.69 (0.07) 0.11 (-0.23) 0.55 (0.02) 0.09 (-0.19) 0.21 (-0.10) 0.19 (-0.12) 0.37 (-0.05)

spam 0.97 (0.19) 0.93 (0.17) 0.80 (0.20) 0.80 (0.19) 0.84 (0.15) 0.37 (0.02) 0.33 (-0.03) 0.95 (0.19) 0.93 (0.17) 0.38 (-0.02)

musk 0.97 (0.01) 0.93 (0.00) - - - - - - - -

phoneme0.93 (0.22) 0.91 (0.20) 0.87 (0.27) 0.87 (0.27) 0.37 (-0.08) 0.59 (0.09) 0.41 (-0.06) 0.54 (0.00) 0.52 (-0.02) 0.28 (-0.04)

phishing 0.96 (0.13) 0.90 (0.11) 0.64 (0.15) 0.64 (0.12) 0.89 (0.20) 0.24 (0.00) 0.22 (-0.03) 1.00 (0.28) 0.94 (0.26) 0.44 (-0.01)

elec 0.99 (0.05) 0.97 (0.05) 0.97 (0.07) 0.97 (0.06) 0.99 (0.07) 0.99 (0.10) 0.94 (0.05) 1.00 (0.13) 0.99 (0.08) 0.90 (0.02)

mozilla4 0.97 (0.03) 0.94 (0.03) 0.85 (0.04) 0.82 (0.03) 0.91 (0.06) 0.84 (0.06) 0.71 (0.02) 0.98 (0.10) 0.91 (0.06) 0.76 (0.01)

nomao 0.97 (0.02) 0.97 (0.02) 0.85 (0.02) 0.89 (0.02) 0.95 (0.03) 0.88 (0.02) 0.78 (0.01) 1.00 (0.05) 1.00 (0.04) 0.70 (0.00)

adult 1.00 (0.04) 0.99 (0.04) 0.91 (0.05) 0.94 (0.06) 0.91 (0.06) 0.95 (0.07) 0.92 (0.04) 0.98 (0.10) 0.95 (0.06) 0.66 (0.01)

bank 0.93 (0.06) 0.93 (0.06) 0.82 (0.07) 0.92 (0.09) 0.87 (0.08) 0.89 (0.08) 0.83 (0.06) 0.94 (0.11) 0.91 (0.11) 0.59 (0.00)

eeg-eye 0.92 (0.05) 0.93 (0.06) 0.87 (0.07) 0.88 (0.06) 0.91 (0.08) 0.99 (0.11) 0.79 (0.04) 0.98 (0.13) 0.97 (0.10) 0.83 (0.03)

Avg Rnk 1.6 1.8 5.9 5.3 5.6 6.9 8.0 5.8 4.9 9.0

Table 3: Inclusion percentages (closer to 95% is better) and tightness (lower is better) on the real data.

Bold numbers indicate that we don’t reject the hypothesis that the value is at least 0.95.
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Figure 2: Relative tightness ratio to BBC per dataset (closer to 1 is more similar to BBC). Blue/orange

dots correspond to non-rejected/rejected inclusion percentages.

Comparison of CI estimation. Tables 2 and 3 show the results for the simulated data and real

data respectively. The results on the real data are split into two groups, low sample size datasets

(𝑁 = 50) and high sample size datasets (𝑁 = 500). The tables show the inclusion percentages and

the tightness (in parentheses) for each method and settings. Bold numbers indicate values that

were not statistically significantly lower than 95% at a 5% statistical level according to an exact

binomial test. The average rank of each method is shown at the bottom of the tables. For a fair

comparison, only rows where all methods have returned results were used. To rank methods, the

following rules are applied: (a) non-rejected (bold) methods get ranked higher than rejected ones,

(b) tightness is used as a tie breaker for non-rejected methods, with lower values being ranked

higher, (c) rejected methods are ranked according to their distance of their inclusion percentage to

95%, and (d) all tied methods get assigned the highest rank.

In addition to the tables, we also visually summarize the results on the swarm plots in Figure 2.

Blue dots correspond to cases where the hypothesis test is not rejected, while orange dots correspond

to the rejected ones. Again, only rows where all methods returned results were considered. The

y-axis shows the ratio of the average tightness of each method relative to BBC, that is, a value > 1

means that the method is worse than BBC and vice versa. We chose BBC as the baseline as it was

the best performing method, which also happens to always return non-rejected estimates.

The results show that BBC and BBC-F clearly dominate all competing methods, producing

accurate and tight CIs. As expected, NB fails to produce accurate CIs, as it ignores the bias introduced
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Figure 3: Time-complexity analysis for BBC-P and BBC-F wrt. (left) data samples, (mid) number of

model configurations, (right) number of folds.

due to the “winner’s curse". The other methods often produce statistically significantly different

CIs or even fail to run, especially on smaller and unbalanced datasets and, when they don’t, their

average tightness is worse than that of BBC and BBC-F.

Comparison of selected model performances. Next, we computed the average true and hold-out

performance of the selected models on the simulated and real data respectively. On the simulated

data, {BBC, BBC-F} had a performance of 0.9081, followed by {DL, HM, BT} with 0.9022, and {DL10p,

HM10p, BT10p, MABT} with an AUC of 0.8948. Similarly, on the real data {BBC, BBC-F} had a

performance of 0.8570, followed by {DL10p, HM10p, BT10p, MABT} with 0.8499, and {DL, HM,

BT} with an AUC of 0.8496. While the differences are small, BBC and BBC-F again consistently

outperform all competitors.

Comparison of BBC-F and BBC running times. Finally, we performed an empirical evaluation to

compare the running time of BBC-F and BBC. By default, sample size was set to 500, the number of

configurations to 5 and the number of folds to 3. We performed 3 experiments, one for each of the

above parameters, varying one of them and keeping the rest fixed, to investigate how they scale

with sample size, number of configurations and number of folds.

The results are summarized in Figure 3. The y-axis shows the median running time on log-

arithmic scale based on 100 repetitions of the experiment. We observe that BBC-F consistently

outperforms BBC by 1-2 orders of magnitude. Additionally, both algorithms exhibit similar scaling

behavior w.r.t. the number of configurations, while the running time of BBC-F and BBC is not

affected by sample size and number of folds respectively, as expected (see discussion in Section 2).

It is important to note that, in practical applications, the number of folds is typically no higher than

10. Overall, BBC-F performs almost identically to BBC, while being computationally faster.

6 Impact, Limitations, and Conclusions

After careful reflection, the authors have determined that this work presents no notable negative

impacts on society or the environment. We hope the work to have a positive scientific impact

raising awareness regarding the information to provide users of machine learning and facilitating

decision-making based on ML results. There are numerous limitations in the study. First, the

approximation of BBC and BBC-F to direct bootstrapping is only valid for static HPO strategies.

While they can be applied to dynamic strategies in principle (as they only require the prediction

matrices as input), it is unclear if and how the dynamic hyper-parameter search introduces any bias,

as the input dataset is used to guide its search. Other metrics of classification performance (accuracy,

F1, balanced accuracy) need to be considered. BBC-F runs only when a sufficient number of folds

have been cross-validated. Other supervised tasks, such as multi-class classification, regression and

censored time-to-event analyses need to be considered.

The paper presents the first extensive evaluation of CI estimation methods on binary classifica-

tion tasks in the context of AutoML. It introduces a new variant, BBC-F that achieves a speedup of

𝑁 /𝐹 vs. BBC, where 𝑁 is the number of samples, and 𝐹 is the number of folds, with a minimal drop

in estimation quality. BBC and BBC-F dominate all other methods w.r.t. probability coverage and
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interval tightness. The problem of computing CIs when providing performance estimates in ML

has not been sufficiently studied, in our opinion. The results and limitations point to new research

directions and future work in the field.
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A Appendix

A.1 ROC-AUC performance

In Table 4 are reported the ROC-AUC performance on the simulation setting. In Table 5 are reported

the AUC-ROC lower bound on the real-world benchmarks datasets.

A.2 JADBio search space

• Preprocessing: Mean Imputation, Mode Imputation, Constant Removal, Standardization.

• Feature Selection: SES(maxK = {2, 3}, alpha = {0.01, 0.05}), Univariate feature selection with

Benjamini–Hochberg correction(alpha = {0.001, 0.01}, maxVars = {100}), LASSO(penalty = {0.5, 1,

1.5}).

• ML algorithms: Decision Tree(MinLeafSize = {2, 3, 4}, pruning alpha = {0.01, 0.05}), Random

Forest(n_trees = {100, 500}, MinLeafSize = {2, 3, 4}, vars_to_split = {0.816, 1, 1.154, 1.291} *

sqrt(n_variables), n_splits = {1}, alpha = {1}), Logistic Regression(lambda = {0.1, 1, 10}), SVM with

polynomial kernel(cost = {0.01, 0.1, 1, 10}, gamma = {0.01, 0.1, 1, 10}, degree = {2, 3}), SVM with

Gaussian kernel(cost = {0.01, 0.1, 1, 10}, gamma = {0.01, 0.1, 1, 10}), SVM with linear kernel(cost =

{0.01, 0.1, 1, 10}).
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Config. parameters True

AUC

Models lower

𝐵(𝛼, 𝛽) N M b C BBC BBC-F DL HM BT DL10p HM10p BT10p MABT

(24,6)

500

100

0.1
2 0.929 0.859 0.856 0.865 0.885 0.845 0.915 0.937 0.891 0.882

5 0.806 0.728 0.728 - - - - - - -

0.5
2 0.936 0.900 0.898 0.898 0.903 0.889 0.909 0.928 0.890 0.887

5 0.806 0.754 0.753 - - - - - - -

500

0.1
2 0.945 0.881 0.878 0.892 0.906 0.877 0.946 0.962 0.920 0.903

5 0.808 0.754 0.753 - - - - - - -

0.5
2 0.954 0.924 0.922 0.925 0.927 0.916 0.934 0.952 0.908 0.903

5 0.809 0.779 0.779 - - - - - - -

50

100

0.1
2 0.873 0.562 0.555 - - - - - - -

5 0.804 0.501 0.478 - - - - - - -

0.5
2 0.902 0.737 0.700 0.729 0.772 - 0.975 0.983 - -

5 0.805 0.576 0.564 - - - - - - -

500

0.1
2 0.877 0.560 0.529 - - - - - - -

5 0.804 0.507 0.495 - - - - - - -

0.5
2 0.913 0.747 0.707 0.706 0.752 - 1 1 - -

5 0.806 0.588 0.574 - - - - - - -

(9,6)

500

100

0.1
2 0.854 0.764 0.762 0.777 0.808 0.760 0.809 0.863 0.778 0.773

5 0.617 0.639 0.639 - - - - - - -

0.5
2 0.860 0.810 0.810 0.808 0.819 0.799 0.806 0.843 0.787 0.786

5 0.616 0.667 0.666 - - - - - - -

500

0.1
2 0.887 0.799 0.798 0.801 0.829 0.784 0.850 0.901 0.813 0.802

5 0.620 0.657 0.657 - - - - - - -

0.5
2 0.900 0.857 0.854 0.855 0.863 0.846 0.852 0.892 0.824 0.823

5 0.618 0.690 0.692 - - - - - - -

50

100

0.1
2 0.789 0.360 0.324 - - - - - - -

5 0.605 0.377 0.370 - - - - - - -

0.5
2 0.820 0.601 0.576 0.547 0.614 - 0.805 0.873 - -

5 0.608 0.458 0.4450 - - - - - - -

500

0.1
2 0.809 0.386 0.367 - - - - - - -

5 0.613 0.394 0.390 - - - - - - -

0.5
2 0.851 0.635 0.600 0.586 0.647 - 0.972 0.982 - -

5 0.613 0.471 0.467 - - - - - - -

Table 4: Simulation results: Average lower ROC-AUC performance bound of selected models.

Dataset Hold Out BBC BBC-F Val. Eval. DL HM BT DL10p HM10p BT10p MABT

credit-g 0.643 0.404 0.420 0.620 0.627 0.391 0.55 0.850 0.607 0.820 0.726 0.744

spambase 0.896 0.703 0.730 0.889 0.874 0.687 0.703 0.744 0.857 0.907 0.680 0.700

musk 1 0.986 1 - - - - - - - - -

phoneme 0.755 0.533 0.552 0.730 0.730 0.464 0.455 0.805 0.642 0.791 0.735 0.750

phishing 0.939 0.807 0.831 0.926 0.934 0.777 0.810 0.726 0.939 0.964 0.653 0.670

electricity 0.859 0.811 0.811 0.857 0.856 0.791 0.793 0.783 0.754 0.807 0.726 0.772

mozilla4 0.950 0.920 0.919 0.950 0.950 0.908 0.920 0.894 0.895 0.933 0.853 0.895

nomao 0.979 0.962 0.962 0.979 0.979 0.959 0.959 0.950 0.957 0.957 0.930 0.942

adult 0.890 0.851 0.851 0.887 0.890 0.840 0.827 0.830 0.822 0.850 0.790 0.829

bank 0.866 0.805 0.804 0.867 0.870 0.801 0.778 0.786 0.789 0.816 0.764 0.761

eeg-eye 0.791 0.739 0.727 0.789 0.787 0.719 0.725 0.711 0.682 0.748 0.659 0.684

har 0.663 0.536 0.544 - - - - - - - - -

optdigits 0.929 0.747 0.753 - - - - - - - - -

pendigits 0.857 0.686 0.700 - - - - - - - - -

CIFAR10_s 0.605 0.617 0.612 - - - - - - - - -

Table 5: Average AUC-ROC lower bound results on real-world benchmarks datasets.
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