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Abstract
Robust Markov Decision Processes (MDPs) of-
fer a promising framework for computing reliable
policies under model uncertainty. While policy
gradient methods have gained increasing popular-
ity in robust discounted MDPs, their application
to the average-reward criterion remains largely
unexplored. This paper proposes a Robust Pro-
jected Policy Gradient (RP2G), the first generic
policy gradient method for robust average-reward
MDPs (RAMDPs) that is applicable beyond the
typical rectangularity assumption on transition
ambiguity. In contrast to existing robust policy
gradient algorithms, RP2G incorporates an adap-
tive decreasing tolerance mechanism for efficient
policy updates at each iteration. We also present a
comprehensive convergence analysis of RP2G for
solving ergodic tabular RAMDPs. Furthermore,
we establish the first study of the inner worst-
case transition evaluation problem in RAMDPs,
proposing two gradient-based algorithms tailored
for rectangular and general ambiguity sets, each
with provable convergence guarantees. Numerical
experiments confirm the global convergence of
our new algorithm and demonstrate its superior
performance.

1. Introduction
Markov Decision Processes (MDPs) (Puterman, 2014) pro-
vide a powerful framework for sequential decision-making,
with applications such as game solving (Mnih, 2013), health-
care (Shechter et al., 2008), and finance (Bäuerle & Rieder,
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2011). However, applying MDPs to real-world problems
often faces the challenge of model uncertainty, particularly
in transition dynamics, which are rarely known precisely.
To mitigate the impact of model errors, robust MDPs (Iyen-
gar, 2005; Nilim & El Ghaoui, 2005) offer a compelling
solution by assuming that uncertain parameters lie within a
predefined ambiguity set. These robust MDPs aim to iden-
tify policies that optimize performance under the worst-case
scenario within the ambiguity set.

The majority of existing research on robust MDPs focuses
on the discounted setting, where future costs are discounted
by a factor γ ∈ (0, 1). Under this setting, robust MDPs be-
come computationally tractable by imposing certain rectan-
gularity assumptions, such as (s, a)-rectangularity (Iyengar,
2005; Nilim & El Ghaoui, 2005), s-rectangularity (Le Tal-
lec, 2007; Wiesemann et al., 2013), k-rectangular (Mannor
et al., 2016), and r-rectangular (Goyal & Grand-Clement,
2023). Significant progress has been made in both value-
based methods that rely on the Bellman equation (Iyengar,
2005; Nilim & El Ghaoui, 2005; Kaufman & Schaefer, 2013;
Ho et al., 2021; Panaganti & Kalathil, 2021) and gradient-
based methods that directly optimize the policy (Wang &
Zou, 2022; Li et al., 2022; Wang et al., 2023a; Kumar
et al., 2024a; Lin et al., 2024; Wang et al., 2024a). De-
spite these advances, research on robust discounted MDPs
beyond structured rectangular ambiguity sets is still scarce,
with only a few notable exceptions (Li et al., 2023), as solv-
ing robust discounted MDPs with general ambiguity sets is
NP-hard (Wiesemann et al., 2013).

While much of the existing work focuses on robust dis-
counted MDPs, many real-world systems that primarily
focus on the steady-state behavior, such as queueing con-
trol and scheduling automatic guided vehicles (Kober et al.,
2013), may still yield policies that perform poorly over the
long term (Wang et al., 2024b). Meanwhile, as discounted
factor γ approaches one, solution methods tend to con-
verge more slowly, increasing computational costs (Grand-
Clement et al., 2023). We refer interested reader to Ap-
pendix E.5 for more detailed numerical illustration. As
such, optimizing the long-term average cost is preferable to
the total discounted cost for these applications.

To overcome the limitations of the discounted setting, recent
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research has focused on robust MDPs with the average-
reward criterion (Tewari & Bartlett, 2007; Lim et al., 2013;
Grand-Clement et al., 2023; Wang et al., 2023d;c; 2024b;
Sun et al., 2024). While policy gradient methods have been
widely employed in standard reinforcement learning due to
their empirical success and flexibility for problems in com-
plex environments, and have been effectively extended to
robust discounted MDPs, the development of robust policy
gradient for average-reward settings with optimality guaran-
tees remains largely unexplored in the literature. To this end,
we aim to develop a computationally tractable algorithm
for solving robust average-reward MDPs (RAMDPs) with
theoretical convergence guarantees. The challenges and our
major contributions are summarized as follows.

Our first contribution is Robust Projected Policy Gradient
(RP2G), a novel generic policy gradient scheme for solv-
ing RAMDPs. While RP2G retains the policy gradient
updates used in nominal average-reward MDPs (AMDPs),
it incorporates an additional inner subroutine for evaluating
worst-case transitions. To reduce the computational cost of
optimally solving the inner subroutine, RP2G incorporates
a decreasing tolerance sequence for the inner subroutine,
ensuring convergence even in the general ambiguity setting.

Our second contribution establishes the global convergence
of RP2G to the optimal policy, assuming an oracle for solv-
ing the inner subroutine. While this result aligns with
findings for nominal AMDPs (Kumar et al., 2024b), the
robust setting introduces unique challenges, including the
non-differentiability and non-convexity of the robust re-
turn (Razaviyayn et al., 2020). We address these challenges
by leveraging the Moreau envelope as a differentiable surro-
gate for our convergence analysis.

Our third contribution is the two proposed specialized
gradient-based algorithms to solve the inner problem: one
for rectangular ambiguity sets based on projected gradient
ascent, and another for general ambiguity sets leveraging a
novel projected Langevin dynamics update. Both algorithms
are supported by convergence and optimality guarantees. To
our knowledge, this is the first study addressing the inner
worst-case evaluation problem for RAMDPs.

Notation. Boldface lowercase letters and uppercase letters
are used to denote vectors and matrices, respectively. The
symbol e denotes a vector of all ones of the size appropriate
to the context and the symbol e denotes the Euler’s number.
The set R represents the set of real numbers, and the set
R+ represents the set of non-negative real numbers. The
probability simplex in RS

+ is denoted as ∆S . For vectors,
we use ∥ · ∥ to denote the l2-norm.

1.1. Related Work

Average-reward MDPs. Early research on average-reward
MDPs focused on fundamental characterizations of the
model and its properties (Bertsekas, 2012; Puterman, 2014).
Many existing methods consider model-free approaches in
tabular settings (Abounadi et al., 2001; Yang et al., 2016;
Wan et al., 2021; Avrachenkov & Borkar, 2022; Wan &
Sutton, 2022; Chae et al., 2024; Yang et al., 2024). Func-
tion approximation techniques have also been studied for
AMDPs(Marbach & Tsitsiklis, 2001; Abbasi-Yadkori et al.,
2019; Wei et al., 2021; Zhang et al., 2021; Chen et al.,
2023; Wu et al., 2022; Zhang & Xie, 2023). Parametrization
methods are another popular approach (Liao et al., 2022;
Wang et al., 2022; 2023b; Bai et al., 2024), along with
gradient-based methods (Murthy & Srikant, 2023; Grosof
et al., 2024; Kumar et al., 2024b). Despite these advance-
ments, addressing the robust setting introduces additional
challenges, which we focus on in this work.

Robust average-reward MDPs. Research on robust
average-cost MDPs is limited (Tewari & Bartlett, 2007;
Lim et al., 2013; Grand-Clement et al., 2023; Wang et al.,
2023d;c; 2024b; Sun et al., 2024), with no prior work
on gradient-based algorithms. While a concurrent work
by (Sun et al., 2024) extends mirror descent for RAMDPs,
their approach is restricted to (s, a)-rectangular ambiguity
sets and requires exact worst-case transition evaluations,
leading to high computational costs. In contrast, RP2G en-
sures global convergence for general compact, convex ambi-
guity sets and reduces computational cost via a decreasing
adaptive tolerance for the worst-case transition evaluation.

2. Preliminaries
2.1. Average-Reward Markov Decision Processes

A nominal infinite-horizon average-reward MDP is defined
by the tupleM = ⟨S,A,p, c,ρ⟩, where S = {1, 2, . . . , S}
andA = {1, 2, . . . , A} represent the finite sets of states and
actions, respectively. The initial state is chosen randomly
according to the distribution ρ ∈ ∆S . The probability
distribution of transiting from a current state s to a next state
s′ after taking an action a is denoted as a vector psa :=
(psas′)s′∈S ∈ ∆S ,which is part of the transition kernel
p := (psa)s∈S,a∈A ∈ (∆S)S×A. The instantaneous cost of
this transition is denoted by csas′ (or equivalently, a reward
rsas′ = −csas′). We assume csas′ ∈ [0, 1] for all s, s′ ∈ S
and a ∈ A, as translating or scaling costs does not affect
the set of optimal policies (Puterman, 2014).

We focus on stationary randomized policies due to their
practical simplicity (Sutton & Barto, 2018; Zhang et al.,
2022). A stationary randomized policy π := (πs)s∈S ,
where πs ∈ ∆A, specifies the probabilities over actions
a ∈ A for each state s ∈ S. Under this policy, the action a
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is selected with probability πsa whenever the AMDP is in
state s ∈ S . The set of all stationary randomized policies is
denoted by Π = (∆A)S .

The long-term average cost Jρ(π,p) for a given policy π
and transition kernel p is defined as

Jρ(π,p) := lim
T→∞

1

T
Eπ,p,s0∼ρ

[
T−1∑
t=0

cstatst+1

]
. (1)

Here, Eπ,p,s0∼ρ denotes the expectation with respect to a
stochastic process where the action at is selected according
to the policy πst , the next state st+1 evolves according to the
transition kernel pstat , and the initial state s0 is drawn from
the initial distribution ρ ∈ ∆S . For time-homogeneous
MDPs with a finite state space and bounded costs, the limit
in (1) is guaranteed to exist (Puterman, 2014).

In this work, we restrict our attention to the ergodic setting,
which is formally stated through the following assumption:

Assumption 2.1. The MDPM is ergodic, i.e., for any pol-
icy π and kernel p, the Markov chain {st}t≥0 is irreducible
and aperiodic.

The assumption of ergodicity is standard in average-reward
MDPs (Gong & Wang, 2020; Wei et al., 2020; Pesquerel &
Maillard, 2022; Bai et al., 2024; Cheng et al., 2024; Ganesh
et al., 2024; Wu et al., 2024). Under ergodicity, the average
cost objective is independent of the initial distribution ρ for
any feasible π and p (see, for example, (Puterman, 2014,
Section 8)). Hence, we can redefine the long-term average
cost by overloading the notation J as:

Jρ(π,p) = J(π,p) := Es∼dπ,p,a∼πs,s′∼psa
[csas′ ] , (2)

where dπ,p ∈ ∆S is the stationary state distribution induced
by π and p, formally defined as:

dπ,p
s := lim

T→∞

1

T
Eπ,p

[
T−1∑
t=0

1 {st = s}

]
. (3)

It is well-established that the stationary distribution is
unique under ergodicity (Norris, 1998; Meyn & Tweedie,
2012; Gagniuc, 2017) and independent of ρ as well (Puter-
man, 2014). The goal of an AMDP is to find a policy π⋆

minimizing the long-run average cost:

π⋆ = argmin
π∈Π

J(π,p).

The above stationary and Markovian policy π⋆ is guarantee
to be optimal, even when considering the broader class of
all possible policies, including history-dependent and non-
stationary ones (Puterman, 2014).

2.2. Differential Value Functions

In the average-reward setting, we introduce the following
differential functions, analogous to the value and action-
value functions in standard MDPs. These functions quantify
the accumulated deviations from steady-state performance
and serve as key elements in our subsequent analysis. Specif-
ically, the differential action-value function is defined as a
solution to the following Bellman equation:

qπ,p
sa =

∑
s′

psas′

(
csas′ − J(π,p) +

∑
a′

πs′a′qπ,p
s′a′

)
,

and the differential state-value function (also referred to as
the bias function in (Puterman, 2014)) is defined as:

vπ,p
s =

∑
a

πsa

∑
s′

psas′ (csas′ − J(π,p) + vπ,p
s′ ) ,

where it is known that vπ,p
s =

∑
a∈A πsaq

π,p
sa (Sutton &

Barto, 2018). Note that vπ,p and qπ,p are unique only up
to an additive constant, i.e., the above equations are satisfied
by qπ,p+ c1e and vπ,p+ c2e for any arbitrary constants c1
and c2. To uniquely determine these functions, we impose
the additional constraint

∑
s d

π,p
s vπ,p

s = 0 throughout the
paper (Puterman, 2014; Wei et al., 2020; Bai et al., 2024;
Cheng et al., 2024). Under this constraint, the differential
state-value function be uniquely written as,

vπ,p
s := Eπ,p,s0=s

[ ∞∑
t=0

(
cstatst+1

− J(π,p)
)]

,

and the differential action-value function is

qπ,p
sa := Eπ,p,s0=s,a0=a

[ ∞∑
t=0

(
cstatst+1

− J(π,p)
)]

.

2.3. Robust Average-Reward Markov Decision
Processes

In most applications, the exact transition kernel is not known
precisely and must be estimated from data. These estima-
tion errors often lead to policies that perform poorly when
deployed. To address this challenge and ensure reliable
policies under model uncertainty, RAMDPs, specified by
⟨S,A,P, c,ρ⟩, aim to optimize the worst-case performance
over a set of plausible errors (Goyal & Grand-Clement,
2023; Wang et al., 2023c; 2024b),

min
π∈Π

max
p∈P

J(π,p), (4)

where P is referred to as the ambiguity set. By appropri-
ately calibrating P , the optimal policy derived from (4)
can guarantee reliable performance in the face of model
errors (Grand-Clement et al., 2023; Wang et al., 2024b).
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The concept of rectangular ambiguity set has been widely
adopted in the context of robust MDPs due to their fa-
vorable computational properties (Iyengar, 2005; Nilim &
El Ghaoui, 2005; Wiesemann et al., 2013; Ho et al., 2021).
Two broad classes of rectangular ambiguity sets are mainly
considered in this paper:
Definition 2.2 ((s, a)- and s-Rectangular Ambiguity Sets).
An ambiguity set P ⊆ (∆S)S×A of transition kernel is
called

1. (s, a)-rectangular (Iyengar, 2005; Nilim & El Ghaoui,
2005) if it is a Cartesian product of sets Ps,a ⊆ ∆S for
each state s ∈ S, i.e., P = Π(s,a)∈S×APs,a;

2. s-rectangular (Wiesemann et al., 2013) if it is a Carte-
sian product of sets Ps ⊆ (∆S)A for each state s ∈ S
and action a ∈ A, i.e., P = Πs∈SPs.

Otherwise, we refer to an ambiguity set P as a general
ambiguity set in this paper if it is neither (s, a)-rectangular
nor s-rectangular, allowing for various dependencies across
states and actions, including k-rectangular and r-rectangular
ambiguity sets. While general ambiguity sets tend to be
less conservative, they introduce significant analytical chal-
lenges, even in the discounted setting (Nilim & El Ghaoui,
2005; Wiesemann et al., 2013). We refer interested readers
to Appendix E.6 for a detailed numerical illustration.

Note that, in contrast to most prior work that assumes rect-
angularity in RAMDPs (Goyal & Grand-Clement, 2023;
Wang et al., 2023c;d; 2024b; Sun et al., 2024), our analy-
sis of the proposed robust policy gradient method does not
rely on this assumption. Instead, we only require that P be
compact and convex. However, rectangularity assumptions
can be helpful when developing algorithms for the inner
maximization problem.

3. Robust Policy Gradient for RAMDPs
In this section, we introduce a policy gradient approach for
solving RAMDPs. The key contribution of this section is to
demonstrate that our algorithm computes a globally optimal
solution of problem (4) with guarantees despite the non-
convexity of the objective J(π,p). This result builds upon
recent advancements in policy gradient methods for both
ordinary MDPs (Agarwal et al., 2021; Bhandari & Russo,
2024) and AMDPs (Kumar et al., 2024b).

The rest of the section is organized as follows. In Sec-
tion 3.1, we describe the motivation and details of our new
policy gradient scheme. Then, in Section 3.2, we provide a
standard convergence analysis, showing that our algorithm
is guaranteed to converge to the global solution. To the
best of our knowledge, this is the first generic robust policy
gradient algorithm for a general ambiguity set that comes
with global convergence guarantees.

Algorithm 1 Robust Projected Policy Gradient (RP2G)

Input: initial policy π0, iteration number T , step sizes
{αt}t≥0, tolerances {δt}t≥0 with δt+1 ≤ τδt for some
τ ∈ (0, 1)
for t = 0, 1, . . . , T − 1 do
// Worst-Case Transition Evaluation
Compute pt such that J(πt,pt) ≥ max

p∈P
J(πt,p)− δt;

// Policy Improvement
Update πt+1 ← ProjΠ(πt − αt∇πJ(πt,pt));

end for
Output: πt⋆ ∈ {π0, . . . ,πT−1} such that
J(πt⋆ ,pt⋆) = min

t′∈{0,...,T−1}
J(πt′ ,pt′)

3.1. Robust Projected Policy Gradient (RP2G)

From an optimization perspective, the optimal policy π⋆ for
the RAMDP is the solution (π⋆,p⋆) of the minimax prob-
lem (4), where π⋆ minimizes the function maxp∈P J(π,p),
and p⋆ represents the worst-case transition kernel that max-
imizes J(π⋆,p) (Jin et al., 2020; Luo et al., 2020; Raza-
viyayn et al., 2020; Zhang et al., 2020). Thus, solving the
RAMDP can be equivalently formulated as

min
π∈Π

{
Ψ(π) := max

p∈P
J(π,p)

}
. (5)

It may seem natural to attempt solving (5) by performing
gradient descent on the function Ψ. However, this approach
is not applicable since Ψ is not differentiable due to the
inherent "max" operation (Razaviyayn et al., 2020). Further-
more, as Ψ is neither convex nor concave, its subgradient
does not exist either (Nouiehed et al., 2019; Lin et al., 2020).
To overcome these challenges, we propose a specialized ro-
bust policy gradient algorithm summarized in Algorithm 1,
termed Robust Projected Policy Gradien (RP2G).

RP2G adopts the well-known gradient-descent-ascent
(GDA) scheme, drawing inspiration from the two-timescale
rule to form a nested-loop structure with a max-oracle. In
this section, we assume the existence of an oracle capable
of solving the inner maximization problem. Further details
regarding the evaluation of the inner worst-case transition
kernel will be provided in Section 4.

Specifically, RP2G iteratively searches for an optimal policy
in (5) by taking steps along the policy gradient. At each
iteration t, Algorithm 1 first performs an inner update to
approximate the worst-case transition kernel pt for some
given precision δt. Once pt is obtained, RP2G performs the
projected gradient descent on π with fixed pt:

πt+1 = ProjΠ (πt − αt∇πJ(πt,pt)) ,

where ProjΠ is the projection operator onto Π and αt > 0
is the step size.
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When chosen appropriately, the sequence {δt}t≥0 effec-
tively reduces the computational burden while maintaining
global convergence. This adaptive tolerance sequence, in-
spired by previous work on robust discounted MDP algo-
rithms (Ho et al., 2021; Wang et al., 2024a), accelerates
policy updates during the initial stages. As a result, it leads
to significantly improved performance, as demonstrated by
our experimental results in Section 5.2.

It is worth emphasizing that RP2G relies only on first-order
information∇πJ(π,p) to solve (5). Since pt is fixed, this
gradient is identical to the one used in ordinary AMDPs (Sut-
ton & Barto, 2018); that is,

∂J(π,p)

∂πsa
= dπ,p

s · qπ,p
sa . (6)

As a result, the non-differentiability of Ψ(π) does not hinder
the implementation of RP2G.

3.2. Global Convergence Analysis

In this subsection, we provide a convergence analysis of
RP2G. In particular, we first leverage the sensitive anal-
ysis technique from (Cheng et al., 2024) to establish the
weak convexity of non-convex, non-differentiable objective
function Ψ. We then derive a tailored gradient dominance
property for Ψ in Theorem 3.4, which quantifies the gap
between the function value and its optimum. Finally, we
present the global convergence result in Theorem 3.5.

The following lemma establishes analytical bounds on the
differential sensitivity of differential value functions, which
are essential for proving continuity and convexity properties.

Lemma 3.1. (Policy Sensitivity Bounds for Average-Reward
MDPs) For any policies π,π′ ∈ Π, transition kernel p ∈
(∆S)S×A, and state s ∈ S, the following bounds hold:

|dπ,p
s − dπ

′,p
s | ≤ Cπ

d ∥π − π′∥1,∞,

|J(π,p)− J(π′,p)| ≤ Cπ
J ∥π − π′∥1,∞,

∥vπ,p − vπ′,p∥∞ ≤ Cπ
v ∥π − π′∥1,∞,

∥qπ,p
s − qπ′,p

s ∥∞ ≤ Cπ
q ∥π − π′∥1,∞.

Due to page limit, the proof of this lemma, along with all
remaining results, is provided in the appendix. Appendix A
also includes a table that define all parameters. Using these
sensitivity bounds, the weak convexity of the objective func-
tion Ψ(π) can be established.

Lemma 3.2. The objective function J(π,p) in (2) is Lπ-
Lipschitz and ℓπ-smooth in π, implying that the robust ob-
jective Ψ(π) is ℓπ-weakly convex and Lπ-Lipschitz.

Remark 3.3. Similar continuity results for AMDPs with re-
spect to π were recently established in (Kumar et al., 2024b).
Our analysis improves upon these results by providing

tighter Lipschitz constants Lπ = O(
√
A) and ℓπ = O(S),

compared to Lπ = O(
√
AS2) and ℓπ = O(AS3) in the

prior work. This significantly reduces the dependence on
the sizes of state and action spaces.

Lemma 3.2 establishes the continuity properties of Ψ(π),
which provides a crucial foundation for proving the global
convergence of RP2G. However, weak convexity alone can
not provide guarantees for convergence to a global optimum.
Following classic results from stochastic approximation and
optimization (Beck, 2017; Ostrovskii et al., 2021), Algo-
rithm 1 is expected to converge to stationary points only.

Recent work (Agarwal et al., 2021; Bhandari & Russo, 2024)
shows that policy gradient methods achieve global conver-
gence in discounted MDPs under the gradient dominance
condition, which ensures the gradient does not vanish pre-
maturely. Informally, a function h(x) satisfies this condition
if h(x) − h(x⋆) = O(G(x)) where G(·) is a measure of
the gradient of h and x⋆ is the global optimum of h.

Although Ψ is non-smooth, weakly convex problems nat-
urally admit an inherent smooth approximation through
the Moreau envelope (Davis & Drusvyatskiy, 2019; Mai
& Johansson, 2020). Extending the concept of gradient
dominance, we introduce the gradient of the Moreau enve-
lope and establish a tailored gradient dominance condition
satisfied by Ψ, as presented in the following theorem.

Theorem 3.4. Let π⋆ be the globally optimal policy for
RAMDPs. For any policy π, the following holds:

Ψ(π)−Ψ(π⋆) ≤
(
M
√
SA+

Lπ

2ℓπ

)
·
∥∥∇Ψ1/2ℓπ (π)

∥∥ ,
where Ψλ(π) is the Moreau envelope of Ψ(π).

To derive this result, we introduce the distribution mis-
match coefficient between two stationary distributions
∥dπ,p

/dπ′,p′∥∞, which is often assumed to be bounded
in prior works on average reward problems (Wang et al.,
2023c; Kumar et al., 2024b; Sun et al., 2024), denoting as
M := supπ,π′,p,p′ ∥dπ,p

/dπ′,p′∥∞ <∞.

Theorem 3.4 shows that any first-order stationary point of
the Moreau envelope corresponds to an approximately glob-
ally optimal policy. Building on this foundation, we now
present a theorem that guarantees global convergence.

Theorem 3.5. Let πt⋆ be the policy produced by Algo-
rithm 1. With a constant step size α := 1/

√
T and an initial

tolerance δ0 ≤
√
T , we have

Ψ(πt⋆)−min
π∈Π

Ψ(π) ≤ ϵ,

where T is chosen such that

T ≥

(
M
√
SA+Lπ

2ℓπ

)4(
4ℓπS + 2ℓπL

2
π+

4ℓπ
1−τ

)2
ϵ4

=O(ϵ−4).
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At a high level, our proof of Theorem 3.5 first invokes a
standard analysis of nonconvex stochastic subgradient de-
scent (Davis & Drusvyatskiy, 2019) to analyze the number
of iterations that is needed for computing a solution with suf-
ficiently small Moreau envelope gradient. Building on this,
the gradient dominance property established in Theorem 3.4
allows us to complete the proof. Note that the guarantee we
provide is for the ϵ-global optimum found within O(ϵ−4)
iterations, consistent with other GDA convergence results
that apply the two-timescale rule in non-convex minimax
optimization (Daskalakis et al., 2020; Jin et al., 2020).

The global convergence of RP2G hinges on an inner loop
that identifies one worst-case transition kernel for a given
policy π. However, this computation is not trivial, as
methods for evaluating the worst-case transition remain of
RAMDPs largely unexplored. To address this challenge, we
propose several tailored gradient-based algorithms for the
inner maximization under different ambiguity assumptions.

4. Worst-Case Transition Evaluation
As yet, we have outlined RP2G and established its global
convergence, assuming the worst-case transition kernel is
computable. In this section, we focus on solving the inner
maximization problem,

Ψ(π) = max
p∈P

J(π,p), (7)

referred to as the worst-case transition evaluation problem,
by developing two gradient-based solution methods. No-
tably, the convergence results in Section 3 are independent
of the inner evaluation method. We begin by deriving key
properties of the inner evaluation problem in Section 4.1.
Subsequently, Section 4.2 and Section 4.3 introduce and
analyze tailored gradient-based algorithms designed for rect-
angular and general ambiguity sets, respectively.

4.1. General Properties

In general, the worst-case transition evaluation can be inter-
preted as an adversarial nature maximizing decision maker’s
average cost by selecting a proper transition kernel from the
ambiguity set P (Lim et al., 2013; Goyal & Grand-Clement,
2023). To apply the gradient-based update on the transi-
tion kernel, we introduce the following lemma to derive the
gradient of the evaluation problem.
Lemma 4.1. (Adversary’s Policy Gradient) For any policy
π ∈ Π and transition kernel p ∈ (∆S)S×A, the gradient of
J(π,p) over p has the analytical form as follows:

∂J(π,p)

∂psas′
= dπ,p

s · πsa · (csas′ − J(π,p) + vπ,p
s′ ) ,

where gπ,p
sas′ := csas′ − J(π,p) + vπ,p

s′ is referred to as the
differential action-next-state value function (Li et al., 2023;
Wang et al., 2024b).

Algorithm 2 Projected gradient ascent for solving the worst-
case transition kernel

Input: current policy π, initial kernel p0, iteration num-
ber K, step size sequences {βk}k≥0

for k = 0, 1, . . . ,K − 1 do
Update pk+1 ← ProjP(pk + βk∇pJ(π,pk));

end for
Output: pk⋆ ∈ {p0, . . . ,pK−1} such that J(π,pk⋆) =

max
k′∈{0,...,K−1}

J(π,pk′)

Note that with the policy π is being fixed, the transition
kernel evaluation could be regarded as a constrained non-
concave maximization problem. From standard optimiza-
tion analysis, a smooth function ensures that small gradi-
ent ascent updates improve the objective value (see Ap-
pendix B.2). To establish the required smoothness con-
ditions, we first derive relevant sensitivity bounds for the
transition kernel, as stated in the following lemma.

Lemma 4.2. (Adversary Sensitivity Bounds for Average-
Reward MDPs) For any transition kernels p1,p2 ∈
(∆S)S×A, policy π ∈ Π, and state-action pair (s, a) ∈
S ×A, the following sensitivity bounds are established:

|dπ,p1
s − dπ,p2

s | ≤ Cp
d ∥p1 − p2∥1,∞,

|J(π,p1)− J(π,p2)| ≤ Cp
J ∥p1 − p2∥1,∞,

∥vπ,p1 − vπ,p2∥∞ ≤ Cp
v ∥p1 − p2∥1,∞,

∥gπ,p1
sa − gπ,p2

sa ∥∞ ≤ Cp
g ∥p1 − p2∥1,∞.

Using the result of sensitivity bounds, we can obtain the
continuity of the transition evaluation problem, showing the
Lipschitz continuity and smoothness.

Lemma 4.3. The objective function J(π,p) in (2) is Lp-
Lipschitz continuous and ℓp-smooth with respect to p.

4.2. Rectangular Ambiguity Sets

Under the common rectangularity assumption on the ambi-
guity set (Iyengar, 2005; Nilim & El Ghaoui, 2005; Wiese-
mann et al., 2013), Algorithm 2 is proposed as a first
gradient-based method to solve the worst-case transition
evaluation problem with a guarantee of global convergence.
To maximize J(π,p) over p, Algorithm 2 iteratively per-
forms the projected gradient update on p:

pk+1 = ProjP(pk + βk∇pJ(π,pk)),

which depends on the explicit form of P . Given the specific
structure of rectangularity, this projected gradient update
can be further decoupled to multiple projection updates
across (s, a)- or s-tuple: for (s, a)-rectangular RAMDPs,
we have for any s ∈ S,

pk+1,sa = ProjPs,a
(pk,sa + βk∇psaJ(π,pk)),

6
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whereas for s-rectangular RAMDPs,

pk+1,s = ProjPs
(pk,s + βk∇psJ(π,pk)).

Since s-rectangularity is more general compared to (s, a)-
rectangularity, our analysis is primarily based on the s-
rectangular ambiguity set. However, our results readily
extend to the (s, a)-rectangular case.

Due to the non-convex nature of J , the smoothness prop-
erty established in Lemma 4.3 alone is insufficient to ensure
global convergence. To address this, we derive the following
specialized gradient dominance condition for the evaluation
problem, which provides the foundation of our global con-
vergence guarantee.

Theorem 4.4. (Adversary’s Gradient Dominance) When
the ambiguity set P is s-rectangular, for any π ∈ Π, we
have,

J(π,p⋆)− J(π,p) ≤ M ·max
p̄∈P
⟨p̄− p,∇pJ(π,p)⟩ ,

where p⋆ be one of worst-case transition kernel over π, i.e.,
p⋆ ∈ argmaxp∈P J(π,p).

The above lemma ensures that any stationary point of
J(π,p) is globally optimal. By leveraging the above re-
sult, we estabilish the convergence rate of Algorithm 2.

Theorem 4.5. Let pk⋆ be the output of Algorithm 2 and
δπ > 0 be the precision. Then, for s-rectangular RAMDPs,
Algorithm 2 with constant step size β = 1/ℓp satisfies

max
p∈P

Jρ(π,p)− Jρ(π,pk⋆) ≤ δπ,

whenever

K ≥ 32ℓpM
2SA

δ2π
= O(δ−2

π ).

4.3. General Ambiguity Sets

While (s, a)- and s- rectangularity assumptions simplify
the inner maximization problem due to the independence
among state-action pairs (and states), many practical sce-
narios involve general ambiguity where such independence
no longer holds (Wiesemann et al., 2013; Li et al., 2023),
resulting in a more challenging optimization landscape.

To tackle this challenge, we draw insprition from (Lamper-
ski, 2021; Li et al., 2023) and extend our discussion to pro-
pose a new tailored Markov Chain Monte Carlo algorithm
designed for the general evaluation problem with probabilis-
tic global optimality guarantees. Specifically, for the worst-
case evaluation problem, we consider J(π,p) : P → R and
the following relevant Gibbs distribution:

νλ(B) =
∫
B exp(λJ(π,p))dp∫
P exp(λJ(π, p̄))dp̄

,

Algorithm 3 Projected Langevin dynamics for solving the
worst-case transition kernel

Input: current policy π, initial kernel p0, Gibbs parame-
ter λ > 1, step size η > 0, iteration number K
for k = 0, 1, . . . ,K − 1 do

Sample wk+1 ∼ N (0, I(AS2)×(AS2));

Set p̂k = pk + η∇pJ(π,p)|p=pk
+

√
2η

λ
wk+1;

Update pk+1 = argmin
p∈P

∥p− p̂k∥;

end for

where λ > 1 is the temperature parameter. Sampling from
νλ is of interest because it converges weakly to the uniform
distribution over the global maxima of J(π,p) as λ →
∞ (Hwang, 1980). Notably, the compactness of P and the
continuity of J(π,p) ensure the denominator remains finite.

Building on the insights for the above Gibbs distribution νλ,
we employ the discrete-time Langevin diffusion to generate
samples from the Gibbs distribution, as outlined in Algo-
rithm 3. At each iteration k, Algorithm 3 iteratively applies
the projected gradient ascent step perturbed by Gaussian
noise to update the transition kernel:

pk+1 = ProjP

(
pk + η∇pJ(π,p)|p=pk

+

√
2η

λ
wk+1

)
.

After K iterations, the output pK follows a distribution νK
that approaches νλ within the 1-Wasserstein distance (Lam-
perski, 2021).

Theorem 4.6. Assume η < 1/2, δπ > 0 and κ ∈ (0, 1).
Then, there exist positive constants a > 4, b > 1,
and c1, c2, c3 > 0 such that λ ≥ c−1

1 (2AS2/(c1(1 −
κ)δπe))

1/κ and K ≥ max{4, c2 exp
{
c3A

bS2b
}
/δaπ}, the

distribution νK of the output pK of Algorithm 3 satisfies
Ep∼νK

[J(π,p)] ≥ maxp∈P J(π,p)− δπ .

Theorem 4.6 establishes that the number of iterations re-
quired to achieve a δπ-optimal inner solution grows expo-
nentially with the dimension AS2 of the transition kernel
and with the number of desired accuracy digits, log(1/δπ).
While the complexity may appear high, this algorithm is the
first general approach capable of addressing the worst-case
transition evaluation problem for general RAMDPs.

5. Numerical Experiments
We now demonstrate the convergence and robustness of
RP2G, along with the two proposed inner solution methods,
on the standard benchmark, GARNET MDPs (Archibald
et al., 1995). All results were generated on an Apple M2
Max with 32 GB LPDDR5 memory. The algorithms are
implemented in Python 3.11.5, and we use Gurobi 11.0.3
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Figure 1. The relative difference of objective values computed by
RP2G and RVI for Garnet problems with different sizes.

to solve any linear optimization problems involved. To
support reproducibility, the full source code used to gener-
ate the results is available at https://github.com/
Charliez7/robust-AMDP. Additional information
on the benchmark and experimental setup is given in Ap-
pendix E.

5.1. Rectangular RAMDPs

We validate the convergence of RP2G on random GARNET
MDPs across varying problem sizes with (s, a)-rectangular
ambiguity. For each size, we generate 50 instances and com-
pare the objective values of RP2G at different iterations with
the optimal values J⋆ computed using the robust value iter-
ation method from (Wang et al., 2023c). Figure 1 illustrates
how the relative error (i.e., |J(πt,pt)− J⋆|/J⋆) decreases
consistently as the number of iterations increases, demon-
strating the convergence and optimality of our algorithm.
The upper and lower envelopes of the curves correspond to
the 95 and 5 percentiles of the 50 samples, respectively.

5.2. Runtime Comparison

We now conduct experiment on GARNET MDPs with
(s, a)-rectangular ambiguity to assess the impact of the de-
creasing tolerance sequence {δt}t≥0 on the computational
efficiency. Specifically, we compare RP2G with the only
existing gradient-based method, robust policy mirror de-
scent (RPMD) (Sun et al., 2024), which assumes exact inner

Table 1. Average runtimes and standard deviations (in seconds)
comparison of algorithms.

Problem Size RPMD RP2G
G(5, 3, 3) 13.99(13.05) 0.63(0.35)
G(10, 5, 5) 532.64(356.84) 2.48(0.90)
G(15, 10, 6) 2711.79(849.00) 12.54(3.85)

0 50 100 150 200 250 300
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Figure 2. Performance comparison of RP2G and non-robust PG on
Garnet problems with ellipsoid general ambiguity sets.

solutions. For this comparison, we set the tolerance of
the worst-case transition evaluation problem in RPMD to
a fixed value δ = 10−5, whereas RP2G uses a decreasing
sequence initialized at δ0 = 1 with a decay rate of τ = 0.95.
For each problem size, we run 30 instances and report the
average runtimes and standard deviations in Table 1, with
termination based on minimal changes in the objective (i.e.,
∥J(πt+1,pt+1)−J(πt,pt)∥ ≤ 10−4). The results indicate
that RP2G, leveraging the decreasing tolerance sequence,
significantly outperforms RPMD in runtime efficiency.

5.3. General RAMDPs

In this experiment, we implement RP2G using the general
inner solution method (Algorithm 3). We consider an ellip-
soidal ambiguity set P (Li et al., 2023), which is not neither
(s, a)-rectangular nor s-rectangular:

P =
{
p : (p− p̄)

⊤
Σ (p− p̄) ≤ r

}
,

with size parameter r > 0, Hessian matrix Σ, and nom-
inal transition kernel p̄. To evaluate RP2G’s robustness,
we compare it against the non-robust policy gradient (PG)
method, which optimizes under the nominal model. We
apply both methods to 20 sample problems, recording
Ψ(πt) = maxp∈P J(πt,p) for policies generated by RP2G
and PG, respectively, at each iteration t. As shown in Fig-
ure 2, RP2G achieves robust performance and converges
under general ambiguity. The shaded regions indicate the
range between the 5 and 95 percentiles over the 20 samples.

6. Conclusion
In this paper, we proposed RP2G, a novel policy optimiza-
tion algorithm for solving RAMDPs with general ambiguity
sets. RP2G ensures global convergence under mild condi-
tions by incorporating a suitable step size and an adaptive
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tolerance sequence. Additionally, we conducted the first
study on the inner worst-case transition evaluation problem,
developing gradient-based solution methods in both rectan-
gular and more general settings. Experiments validate the
global convergence of RP2G, its efficiency, and robustness
compared to non-robust approaches. Future work could
explore extensions to scalable, model-free algorithms.
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A. Table of constants needed in analysis
We restate the table of constants and their description in this appendix for the sake of convenience.

Definition Remark

tmix maxπ∈Π,p∈P tπ,p
mix Uniform bound on the mix time (See Definition B.2)

C maxπ∈Π,p∈P ∥(I − Pπ + Pπ,∞)−1∥∞ See Definition A.1

Cπ
d 7tmix Sensitive bound on dπ,p w.r.t. π

Cπ
J 7tmix Sensitive bound on J(π,p) w.r.t. π

Cπ
v 2C + Cπ

d SC + C2S + Cπ
d C

2S Sensitive bound on vπ,p w.r.t. π

Cπ
q Cπ

J + Cπ
v Sensitive bound on qπ,p w.r.t. π

Lπ 7tmix
√
A Restricted Lipschitz constant w.r.t. π

ℓπ 4Cπ
q + 28tmixC

π
d S Restricted gradient Lipschitz constant w.r.t. π (Smoothness)

Cp
d 2 + 5tmix Sensitive bound on dπ,p w.r.t. p

Cp
J 2 + 5tmix Sensitive bound on J(π,p) w.r.t. p

Cp
v 2C + CSCp

d + C2 + C2SCp
d Sensitive bound on vπ,p w.r.t. p

Cp
q Cp

J + Cp
v Sensitive bound on qπ,p w.r.t. p

Lπ (2 + 5tmix)
√
S Restricted Lipschitz constant w.r.t. p

ℓπ 4Cp
g + 4(2 + 5tmix)C

p
d S Restricted gradient Lipschitz constant w.r.t. p (Smoothness)

Table 2. List of Constants

Definition A.1. [(Wang et al., 2023c; Cheng et al., 2024)] For any policy π ∈ Π and transition kernel p ∈ P , the matrix
(I − Pπ + Pπ,∞) is invertible (Puterman, 2014). We define

C := max
π∈Π,p∈P

∥(I − Pπ + Pπ,∞)−1∥∞.

B. Auxiliary Lemmas
B.1. Definitions and Properties of Ergodic Average-Reward Markov Decision Process

At the beginning, we consider the differential state-value function and provide some useful results. As we add the constraint∑
s d

π,p
s vπ,p

s = 0, the differential value function takes the following form:

vπ,p
s : = Eπ,p,s0=s

[ ∞∑
t=0

(
cstatst+1 − J(π,p)

)]

=

∞∑
t=0

∑
s′

(
P

π,(t)
ss′ − dπ,p

s′

)
cπ,p
s′ ,

where cπ,p
s = Ea∼πs,s′∼psa

[csas′ ] is defined as the state cost, and Pπ,(t) ⊆ (∆S)S is denoted as the t-step transition
matrix induced by π and p. where for t ≥ 1,

P
π,(t)
ss′′ =

∑
s′

P
π,(t−1)
ss′ Pπ

s′s′′ , P
π
ss′ =

∑
a

πsapsas′ .

Then, we can obtain the analytical form of the differential state-value function.

13
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Lemma B.1 (Analytical Form of Value Function (Puterman, 2014)). Let Pπ,∞ = limT→∞
1
T

∑T−1
t=0 Pπ,(t) be the limit

matrix, where each row corresponds to the stationary distribution dπ,p. Then, we obtain a closed-form expression for the
differential value function:

vπ,p = (I − Pπ + Pπ,∞)−1(I − Pπ,∞)cπ,p.

Then, we introduce a crucial definition that benefits our further analysis. Under the assumption of ergodicity, a finite mixing
time is guaranteed and is defined as follows (Levin & Peres, 2017; Wei et al., 2020):

Definition B.2 (Mixing time). The mixing time of an ergodic MDP with respect to a policy π and transition kernel p is
defined as

tπ,p
mix := min

{
t ≥ 1

∣∣∣∣ ∥∥∥Pπ,(t)
s − dπ,p

∥∥∥
1
≤ 1

4
, ∀s ∈ S

}
, (8)

where P
π,(t)
s is the s-th row of the t-step transition matrix.

For analytical convenience, we define the upper bound on the overall mixing time as tmix := maxπ∈Π,p∈P tπ,p
mix . This

represents the maximum time, across all policies and transition kernels, required for the state distribution to be within 1/4 of
the stationary distribution.

Lemma B.3. (Policy performance difference lemma) For any π,π′ ∈ Π and p ∈ (∆S)S×A, we have

J(π,p)− J(π′,p) =
∑
s∈S

dπ,p
s

∑
a∈A

(πsa − π′
sa) · qπ

′,p
sa . (9)

Proof of Lemma B.3. Using Bellman equation on the differential action value function, we have

∑
s

dπ,p
s

∑
a

πsaq
π′,p
sa =

∑
s

dπ,p
s

∑
a

πsa

∑
s′

psas′
(
csas′ − J(π′,p) + vπ

′,p
s′

)
= J(π,p)− J(π′,p) +

∑
s′

(∑
s

dπ,p
s

∑
a

πsapsas′

)
︸ ︷︷ ︸

dπ,p

s′

vπ
′,p

s′

= J(π,p)− J(π′,p) +
∑
s′

dπ,p
s′ vπ

′,p
s′

= J(π,p)− J(π′,p) +
∑
s

dπ,p
s

∑
a

π′
saq

π′,p
sa ,

where the second equality is obtained by using the fact that J(π,p) =
∑

s d
π,p
s

∑
a πsa

∑
s′ psas′csas′ and dπ,p

s′ =∑
s d

π,p
s

∑
a πsapsas′ .

Lemma B.4. (Bounds for differential value functions) For an ergodic MDP satisfying Assumption 2.1 with any π ∈ Π and
p ∈ (∆S)S×A, we have for any s ∈ S, a ∈ A,

|vπ,p
s | ≤ 5tmix, and |qπ,p

sa | ≤ 7tmix.
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Proof of Lemma B.4. By the identity vπ,p
s satisfies, we have

|vπ,p
s | =

∣∣∣∣∣
∞∑
t=0

∑
s′

(
Pπ,t
ss′ − dπ,p

s′

)
cπ,p
s′

∣∣∣∣∣
≤

∞∑
t=0

∥Pπ,t
s − dπ,p∥1∥cπ,p∥∞

≤
2tmix−1∑
t=0

∥Pπ,t
s − dπ,p∥1 +

∞∑
i=2

(i+1)tmix−1∑
t=itmix

∥Pπ,t
s − dπ,p∥1

≤ 4tmix +

∞∑
i=2

2 · 2−i · tmix

≤ 5tmix,

where the penultimate equality is obtained by applying Corollary 13.1 of (Wei et al., 2020). Therefore, we also obtain

|qπ,p
sa | =

∣∣∣∣∣∑
s′

psas′ (csas′ − J(π,p) + vπ,p
s′ )

∣∣∣∣∣
≤

∣∣∣∣∣∑
s′

psas′csas′

∣∣∣∣∣+
∣∣∣∣∣∑

s′

psas′J(π,p)

∣∣∣∣∣+
∣∣∣∣∣∑

s′

psas′v
π,p
s′

∣∣∣∣∣
≤ 1 + 1 + 5tmix

≤ 7tmix,

where we bound the average reward objective as

|J(π,p)| = |Es∼dπ,p,a∼πs,s′∼psa
[csas′ ]| ≤ 1.

It is worth noting that, the original upper bound result of the differential action value function in (Wei et al., 2020) missed
the bound of the objective. It is worth noting that, the original upper bound result of the differential action value function
in (Wei et al., 2020) missed the bound of the objective. Here, we revise the original result to the current new one.

Here we include the result showing the form of gradient over π for the sake of completeness.

Lemma B.5. For any policy π ∈ Π and transition kernel p ∈ (∆S)S×A, the gradient of J(π,p) over π has the analytical
form as follows:

∂J(π,p)

∂πsa
= dπ,p

s · qπ,p
sa .

Proof of Lemma B.5. We now derive the form of partial derivative for πsa to obtain (6). Note that for any s ∈ S , the gradient
of the differential value function can be written as

∂vπ,p
s

∂πŝâ
=

∂

∂πŝâ

[∑
a

πsaq
π,p
sa

]

=
∑
a

[
∂πsa

∂πŝâ
qπ,p
sa + πsa

∂qπ,p
sa

∂πŝâ

]

=
∑
a

[
∂πsa

∂πŝâ
qπ,p
sa + πsa

∂

∂πŝâ

(∑
s′

psas′ (csas′ − J(π,p) + vπ,p
s′ )

)]

=
∑
a

[
∂πsa

∂πŝâ
qπ,p
sa + πsa

(
−∂J(π,p)

∂πŝâ
+
∑
s′

psas′
∂vπ,p

s′

∂πŝâ

)]
.
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Multiplying each side with dπ,p
s , taking the summation over s ∈ S, and rearranging terms, we can obtain

∂J(π,p)

∂πŝâ
=
∑
s

dπ,p
s

(∑
a

[
∂πsa

∂πŝâ
qπ,p
sa + πsa

∑
s′

psas′
∂vπ,p

s′

∂πŝâ

]
− ∂vπ,p

s

∂πŝâ

)

=
∑
s

dπ,p
s

∑
a

∂πsa

∂πŝâ
qπ,p
sa +

∑
s

dπ,p
s

∑
a

πsa

∑
s′

psas′
∂vπ,p

s′

∂πŝâ
−
∑
s

dπ,p
s

∂vπ,p
s

∂πŝâ

=
∑
s

dπ,p
s

∑
a

∂πsa

∂πŝâ
qπ,p
sa = dπ,p

ŝ qπ,p
ŝâ .

By introducing the distribution mismatch coefficient between two stationary distributions
∥∥∥ dπ,p

dπ′,p′

∥∥∥
∞

and M :=

supπ1,π2∈Π,p1,p2∈P

∥∥∥dπ1,p1

dπ2,p2

∥∥∥
∞

<∞, we can reach the gradient dominance condition that AMDPs satisfy.

Lemma B.6. (Policy Gradient Dominance (Kumar et al., 2024b)) For any p ∈ (∆S)S×A, we let π⋆ be one of optimal
policies over p, i.e., π⋆ ∈ argminπ∈Π J(π,p), then we have,

J(π,p)− J(π⋆,p) ≤ M ·max
π̄∈Π
⟨(π − π̄,∇πJ(π,p)⟩. (10)

Proof of Lemma B.6. By the policy difference performance lemma (Lemma B.3), we have for any π ∈ Π and p ∈ P , we
have

J(π⋆,p)− J(π,p) =
∑
s∈S

dπ
⋆,p

s

∑
a∈A

(π⋆
sa − πsa) · qπ,p

sa .

Then, we obtain that

0 ≤ J(π,p)− J(π⋆,p) =
∑
s∈S

dπ
⋆,p

s

∑
a∈A

(πsa − π⋆
sa) · qπ,p

sa

=
∑
s∈S

dπ
⋆,p

s

dπ,p
s

dπ,p
s

∑
a∈A

(πsa − π⋆
sa) · qπ,p

sa

≤
∑
s∈S

dπ
⋆,p

s

dπ,p
s

dπ,p
s max

π̄s∈Πs

{∑
a∈A

(π̄sa − π⋆
sa) · qπ,p

sa

}
(a)

≤
∥∥∥∥dπ⋆,p

dπ,p

∥∥∥∥
∞

∑
s∈S

dπ,p
s max

π̄s∈Πs

{∑
a∈A

(π̄sa − π⋆
sa) · qπ,p

sa

}
= M ·max

π̄∈Π
⟨π − π̄,∇πJ(π,p)⟩ ,

where the inequality (a) is obtained due to

J(π,p)− J(π⋆,p) ≥ 0, and
∑
a∈A

(π̄sa − π⋆
sa) · qπ,p

sa ≥ 0, ∀s ∈ S.

B.2. Standard definitions and results in optimization

In this subsection, we present some standard optimization definitions (Ghadimi & Lan, 2016; Beck, 2017), which are used
in our work. Consider the following optimization problem

min
x∈X

h(x) (11)

with X being a nonempty closed and convex set and h : Rd → R being proper, closed and ℓ-smooth. We first introduce the
crucial definitions of smoothness and Lipschitz continuity.
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Definition B.7. A function h : X → R is L-Lipschitz if for any x1,x2 ∈ X , we have that ∥h(x1)−h(x2)∥ ≤ L∥x1−x2∥,
and ℓ-smooth if for any x1,x2 ∈ X , we have ∥∇h(x1)−∇h(x2)∥ ≤ ℓ∥x1 − x2∥.

Another common definition we need to clarify is the indicator function.

Definition B.8 (Indicator functions). For any subset X ⊆ Rd, the indicator function of X is defined to be the extended
real-valued function given by

IX (x) =

{
0, x ∈ X ,
∞, x /∈ X .

Definition B.9. The Fréchet sub-differential of a function h : X → R at point x ∈ X is defined as the set ∂h(x) =
{u| lim infx′→x h(x′)− h(x)− ⟨u,x′ − x⟩/∥x′ − x∥ ≥ 0}.

Then, a common lemma is provided to illustrate a basic property that a smooth function satisfies.

Lemma B.10. Let h : X → R be ℓ-smooth, then it is a ℓ-weakly convex function.

Proof of Lemma B.10. Let r(t) := h(x+ t(x′ − x)), for any x, x′ ∈ X . The following holds true

h(x) = r(0), and h(x′) = r(1).

Then, we observe that

h(x′)− h(x) = r(1)− r(0) =

∫ 1

0

∇r(t)dt,

where
∇r(t) = ∇h(x+ t(x′ − x))⊤(x′ − x).

We complete the proof as

∥h(x′)− h(x)−∇h(x)⊤(x′ − x)∥ ≤
∥∥∥∥∫ 1

0

∇r(t)dt−∇h(x)⊤(x′ − x)

∥∥∥∥
≤
∫ 1

0

∥∥∇r(t)−∇h(x)⊤(x′ − x)
∥∥ dt

=

∫ 1

0

∥∥∇h(x+ t(x′ − x))⊤(x′ − x)−∇h(x)⊤(x′ − x)
∥∥ dt

≤
∫ 1

0

∥∇h(x+ t(x′ − x))−∇h(x)∥ · ∥(x′ − x)∥dt

≤
∫ 1

0

tℓ∥x′ − x∥2dt = ℓ

2
∥x′ − x∥2.

We present the standard optimization results from (Ghadimi & Lan, 2016; Beck, 2017) used in our proofs. We then denote
the optimal h value by h(x⋆).

Definition B.11 (Gradient Mapping). The gradient mapping Gβ(x) is defined as

Gβ(x) :=
1

β
(x− ProjX (x− β∇h(x))) , (12)

where the operator ProjX is the projection onto X .

Theorem B.12. (Beck, 2017, Theorem 10.15) Let {xk}k≥0 be the sequence generated by the projected gradient descent
algorithm for solving the problem (11) either with a constant step size defined by β = 1/ℓ. Then

1. The sequence {h(xk)}k≥0 is non-increasing.

2. Gβ(xk)→ 0 as t→ 0.
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3. mint∈{0,··· ,T−1} ∥Gβ(xt)∥ ≤
√

2ℓ(h(x0)−h(x⋆))
T .

Lemma B.13. (Ghadimi & Lan, 2016, Lemma 3) Let x+ = x− βGβ(x). If ∥Gβ(x)∥ ≤ ϵ, then

−∇h(x+) ∈ NX (x+) + 2ϵB(1), (13)

where NX is the norm cone of the set X and B(r) := {x ∈ Rd : ∥x∥ ≤ r}.

B.3. Moreau Envelope and its property

For smooth function h(x), a point x ∈ X is defined as the first-order stationary point (FOSP) when 0 ∈ ∂h(x). However,
this notion of stationarity can be very restrictive when optimizing nonsmooth functions (Lin et al., 2020). In respond
to this issue, an alternative measure of the first-order stationarity is proposed based on the construction of the Moreau
envelope (Thekumparampil et al., 2019).

Definition B.14. For function h : X → R and λ > 0, the Moreau envelope function of h is given by

hλ(x) := min
x′∈X

{
h(x′) +

1

2λ
∥x− x′∥2

}
. (14)

Definition B.15. Given an ℓ-weakly convex function h, we say that x⋆ is an ϵ-first order stationary point (ϵ-FOSP) if,
∥∇h1/2ℓ(x

⋆)∥ ≤ ϵ, where h 1
2ℓ
(x) is the Moreau envelope function of h with parameter λ = 1/2ℓ.

The following lemma connects ℓ-weakly convex function and its Moreau envelope function and will be useful in our proofs.

Lemma B.16. Suppose the function h : X ⊆ Rn → R is ℓ-weakly convex and may be not differentiable at any point. Then
for each λ < ℓ:

1. The Moreau envelope function hλ is C1-smooth with the gradient given by,

∇hλ(x) = λ−1

(
x− argmin

w∈Π

(
h(w) +

1

2λ
∥x−w∥2

))
Meanwhile, by introducing x̂λ(x) := argminw∈X h(w) + 1/2λ ∥x−w∥2, we have ∥x̂λ(x)− x∥ = λ∥∇hλ(x)∥.

2. The inequality ∥∇hλ(x)∥ ≤ ϵ implies ∥x̂λ(x)− x∥ ≤ λϵ and ∃ξ ∈ ∂h(x̂λ(x)) such that

−ξ ∈ NX (x̂λ(x)) +
1

λ
(x̂λ(x)− x) ⊆ NX (x̂λ(x)) +

1

λ
∥x̂λ(x)− x∥B(1),

where NX (x̂λ(x)) is defined as the normal cone of X at x̂λ(x) and B(r) := {x ∈ Rn : ∥x∥ ≤ r}. In particular,
when X = Rn, we have that

min
ξ∈∂h(x̂λ(x))

∥ξ∥ ≤ 1

λ
∥x̂λ(x)− x∥ = ∥∇hλ(x)∥.

Proof of Lemma B.16. First, the analytical form of the Moreau envelope function’s gradient is well-established by Proposi-
tion 13.37 in (Rockafellar & Wets, 2009). Then, let us consider the optimality appearing in the definition of the Moreau
envelope function. Define ϕx(y) = h(y) + IX (y) + 1

2λ ∥x− y∥2, and then we notice that for any x ∈ Rn, x̂λ(x) is the
optimal solution of ϕx(y), which leads to

ϕx(x̂λ(x)) = min
y∈Rn

ϕx(y) ⇐⇒ 0 ∈ ∂

(
h(y) + IX (y) +

1

2λ
∥x− y∥2

) ∣∣∣
y=x̂λ(x)

,

⇐⇒ 0 ∈ ξ +NX (x̂λ(x)) +
1

λ
(x̂λ(x)− x)

⇐⇒ −ξ ∈ NX (x̂λ(x)) +
1

λ
(x̂λ(x)− x) . (15)
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The last inequality of 15 implies that, for any z ∈ Rn,

⟨ξ +
1

λ
(x̂λ(x)− x) , z − x̂λ(x)⟩ ≥ 0

⇐⇒ ⟨−ξ, z − x̂λ(x)⟩ ≤ ⟨
1

λ
(x̂λ(x)− x) , z − x̂λ(x)⟩, ∀z ∈ Rn

⇐⇒ ⟨−ξ, z − x̂λ(x)⟩ ≤
1

λ
∥x̂λ(x)− x∥ · ∥z − x̂λ(x)∥, ∀z ∈ Rn

⇐⇒ ⟨−ξ, z − x̂λ(x)⟩ ≤
1

λ
∥x̂λ(x)− x∥, ∀z ∈ Rn, ∥z − x̂λ(x)∥ = 1,

which is our desired result. Specifically, while we consider the case X = Rn, we have

(15) ⇐⇒ 1

λ
(x− x̂λ(x)) ∈ ∂h(x̂),

which implies that

min
ξ∈∂h(x̂λ(x))

∥ξ∥ ≤ 1

λ
∥x̂λ(x)− x∥ = ∥∇hλ(x)∥.

Based on the above properties of the Moreau envelope of a weakly convex function, a small gradient ∥∇hλ(x)∥ implies
that x is near some point x̂λ(x) that is nearly stationary for h. In the broader non-smooth setting, the norm of the gradient,
∥∇hλ(x)∥ has an intuitive interpretation in terms of near-stationarity for the target problem Φ(x) (Beck, 2017; Davis &
Drusvyatskiy, 2019; Drusvyatskiy & Paquette, 2019).

B.4. Danskin’s Theorem

We also need to introduce the following Danskin’s Theorem, which helps prove our global convergence theorem.

Proposition B.17. (Bertsekas, 2016, Proposition B.25) Let Z ⊆ Rm be a compact set, and let h : Rn × Z → R be
continuous function and such that h(·, z) : Rn → R is convex for each z ∈ Z . If h(·, z) is differentiable for all z ∈ Z and
∇h(x, ·) is continuous on Z for each x, then for f(x) := maxz∈Z h(x, z) and any x ∈ Rn,

∂f(x) = conv

{
∇xh(x, z)

∣∣∣∣ z ∈ argmax
z∈Z

h(x, z)

}
.

C. Omitted Proofs in Section 3
The first key step in the analysis of RP2G is to determine the continuity property of this non-convex, non-differentiable (i.e.,
non-smooth) objective function Ψ(π). To do so, we derive the following sensitivity bounds for differential value functions,
which play an important role in establishing the continuity conditions.

Proof of Lemma 3.1. First, we provide the sensitivity analysis on the policy-induced cost and the state transition probability
as follows:

|cπ,p
s − cπ

′,p
s | =

∣∣∣∣∣∑
a′

(πsa − π′
sa)
∑
s′

psas′csas′

∣∣∣∣∣ ≤ ∥πs − π′
s∥1, ∀s ∈ S,

|Pπ
ss′ − Pπ′

ss′ | =

∣∣∣∣∣∑
a

(πsa − π′
sa) psas′

∣∣∣∣∣ ≤ ∥πs − π′
s∥1, ∀s, s′ ∈ S.

Next, we turn to derive our desired results. Notice that, the stationary distribution dπ,p
s could be viewed as a particular

average-reward objective with taking 1 {· = s} as the cost function, which is also bounded in [0, 1]. Therefore, by applying
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the policy performance difference lemma (Lemma B.3),

|J(π,p)− J(π′,p)| =

∣∣∣∣∣∑
s

dπ,p
s

∑
a

(πsa − π′
sa) q

π′,p
sa

∣∣∣∣∣
≤
∑
s

|dπ,p
s | ·

∑
a

|(πsa − π′
sa)| · |qπ

′,p
sa |

≤ 7tmix

∑
s

|dπ,p
s | ·

∑
a

|(πsa − π′
sa)| (Due to |qπ′,p

sa | ≤ 7tmix)

≤ 7tmix ·

(
max

s

∑
a

|(πsa − π′
sa)|

)
·
∑
s∈S
|dπ,p

s |

≤ 7tmix · ∥π − π′∥1,∞,

which also leads to
|dπ,p

s − dπ
′,p

s | ≤ 7tmix · ∥π − π′∥1,∞.

Recall the analytical form of the differential value function as vπ,p = (I − Pπ + Pπ,∞)−1(I − Pπ,∞)cπ,p (See
Lemma B.1), and for simplicity of our analysis, we introduce Hπ,p := (I − Pπ + Pπ,∞)−1(I − Pπ,∞). We note that

∥vπ,p − vπ′,p∥∞ = ∥Hπ,pcπ,p −Hπ′,pcπ
′,p∥∞

= ∥Hπ,p
(
cπ,p − cπ

′,p
)
+
(
Hπ,p −Hπ′,p

)
cπ

′,p∥∞,

where

Hπ,p −Hπ′,p = (I − Pπ + Pπ,∞)−1(I − Pπ,∞)− (I − Pπ′
+ Pπ′,∞)−1(I − Pπ′,∞)

=
(
(I − Pπ + Pπ,∞)−1 − (I − Pπ′

+ Pπ′,∞)−1
)
(I − Pπ,∞)

+ (I − Pπ′
+ Pπ′,∞)−1

(
Pπ′,∞ − Pπ,∞

)
=
(
(I − Pπ + Pπ,∞)−1

(
Pπ − Pπ,∞ − Pπ′

+ Pπ′,∞
)
(I − Pπ′

+ Pπ′,∞)−1
)
(I − Pπ,∞)

+ (I − Pπ′
+ Pπ′,∞)−1

(
Pπ′,∞ − Pπ,∞

)
.

Then, we obtain that

∥vπ,p − vπ′,p∥∞≤ ∥Hπ,p
(
cπ,p − cπ

′,p
)
∥∞ + ∥(I − Pπ′

+ Pπ′,∞)−1
(
Pπ′,∞ − Pπ,∞

)
cπ

′,p∥∞

+
∥∥∥((I − Pπ + Pπ,∞)−1

(
Pπ − Pπ,∞ − Pπ′

+ Pπ′,∞
)
(I − Pπ′

+ Pπ′,∞)−1
)
(I − Pπ,∞)cπ

′,p
∥∥∥
∞

(a)

≤ ∥Hπ,p∥∞ · ∥cπ,p − cπ
′,p∥∞ + ∥(I − Pπ′

+ Pπ′,∞)−1∥∞ · ∥Pπ′,∞ − Pπ,∞∥∞
+ ∥(I − Pπ + Pπ,∞)−1∥∞ · ∥Pπ − Pπ,∞ − Pπ′

+ Pπ′,∞∥∞ · ∥(I − Pπ′
+ Pπ′,∞)−1∥∞

(b)

≤ 2C∥cπ,p − cπ
′,p∥∞ + C∥dπ,p − dπ′,p∥1 + C2∥Pπ − Pπ′

∥∞ + C2∥dπ,p − dπ′,p∥1
≤ C(2 + Cπ

d S + CS + Cπ
d CS)∥π − π′∥1,∞,

where the inequality (a) is attained from the fact that ∥(I − Pπ,∞)cπ
′,p∥∞ ≤ 1, and the inequality (b) is obtained due to

∥Pπ,∞ − Pπ′,∞∥∞ =
∑
s

|dπ,p
s − dπ

′,p
s | = ∥dπ,p − dπ′,p∥1,

∥Pπ − Pπ′
∥∞ = max

s

∑
s′

|Pπ
ss′ − Pπ′

ss′ |.

By applying the Bellman equation that qπ,p
sa satisfies, we have for any (s, a) ∈ S ×A

|qπ,p
sa − qπ

′,p
sa | = |J(π,p)− J(π′,p)|+

∣∣∣∣∣∑
s′

psas′(v
π,p
s′ − vπ

′,p
s′ )

∣∣∣∣∣ ,
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which leads to the following result:

∥qπ,p
s − qπ′,p

s ∥∞ ≤ |J(π,p)− J(π′,p)|+ ∥psa∥1 · ∥vπ,p − vπ′,p∥∞ ≤ (Cπ
J + Cπ

v )∥π − π′∥1,∞

Proof of Lemma 3.2. While the form of partial derivative over π has already been derived (Lemma B.5), we demonstrate
that J(π,p) is Lπ-Lipschitz in π by showing the boundedness of∇πJ(π,p), which has been shown as below

∥∇πJ(π,p)∥ =

√√√√∑
s,a

(
∂J(π,p)

∂πsa

)2

=

√∑
a

∑
s

(dπ,p
s qπ,p

sa )
2 ≤ 7tmix

√
A,

where the last inequality is obtained from the facts |qπ,p
sa | ≤ 7tmix and

∑
s(d

π,p(s))2 ≤ 1. We then turn to prove the
smoothness condition of J(π,p) with the help of perturbation theory of stochastic matrices. Let π,π′ ∈ Π be any policies
within the policy class. We introduce π(α) as a convex combination of policies π and π′, that is, π(α) = (1−α)π+απ′ :=
π + αu where u = π′ − π. Notice that the partial derivative of J(π(α),p) over α is

∂J(π(α),p)

∂α
=
∑
s,a

dπ(α),p
s usaq

π(α),p
sa ,

then, we are going to show that |∂J(π(α),p)
∂α − ∂J(π,p)

∂α | ≤ αℓπ , which is obtained as follows:∣∣∣∣∂J(π(α),p)∂α
− ∂J(π,p)

∂α

∣∣∣∣ =

∣∣∣∣∣∑
s,a

dπ(α),p
s usaq

π(α),p
sa −

∑
s,a

dπ,p
s usaq

π,p
sa

∣∣∣∣∣
≤

∣∣∣∣∣∑
s,a

dπ(α),p
s usa(q

π(α),p
sa − qπ,p

sa )

∣∣∣∣∣+
∣∣∣∣∣∑
s,a

(dπ(α),p
s − dπ,p

s )usaq
π,p
sa

∣∣∣∣∣
≤
∑
s

dπ(α),p
s

∣∣∣⟨us, q
π(α),p
s − qπ,p

s ⟩
∣∣∣+∑

s

∣∣∣dπ(α),p
s − dπ,p

s

∣∣∣ · |⟨us, q
π,p
s ⟩|

≤
∑
s

dπ(α),p
s ∥qπ(α),p

s − qπ,p
s ∥∞∥us∥1 +

∑
s

∣∣∣dπ(α),p
s − dπ,p

s

∣∣∣ ∥us∥1∥qπ,p
s ∥∞

(a)

≤ 2Cπ
q ∥αu∥1,∞ + 2 · 7tmixC

π
d S∥αu∥1,∞

≤ (4Cπ
q + 28tmixC

π
d S)α,

where the inequality (a) is obtained from the sensitivity of qπ,p
s and dπ,p

s (Lemma 3.1), as well as the facts |qπ,p
sa | ≤ 7tmix

and ∥us∥1 ≤ 2. Therefore, the smoothness is proved.

We next show the continuity of Ψ(π). We first show Ψ(π) is Lπ-Lipschitz if J(π,p) is Lπ-Lipschitz in π. Without
loss of generality, we assume that for any π1,π2 ∈ Π, Ψ(π1) ≤ Ψ(π2) and p1 := argmaxp∈P J(π1,p) and p2 :=
argmaxp∈P J(π2,p), then we have

0 ≤ Ψ(π1)−Ψ(π2) = Jρ(π1,p1)− Jρ(π2,p2) ≤ Jρ(π1,p1)− Jρ(π2,p1) ≤ Lπ∥π1 − π2∥.

Then, we notice that Lemma 3 in (Thekumparampil et al., 2019) verifies that Φ(π) is ℓπ-weakly convex if J(π,p) is
ℓπ-smooth, which can intuitively determine the weakly convexity of Ψ(π).

Note that, similar smoothness conditions are derived in (Cheng et al., 2024; Kumar et al., 2024b), however, there are
mistakes in the smoothness conditions derivation in (Cheng et al., 2024). Compared to the results in (Kumar et al., 2024b)
we mentioned, we efficiently reduce the dependency on the state and action numbers.

Now, we turn to derive our main theorems. First of all, we prove the gradient dominance condition that our robust objective
Ψ(π) satisfies.
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Proof of Theorem 3.4. We denote π⋆ is the optimal policy for the robust AMDPs. We note that while J(π,p) is non-concave
with respect to p and the ambiguity set P is assumed to be a compact set, it is possible to have multiple N inner maximum
points. For simplicity of analysis, we consider the case N = 1, and refer interested reader to Theorem 3.2 in (Wang et al.,
2023c) for more detailed discussion about the similar general case. Specifically, we denote pπ := argmaxp∈P J(π,p)
as the worst-case transition kernel for fixed policy π ∈ Π. By utilizing the gradient domination condition established for
nonrobust AMDPs (Lemma B.6), we can derive the following inequality:

Ψ(π)−Ψ(π⋆) ≤ J(π,pπ)−min
π∈Π

J(π,pπ) ≤ M ·max
π̄∈Π
⟨π − π̄,∇πJ(π,p

π)⟩ . (16)

Notice that, by applying Lemma B.10, Jρ(π,p) is ℓπ-weakly convex in π, which leads to the fact that J̃(π,p) :=

J(π,p) + ℓπ
2 ∥π∥

2 is convex in π (Kruger, 2003). Let Ψ̃(π) := maxp∈P J̃(π,p). By leveraging the convexity of J̃ρ(π,p)
and the compactness of P , we can apply Danskin’s Theorem (Proposition B.17) to attain

∂Ψ̃(π) = ∇πJ̃(π,p
π)

=⇒ ∂Ψ(π) + ℓππ = ∇πJ(π,p
π) + ℓππ

=⇒ ∂Ψ(π) = ∇πJ(π,p
π),

which also implies that ξ = ∂Ψ(π) = ∇πJ(π,p
π). By introducing π̃ = argminy∈Π Ψ(y) + ℓπ∥π − y∥2, Lemma B.16

implies that there exists ξ̃ = ∂Ψ(π̃) such that −ξ̃ ⊆ NX (π̃) + 2ℓπ ∥π̃ − π∥ · B(1). Then, we have

Ψ(π̃)−Ψ(π⋆) ≤ M ·max
π̄∈Π

〈
π̃ − π̄,∇πJ(π̃, p̃

π̃)
〉
≤ M ·max

π̄∈Π

〈
π̄ − π̃,−∇πJ(π̃, p̃

π̃)
〉
. (17)

Notice that for any π1,π2 ∈ Π, we have −e ≤ π1 − π2 ≤ e where e is all-one vector. Then, we introduce a adaptive
all-one vector ê, whose i-th element êi = 1 while the corresponding element of −∇πJ(π̃, p̃

π) is 1 and êi = −1 while the
corresponding element of −∇πJ(π̃, p̃

π̃) is −1. Therefore, we have

(17) ≤ M ·
〈
ê,−∇πJ(π̃, p̃

π̃)
〉
= M ·

〈
ê,−ξ̃

〉
≤ M

√
SA ·

∥∥∇Ψ1/2ℓπ (π)
∥∥ . (18)

The final inequality can be derived from the result in Lemma B.16. It is worth noting that Lemma 3.2 implies the Lπ-
Lipschitz continuity of Ψ(π). By leveraging this Lipschitz property in conjunction with the aforementioned equation (18),
we derive the desired result

Ψ(π)−Ψ(π⋆) = Ψ(π)−Ψ(π̃) + Ψ(π̃)−Ψ(π⋆)

≤ M
√
SA

∥∥∇Ψ1/2ℓπ (π)
∥∥+Ψ(π)−Ψ(π̃)

≤ M
√
SA

∥∥∇Ψ1/2ℓπ (π)
∥∥+ Lπ ∥π − π̃∥

=

(
M
√
SA+

Lπ

2ℓπ

)
·
∥∥∇Ψ1/2ℓπ (π)

∥∥ , (19)

where (19) holds by using arguments of Lemma B.16 and Ψ(π) ≥ Ψ(π̃).

Proof of Theorem 3.5. We begin by defining a policy π̃t = argminπ̃∈Π Ψ(π̃) + ℓπ∥πt − π̃∥2, then, we have

Ψ1/2ℓπ (πt+1) = min
π

(
Ψ(π) + ℓπ ∥πt+1 − π∥2

)
≤ Ψ(π̃t) + ℓπ∥πt+1 − π̃t∥2.

The proposed RP2G updates the policy by using the projected gradient descent step:

πt+1 = ProjΠ (πt − αt∇πJ(πt,pt)) .

Therefore, the Moreau envelope function Ψ1/2ℓπ (πt+1) satisfies

Ψ1/2ℓπ (πt+1) ≤ Ψ(π̃t) + ℓπ ∥ProjΠ(πt − α∇πJ(πt,pt))− ProjΠ(π̃t)∥2

(a)

≤ Ψ(π̃t) + ℓπ∥πt − α∇πJ(πt,pt)− π̃t∥2

= Ψ(π̃t) + ℓπ∥πt − π̃t∥2 − 2ℓπα ⟨∇πJ(πt,pt),πt − π̃t⟩+ α2ℓπ ∥∇πJ(πt,pt)∥2

≤ Ψ1/2ℓπ (πt) + 2ℓπα

(
Ψ(π̃t)−Ψ(πt) + δt +

ℓπ
2
∥πt − π̃t∥2

)
+ α2ℓπL

2
π. (20)
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Here, (πt,pt) is produced by the RP2G scheme at iteration step t. The inequality (a) follows the basic projection
property (Rockafellar, 1976), i.e., for any x1,x2 ∈ Rn,

∥ProjX (x1)− ProjX (x2)∥ ≤ ∥x1 − x2∥,

and the last inequality holds due to the fact that J(π,p) is ℓπ-smooth in π, in the sense that, for π̃t,

Ψ(π̃t) ≥ J(π̃t,pt) ≥ J(πt,pt) + ⟨∇πJ(πt,pt), π̃t − πt⟩ −
ℓπ
2
∥π̃t − πt∥2

≥ max
p∈P

J(πt,p)︸ ︷︷ ︸
Ψ(πt)

−δt + ⟨∇πJ(πt,pt), π̃t − πt⟩ −
ℓπ
2
∥π̃t − πt∥2.

By summing (20) up over t, we deduce that,

Ψ1/2ℓπ (πT−1) ≤ Ψ1/2ℓπ (π0) + 2ℓπα

T−1∑
t=0

(
Ψ(π̃t)−Ψ(πt) + δt +

ℓπ
2
∥π̃t − πt∥2

)
+ Tα2ℓπL

2
π.

Rearranging the above inequality yields

T−1∑
t=0

(
Ψ(πt)−Ψ(π̃t)−

ℓπ
2
∥π̃t − πt∥2

)
≤

Ψ1/2ℓπ (π0)−Ψ1/2ℓπ (πT−1)

2ℓπα
+

TαL2
π

2
+

T−1∑
t=0

δt. (21)

It is worth noting that,

Ψ(πt)−Ψ(π̃t)−
ℓπ
2
∥π̃t − πt∥2 = Ψ(πt) + ℓπ∥πt − πt∥2 −Ψ(π̃t)− ℓπ∥π̃t − πt∥2 +

ℓπ
2
∥π̃t − πt∥2

= Ψ(πt) + ℓπ∥πt − πt∥2 −min
π∈Π

(
Ψ(π) + ℓπ∥πt − π∥2

)
+

ℓπ
2
∥π̃t − πt∥2

(a)

≥ ℓπ∥πt − π̃t∥2 =
1

4ℓπ

∥∥∇Ψ1/2ℓπ (πt)
∥∥2 , (22)

where the inequality (a) in (22) is obtained due to the strong convexity of Ψ(π) + ℓπ∥πt − π∥2, for example see Lemma
E.3 in (Wang et al., 2023c). The last equality in (22) is obtained by directly utilizing the gradient of Moreau envelope
function proposed in Lemma B.16, i.e.,

∇Ψ1/2ℓπ (πt) = 2ℓπ

(
πt − argmax

π∈Π

(
Ψ(π) + ℓπ ∥πt − π∥2

))
= 2ℓπ (πt − π̃t) .

Let us introduce π̄1 := argminπ̄∈Π Ψ(π̄)+ℓπ∥π1−π̄∥2 and π̄2 := argminπ̄∈Π Ψ(π̄)+ℓπ∥π2−π̄∥2 for any π1,π2 ∈ Π,
and then we have

Ψ1/2ℓπ (π1)−Ψ1/2ℓπ (π2) = min
π̄∈Π

(
Ψ(π̄) + ℓπ∥π1 − π̄∥2

)
−min

π̄∈Π

(
Ψ(π̄) + ℓπ∥π2 − π̄∥2

)
= Ψ(π̄1) + ℓπ∥π1 − π̄1∥2 −Ψ(π̄2)− ℓπ∥π2 − π̄2∥2

≤ Ψ(π̄2) + ℓπ∥π1 − π̄2∥2 −Ψ(π̄2)− ℓπ∥π2 − π̄2∥2

= ℓπ
(
∥π1 − π̄2∥2 − ∥π2 − π̄2∥2

)
≤ 2ℓπS. (23)

Therefore, we obtain an upper bound such that

Ψ1/2ℓπ (π0)−Ψ1/2ℓπ (πT−1) ≤ 2ℓπS.

Plug (23) and (22) into (21) and then we obtain that

T−1∑
t=0

∥∥∇Ψ1/2ℓπ (πt)
∥∥2 ≤ 4ℓπS

α
+ 2TαℓπL

2
π + 4ℓπ

T−1∑
t=0

δt.
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We next show that for some tolerance ϵ > 0, there exists some t such that

Ψ(πt)−min
π∈Π

Ψ(π) ≤ ϵ.

We define the globally optimal policy for the RMDP as π⋆. By applying the result stated in Theorem 3.4, we have

Ψ(πt)−Ψ(π⋆) ≤
(
M
√
SA+

Lπ

2ℓπ

)
·
∥∥∇Ψ1/2ℓπ (πt)

∥∥ , (24)

By summing up (24) over t and lower-bounding it, we can observe that

min
t∈{0,··· ,T−1}

{Ψ(πt)−Ψ(π⋆)} ≤ 1

T

T−1∑
t=0

(Ψ(πt)−Ψ(π⋆)) ≤ 1

T

(
M
√
SA+

Lπ

2ℓπ

) T−1∑
t=0

∥∥∇Ψ1/2ℓπ (πt)
∥∥ .

By Cauchy–Schwarz inequality, we can obtain

1√
T

T−1∑
t=0

∥∥∇Ψ1/2ℓπ (πt)
∥∥ ≤

√√√√T−1∑
t=0

∥∥∇Ψ1/2ℓπ (πt)
∥∥2.

Set α := 1√
T

, δ0 ≤
√
T , δt+1 ≤ τδt and πt⋆ as the output of Algorithm 1, and then we obtain

Ψ(πt⋆)−Ψ(π⋆) ≤ 1√
T

(
M
√
SA+

Lπ

2ℓπ

)√√√√T−1∑
t=0

∥∥∇Ψ1/2ℓπ (πt)
∥∥2

=
1√
T

(
M
√
SA+

Lπ

2ℓπ

)√√√√(4ℓπS

α
+ 2TαℓπL2

π + 4ℓπ

T−1∑
t=0

δt

)
(a)

≤ 1√
T

(
M
√
SA+

Lπ

2ℓπ

)√(
4ℓπS

√
T + 2

√
TℓπL2

π +
4ℓπδ0
1− τ

)

≤ 1√
T

(
M
√
SA+

Lπ

2ℓπ

)√√√√(4ℓπS√T + 2
√
TℓπL2

π +
4ℓπ
√
T

1− τ

)
,

where the inequality (a) holds due to the adaptive tolerance sequence, in the sense that,

T−1∑
t=0

δt ≤
∞∑
t=0

δt ≤ δ0 ·
(
1 + τ + τ2 + · · ·

)
≤ δ0

1− τ
.

Now we can attain our final result that, when T satisfies the following condition,

T ≥

(
M
√
SA+ Lπ

2ℓπ

)4 (
4ℓπS + 2ℓπL

2
π + 4ℓπ

1−τ

)2
ϵ4

= O(ϵ−4),

then, we have

Ψ(πt⋆)−min
π∈Π

Ψ(π) ≤ ϵ,
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D. Omitted Proofs in Section 4 and Relative Supporting Results
Proof of Lemma 4.1. For any s ∈ S, we can formulate the gradient of the differential value function as

∂vπ,p
s

∂ps1a1s2

=
∑
a

πsa
∂qπ,p

sa

∂ps1a1s2

=
∑
a

πsa
∂

∂ps1a1s2

(∑
s′

psas′ (csas′ − J(π,p) + vπ,p
s′ )

)

=
∑
a

πsa

∑
s′

∂psas′

∂ps1a1s2

(csas′ − J(π,p) + vπ,p
s′ ) +

∑
a

πsa

∑
s′

psas′

(
−∂J(π,p)

∂ps1a1s2

+
∂vπ,p

s′

∂ps1a1s2

)
.

Multiplying each side with dπ,pξ

s , taking the summation over s ∈ S, and rearranging terms, we then obtain

∂J(π,p)

∂ps1a1s2

=
∑
s

dπ,p
s

(∑
a

πsa

∑
s′

∂psas′

∂ps1a1s2

(csas′ − J(π,p) + vπ,p
s′ ) +

∑
a

πsa

∑
s′

psas′
∂vπ,p

s′

∂ps1a1s2

− ∂vπ,p
s

∂ps1a1s2

)

=
∑
s

dπ,p
s

∑
a

πsa

∑
s′

∂psas′

∂ps1a1s2

(csas′ − J(π,p) + vπ,p
s′ )

= dπ,p
s1 πs1a1

(
cs1a1s2 − J(π,p) + vπ,p

s2

)

Then, we show the corresponding performance difference lemma that the adversary satisfies.

Lemma D.1. (Adversary’s Performance Difference Lemma) For any policy π ∈ Π and p,p′ ∈ (∆S)S×A, we have

J(π,p)− J(π,p′) =
∑
s∈S

dπ,p
s

∑
a∈A

πsa

∑
s′

(psas′ − p′sas′) · g
π,p′

sas′ .

Proof of Lemma D.1. By the definition of the differential action-next-state value function, we have∑
s

dπ,p
s

∑
a

πsa

∑
s′

psas′g
π,p′

sas′ =
∑
s

dπ,p
s

∑
a

πsa

∑
s′

psas′
(
csas′ − J(π,p′) + vπ,p′

s′

)
= J(π,p)− J(π,p′) +

∑
s

dπ,p
s

∑
a

πsa

∑
s′

psas′v
π,p′

s′

= J(π,p)− J(π,p′) +
∑
s′

dπ,p
s′ vπ,p′

s′

= J(π,p)− J(π,p′) +
∑
s

dπ,p
s

∑
a

πsa

∑
s′

p′sas′g
π,p′

sas′ ,

which leads to the desired result.

Proof of Lemma 4.2. We first follow the similar strategy of Lemma 3.1 to propose the sensitivity analysis on the transition-
induced cost and the state transition probability as follows, that is, for any s ∈ S

|cπ,p1
s − cπ,p2

s | =

∣∣∣∣∣∑
a

πsa

∑
s′

(p1,sas′ − p2,sas′)csas′

∣∣∣∣∣ ≤ ∑
a

πsa max
s,a

∑
s′

|p1,sas′ − p2,sas′ | = ∥p1 − p2∥1,∞,

|Pπ
1,s − Pπ

2,s| =
∑
s′

∣∣Pπ
1,ss′ − Pπ

2,ss′

∣∣ ≤ ∑
a

πsa

∑
s′

|p1,sas′ − p2,sas′ | ≤ ∥p1 − p2∥1,∞.
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Then, by utilizing the adversial policy performance difference lemma (Lemma D.1), we can reach our first two desire results.
For the average-reward objective, we have

|J(π,p1)− J(π,p)2| =

∣∣∣∣∣∑
s∈S

dπ,p1
s

∑
a∈A

πsa

∑
s′

(p1,sas′ − p2,sas′)g
π,p2

sas′

∣∣∣∣∣
(a)

≤ (2 + 5tmix)
∑
s

dπ,p1
s

∑
a∈A

πsa

∑
s′

|p1,sas′ − p2,sas′ |

≤ (2 + 5tmix)∥p1 − p2∥1,∞,

where the inequality (a) is obtained due to the fact that for any π ∈ Π, p ∈ (∆S)S×A, and (s, a, s′) ∈ S ×A× S ,

|gπ,p
sas′ | ≤ |csas′ − J(π,p) + vπ,p

s′ | ≤ |csas′ |+ ∥d
π,p∥1 · ∥cπ,p∥∞ + |vπ,p

s′ | ≤ 2 + 5tmix.

As for the stationary distribution, we can straightforward obtain that

|dπ,p1
s − dπ,p2

s | ≤ (2 + 5tmix) · ∥p1 − p2∥1,∞, ∀s ∈ S.

Then, we consider the sensitive bound for the differential value function, that is

∥vπ,p1 − vπ,p2∥∞ = ∥Hπ,p1cπ,p1 −Hπ,p2cπ,p2∥∞
= ∥Hπ,p1 (cπ,p1 − cπ,p2) + (Hπ,p1 −Hπ,p2) cπ,p2∥∞,

where Hπ,p := (I − Pπ + Pπ,∞)−1(I − Pπ,∞) is defined in the proof of Lemma 3.1. We notice that

Hπ,p1 −Hπ,p2 = (I − Pπ
1 + Pπ,∞

1 )−1(I − Pπ,∞
1 )− (I − Pπ

2 + Pπ,∞
2 )−1(I − Pπ′,∞

2 )

=
(
(I − Pπ

1 + Pπ,∞
1 )−1 − (I − Pπ

1 + Pπ,∞
1 )−1

)
(I − Pπ,∞

1 )

+ (I − Pπ
2 + Pπ,∞

2 )−1 (Pπ,∞
2 − Pπ,∞

1 )

=
(
(I − Pπ

1 + Pπ,∞
1 )−1 (Pπ

1 − Pπ,∞
1 − Pπ

2 + Pπ,∞
2 ) (I − Pπ

2 + Pπ,∞
2 )−1

)
(I − Pπ,∞

1 )

+ (I − Pπ
2 + Pπ,∞

2 )−1 (Pπ,∞
2 − Pπ,∞

1 ) .

Thus, we have

∥vπ,p1 − vπ,p2∥∞ ≤ ∥Hπ,p1 (cπ,p1 − cπ,p2) ∥∞ + ∥(I − Pπ
2 + Pπ,∞

2 )−1 (Pπ,∞
2 − Pπ,∞

1 ) cπ,p2∥∞
+
∥∥((I − Pπ

1 + Pπ,∞
1 )−1 (Pπ

1 − Pπ,∞
1 − Pπ

2 + Pπ,∞
2 ) (I − Pπ

2 + Pπ,∞
2 )−1

)
(I − Pπ,∞

1 )cπ,p2
∥∥
∞

≤ ∥Hπ,p1∥∞ · ∥cπ,p1 − cπ,p
2 ∥∞ + ∥(I − Pπ

2 + Pπ,∞
2 )−1∥∞ · ∥Pπ,∞

2 − Pπ,∞
1 ∥∞

+ ∥(I − Pπ
1 + Pπ,∞

1 )−1∥∞ · ∥Pπ
1 − Pπ,∞

1 − Pπ′

2 + Pπ′,∞
2 ∥∞ · ∥(I − Pπ

2 + Pπ,∞
2 )−1∥∞

(a)

≤ 2C∥cπ,p1 − cπ,p1∥∞ + C∥dπ,p1 − dπ,p2∥1 + C2∥Pπ
1 − Pπ

2 ∥∞ + C2∥Pπ,∞
1 − Pπ,∞

2 ∥∞
≤ (2C + CSCp

d + C2 + C2SCp
d )∥p1 − p2∥1,∞,

where the inequality (a) is obtained due to ∥(I − Pπ,∞
1 )cπ,p2∥∞ ≤ 1. By applying the definition of gπ,p

sas′ , we have

∥gπ,p1
sa − gπ,p2

sa ∥ = max
s′
|csas′ − J(π,p1) + vπ,p1

s′ − (csas′ − J(π,p2) + vπ,p2

s′ )|

≤ |J(π,p1)− J(π,p2)|+ ∥vπ,p1 − vπ,p2∥∞ ≤ (Cp
J + Cp

v )∥p1 − p2∥1,∞.

Proof of Lemma 4.3. Lemma 4.1 provides the analytical form of the partial derivative, that is,

∂J(π,p)

∂psas′
= dπ,p

s πsag
π,p
sas′ .
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Then, we have

∥∇pJ(π,p)∥ =

√∑
s,a,s′

(dπ,p
s πsag

π,p
sas′)

2 ≤ (2 + 5tmix)

√∑
s,a,s′

(dπ,p
s πsa)

2 ≤ (2 + 5tmix)
√
S,

which verifies that J(π,p) is Lp-Lipschitz in p by showing the boundedness of ∇pJ(π,p). We then turn to derive the
smoothness condition of J(π,p) utilizing the similar perturbation theory of stochastic matrices applied in Lemma 3.1. Let
p,p′ ∈ (∆S)S×A be any transition kernels. We introduce p(α) as a convex combination of transition kernels p and p′, that
is, p(α) = (1− α)p+ αp′ := p+ αv where v = p′ − p. Notice that the partial derivative of J(π,p(α)) over α is

∂J(π,p(α))

∂α
=
∑
s,a,s′

dπ,p(α)
s πsavsas′g

π,p(α)
sas′ ,

then, we are going to derive the smoothness by showing |∂J(π(α),p)
∂α − ∂J(π,p)

∂α | ≤ αℓπ:∣∣∣∣∂J(π,p(α))∂α
− ∂J(π,p)

∂α

∣∣∣∣ =

∣∣∣∣∣∣
∑
s,a,s′

dπ,p(α)
s πsavsas′g

π,p(α)
sas′ −

∑
s,a,s′

dπ,p
s πsavsas′g

π,p
sas′

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
s,a,s′

dπ,p(α)
s πsavsas′(g

π,p(α)
sas′ − gπ,p

sas′)

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
s,a,s′

(dπ,p(α)
s − dπ,p

s )πsavsas′g
π,p
sas′

∣∣∣∣∣∣
≤
∑
s,a

dπ,p(α)
s πsa

∣∣∣⟨vsa, g
π,p(α)
sa − gπ,p

sa ⟩
∣∣∣+∑

s

∣∣∣dπ,p(α)
s − dπ,p

s

∣∣∣∑
a

πsa |⟨vsa, g
π,p
sa ⟩|

≤
∑
s,a

dπ,p(α)
s πsa∥gπ,p(α)

sa − gπ,p
sa ∥∞∥vsa∥1 +

∑
s

∣∣∣dπ,p(α)
s − dπ,p

s

∣∣∣∑
a

πsa∥vsa∥1∥gπ,p
sa ∥∞

(a)

≤ 2Cp
g ∥αv∥1,∞ + 2(2 + 5tmix)C

p
d S∥αv∥1,∞

≤ 2(2Cp
g + 2(2 + 5tmix)C

p
d S)α,

where the inequality (a) is obtained from the sensitivity of qπ,p
s and dπ,p

s (Lemma 4.2), as well as the facts |gπ,p
sas′ | ≤ 2+5tmix

and ∥v∥1,∞ ≤ 2. Therefore, the smoothness is proved.

Proof of Theorem 4.4. By the adversary’ difference performance lemma (Lemma D.1), we have for any π ∈ Π and
p ∈ (∆S)S×A, we have

J(π,p⋆)− J(π,p) =
∑
s∈S

dπ,p⋆

s

∑
a∈A

πsa

∑
s′

(p⋆sas′ − psas′) · gπ,p
sas′ .

Then, we can obtain that

0 ≤ J(π,p⋆)− J(π,p) =
∑
s∈S

dπ,p⋆

s

∑
a∈A

πsa

∑
s′

(p⋆sas′ − psas′) · gπ,p
sas′

=
∑
s∈S

(
dπ,p⋆

s

dπ,p
s

)
dπ,p⋆

s

∑
a∈A

πsa

∑
s′

(p⋆sas′ − psas′) · gπ,p
sas′

≤ max
p̄∈P

∑
s∈S

(
dπ,p⋆

s

dπ,p
s

)
dπ,p⋆

s

∑
a∈A

πsa

∑
s′

(p⋆sas′ − p̄sas′) · gπ,p
sas′

(a)

≤
∑
s∈S

(
dπ,p⋆

s

dπ,p
s

)
dπ,p⋆

s max
p̄s∈Ps

∑
a∈A

πsa

∑
s′

(p⋆sas′ − p̄sas′) · gπ,p
sas′︸ ︷︷ ︸

≥0, =0 while p̄s=p⋆
s

≤ M ·max
p̄∈P
⟨p̄− p,∇pJ(π,p)⟩ ,

where the inequality (a) holds only under the rectangularity condition.
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Now, we proceed to show our main convergence result on the inner worst-case kernel evaluation. Here we define the gradient
mapping

Gβ(p) :=
1

β
(ProjP(p+ β∇pJ(π,p))− p) . (25)

Notice that P is convex and J(π,p) is ℓp-smooth in p, then we turn to derive our main result.

Proof of Theorem 4.5. Lemma B.13 implies that if ∥Gβ(p)∥ ≤ ϵ, then

∇pJ(π,p
+) ∈ NP(p

+) + 2ϵB(1), (26)

where p+ := p + βGβ(p), NP is the norm cone of the set P , and B(r) := {x ∈ Rn : ∥x∥ ≤ r}. By the gradient
dominance condition established in Lemma 4.4,

min
k∈{0,··· ,K−1}

{J(π,pπ)− J(π,pt)} ≤M · min
k∈{0,··· ,K−1}

max
p̄∈P
⟨p̄− pk,∇pJ(π,pk)⟩

≤M ·max
p̄∈P

〈
p̄− pk̂,∇pJ(π,pk̂)

〉
, (27)

where k̂ := 1 + argmink≤K−1 ∥Gβ(pk)∥. Note that, Lemma B.12 implies that

∥Gβ(pk̂−1)∥ ≤
√

2ℓp (J(π,pπ)− J(π,p0))

K
≤
√

2ℓp
K

,

where the last inequality holds due to |J(π,p)| ≤ 1. While we set that√
2ℓp
K
≤ δπ

4M
√
SA

⇐⇒ K ≥ 32ℓpM
2SA

δ2π
= O(δ−2

π ),

then
∥Gβ(pk̂−1)∥ ≤

δπ

4M
√
SA

.

Hence, by applying the equation (26), we have

(27) ≤M ·max
p̄∈P
∥p̄− pk̂∥ · 2 ·

ϵπ

4M
√
SA

= δπ,

where for any p1,p2 ∈ P ,
∥p1 − p2∥ ≤ ∥p1∥+ ∥p2∥ ≤ 2

√
SA. (28)

Theorem D.2. (Lamperski, 2021, Theorem 1) Assume that η ≤ 1
2 . There are positive constants h, c4, c5 such that for all

integers k ≥ 4, the following bound holds:

W1(L(pk), νλJ) ≤ c4e
−ηhk + c5 (η log k)

1
4 .

In particular, if η = logK
4hK and K ≥ 4, then:

W1(L(pK), νλJ) ≤
(
c4 +

c5

(4h)
1
4

)
K− 1

4 (logK)
1
2

Proposition D.3. (Lamperski, 2021, Proposition 2) The constant c1 and c2 grows linearly with n. If D2ℓλ < 8, then we

can set h = 4
D2ℓλ ≥

ℓ
2 , while c4 and c5 grows polynominally with respect to

(
1− D2ℓλ

8

)−2

and λ− 1
4 . In general, we have

a positive constant c3 and a monotonically increasing polynomial p (independent of η and λ) such that for all λ > 0, the
following bounds hold:

h ≥ c6λ exp

{
−D2ℓλ

4

}
, max{c4, c5} ≤ p(λ− 1

4 ) exp

{
3D2ℓλ

4

}
.
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We note that only the notation has been adapted to our setting; the results and their proof remain unchanged from (Lamperski,
2021).

Lemma D.4. For any function J : P → R, let νJ be the probability measure defined by νJ(B) =
∫
B exp{J(π,p)}dp∫
P exp{J(π,p̃)}dp̃ .

Particularly, ν0 represents uniform measure. If J is Lp-Lipschitz, then the KL divergence of νJ from the uniform measure ν0
is bounded by:

0 ≤ KL(νJ , ν0) ≤ EνJ
[J(π,p)]−max

p∈P
J(π,p) + n log

(
max

{
2

r
,
(r +

√
r2 +D2)Lp

r log(2)

})
+ log(2Dn).

Proof of D.4. The KL divergence is bounded below by 0 as a standard result in (Cover & Thomas, 2012). Then we only
need to prove the upper bound.

Denote p⋆ as the optimal solution of maxp∈P J(π,p) for a given policy π. It exists as J is Lipschitz continuos and P is
compact. Then multiply both numerator and denominator of νJ by exp(−J(π,p⋆)), we have

νJ(B) =
∫
B eJ(π,p)−J(π,p⋆)dp∫
P eJ(π,p̃)−J(π,p⋆)dp̃

.

Noted that by definition of uniform distribution, ν0(dp) = dp
vol(P) . So the definition of KL divergence implies

KL(νJ , ν0) = Ep∼νJ
[J(π,p)− J(π,p⋆)] + log(vol(P))− log

(∫
P
eJ(π,p̃)−J(π,p⋆)dp̃

)
.

Note that the set P is contained in a ball of radius D (for example, for an ellipsoidal ambiguity set of size θ, we have
D =

√
θ/λmin, where λmin is the smallest eigenvalue of the shape matrix Q). Hence, the volume satisfies vol(P) ≤

Dn πn/2

Γ(n/2+1) ≤ 2Dn, where π denotes the circular constant. The second inequality holds for n > 10.

Therefore, to upper bound the denominator, it suffices to obtain a lower bound on
∫
P eJ(π,p̃)−J(π,p⋆) dp̃. Since the function

J is Lp-Lipschitz continuous, it follows that

0 ≥ J(π, p̃)− J(π,p⋆) ≥ −Lp∥p̃− p⋆∥.

Besides, e−Lp∥p̃−p⋆∥ ≥ 1/2 if and only if ∥p̃− p⋆∥ ≤ log 2
Lp

.

Set ϵ = log 2
Lp

and let Bp⋆(ϵ) be the ball of radius ϵ centred at p⋆. Then for any C ⊂ P ∩ Bp⋆(ϵ), we have∫
P
eJ(π,p̃)−J(π,p⋆)dp̃ ≥ 1

2
vol(P ∩ Bp⋆(ϵ)) ≥ 1

2
vol(C).

As proved in (Lamperski, 2021, Lemma 15), the C contains a ball with radius min{ r2 ,
rϵ

r+
√
r2+D2

}, where r denotes
the radius of a ball contained in P . Then lemma follows by using the fact that a ball of radius r̂ has volume given by

π
n
2

Γ(n
2 +1) r̂

n.

Proof of 4.6. Recall that J(π,p) is Lp-Lipschitz, so that λJ(π,p) is λLp-Lipschitz. Assume that p̃ follows distribution
νλJ , then applying Lemma D.4 we can obtain

Ep̃∼νλJ
[J(π, p̃)] ≥ max

p∈P
J(π,p)− n

λ
log

(
2Dmax

{
2

r
,
(r +

√
r2 +D2)Lpλ

r log 2

})
. (29)

Let xk be the k-th iterate of the algorithm 3, then

E[J(π,pk)]
Kantorovich Duality

≥ EνJ
[J(π,p)]− LpW1(L(pk), νJ)

(29)
≥ max

p∈P
J(π,p)− n log(c1 max{1, λ})

λ
− LpW1(L(pk), νJ),
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where c1 = 2Dmax
{

2
r ,

(r+
√
r2+D2)λ

r log(2)

}
Then we will show how to tune the parameters to achieve an average suboptimality of δπ .

First, we choose λ so that n log(c1 max{1,λ})
λ ≤ δπ

2 . Without loss of generality, we assume λ > 1. Set x = log(c1λ), so that
λ = c−1

1 ex and the required bound becomes

xe−x ≤ c1δπ
2n

.

For any κ ∈ (0, 1), the maximum value of xe−(1−κ)x occurs at x = (1− κ)−1, so that for all x ∈ R:

xe−x = xe−(1−κ)xe−κx ≤ 1

(1− κ)e
e−κx. (30)

So it is sufficient to set e−κx ≤ c1δπ(1−κ)e
2n to achieve the bound. Then plugging back, it shows that a sufficient condition

for n log(c1λ)
λ ≤ δπ

2 is given by

λ ≥ c−1
1

(
2n

c1(1− κ)δπe

) 1
κ

(31)

Now for a fixed λ ≥ 1, the bounds from Theorem D.2 and Proposition D.3 to give that

W1(L(pk), νJ) ≤
(
c4 +

c5

(4h)
1
4

)
K− 1

4 (logK)
1
2

≤ p(1)e
3D2ℓλ

4

(
1 +

e
D2ℓλ

16

4
1
4 c3

)
K− 1

4 (logK)
1
2

≤ p(1)

(
1 +

1

4
1
4 c3

)
e

13D2ℓλ
16 K− 1

4 (logK)
1
2 .

Similar to (30), we can derive the following inequality for all ρ ∈ (0, 1/2) and all K > 0:

K− 1
4 (logK)

1
2 =

(
K− 1

2+ρK−ρ logK
) 1

2 ≤

√
K− 1

2+ρ

eρ
.

Thus, to achieve LpW1(L(pk), νJ) ≤ δπ
2 , it is sufficient to have

K− 1
2+ρ ≤ eρ

(
δπ
2

)2(
p(1)

(
1 +

1

4
1
4 c3

)
e

13D2ℓλ
16

)−2

:= ϵ

which is equivalent to have

K ≥ 1

ϵ
2

1−2ρ

.

To separate the parameters, we can define a constant c6 that is independent to η, λ, δπ, α and ρ, such that the bound above
holds whenever

K ≥ c
2

1−2ρ

6

δ
4

1−2ρ
π

exp

(
13D2ℓλ

4(1− 2ρ)

)
,

Combining the results above with (31), we obtain the desired conclusion by introducing a = 4
1−2ρ > 4 and b = 1

α > 1, and
by substituting the dimension of the transition kernel as n = S2A.

E. Experiment Details
In this section, we provide the implementation details and experimental setup. All results were generated on an Apple M2
Max with 32 GB LPDDR5 memory. The algorithms are implemented in Python 3.11.5, and we use Gurobi 11.0.3 to solve
any linear optimization problems involved.
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E.1. Environment Setting

A GARNET MDP G(|S|, |A|, b) is defined by three parameters: |S|, the size of the state space; |A|, the size of the action
space; and b, the branching factor, which specifies the number of accessible next states for each state. The cost is generated
randomly following a uniform distribution within [0, 10].

E.2. Rectangular Ambiguous Case

We validate the convergence of RP2G on three different sizes of GARNET MDPs with (s, a)-rectangular ambiguity sets.
Specifically, we use the ℓ1 norm to measure the size of the ambiguity set.

Psa = {psa ∈ ∆S | ∥psa − p̄sa∥1 ≤ κsa},

where p̄sa is the nominal transition kernel and κsa is randomly generated from a uniform distribution over the interval
[0, 0.3].

We run 50 sample instances with 250 iterations of RP2G for each GARNET problem. At each iteration, we record the
relative error between the objective values of RP2G and the optimal value J⋆, calculated as (|J(πt,pt)− J⋆|)/J⋆. For the
optimal value J⋆, we use the robust value iteration method from (Wang et al., 2023c) as our benchmark, with the stopping
criterion ∥vt − vt−1∥2 ≤ 5× 10−4.

The relative error values are plotted in Figure 1. The line represents the average relative error across the 50 instances for
each problem at each iteration. The upper and lower envelopes of the lines correspond to the 95 and 5 percentiles of the 50
samples, respectively. These results demonstrate the convergence and optimality of our algorithm.

E.3. Runtime

This subsection compares the computational efficiency of RP2G with the only existing gradient-based method to highlight
the advantage of adopting a decreasing tolerance sequence {δt}t≥0. Specifically, we consider the robust policy mirror
descent algorithm (Sun et al., 2024) as a benchmark, which assumes the inner worst-case evaluation problem is solved
exactly. For computational considerations, we set the inner worst-case evaluation problem in the benchmark method with a
fixed tolerance of δ = 10−5 at each iteration, while RP2G adopts a decreasing tolerance sequence initialized with δ0 = 1
and reduced at a rate of τ = 0.95.

We use the same environment and ambiguity settings as described in the Section E.2. Table 1 reports the runtime for the two
methods, with termination determined by minimal changes in the objective value, i.e., |J(πt,pt)− J(πt−1,pt−1)| ≤ 10−4.
The results demonstrate the effectiveness of adopting a decreasing tolerance sequence in improving runtime efficiency.

E.4. Non-Rectangular Ambiguous Case

We adopt the ellipsoid form (Wiesemann et al., 2013; Li et al., 2023) for constructing the non-rectangular ambiguity set,
defined as

P =
{
p : (p− p̄)

⊤
Σ (p− p̄) ≤ r

}
.

We set size parameter r = 1. The Hessian matrix Σ is generated as Σ = σσ⊤, with σ ∈ RS×A×S being a column vector
whose elements are independently sampled from a uniform distribution over [0, 0.1]. The nominal transition kernel is
denoted as p̄.

We validate the robustness of RP2G on the non-rectangular ambiguity set by comparing it against the non-robust policy
gradient method in G(5, 3, 4). At each iteration, we evaluate and compare the values of Ψ(πt) = maxp∈P J(πt,p) for both
methods. The results are plotted in Figure 2. The line represents the mean values across 20 instances, while the shaded area
indicates the range between the 5 and 95 percentiles over the 20 samples. This figure demonstrates the robustness of RP2G
compared to the non-robust policy gradient and also shows the convergence of the RP2G algorithm when using Algorithm 3
for inner worst-case evaluation.

E.5. Discount Factor Discussion

In this section, we perform experiments with different choices of the discount factor γ. For robust discounted MDPs, we
use the Double-Loop Robust Policy Gradient (DRPG) algorithm proposed in (Wang et al., 2023a). The experiment is also
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Figure 3. Iterations to convergence under different discount factors and AMDP.

conducted on GARNET MDPs G(5, 3, 5)

We set the step size α = (1−γ)2 for each robust discounted MDP, consistent with the theoretical convergence analysis in the
reference. For RP2G, we use a step size of β = 0.05. Figure 3 illustrates the number of iterations required for convergence
under different values of the discount factor, compared to the iteration count for convergence in robust average-reward
MDPs. Convergence is determined when |(Jt+1− Jt)/Jt| ≤ 10−4. It is evident that as γ increases, the number of iterations
for convergence grows significantly, showing a clear upward trend.

E.6. Rectangular and Non-rectangular Ambiguity Comparison

In this section, we conduct experiment with two ambiguity sets under same size to show the superiority of non-rectangularity
in application. In particular, we compare the put-of-sample performance of (s, a)-rectangular ambiguity set and ellipsoid
ambiguity in a classical inventory control problem (Zipkin, 2000).

In the inventory control environment, the agent decides how many items to order (a) based on the current inventory level (s).
Each ordered item incurs a cost of 1, and we assume that there is no delay in the ordering process.

After the customer demand d ∈ [0,m] is realized, the agent observes the updated inventory level. If the resulting inventory
level s+ a− d falls below the allowed backlog limit (set to −m in our experiments), the agent can only fulfill s+ a units
of demand. In this case, the effective demand is truncated to d = s+ a. On the other hand, if the updated inventory level
exceeds the maximum inventory capacity m, it is reset to m. At the end of each period, the agent incurs a holding cost of 1
for each item in inventory and a backlog cost of 1 for each unit back-ordered.

To estimate transition probabilities for policy training, we simulate 1000 trajectories using uniformly random actions and
demands. Each trajectory consists of 100m time steps. Table 3 reports the average long-term cost under two ambiguity sets.
The results show that the policy derived from the non-rectangular RAMDP is less conservative, as indicated by its lower
average cost.

Table 3. Average performance under different inventory levels over 2,000 out-of-sample trajectories, comparing the (s, a)-rectangular and
non-rectangular (ellipsoidal) ambiguity sets with set size equal to 0.1.

Inventory Level(m) 3 4 5 6 7 8

(s, a)-rectangular 2.906 3.980 4.360 5.246 6.014 6.620
Non-rectangular 2.850 3.659 4.289 5.187 5.931 6.582
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