Under review as a conference paper at ICLR 2026

CUDAFORGE: AN AGENT FRAMEWORK WITH HARD-
WARE FEEDBACK FOR CUDA KERNEL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Developing efficient CUDA kernels is increasingly critical for Al applications
such as large-scale LLM training. However, manual kernel design is both costly
and time-consuming, motivating automatic approaches that leverage LLMs for
code generation. Existing methods for automatic kernel generation, however, of-
ten produce low-efficiency kernels, incur high computational overhead, and fail to
generalize across settings.

In this work, we propose CudaForge, a training-free multi-agent workflow for
CUDA kernel generation and optimization. Our workflow is inspired by the iter-
ative workflow of human experts, which contains steps such as developing initial
kernels, testing correctness, analyzing hardware feedback, and iterative improve-
ment. More specifically, CudaForge employs two LLM agents — a Coder and
a Judge — that iteratively generate, correct, and optimize CUDA kernels, while
integrating hardware feedback such as Nsight Compute (NCU) metrics. In our
extensive evaluations, we show that CudaForge , by leveraging base models
like OpenAl-03, achieves 97.6% correctness of generated kernels and an average
1.68x speedup over PyTorch baselines, substantially surpassing state-of-the-art
models including OpenAl-o03 and Kevin on KernelBench. Beyond accuracy and
speed, CudaForge demonstrates strong generalization across GPUs (A100, RTX
6000, 4090, 3090) and base models (OpenAl-03, GPT5, gpt-oss-120B, Claude-
Sonnet-4, QwQ-32B), while maintaining high efficiency. In particular, generating
an optimized kernel takes about 25 minutes on one RTX6000 and incurs $0.30 API
cost. Our results highlight that multi-agent, training-free workflows can enable
cost-effective, generalizable, and high-performance CUDA kernel optimization.

1 INTRODUCTION

Motivation. CUDA has become the de facto standard for deep learning training because modern
frameworks such as PyTorch and TensorFlow are deeply integrated with NVIDIA’s optimized GPU
libraries (NVIDIA| 2025b). Efficient CUDA kernels are crucial for accelerating deep learning work-
loads(Dao et al., 2022} Dao), [2024)) .

However, developing high-efficiency cuda kernels has been known as challenging with very high
learning curve, requiring deep expertise in GPU architectures and parallel programming(L1 et al.,
2024). For example, it took more than 2 years from the debut of the Hopper GPU architecture to the
release of FlashAttentionV3 (Shah et al.| 2024)), which is specially designed for Hopper GPUs.

This high development barrier has driven growing interest in finding automated ways of generating
highly efficient and customized CUDA kernels. For example, some work (Tillet et al.|[2019) (Chen
et al.l 2018) employs auto-tuning and evolutionary search to automatically explore kernel imple-
mentation spaces and optimize low-level parameters for specific hardware. More recently, there has
been a growing interest in leveraging large language models (LLMs) to perform such tasks. LLM is
believed to hold great promise in generating efficient and high-quality kernels, due to its capability
of code generation in other domains, such as Python and C++ (Dong et al.,|2025; Jiang et al.| [2024)).

Existing Works and Key Challenges. Generally, using LLMs for CUDA kernel generation is still
in an early stage. In KernelBench (Ouyang et al.||2025)), the authors attempt to directly use state-of-
the-art (SOTA) models, such as OpenAl-ol and Claude-3.5-Sonnet, to generate kernels. However,

Under review as a conference paper at ICLR 2026

it has been observed that these SOTA models still struggle to produce correct or performant kernels
out of the box, revealing fundamental limitations of existing LLMs in this domain.

To address this gap, recent studies have explored two main paradigms. The first approach is based
on reinforcement learning (RL) (Schulman et al.l 2017;Shao et al.| 2024). CUDA-L1 (Team, [2025)
and Kevin (Baronio et al., 2025) adopt RL to enhance LLMs’ ability to generate correct and perfor-
mant CUDA code. The second approach is based on Al agents. In particular, in an independent and
contemporaneous work (Lange et al.| 2025ﬂ, researchers have explored agentic frameworks at in-
ference time. Agents project PyTorch method into CUDA kernel design, then the CUDA kernels are
further refined by sampling new kernels and verification filtering. This design effectively improves
correctness in CUDA kernel generation without the high cost of RL training.

Despite these advances, several key challenges remain:

(C1) Limited kernel efficiency. While RL-based methods improve LLMs’ ability to generate
CUDA kernels, their optimization capability remains insufficient. For example, Kevin-32B only
achieves an average speedup of 1.10x over KernelBench test cases, even after sampling 16 parallel
trajectories with 8 refinement turns each per kernel (Baronio et al., 2025). Further, CUDA-L1 of-
ten fails to directly optimize the CUDA kernels, but producing official implementation of PyTorch
(Team, 2025) (see Appendix @] for details).

(C2) High training and inference cost. RL-based approaches such as (Team, [2025; Baronio et al.,
20235)) require substantial computational resources and long training cycles, making them unsuitable
for low-resource or rapid-prototyping settings. In addition, multi-stage agentic pipeline developed
by (Lange et al.,2025) incurs high inference costs (about 6 H100 hours and $5 API cost per kernel),
which greatly limits its practical applicability of the approach.

(C3) Lack of hardware feedback. Human experts typically follow an iterative workflow to develop
performant CUDA kernels through testing and refinement. They rely on hardware feedback like
Nsight Compute (N CUﬂ to identify bottlenecks and optimize kernels accordingly (Wu et al., 2025
NVIDIA| 2025a; Hu et al.| [2025). In contrast, RL-based approaches (Team), 2025} Baronio et al.,
2025) train LLMs to directly generate or optimize kernels, but do not incorporate hardware feedback
at all. As a result, they rely on blind exploration during generation, lacking the targeted guidance.
This often leads to suboptimal kernel efficiency, limiting their practical applicability.

These challenges raise a natural question: Can we design a simple but effective hardware-aware
approach that reliably produces efficient CUDA kernels at low cost?

Our Contributions. To address these challenges, we propose CudaForge, a simple, effective and
low-cost multi-agent workflow for CUDA kernel generation and optimization, as shown in Figure[T]
Our workflow is inspired by the iterative workflow of human experts (Wu et al.| 2025} [NVIDIA|
2025aj; |[Hu et al.} 2025)), which contains steps such as developing initial kernels, testing correctness,
analyzing hardware feedback, and iterative improvement.

This workflow involves two specialized LLM agents that iteratively generate and optimize CUDA
kernels: a Coder, which generates kernels given task instructions and Judge feedback, and a Judge,
which analyzes kernels and hardware feedback to guide the Coder generation. One key novelty
of CudaForge is its integration of external hardware feedback, including GPU specifications and
Nsight Compute (NCU) metrics, enabling the Judge to identify performance bottlenecks like human
experts and provide targeted optimization guidance to the Coder.

Compared to single-LLM approaches that generate and evaluate code using the same LLM, our
framework separates these roles into an independent Coder and Judge, enabling more special-
ized reasoning and more reliable iterative refinement. Unlike RL-based methods, CudaForge is
training-free, avoiding the substantial cost of policy training. It is also hardware-aware, allowing
it to tailor CUDA kernel optimizations to the underlying system, making the proposed framework
easily generalizable across different GPUs. Finally, in contrast to existing multi-agent frameworks
(Lange et al.||2025)), CudaForge is lightweight and cost-efficient, running in just 25 minutes on a
single RTX6000 GPU and $0.3 per kernel in API costs, while still achieving better performance.

! published on arxiv Sept 16th, 2025
Nsight Compute (NCU) is NVIDIA’s official kernel-level profiler for CUDA programs.

Under review as a conference paper at ICLR 2026

We evaluate CudaForge on 250 KernelBench tasks from Level 1 to Level 3. Though these tasks
are challenging, CudaForge attains a 97.6% correctness rate and delivers an average speedup of
1.68x over PyTorch baselines, which significantly outperforms advanced RL model like Kevin-32B
and advanced frontier model like OpenAl-03 (OpenAl, 2025). Further, we have conducted com-
prehensive ablation studies of the features of CudaForge, such as its effectiveness across multiple
GPU architectures, its inference-time scalability by increasing the number of generation, and the ef-
fect of different base models. Overall, we observed that the proposed CudaForge achieves robust
performance in all these settings.

These findings highlight the key contribution of this work: The proposed LLM agent workflow
CudaForge is simple but effective: at very low cost, it develops performant CUDA kernels for
many practical tasks, for a variety of GPU architectures and base models. It also exhibits strong
test-time scaling capabilities where solution quality can improve substantially while increasing its
iteration rounds. These results demonstrate CudaForge’s strong practical applicability.

Human Engineer Workflow

Implementation @ Task Fulfilled

Kernel

CUDA Engineer

Iterative Process V] B
; 43 Hardware Feedback :
ér ’%L Candidate 4
[—=—; Coder Kernel /é Judge P Kernel
: X §

Runtime Error Info

Feedback In Correction/Optimization

Figure 1: Comparison between human and CudaForge workflows. Top: Human experts itera-
tively refine kernels by writing a prototype, testing it, and analyzing runtime feedback. Bottom:
CudaForge mimics human workflow with two specialized agents (Coder and Judge). The Coder
generates candidate kernels, while the Judge analyzes runtime info and hardware feedback to pro-
vide correction or optimization feedback. The process iterates until it reaches maximum round V.

2 THE CUDAFORGE FRAMEWORK FOR CUDA KERNEL OPTIMIZATION

2.1 CUDAFORGE FRAMEWORK

Given a CUDA kernel generation task, the objective is to generate a kernel that is functionally
equivalent to its PyTorch reference while achieving the lowest possible execution latency.

Inspired by the iterative workflow of human experts (Wu et al., 2025; NVIDIA, [2025aj Hu et al.,
2025)), we design CudaForge as an iterative multi-agent framework, illustrated in Figure E} The
framework involves two independent agents: a Coder and a Judge. The Coder generates candidate
kernels based on the task description and feedback from the Judge, while the Judge evaluates each
candidate using the kernel itself, hardware feedback and runtime information.

More specifically, given a CUDA kernel generation task, the Coder first receives the task require-
ments and PyTorch reference implementation, then produces an initial candidate kernel. This can-
didate is compiled and executed on test cases to check correctness. If it fails, the Judge inspects
runtime information (e.g., compilation errors, mismatched outputs with the PyTorch reference) and
analyzes the faulty kernel. It then returns correction feedback (e.g., missing header file) to guide the
next iteration. Once a kernel candidate passes the correctness test, the Judge profiles it with the NCU
tool to obtain NCU metrics (e.g., memory throughput, occupancy, warp efficiency). Together with
GPU specifications, these metrics form the hardware feedback that allows the Judge to identify the
dominant bottleneck (e.g., compute-bound or memory-bound) and provide one specific optimization
feedback (e.g. using shared memory) to the Coder.

Under review as a conference paper at ICLR 2026

(Kevin-32B _¥s. CudaForge(ours

\ Initialization Round 1

O

+ Input: {Model Arch in Python} & [Compile and evaluate this kernel)

* Output: {ModelNew} /—x

+ {CUDA Strategies}
+ {Requirements}
The performance for this kernel is:
{Speedup}.
Please analyze the provided kernel and
try to produce an improved CUDA Kernel.

Round 2

_A®

'CUDA_KERNEL matmul_atb_optimized:
INPUT: A(KxM), B(KxN)
OUTPUT: C(MxN) = AT x B

GRID: (M/32, N/32) blocks

BLOCK: 32x32 threads

SHARED_MEM: tile_A[32x33], tile_B[32x33] // +1
padding

Kevin-32B

ICUDA_KERNEL matmul_atb_kernel
INPUT: A (KxM), B (KxN)
OUTPUT: C (MxN) =ATx B

FOR each thread(i,j):
Clij] = E(k=0 to K-1) LDG(A[k,i]) x LDG(B[K.j])

4
IGRID: (ceil_div(N,16), ceil_div(M,16)) blocks %
BLOCK: 16x16 threads © =
FOR each thread (global row i = blockIdx.y*16 + [Compile and evaluate this kernel]

ty, global col j = blockIdx.x*16 + tx): FIX MEMORY BOTTLENECK (24% stalls):

2

B . |

@) 1. Add shared memory tiling: (K*xCixfloat) < 64KB
5 2. Cooperative load + sync + unroll loops
%[Let’s use NCU to see what happened while 3. Reduce registers to <32 for 8x128 blocks/SM
o
5 the kernel was running.
Human Coder | 2=
Y S|
/’/ - 5
@ = NCU _GSP;,IJ {RQFIFIN(‘;]{;&EX}‘EE Generating the improved kernel following}
q - Compute Load: 2.06M active cycles, 444.7M the instruction from Judge...
Testlng Judge instructions

|- Occupancy Bottleneck: Register-limited (4 vs 16 blocks))

Figure 2: The overview of conversation between agents in Kevin-32B and CudaForge.

In the next iteration, the Coder is prompted with the previous kernel, Judge feedback, and the original
task requirements, and generates a corrected or optimized kernel. This process repeats for up to N
iterations, after which we select the most efficient correct kernel as the final solution.

CudaForge achieves reliability and efficiency through three key design choices. First, it adopts
a two-agent system where the Coder focuses on generation and the Judge on evaluation, separating
the “cognitive” load (See Section [3.4). The Coder receives only feedback from the Judge, while
the Judge uses hardware and runtime information to guide generation and optimization. This divi-
sion of labor mirrors human workflows and mitigate the risk of overlooking errors or inefficiencies.
Second, the framework follows an iterative optimization process, progressively correcting errors
and improving efficiency across rounds. This enables stable refinement, especially on hard tasks.
Third, it explicitly incorporates hardware feedback, such as GPU specifications and NCU metrics,
so the Judge can pinpoint bottlenecks and provide actionable guidance to the Coder. This targeted
optimization avoids blind exploration and ensures directed performance gains.

2.2 How TO INTEGRATE HARDWARE FEEDBACK

In this subsection, we describe in detail a key design consideration, which enables CudaForge to
utilize hardware feedback for kernel performance optimization. The hardware feedback module in-
tegrates static GPU specifications (e.g. architecture, memory bandwidth, per-thread register lim-
its, per-SM shared-memory capacity) with performance metrics (e.g. memory throughput, oc-
cupancy, and warp efficiency) from Nsight Compute (NCU) collected during kernel execution.
By cross-referencing GPU specifications and NCU metrics, the Judge infers the kernel’s primary
performance-limiting cause and bottleneck mechanism. Figure [2f illustrates how Judge uses the
hardware feedback to optimize kernels.

Just as CUDA engineers focus on key indicators, we do not pass the entire set of NCU metrics to the
Judge. Feeding all metrics can overwhelm the decision process with excessive, partially redundant
signals and lead to unstable judgments (See Appendix [C.1] for detail). Instead, we design a novel
protocol which profiles a subset of critical metrics provided by NCU and forward them to Judge so
that we can improve the quality of the judge outputs. More specifically, the key subset of metrics
are selected off-line (before the agent start to work), through the following steps:

(Step 1) Kernel sampling and Selection: We first profile key metrics on some preselected repre-
sentative tasks (e.g., Conv2D, MatMul) to prepare a reliable metric set. Specifically, for each task
we run 100 self-refine (repeating the cycle generating — execute/profile — evaluate — repair/opti-
mize) with a single SOTA model (e.g., OpenAl-03), collect the generated and correct kernels, and
select 10 with the largest speed disparity (fastest vs. slowest). See Algorithm [I]

Under review as a conference paper at ICLR 2026

Algorithm 1 Step 1: Kernel Sampling and Selection

Input: Task set Task = {T1,T5,..., T}
Output: Selected subsets K for each task T;
for i < 1tondo
K; + 0 for j < 1t0 100 do
| k; < generate kernel(T;) K, « K; U {k;}
end
Sort K; in nondecreasing order according to kernel runtime m < |K;|; // Here m = 100
K}« {K;[1], K;[2], K,[3], K;[4], K;[5], Ki[m—4], K;[m—3], K;[m—2], K;[m—1], K;[m]}
end

(Step 2) Top-20 metrics within each task: We then refine the metrics within each task to identify
the most relevant candidates. Specifically, for each task we consolidate the NCU metrics from the
10 kernels selected from Step 1 into a single dataset. Since Nsight Compute reports a consistent
full set of metrics across all kernels, the metric categories are aligned by default. We then remove
aliases and strongly collinear indicators, and compute Pearson correlations between each metric and
kernel runtime. We retain only the Top-20 metrics (by absolute correlation) as the candidate set for
that task (see Appendix [C.2]for examples).

(Step 3) Metrics selection across-tasks: Finally, we consolidate metrics across tasks to build a
stable, task-agnostic set. We compare the Top-20 lists across tasks and keep metrics that consistently
appear, show the same correlation direction, and achieve high global scores. This yields 24 metrics
that are strongly correlated with kernel runtime across tasks. See Algorithm 2]

Algorithm 2 Step 2-3: Profiling and Metrics Selection
Input: K* = {K},K;,..., K}, where each K} = {k7,k3,...,k}o}
Output: Final metrics set Final_M etrics containing 24 unique metrics
M* <0
for i < 1ton do
M} + () foreach k € K} do
M «+ NCU _Profile(k) ; // Run NCU profiling, M ={mq,ms,...,m;}
foreach m € M do
| Compute Pearson correlation coefficient r(m, runtime(k))
end
Top20(k) < the 20 metrics in M with highest |r(-, runtime(k))| M} < M} U Top20(k)
end
M* «— M* U M}

end
// Final set contains 24 distinct metrics
Final_Metrics < (\;_; M} |Final_Metrics| = 24

After the above steps are completed offline, during kernel optimization, the Judge profiles each gen-
erated kernel with NCU and uses only this 24 metrics as references (see Appendix [C.3|for details).

Overall, at each iteration, the Judge collects hardware feedback, including static GPU specifications
and the key subset of NCU metrics. Based on this information, the Judge identifies the dominant
bottleneck by analyzing the 24 metrics and runtime log. To prevent Al agent searching without di-
rection and generating random results, the Judge only captures 3-4 most important metrics in each
round according to its own reasoning. For example, Judge can identify the current kernel is memory-
bound when memory throughput is high but computing resources utilization is low, and then it will
choose memory related metrics as critical metrics in this round. After this, Judge will generate sug-
gestions on how to modify the kernel to address current critical bottleneck. The Coder incorporates
this guidance in the next round generation accordingly. This mechanism enables our multi-agents
system focus on addressing only one critical program bottleneck in each round, eventually optimize
overall kernel performance step by step in iterative rounds, just like human expert’s real workflow.

Under review as a conference paper at ICLR 2026

3 EXPERIMENTS

3.1 BENCHMARK AND EVALUATION

We evaluate our method on KernelBench (Ouyang et al., [2025), a popular benchmark designed to
assess the ability of LLMs to generate CUDA kernels. KernelBench consists of multiple difficulty
levels; we adopt all tasks from Level 1 to Level 3, resulting in a total of 250 tasks. Specifically, Level
1 contains relatively simple 100 tasks involving basic operators (e.g., matrix multiplication), Level
2 includes medium-difficulty 100 tasks composed of multi-step operator combinations, and Level 3
contains 50 challenging tasks involving full neural network architectures (e.g., AlexNet). Each task
is accompanied by a reference PyTorch implementation and predefined input/output specifications,
which enables fully automated and reliable evaluation of both correctness and performance.

We evaluate model performance on KernelBench using the following metrics:

(1) Correctness: the fraction of tasks for which the generated kernel compiles successfully and
produces outputs identical to the PyTorch reference on all test cases. (2) Performance: the ratio of
the execution speed (tested on a specific GPU), between a correct generated kernel and its PyTorch
reference. (3) fast,: the proportion of correct kernels whose execution speed exceeds px that of
the PyTorch reference (e.g., fast; indicates faster than PyTorch). (4) Median speedup: the median
of ‘Performance’ values across all tasks, reflecting typical rather than average behavior. (5) 75th
percentile speedup: the 75th percentile of Performance values, capturing upper-quartile efficiency.

For methods that perform iterative refinement or generate multiple candidates (including
CudaForge), we report the best-performing correct kernel among all candidates for each task.

3.2 SETTINGS & BASELINES

In our main results, we instantiate CudaForge with OpenAl-03 as both the Coder and the Judge
as our default setting. We set the maximum number of iteration rounds to N=10 to balance perfor-
mance improvements and inference cost. Unless otherwise stated, all methods are evaluated under
the same compilation/runtime environment in Quadro RTX 6000 and task-specific test suites.

To contextualize the performance of CudaForge and assess the effect of advanced foundation mod-
els, we include the following baselines for main results and ablation studies: (1) O3-S: OpenAlI-03
(single-shot), one-pass generation without iteration; (2) O3-10: OpenAI-03-10-round (self-refine),
ten rounds of self-refinement without a Judge, where the model relies solely on itself to correct and
optimize kernels given hardware feedback; (3) O3-10-C: OpenAl-03-10-round (correction-only),
a variant of CudaForge where the Judge provides only correctness feedback but no perfor-
mance optimization feedback; (4) O3-10-O: OpenAl-03-10-round (optimization-only), a variant
of CudaForge where the Judge provides only optimization feedback but no correction feedback;
(5) Kevin-10: Kevin-32B-10-round(self-refine), the RL-based model run for ten iterative rounds
under the same protocol; (6) AgentBaseline: the agentic workflow from (Lange et al., |2025), a
strong multi-agent baseline. Due to the high computational cost of running Kevin-32B on the full
benchmark, we additionally construct a stratified random subset D* for fair comparison. Details of
KernelBench and D* are provided in Appendix

This suite enables a comprehensive comparison across (i) base model vs. corresponding agent-based
method, (ii) the presence/absence of Judge feedback, (iii) RL-based vs. training-free agent-based
approaches, and (iv) different agentic methods.

3.3 MAIN RESULTS

Table [I] reports the main results on KernelBench. CudaForge consistently outperforms all base-
lines across all metrics, both on the full benchmark D and on the stratified subset D* .

On D, CudaForge attains 97.6 % correctness with an average performance of 1.677 x, and 70.8 %
Fast;, while achieving a median speedup of 1.107 x with a 75th percentile speedup of 1.592x. This
is a clear improvement over its base model O3-S. On D*, which allows fair comparison with the
advanced RL model Kevin, CudaForge achieves 100% correctness, a median speedup of 1.322x,
a 75th percentile speedup of 1.736x, an average performance of 1.767x, and 84.0% Fast;. This

Under review as a conference paper at ICLR 2026

Table 1: Main results on KernelBench (Level 1-3, 250 tasks). Results of AgentBaseline is on Level
1 and 2. All experiments here are run in RTX 6000. Methods evaluated on D* are marked with *.

Method Correctt Median{ 75% 1 Perf1 Fast;!
03-S 57.6% 0.390 1.014 0.680 31.60%
03-10 90.8% 1.012 1.209 1.107 55.20%
03-10-C 97.6% 1.031 1.238 1.222 59.60%
03-10-0 88.4% 1.061 1483 1509 64.00%
AgentBaseline 95.0% — — 1.490 —

Kevin-10* 64.0% 0.472 1.047 0.608 36.00%
CudaForge 97.6% 1.107 1.592 1.677 70.80%
CudaForge* 100% 1.322 1.736 1.767 84.00%

Table 2: Main results on KernelBench (Level 1-3, 250 tasks) of CudaForge.

Task Correct! MedianT 75% 1 Perf? Fast;T

Level 1 96% 1.044 1.751 1448 54.0%
Level 2 100% 1.124 1427 2.104 89.0%
Level 3 96% 1.081 1.510 1.283 68.0%

substantially surpasses Kevin-10, which reaches only 64.0% correctness, 0.472x median, 1.047x
at the 75th percentile, 0.608 x performance, and 36.0% Fast;. This represents a +63.6% absolute
gain in correctness and a +1.159 x speedup, despite CudaForge being a training-free method while
Kevin is a RL-trained model.

We also compare CudaForge with AgenticBaseline in KernelBench Level 1 and Level QEI As
shown in Table[2] CudaForge achieves 98% correctness and an average speedup of 1.776x, which
outperforms AgenticBaseline (95.0%, 1.490x), especially in speedup. This result shows our advan-
tage compared to existing agentic work.

Notably, on Level 3—the most challenging tier of KernelBench—CudaForge achieves 96%
correctness and an average 1.283x speedup. Given the complexity of Level 3 tasks, which in-
volve full neural network architectures and multi-stage operations, these results demonstrate that
CudaForge is capable of reliably generating and optimizing highly complex CUDA kernels, where
prior approaches (Baronio et al., [2025; [Lange et al., 2025) have not explored it.

We evaluate both API and time cost on KernelBench. On average, CudaForge requires only 25
minutes on a single RTX6000 GPU and incurs $0.3 API cost per kernel. This is highly cost-efficient
compared with another agentic work (Lange et al., |2025), which reports about 6 GPU hours on
H100 and $5 per kernel in their Appendix E. These results demonstrate that, by leveraging hardware
feedback, our workflow can rapidly converge to high-quality solutions at low cost.

3.4 ABLATION STUDIES

Comparison with O3-10 (self-refinement). A key motivation behind CudaForge is to decou-
ple the roles of generation and evaluation. In O3-10, the same model performs ten rounds of
self-refinement, implicitly taking on both roles: it must both propose new kernels and evaluate
its own outputs based on hardware feedback and runtime signals. While this strategy raises correct-
ness 57.6% to 92.8%, performance remains limited (1.107x speedup, 55.2% Fast;). In contrast,
CudaForge explicitly separates responsibilities: the Coder focuses on code generation, while the
Judge specializes in providing structured feedback. This division of labor proves critical—allowing
each agent to concentrate on a distinct reasoning process—and results in significantly higher effi-
ciency (1.677 x speedup, 70.8% Fast;) without sacrificing correctness.

3Note that these works only report results in Level 1 and 2, and we directly take the results from their paper
since the paper has not opened sourced the code.

Under review as a conference paper at ICLR 2026

Table 3: CudaForge’s performance on different GPUs. The system consistently achieves high
correctness and strong performance across architectures by incorporating GPU specifications and
Nsight Compute profiling signals during optimization.

GPU Correctt Median1 75% 1 Perf1 Fast;t
RTX 6000(Ada Arch-Data center level) 100% 1.322 1.736 1767 84.0%
RTX 4090(Ada Arch-Desktop level) 100% 1.188 1.589 1327 80.0%
A100(Ampere Arch-Data center level) 100% 1.371 1.762 1.841 84.0%
RTX 3090(Ampere Arch-Desktop level) 100% 1.155 1.706 1320 72.0%

Comparison with 03-10-C (correction-only Judge). In O3-10-C, the Judge only provides cor-
rection feedback based on runtime signals, without optimization feedback. This setting achieves the
same 97.6% correctness as CudaForge, confirming that iterative error correction is sufficient to
ensure reliable kernel generation. However, efficiency remains much lower, with only 1.222x per-
formance and 58.8% Fast;. The contrast with CudaForge(1.677 x, 70.8 %) highlights that while
correctness feedback stabilizes generation, performance feedback—grounded in hardware profil-
ing—is essential for driving substantial efficiency gains.

Comparison with 03-10-O (optimization-only Judge). We also evaluate the variant where the
Judge provides only optimization feedback, without correction feedback. In this setting, the Coder
frequently generates kernels that fail to compile or run, since functional errors remain uncorrected.
As aresult, overall correctness is substantially lower than CudaForge, and the potential benefits of
optimization guidance cannot be realized. This outcome demonstrates that correctness feedback is
a prerequisite: Without first ensuring functional validity, optimization feedback alone is ineffective
and often wasted. In contrast, CudaForge leverages both correction and optimization feedback,
enabling stable kernel generation and consistent efficiency improvements.

3.5 GENERALIZATION CAPABILITY OF CUDAFORGE

In this section, we analyze CudaForge’s capabilities across various maximum iteration num N,
GPU architectures and base models. Considering the high cost of full experiment, we use the strati-
fied subset D* for this section.

Scaling up the maximum number of iteration rounds We investigate the effect of the maximum
iteration number /N on CudaForge’s performance.

Performance vs. Rounds

g
=

Avg Speedup

o

0.5

0 5 10 15 20 25 30
Round
Figure 3: Scaling the number of iteration rounds to 30 on KernelBench (subset D*).

As shown in Figure [3| increasing /N from 1 to 10 leads to substantial performance gains, indicat-
ing that CudaForgecan rapidly improve kernel efficiency through iterative refinement. Further
increasing N from 10 to 30 continues to improve performance, though with a slower growth rate,
suggesting that the system gradually approaches its performance ceiling. These results demonstrate
that CudaForge benefits from test-time scaling and has the potential to achieve even stronger per-
formance given larger N with additional inference cost.

Using CudaForge in different GPUs. We also evaluate CudaForge on various GPU archi-
tectures, including RTX 6000, RTX 4090, RTX 3090 and A100, to examine its effectiveness under
different hardware conditions. As shown in Table 3] CudaForge consistently achieves high cor-
rectness and strong performance on all tested GPUs. This is a direct consequence of its design:

Under review as a conference paper at ICLR 2026

Table 4: Performance of CudaForge with different base model combinations. We fix one agent
as OpenAl-03 and replace the other with various models. All combinations achieve strong results,
showing that the framework is not tied to a specific base model.

Models (Coder/Judge) Correctf Median1 75% 1t Perf{ Fast;?

03/03 100% 1.322 1.736 1767 84.0%
03/ GPT-5 100% 1.131 1.561 2114 96.0%
03/ Claude 100% 1.265 1456 1.829 84.0%
03/ GPT-OSS-120B 100% 1.226 1490 1364 76.0%
GPT-5/03 100% 1.125 1.388 1.896 72.0%
Claude / O3 88% 1.052 1.207 1.398 56.0%
GPT-OSS-120B / O3 96% 1.080 1477 1.653 68.0%
QwQ /03 84% 0.965 1.153 0.790 44.0%

during the optimization phase, the Judge explicitly incorporates hardware feedback, including NCU
metrics and GPU specifications when generating feedback to Coder. This allows the Coder to pro-
duce kernels that are tailored to the target GPU at inference time, without training.

Instantiate CudaForge with various LLM. To examine whether CudaForge depends on a spe-
cific base model, we conduct experiments by fixing one side (Coder or Judge) as OpenAl-03 and
replacing the other with various advanced LLMs, including QwQ-32B, GPT-5, Claude, and GPT-
OSS-120B. As shown in Table[d] all combinations achieve high correctness and strong performance,
comparable to or even surpassing the original O3/0O3 configuration. These results indicate that
CudaForge is not tied to a specific base model: its effectiveness stems from the workflow of
Coder and Judge, and it can readily benefit from stronger models as they emerge.

4 SUPPLEMENT EXPERIMENTS AND OBSERVATIONS

Case study. To comprehensively understand the details of CudaForge, we investigate to a specific
case to study its iterative workflow. As shown in Appendix [A], it demonstrate a 10-round refine
process of KernelBench Level 1 task 95. Our workflow iteratively corrects and optimizes the kernel,
with the feedback of Judge model. More details could be found in[A]

Comparison of different NCU metric sets. We compare different NCU metric set(the full NCU
metric set and 24-metric subset we used) to explore their influence in our workflow. As shown in
Appendix [C.1] our experiment indicates that if we use the full NCU metrics as input for Judge, the
Judge will fail to pinpoint the bottleneck, generating misleading optimization suggestions for Coder,
leading to bad or unchanged kernel performance eventually.

Observations in CUDA-L1 results. We carefully examined the kernel outputs reported by CUDA-
L1 (see Appendix [D) and identified an interesting phenomenon that we term “fake kernels.” These
kernels, while reported as performant, often contain no actual CUDA code. Instead, they rely on
try-except constructs and fall back to PyTorch’s official implementations to solve the task. This
observation highlights a fundamental challenge in evaluating LLM-generated CUDA kernels. To
avoid this issue, we have manually checked all kernels in our experiments.

5 CONCLUSION

We presented CudaForge, a training-free multi-agent framework for CUDA kernel generation and
optimization. The framework mimics the iterative workflow of human experts, explicitly incor-
porating hardware feedback to guide targeted kernel refinement rather than blind exploration. On
the KernelBench benchmark, CudaForge achieves highest correctness rate and significant perfor-
mance gains compared with all existing method, while also demonstrating robustness across diverse
GPU architectures and base LLMs Moreover, its performance scales effectively with the number of
refinement rounds. Finally, thanks to its low API and time cost, CudaForge provides a practical
and efficient solution for automated CUDA kernel development.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This paper proposes the CudaForge framework for automatically generating and optimizing
CUDA kernels, applied to diverse tasks in KernelBench. The design and experiments strictly adhere
to ethical guidelines, ensuring that no sensitive or personally identifiable information is involved.
All experiments rely solely on publicly available benchmarks and standard GPU hardware, and no
human data was collected or processed.

We acknowledge the potential environmental concerns related to large-scale model training. While
our framework reduces inference-time cost compared to RL-based methods, more efficient kernels
could indirectly accelerate resource-intensive workloads. We therefore encourage responsible and
sustainable use of this technology. Our framework is intended strictly for research and scientific
purposes, and does not introduce additional risks beyond those already associated with standard
compiler or optimization tools.

REPRODUCIBILITY STATEMENT

We have taken extensive measures to ensure the reproducibility of our work. All experiments are
conducted on the publicly available KernelBench benchmark, which provides standardized tasks,
PyTorch references, and input/output specifications. We report detailed results across all difficulty
levels, including averaged metrics and stratified subsets, to ensure statistical robustness.

To support replication, we provide a comprehensive description of our workflow in Section and
include all prompts used for the Coder and Judge agents in Appendix [B] Furthermore, we provide
full experimental details, including GPU hardware platforms, evaluation metrics, and iteration pro-
tocols. Since CudaForge is entirely training-free, no additional data collection or model training
is required, greatly simplifying reproducibility.

We will release code and experiment scripts upon publication, ensuring that all results reported in
this paper can be faithfully reproduced.

REFERENCES

Carlo Baronio, Pietro Marsella, Ben Pan, Simon Guo, and Silas Alberti. Kevin: Multi-turn rl for
generating cuda kernels, 2025. URL https://arxiv.org/abs/2507.11948.

Tiangi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. Learning to optimize tensor programs. Advances in Neural Informa-
tion Processing Systems, 31, 2018.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In Inter-
national Conference on Learning Representations (ICLR), 2024.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness. In Advances in Neural Information Process-
ing Systems (NeurlPS), 2022.

Yihong Dong, Xue Jiang, Jiaru Qian, Tian Wang, Kechi Zhang, Zhi Jin, and Ge Li. A survey on code
generation with llm-based agents, 2025. URL https://arxiv.org/abs/2508.00083,

Huanqi Hu, Bowen Xiao, Shixuan Sun, Jianian Yin, Zhexi Zhang, Xiang Luo, Chengquan Jiang,
Weiqi Xu, Xiaoying Jia, Xin Liu, and Minyi Guo. Liquidgemm: Hardware-efficient w4a8 gemm
kernel for high-performance 1lm serving, 2025. URL |https://arxiv.org/abs/2509.
01229,

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation, 2024. URL https://arxiv.org/abs/2406.00515|

Robert Tjarko Lange, Qi Sun, Aaditya Prasad, Maxence Faldor, Yujin Tang, and David Ha. Towards
robust agentic cuda kernel benchmarking, verification, and optimization, 2025. URL https:
//arxiv.org/abs/2509.142709.

10

https://arxiv.org/abs/2507.11948
https://arxiv.org/abs/2508.00083
https://arxiv.org/abs/2509.01229
https://arxiv.org/abs/2509.01229
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2509.14279
https://arxiv.org/abs/2509.14279

Under review as a conference paper at ICLR 2026

Shiyang Li, Jingyu Zhu, Jiaxun Han, Yuting Peng, Zhuoran Wang, Xiaoli Gong, Gang Wang, Jin
Zhang, and Xuqgiang Wang. Onegraph: a cross-architecture framework for large-scale graph
computing on gpus based on oneapi. CCF Transactions on High Performance Computing, 6(2):
179-191, 2024.

NVIDIA. Cuda c++ programming guide. https://docs.nvidia.com/cuda/cuda-c-programming-guide/,
2025a. Accessed: 2025-09-21.

NVIDIA. Nvidia cudnn. https://developer.nvidia.com/cudnn, 2025b. Accessed:
2025-09-21.

OpenAlL Openai 03 and o4-mini system card. https://openai.com/index/
03-04-mini-system—card/, 2025. Accessed: 2025-09-24.

Anne Ouyang, Simon Guo, Simran Arora, Alex L. Zhang, William Hu, Christopher Ré, and Azalia
Mirhoseini. Kernelbench: Can llms write efficient gpu kernels?, 2025. URL https://arxiv.
org/abs/2502.10517.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL |https://arxiv.org/abs/1707.06347.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision, 2024. URL
https://arxiv.org/abs/2407.08608.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

DeepReinforce Team. Cuda-11: Improving cuda optimization via contrastive reinforcement learning.
arXiv preprint arXiv:2507.14111, 2025.

Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an intermediate language and compiler
for tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, pp. 10-19, 2019.

Min Wu, Huizhang Luo, Fenfang Li, Yiran Zhang, Zhuo Tang, Kenli Li, Jeff Zhang, and Chubo Liu.
Hsmu-spgemm: Achieving high shared memory utilization for parallel sparse general matrix-
matrix multiplication on modern gpus. In 2025 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), pp. 1452-1466, 2025. doi: 10.1109/HPCA61900.2025.
001009.

11

https://developer.nvidia.com/cudnn
https://openai.com/index/o3-o4-mini-system-card/
https://openai.com/index/o3-o4-mini-system-card/
https://arxiv.org/abs/2502.10517
https://arxiv.org/abs/2502.10517
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2407.08608
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300

Under review as a conference paper at ICLR 2026

A CASE STUDY

A.1 A GOOD CASE

KernelBench L1-95 ¢ CrossEntropyLoss — Judge Outputs & Speedup

ot "bottleneck": "65% long-scoreboard stalls from global-memory latency;
s only 48 warps/SM active because each thread uses 40 registers."
"optimisation method": "Limit per-thread registers to <32 to enable 64-warp
5.0 Noccupancy, better hiding DRAM latency and cutting long-scoreboard stalls."
"bottleneck": "71% long-scoreboard stalls from second
7 251 global-memory read of logits after max pass"
‘;,\:; "optimisation method": "Buffer logits in per-warp shared memory during max]|
E_/ 2.0 pass and reuse for exp/sum, eliminating extra global access and latency"
=
=
§ 154 "critical_issue": "Thread-0 uses uninitialized target_logit"
v "minimal_fix_hint": "broadcast target logit via __shfl sync to thread0"
1.0 q
os | "bottleneck": "Frequent shared-memory reductions cause 23.7% barrier stalls"
"optimisation method": "Use warp-level shuffles for max/sum, @ Optimization Round
0.0 then single cross-warp reduction, eliminating 14 of 16 __ syncthreads() per block" W Correction Round
2 a4 6 8 10

Round

Figure 4: Illustration of the Judge’s outputs—bottleneck diagnoses and optimization sugges-
tions—on KernelBench Level-1 Task 95 (CrossEntropyLoss), as well as the correspondi speedup
across rounds (green = optimization, red = correction).

In this section, we present a case study on a single task to illustrate how the Judge diagnoses
issues and recommends optimizations. Figure |4| depicts the 10-round refinement process of
CudaForge ontask 95_CrossEntropyLoss. We highlight four representative rounds—three
optimization rounds and one repair round—to demonstrate how the Judge leverages hardware feed-
back from NCU to provide targeted optimization or bug-fix suggestions.

In round 2, which is an optimization round, the Judge notices that 23.7% of active warps are stalled
due to barrier-type dependencies, which means roughly one quarter of potential issue opportunities
are blocked by synchronization. According to this, the Judge recommended replacing the origi-
nal shared-memory reduction that required multiple block-level synchronizations with a warp-level
shuffle reduction, giving below suggestion as prompt for coder: use warp-level shuffles in the max
and sum phases, then perform a single cross-warp combine, reducing __syncthreads () per block
from 16 to 2 (a reduction of 14). After applying this change, performance improved from 1.66 x to
2.42x, with barrier stalls reduced and instruction-issue efficiency increased.

In round 5, it is a correction round. The previous round fails a numerical check with the following
error: “Outputs are not close, indicating a result mismatch”. The Judge diagnosed the root cause
as an uninitialized target_logit in thread O (“Thread-0 uses uninitialized target_logit”), which means
the variable target_logit is not updated to thread 0, leading wrong computing results. Accordingly,
the Judge gave the minimal fix suggestion, broadcast target_logit via _shfl_sync to thread
0. After applying the fix, the numerical issue disappeared.

In Rounds 6 & 7 (both optimization rounds), the Judge continues to track
smsp__warp_issue_stalled_long_scoreboard_per_warp_active.pct. In Round 6, this metric is
about 65%, primarily reflecting long-scoreboard stalls caused by global-memory latency. Per-thread
register usage is high, resulting in limited occupancy (only ~ 48 active warps/SM) and insufficient
latency hiding. The recommendation is to reduce per-thread registers to raise concurrency to ~ 64
warps/SM and thereby lower the long-scoreboard share. In Round 7, the metric rises to about 71%,
rooted in a second global read of logits after the max pass. The Judge therefore advises buffering
logits in per-warp shared memory during the max pass and reusing them in the expsum phase,
eliminating the redundant global memory access. Together, these strategies reduce global memory
access, significantly cut long-scoreboard stalls, improve issue efficiency and throughput; after these
two rounds, the speedup increases from 3.436x to 3.762x.

This task demonstrates our CudaForge’s stability and expert-like workflow: first analyzing bottle-
necks from hardware feedback, then deriving the corresponding optimization strategy.

12

Under review as a conference paper at ICLR 2026

A.2 A BAD CASE

We also explore some bad cases of our workflow. Take KernelBench Level 1 Task 5 as an example:

import torch

1

2 import torch.nn as nn

3

4 class Model(nn.Module):

5 999999

6 Simple model that performs a matrix—scalar multiplication (C = A * s)
7 999999

8 def __init__(self):

9 super(Model, self).__init__()

10

1 def forward(self, A: torch.Tensor, s: float) —> torch.Tensor:
o 32999

13 Performs matrix—scalar multiplication.
14

15 Args:

16 A: Input matrix of shape (M, N)

17 s: Scalar value

18

19 Returns:

20 C: Resulting matrix of shape (M, N)
» 339995

2 return A * s

23

u M=16384

s N =4096

7 def get_inputs():

28 A = torch.randn(M, N)

29 s=3.14

30 return [A, s]

31

32 def get_init_inputs():

33 return [] # No special initialization inputs needed

]

In the first round, CudaForgegenerated a wrong kernel:

1 ““‘python

2 # <complete ModelNew code>

3 import torch

4 import torch.nn as nn

s from torch.utils.cpp_extension import load_inline
6

7

8

9

#
CUDA source for fused ReLU + per—channel bias addition
#
10 cuda_src=r
11 #include <torch/extension.h>
12 #include <cuda.h>
13 #include <cuda_runtime.h>

999999

15 template <typename scalar_t>

16 _-global__ void relu_bias_add_kernel(const scalar_t+ __restrict__ X,
17 const scalar_t« __restrict__ bias,

18 scalar_t+ __restrict__y,

13

Under review as a conference paper at ICLR 2026

20
21
2
23
24
25
26
27
28
29

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

const int spatial,

const int channels,

const int total_elems) {
int idx = blockIdx.x * blockDim.x + threadldx.x;
if (idx >= total_elems) return,;

int ¢ = (idx / spatial) % channels; // channel index
scalar_t v = x[idx];
v =V > static_cast<scalar_t>(0) ? v : static_cast<scalar_t>(0);
v += bias|c];
ylidx] =v;
}

torch::Tensor relu_bias_add_cuda(torch:: Tensor X, torch::Tensor bias) {
TORCH_CHECK(x.is_cuda(), "Input tensor x must reside on CUDA device”);
TORCH_CHECK((bias.is_cuda(), ”Bias tensor must reside on CUDA device”);
TORCH_CHECK(x.scalar_type() == torch::kFloat32,
”Only float32 data type is supported”);

const int N = x.size(0);

const int C = x.size(1);

const int H = x.size(2);

const int W = x.size(3);

const int spatial = H = W;

const int total _elems = N s C # spatial;

auto y = torch::empty_like(x);

const int threads = 256;
const int blocks = (total_elems + threads — 1) / threads;

relu_bias_add_kernel << <blocks, threads>>>(
x.data_ptr<float>(),
bias.view({C}).data_ptr<float>(),
y.data_ptr<float>(),
spatial,
C,
total_elems);

cudaError_t err = cudaGetLastError();
if (err != cudaSuccess)
throw std::runtime_error(cudaGetErrorString(err));

return y;

993993

999999

cpp-decls =r
torch::Tensor relu_bias_add_cuda(torch::Tensor x, torch::Tensor bias);

999995

Compile / load the CUDA extension

relu_bias_add = load_inline(
name="relu_bias_add”,
cpp-sources=cpp-decls,
cuda_sources=cuda_src,
functions=["relu_bias_add_cuda”],
verbose=False,

14

Under review as a conference paper at ICLR 2026

78

79 #
g0 # Optimised model using the fused CUDA kernel
31 #
82 class ModelNew(nn.Module):

83 999999

84 Same computation as original Model but with a fused

85 ReLU + bias—add CUDA kernel for higher performance.

999993
86

87 def __init__(self, in_channels, out_channels, kernel size, bias_shape):
88 super().__init__()

89 self.conv = nn.Conv2d(in_channels, out_channels, kernel_size)

9% # Bias after ReLU (per—channel, 11 spatial)

91 self.bias = nn.Parameter(torch.randn(bias_shape))

92 self._relu_bias_add = relu_bias_add

93
94 def forward(self, x):

95 x = self.conv(x)

9% # Fused kernel: y = relu(x) + bias

97 x = self._relu_bias_add.relu_bias_add_cuda(x, self.bias)
98 return x

99

100

o1 #

12 # Helper functions (unchanged)

103 #

104 batch_size = 32

10s in_channels =32

106 out_channels = 64

107 height = width = 64

108 kernel_size =3

100 bias_shape = (out_channels, 1, 1)

110

i def get_inputs():

12 return [torch.rand(batch_size, in_channels, height, width, device="cuda”)]
113

14 def get_init_inputs():

115 return [in_channels, out_channels, kernel_size, bias_shape]

X3

116

Then the Judge got the runtime log and current kernel to analyze the error. However, the runtime log
tracked back to another file, which we used to compare results. Without any information about this
file, our workflow failed in the every turn of the 10-round iteration. This result reveals the challenge
in automatically developing kernels in multi-file situation.

B PRrROMPT

B.1 SEED PROMPT FOR CODER(ONE-SHOT BASELINE PROMPT FROM KERNELBENCH)

We adopt the One-shot Baseline Prompt introduced in KERNELBENCH as our initial seed prompt
for first round generation of all the baselines and our method. The full prompt is shown below.

You write custom CUDA kernels to replace the pytorch operators in the given architecture to
get speedups. You have complete freedom to choose the set of operators you want to replace.
You may make the decision to replace some operators with custom CUDA kernels and leave
others unchanged. You may replace multiple operators with custom implementations,
consider operator fusion opportunities (combining multiple operators into a single kernel, for
example, combining matmul+relu), or algorithmic changes (such as online softmax). You are

[Y N T R N

15

Under review as a conference paper at ICLR 2026

7 only limited by your imagination.

9 Here an example to show you the syntax of inline embedding custom CUDA operators in
torch:
10 The example given architecture is:

%3

12 {few_base}

e

14 The example new arch with custom CUDA kernels looks like this:

XX

16 {few_new}

%3

19 You are given the following architecture:

21 ““‘python

2 {arch_src}

24 Optimize the architecture named Model with custom CUDA operators! Name your optimized
25 output architecture ModelNew. Output the new code in codeblocks. Please generate real

2 code, NOT pseudocode, make sure the code compiles and is fully functional. Just output

27 the new model code, no other text, and NO testing code!

B.2 PROMPT FOR JUDGE

In our prompt design for the Judge agent, we place the role specification and output schema in
the system prompt. The input prompt only supplies per-round context(runtime information, NCU
metrics, error_log). The system prompt is fixed; only the input prompt content changes each round.

The system prompt for cuda kernel optimization:

1 You are a senior CUDA performance engineer. Read the target GPU spec, the PyTorch

2> reference code, the current CUDA candidate, and the Nsight Compute metrics. Then identify
wxexactly onesx highest—impact speed bottleneck by 3—4 most important metrics, propose s
exactly ones optimisation method and propose a modification plan. Be surgical and metrics—
driven.

3
4 Rules:

s — Return #xone and only one:* optimisation method the largest expected speedup.
¢ — Prefer changes that directly address measured bottlenecks (occupancy limits,

7 memory coalescing, smem bank conflicts, register pressure, long/short scoreboard
s stalls, tensor—core underutilisation, etc.).

9 — Keep fields brief; avoid lists of alternatives, disclaimers, or generic advice.

11 Output format (JSON):

XX

12 json

14 ”bottleneck”: ”<max 30 words>",
15 “optimisation method”: ”<max 35 words>",
16 “modification plan”: ”<max 35 words>"

999995

The input prompt for optimization:

1 # Target GPU
> GPU Name: {gpu_name}
3 Architecture: {gpu_arch}

16

Under review as a conference paper at ICLR 2026

Details:
{gpu_items}

Pytorch Reference
{python_code}

CUDA candidate
““‘python
{CUDA_CODE}

%3

Nsight Compute metrics (verbatim)
{NCU_METRICS}

Read everything and follow the Rules exactly. Return the JSON in the specified format.

The system prompt for kernel correction:

1

=T - NV B U R)

You are a senior CUDA + PyTorch correctness auditor. Your job is to read a PyTorch
reference and a CUDA candidate and report exactly one most critical correctness issue in the
CUDA code that would cause a behavioral mismatch vs. the PyTorch reference. Be terse and
precise.

Rules:

Return one and only one issue the single highest—impact problem.

Prefer semantic/correctness issues over micro—optimizations or style.

If multiple issues exist, pick the one that most changes outputs or gradients.
If nothing clearly wrong is found, say it explicitly.

Keep each field brief; avoid extra commentary, lists, or alternatives.

Output format (JSON):

XX

json
“critical_issue”: ”<max 20 words>",
“why_it_matters”: ”<max 35 words>",
”minimal _fix_hint”: ”<max 20 words>"

}

e

The input prompt for kernel repair:

© ® N L R W N =

)

You are given:

ERROR _LOG:
{ERROR _LOG}

PyTorch reference (ground truth):
{PYTORCH_CODE}

CUDA candidate (to audit):

17

Under review as a conference paper at ICLR 2026

1 {CUDA_CODE}

s Follow the Rules and produce the JSON exactly in the specified format.

B.3 PROMPT FOR CODER

For the Coder, we use the default system prompt and put all task details in the input prompt. This
keeps the agent simple and fully context-driven. .

The prompt for kernel optimization:

Target GPU

GPU Name: {gpu_name}
Architecture: {gpu_arch}
Details:

{gpu_items}

You are a CUDA—kernel optimization specialist.

N - NV T SO UV SR

Analyze the provided architecture and =xstrictly apply the following STRATEGY s to
produce an improved CUDA kernel.

1 ““‘python

2 {CUDA_CODE}

e

15 [optimization instructions]
16 {optimization_suggestion}

18 GOAL

20 — Improve latency and throughput on the target GPU.
21— Maintain correctness within atol=1e—4 or rtol=1e—4.
22— Preserve the public Python API (same inputs/outputs, shapes, dtypes).

s OUTPUT RULES (STRICT)

2 1. Inside the block, follow #xexactly: this order:

27 1. Imports ‘torch’, ‘torch.nn‘, ‘load_inline°.

28 2. ‘source’ triplequoted CUDA string(s) (kernel + host wrapper).
29 3. ‘cpp-src* prototypes for xallx kernels you expose.

30 4. %xOnesx ‘load_inline‘ call per kernel group.

31 5. ‘class ModelNew(nn.Module)‘ mirrors original inputs/outputs but calls

32 your CUDA kernels.

33 2. %xDo NOT includes testing code, ‘if __name__=="__main__"*, or extra prose.
34

35 ““‘python

36 # <your corrected code>

e

The prompt for kernel correction:

You are a senior CUDA—extension developer.
Your job is to #*FIXx: the compilation or runtime errors in the Python script
shown below.

S

18

Under review as a conference paper at ICLR 2026

OUTPUT RULES (STRICT)
1. Inside the block, follow s:xexactlys:: this order:

5

6

7 1. Imports ‘torch‘, ‘torch.nn®, ‘load_inline*.

s 2. ‘source’ triplequoted CUDA string(s) (kernel + host wrapper).

9 3. ‘cpp-src’ prototypes for xallx kernels you expose.

10 4. %%One=x* ‘load_inline‘ call per kernel group.

1 5. ‘class ModelNew(nn.Module)* mirrors original inputs/outputs but calls
12 your CUDA kernels.

13 2. %xDo NOT includesx testing code, ‘if _name__==""__main__"*, or extra prose.
14

15

16 ERROR LOG

15 {ERROR_LOG}

21 OLD CODE (read—only)

3 {CUDA_CODE}

26 Main Critical Problem
23 {Problem}

3 ““‘python
31 # <your corrected code>

e

C DETAIL FOR THE NCU METRICS

C.1 WHY CHOOSE NCU SUBSET METRICS?

We find that exposing large models to the full NCU metric set overwhelms them, reducing the
accuracy and stability of their optimization suggestions and degrading Judge output quality. We
illustrate this with following specific case study.

4,51 —— Full NCU set

24-metric subset
4.0

wow
o wn

speedup
N
U

15

1.0 T
2 4 6 8 10
round

Figure 5: Generated kernel performance comparison between Full-metrics input(blue line) vs. Met-
rics subset input(orange line) for Judge agent on Level 2 task 51.

As shown in Figure[5] we compare two configurations on a representative task. (i) The Judge agent
receives all raw NCU metrics in each round and provides feedback to the Coder agent. (ii) The

19

Under review as a conference paper at ICLR 2026

Judge agent receives only the 24 key metrics selected by our method and captures only 3-4 critical
metrics in each round to generate optimization suggestion.

Within 10 iterative rounds, the Judge agent using full NCU metrics fails to guide the Coder agent
toward better kernels. The performance of the generated kernels remains almost unchanged, despite
repeated interactions. In contrast, when the Judge agent is restricted to use subset metrics, the per-
formance of generated kernels varies across rounds and is often improved. This process eventually
leads to a substantial speedup.

In addition, we carefully reviewed how the Judge identified bottlenecks and proposed optimizations
in both configurations, full set vs. 24-subset. We select one Judge’s response from the optimization
round to better illustrate the difference in judge output, with full NCU and with a subset of NCU as
judge input.

Response by using the full NCU metrics set:

1 {”bottleneck”: “Long—scoreboard stalls from re-loading GEMM output out of DRAM (
gemm_out round—trip dominates cycles).”,

> “optimisation method”: ”Fuse the Linear GEMM and the current epilogue into one FP16
tensor—core CUTLASS kernel that performs subtract, row—mean, GELU and residual add in—
register, avoiding global-memory re—reads.”,

3 ”modification plan”: ”"Write CUTLASS custom epilogue functor; use cublasLt or cutlass::
gemm_universal to compute GEMM+A, keep accumulators in registers, warp—reduce to mean
, apply GELU, add x_orig, directly store final output; expose via new PyTorch extension.”}

Response by using the 24 key NCU subset:

1 {"bottleneck”: ”Kernel is DRAM-bound (102.9 % peak); 57 % long—scoreboard stalls from
second pass reading original x.”,

> “optimisation method”: Fuse the second loop: cache each threads original_x elements in
registers during diff accumulation, then add gelu_val and store, eliminating the extra BF
global read.”,

3 “modification plan”: "Replace two for—loops with one: load linear_out, subtract, and
original x together, keep original x[16] in per—thread array, finish reduction, add gelu_val,
write to output; ~—4 MB traffic per batch, >30 % speedup.”}

Based on these two responses,we find that judge with full set NCU mertics tends to misidentify the
true bottleneck.The judge with full set NCU metrics attributes the bottleneck to re-loading gemm_out
and recommends a monolithic CUTLASS epilogue that performs row-mean/GELU/residual in reg-
isters. This diagnosis is misaligned with our kernel’s access pattern and is hard to realize for general
shapes due to cross-tile aggregation. In contrast, the judge with 24-key subset correctly identifies
a DRAM-bound kernel dominated by the second pass over x_orig, and proposes a one-pass rewrite
that caches x_orig in registers during the first traversal and writes back after GELU, eliminating
an entire BxF global memory read. This change is lightweight, architecture-agnostic, and yields
consistent speedups (e.g., about 4 MB less traffic per batch, more than 30% in our setting).

C.2 Topr-20 NCU METRICS EXAMPLE

This section reports, for several example tasks, the Top-20 Nsight Compute (NCU) metrics most
correlated with runtime, ranked by the absolute value of the Pearson correlation coefficient. Here,
runtime refers to the kernel’s execution time. When the correlation coefficient is positive, larger met-
ric values typically imply longer execution time; when it is negative, larger metric values typically
imply shorter execution time. All metric names follow their original name in NCU.

20

Under review as a conference paper at ICLR 2026

Table 5: Task-Conv2D: Pearson correlation with runtime (Top-20).

Metric Name

Correlation Abs Correlation

sm__cycles.active.avg
gpc--cycles_elapsed.max
launch__occupancy-limit_shared.mem
dram__bytes.sum.per_second

gpu--dram_-throughput .avg.pct-of_peak_sustained-elapsed

smsp--inst_executed.avg
smsp__inst_executed.sum
smsp-__inst_issued.avg
smsp--inst_issued.sum
lts__t_sector-hit.rate.pct

smsp.--sass._average_branch_targets_threads_uniform.pct

lts_throughput.avg.pct_of_peak_sustained_elapsed
smsp__inst_executed_op_branch.sum
launch-__grid._size

lltex--t_sector_hit_rate.pct
gpc--cycles_elapsed.avg.per_second
dram__cycles_elapsed.avg.per_second
launch..waves_permultiprocessor
launch._thread_count
launch__shared-mem_per_block_static

1.000 000
1.000 000
0.945 507
—0.924 251
—0.924 155
0.916 287
0.916 287
0.916 262
0.916 262
0.839237
0.810 334
—0.787261
0.746 483
0.745917
0.728 356
0.728 053
0.665 784
0.627478
0.627478
—0.610501

1.000 000
1.000 000
0.945 507
0.924 251
0.924 155
0.916 287
0.916 287
0.916 262
0.916 262
0.839 237
0.810334
0.787261
0.746 483
0.745917
0.728 356
0.728 053
0.665 784
0.627478
0.627478
0.610501

Table 6: Task-SpMM: Pearson correlation with runtime (Top-20).

Metric Name

Correlation Abs Correlation

gpc--cycles_elapsed.max

sm__cycles_active.avg
gpu--compute_memory.-request_throughput.avg.pct_...
gpu--compute_memory_throughput.avg.pct_of_peak_....
lts__t_sector_-hit_rate.pct
dram__bytes.sum.per_second

gpu--dram-throughput .avg.pct_of_peak_sustained-...
lltex_.throughput.avg.pct_of_peak_sustained.active
sm__inst_executed.avg.per_cycle_elapsed
smsp--issue_inst0.avg.pct_of_peak.sustained._active
smsp--issue_active.avg.pct_of_peak_sustained-...
smsp--issue.active.avg.per_cycle_active
sm__inst_issued.avg.per_cycle._active
sm__inst_issued.avg.pct_of_peak.sustained.active
sm__inst_executed.avg.per_cycle_active
sm__instruction_-throughput.avg.pct_-of_peak_sust...
smsp.-.average_warp-latency_per_inst_issued.ratio
smsp__average._warps_active_per_inst_executed.ratio
derived__smsp__inst_executed.-op-branch_pct
smsp--warps_eligible.avg.per_cycle_active

0.999993
0.998 432
—0.967 284
—0.964 455
0.951 201
—0.926 134
—0.925 856
0.871262
—0.837675
0.837284
—0.837284
—0.837283
—0.836 185
—0.836 185
—0.836 160
—0.806478
0.802 793
0.802 777
—0.728 768
—0.630772

0.999993
0.998 432
0.967 284
0.964 455
0.951 201
0.926 134
0.925 856
0.871262
0.837675
0.837284
0.837284
0.837283
0.836 185
0.836 185
0.836 160
0.806 478
0.802 793
0.802 777
0.728 768
0.630772

C.3 KEY SUBSET OF 24 NCU METRICS

The table below lists the exact 24 metrics in our task-agnostic key subset.

Table 7: The 24-metric key subset.

H*

Metric Name

sm__cycles_active.avg

launch_.occupancy-limit_blocks
launch_.occupancy_limit_registers
launch__occupancy_limit_shared.mem
launch_.registers_per_thread
sm__inst_executed.sum

NN IR B R R S O R S

10 dram_bytes_read.sum
11 dram_bytes_write.sum

sm__warps.active.avg.pct_of_peak_sustained.active

sm--inst_executed-pipe_-fp32.avg.pct_of_peak_sustained.active
sm__inst_executed_pipe_tensor.avg.pct_of_peak_sustained.active

12 dram--throughput.avg.pct_of_peak_sustained-elapsed

13 dram_-bytes.sum.per_second

14 gpu__dram_throughput.avg.pct_of_peak_sustained.elapsed

21

Continued on next page

Under review as a conference paper at ICLR 2026

D

In our replication efforts, we found that the authors of CUDA-L1 released only the final, generated
kernels for each task. After carefully studying these cases, we identified several interesting findings.

First, We found that CUDA-L1 tends to emphasize PyTorch-level optimizations rather than gener-
ating and refining custom CUDA kernels. This pattern also emerged as the most frequent issue in
their provided case. Although CUDA-LI reports the top-10 cases with the largest speedups, our
review shows that nine of these ten final solutions do not use custom CUDA kernels; instead, they

Metric Name

15 lltex..t_sector_hit_rate.pct

16 lltex.-throughput.avg.pct_.of_peak_sustained.-active

17 lts_-t_sector_hit_rate.pct

18 lts__throughput.avg.pct_of_peak_sustained._active

19 smsp--warp-issue_stalled.memory.dependency_per.warp-active.pct
20 smsp--warp-issue.stalled.short_scoreboard.-per_warp.active.pct
21 smsp--warp-issue.stalled_-long-scoreboard-per_warp-active.pct
22 smsp--warp-issue_stalled.-barrier_per_warp-active.pct

23 smsp-_warp-issue_stalled.branch_resolving.per_warp.active.pct
24 smsp-_sass_average_branch_targets_threads_uniform.pct

CUDA-L1

rely heavily on official PyTorch implementations.

This is the top-ranked entry in their KernelBench Tasks Ranked by RL-CUDAI Acceleration (Top-

10): Level-2 Task 83, with a reported 120.3x speedup

=T [- N Y N O N

import torch
import torch.nn as nn

class ModelNew(nn.Module):
Optimized implementation of a model that performs a 3D convolution,
applies Group Normalization, minimum, clamp, and dropout.

Args:
in_channels (int): Number of input channels
out_channels (int): Number of output channels
kernel_size (int or tuple): Size of the convolving kernel
groups (int): Number of groups for GroupNorm
min_value (float): Minimum value for clamp operation
max _value (float): Maximum value for clamp operation
dropout_p (float): Dropout probability

def __init__(self, in_channels, out_channels, kernel_size, groups, min_value, max_value,

dropout_p):

super(ModelNew, self).__init__()

self.conv = nn.Conv3d(in_channels, out_channels, kernel_size)
self.norm = nn.GroupNorm(groups, out_channels)
self.dropout = nn.Dropout(dropout_p)

self.min_value = min_value

self.max_value = max_value

self.dropout_p = dropout_p

if isinstance(kernel _size, int):

self kernel_size = (kernel_size, kernel _size, kernel_size)
else:

self.kernel_size = kernel _size

self.stride = self.conv.stride

22

Under review as a conference paper at ICLR 2026

38

self.padding = self.conv.padding
self.dilation = self.conv.dilation

def forward(self, x):
x = self.conv(x)
x = self.norm(x)
x = torch.minimum(x, torch.tensor(self.min_value, device=x.device))
x = torch.clamp(Xx, min=self.min_value, max=self.max_value)
x = self.dropout(x)
return x

batch_size = 128

in_channels = 3

out_channels = 16

depth, height, width = 16, 32, 32
kernel_size =3

groups = 8

min_value = 0.0

max_value = 1.0

dropout_p =0.2

def get_inputs():
return [torch.randn(batch_size, in_channels, depth, height, width)]

def get_init_inputs():
return [in_channels, out_channels, kernel_size, groups, min_value, max_value, dropout_p]

The second-ranked case is Level-1 Task 12 (Matmul with diagonal matrices), with a reported 64.4x

speedup
1
> import time
3 import math
4 import torch
s import torch.nn as nn
¢ import torch.nn.functional as F
7
8
9

S

class Model(nn.Module):
Simple model that performs a matrix multiplication of a diagonal matrix with another
matrix.
C =diag(A) « B
def __init__(self):
super(Model, self).__init__()

def forward(self, A, B):
Args:
A (torch.Tensor): 1D tensor, diagonal entries. Shape: (N,)
B (torch.Tensor): 2D tensor. Shape: (N, M)
Returns:
torch. Tensor: (N, M)

999995

23

Under review as a conference paper at ICLR 2026

27 return torch.diag(A) @ B

28

29

30

31

32

33 class ModelNew(nn.Module):

34 999999

35 Optimized model that performs a matrix multiplication of a diagonal matrix with another
matrix.

36 C =diag(A) « B

37 999999

38 def __init__(self):

39 super(ModelNew, self).__init__()

40

41 def forward(self, A, B):

999995
42

43 Args:

44 A (torch.Tensor): 1D tensor, diagonal entries. Shape: (N,)
45 B (torch.Tensor): 2D tensor. Shape: (N, M)
46 Returns:

47 torch.Tensor: (N, M)

48 7

49

50 return B * A.unsqueeze(1)

51

52

53

54

55

s6 M =4096

57 N =4096

58

s9 def get_inputs(device=None, dtype=torch.float32):

60 A = torch.randn(N, device=device, dtype=dtype)

61 B = torch.randn(N, M, device=device, dtype=dtype)
62 return [A, B]

63

o4 def get_init_inputs():

65 return []

In addition, we observed many reported speedups that are effectively equal to one (clustered around
1.00, typically within £5%). A closer inspection shows that, in these cases, the system falls back
to the original PyTorch operator when the custom kernel fails to compile, which naturally yields no
measurable speedup.

For example, below is the forward method from the final solution for KernelBench Level-1 Task
3 generated by CUDA-L1. This code get from the CUDA-L1’s official Github. We observe that
the method first attempts to call a custom CUDA kernel; however, upon any compilation failure
or exception, it immediately falls back to torch.bmm (A, B). Crucially, torch.bmm (&, B)
is exactly the operator that this task asks to be replaced by a custom kernel, meaning the fallback
undermines the task’s objective. This explains why the reported speedup is only 1.006x.

def forward(self, A: torch.Tensor, B: torch.Tensor) —> torch.Tensor:

999999

Performs batched matrix multiplication.

Args:
A: Input tensor of shape (batch_size, m, k).

[Y N T R N

24

Under review as a conference paper at ICLR 2026

7 B: Input tensor of shape (batch_size, k, n).

8

9 Returns:

10 C: Output tensor of shape (batch_size, m, n).
11

12

13 if ModelNew._cuda_module is None:

14 return torch.omm(A, B)

15

16

17 if not A.is_cuda or not B.is_cuda:

18 A = A.cuda() if not A.is_cuda else A

19 B = B.cuda() if not B.is_cuda else B

20

21

2 A = A.contiguous().float()

23 B = B.contiguous().float()

24

25

26 try:

27 result = ModelNew._cuda_module.batched_matmul(A, B)
28 if not A.is_cuda:

29 result = result.cpu()

30 return result

31 except Exception as e:

32 print(f”"Error in custom kernel: {e}, falling back to torch.bmm”)
33 return torch.bmm(A, B)

E DETAILS OF BENCHMARK

E.1 KERNELBENCH

KernelBench is a standardized benchmark designed to evaluate the capability of large language
models (LLMs) in CUDA kernel generation and optimization. It consists of 270 tasks across four
levels of increasing difficulty, of which Levels 1-3 (250 tasks in total) are commonly adopted for
evaluation. Each task provides a PyTorch reference implementation fr, together with fixed in-
put—output specifications, enabling automated correctness and performance validation.

* Level 1 (Basic Operators): Contains simple, low-level operators such as matrix multipli-
cation, element-wise operations, and reductions. These tasks primarily test the ability to
generate functionally correct CUDA kernels.

* Level 2 (Composite Operations): Involves multi-step operator combinations, requiring
the model to compose multiple CUDA primitives and manage intermediate memory effi-
ciently. These tasks test the capacity for more complex code synthesis.

* Level 3 (End-to-End Models): Includes challenging kernels derived from full neural net-
work architectures such as AlexNet, VGG, and ResNet components. These tasks assess the
ability to produce efficient, large-scale kernels under realistic deep learning workloads.

¢ Level 4 (Optional): The full benchmark also defines an advanced level with additional
research-oriented tasks, but this is less frequently adopted due to its complexity and lack of
standardized evaluation setups.

KernelBench has become a widely used benchmark in recent work on LLM-based code generation
(Team, 2025; Baronio et al., [2025} |Lange et al., 2025), as it provides a controlled and reproducible
environment to measure both correctness (functional equivalence to PyTorch) and efficiency (execu-
tion speed relative to PyTorch). In our study, we adopt all Level 1-3 tasks, following prior work, to
ensure fair comparison across baselines.

25

Under review as a conference paper at ICLR 2026

E.2 OUR STRATIFIED RANDOM SUBSET D*

While our main evaluation is conducted on the full KernelBench Level 1-3 benchmark (250 tasks in
total), we additionally construct a stratified subset D* to enable detailed analysis and fair comparison
with prior work such as Kevin.

The construction of D* follows two principles: (1) Coverage across difficulty levels. Since Kernel-
Bench is stratified by increasing task complexity (Level 1: single-operator tasks, Level 2: multi-step
fused operators, Level 3: full network components), we ensure that the sampled subset preserves the
relative distribution of difficulty. (2) Diversity of task types. Within each level, we sample tasks uni-
formly across different operator categories (e.g., elementwise ops, reductions, convolutions, fused
blocks) so that the subset remains representative of the overall benchmark.

Concretely, we perform stratified random sampling with a fixed 10% ratio for each level, resulting
in a subset of 10 tasks from Level 1, 10 tasks from Level 2, and 5 tasks from Level 3, for a total of
25 tasks. For reproducibility, the exact task IDs included in D* are:

* Level 1 (10 tasks): 13, 10, 16, 29, 35,72, 7, 89, 93, 34

» Level 2 (10 tasks): 17, 19, 40, 3, 13, 21, 38, 28, 26, 34
e Level 3 (5 tasks): 5, 18, 32, 41, 21

USAGE OF LLM

During the preparation of this paper, we employed large language models (LLMs) solely for textual
assistance, including grammar correction, stylistic refinement, and clarity improvements. All core
research contributions—including the design of CudaForge, implementation of experiments, and
analysis of results—were conducted entirely by the authors. The LLM was not used to generate
research ideas, experimental results, or any substantive content of the paper.

26

	Introduction
	The CudaForge Framework for CUDA Kernel Optimization
	CudaForge Framework
	How To Integrate Hardware Feedback

	Experiments
	Benchmark and Evaluation
	Settings & Baselines
	Main Results
	Ablation Studies
	Generalization Capability of CudaForge

	Supplement Experiments and Observations
	Conclusion
	Case study
	A good case
	A bad case

	Prompt
	Seed Prompt for Coder(One-shot Baseline Prompt from KernelBench)
	Prompt for Judge
	Prompt for Coder

	Detail for the NCU metrics
	Why choose NCU subset metrics?
	Top-20 NCU metrics Example
	Key Subset of 24 NCU Metrics

	CUDA-L1
	Details of Benchmark
	KernelBench
	Our stratified random subset D*

