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ABSTRACT

Developing efficient CUDA kernels is increasingly critical for AI applications
such as large-scale LLM training. However, manual kernel design is both costly
and time-consuming, motivating automatic approaches that leverage LLMs for
code generation. Existing methods for automatic kernel generation, however, of-
ten produce low-efficiency kernels, incur high computational overhead, and fail to
generalize across settings.
In this work, we propose CudaForge, a training-free multi-agent workflow for
CUDA kernel generation and optimization. Our workflow is inspired by the iter-
ative workflow of human experts, which contains steps such as developing initial
kernels, testing correctness, analyzing hardware feedback, and iterative improve-
ment. More specifically, CudaForge employs two LLM agents – a Coder and
a Judge – that iteratively generate, correct, and optimize CUDA kernels, while
integrating hardware feedback such as Nsight Compute (NCU) metrics. In our
extensive evaluations, we show that CudaForge , by leveraging base models
like OpenAI-o3, achieves 97.6% correctness of generated kernels and an average
1.68× speedup over PyTorch baselines, substantially surpassing state-of-the-art
models including OpenAI-o3 and Kevin on KernelBench. Beyond accuracy and
speed, CudaForge demonstrates strong generalization across GPUs (A100, RTX
6000, 4090, 3090) and base models (OpenAI-o3, GPT5, gpt-oss-120B, Claude-
Sonnet-4, QwQ-32B), while maintaining high efficiency. In particular, generating
an optimized kernel takes about 25 minutes on one RTX 6000 and incurs $0.30
API cost. Our results highlight that multi-agent, training-free workflows can en-
able cost-effective, generalizable, and high-performance CUDA kernel optimiza-
tion.

1 INTRODUCTION

Motivation. CUDA has become the de facto standard for deep learning training because modern
frameworks such as PyTorch and TensorFlow are deeply integrated with NVIDIA’s optimized GPU
libraries (NVIDIA, 2025b). Efficient CUDA kernels are crucial for accelerating deep learning work-
loads(Dao et al., 2022; Dao, 2024) .

However, developing high-efficiency cuda kernels has been known as challenging with very high
learning curve, requiring deep expertise in GPU architectures and parallel programming(Li et al.,
2024). For example, it took more than 2 years from the debut of the Hopper GPU architecture to the
release of FlashAttentionV3 (Shah et al., 2024), which is specially designed for Hopper GPUs.

This high development barrier has driven growing interest in finding automated ways of generating
highly efficient and customized CUDA kernels. For example, some work (Tillet et al., 2019) (Chen
et al., 2018) employs auto-tuning and evolutionary search to automatically explore kernel imple-
mentation spaces and optimize low-level parameters for specific hardware. More recently, there has
been a growing interest in leveraging large language models (LLMs) to perform such tasks. LLM is
believed to hold great promise in generating efficient and high-quality kernels, due to its capability
of code generation in other domains, such as Python, C++ and Triton (Dong et al., 2025; Jiang et al.,
2024; Anonymous, 2025; Li et al., 2025b; Woo et al., 2025; Li et al., 2025a).

Existing Works and Key Challenges. Generally, using LLMs for CUDA kernel generation is still
in an early stage. In KernelBench (Ouyang et al., 2025), the authors attempt to directly use state-of-
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the-art (SOTA) models, such as OpenAI-o1 and Claude-3.5-Sonnet, to generate kernels. However,
it has been observed that these SOTA models still struggle to produce correct or performant kernels
out of the box, revealing fundamental limitations of existing LLMs in this domain.

To address this gap, recent studies have explored two main paradigms. The first approach is based
on reinforcement learning (RL) (Schulman et al., 2017; Shao et al., 2024). CUDA-L1 (Team, 2025)
and Kevin (Baronio et al., 2025) adopt RL to enhance LLMs’ ability to generate correct and perfor-
mant CUDA code. The second approach is based on AI agents. In particular, in an independent and
contemporaneous work (Lange et al., 2025)1, researchers have explored agentic frameworks at in-
ference time. Agents project PyTorch method into CUDA kernel design, then the CUDA kernels are
further refined by sampling new kernels and verification filtering. This design effectively improves
correctness in CUDA kernel generation without the high cost of RL training.

Despite these advances, several key challenges remain:

(C1) Limited kernel efficiency. While RL-based methods improve LLMs’ ability to generate
CUDA kernels, their optimization capability remains insufficient. For example, Kevin-32B only
achieves an average speedup of 1.10× over KernelBench test cases, even after sampling 16 parallel
trajectories with 8 refinement turns each per kernel (Baronio et al., 2025). Further, CUDA-L1 of-
ten fails to directly optimize the CUDA kernels, but producing official implementation of PyTorch
(Team, 2025) (see Appendix F for details).

(C2) High training and inference cost. RL-based approaches such as (Team, 2025; Baronio et al.,
2025) require substantial computational resources and long training cycles, making them unsuitable
for low-resource or rapid-prototyping settings. In addition, multi-stage agentic pipeline developed
by (Lange et al., 2025) incurs high inference costs (about 6 H100 hours and $5 API cost per kernel),
which greatly limits its practical applicability of the approach.

(C3) Lack of hardware feedback. Human experts typically follow an iterative workflow to develop
performant CUDA kernels through testing and refinement. They rely on hardware feedback like
Nsight Compute (NCU)2 to identify bottlenecks and optimize kernels accordingly (Wu et al., 2025;
NVIDIA, 2025a; Hu et al., 2025). In contrast, RL-based approaches (Team, 2025; Baronio et al.,
2025) train LLMs to directly generate or optimize kernels, but do not incorporate hardware feedback
at all. As a result, they rely on blind exploration during generation, lacking the targeted guidance.
This often leads to suboptimal kernel efficiency, limiting their practical applicability.

These challenges raise a natural question: Can we design a simple but effective hardware-aware
approach that reliably produces efficient CUDA kernels at low cost?

Our Contributions. To address these challenges, we propose CudaForge, a simple, effective and
low-cost multi-agent workflow for CUDA kernel generation and optimization, as shown in Figure 1.
Our workflow is inspired by the iterative workflow of human experts (Wu et al., 2025; NVIDIA,
2025a; Hu et al., 2025), which contains steps such as developing initial kernels, testing correctness,
analyzing hardware feedback, and iterative improvement.

This workflow involves two specialized LLM agents that iteratively generate and optimize CUDA
kernels: a Coder, which generates kernels given task instructions and Judge feedback, and a Judge,
which analyzes kernels and hardware feedback to guide the Coder generation. One key novelty
of CudaForge is its integration of external hardware feedback, including GPU specifications and
Nsight Compute (NCU) metrics, enabling the Judge to identify performance bottlenecks like human
experts and provide targeted optimization guidance to the Coder.

Compared to single-LLM approaches that generate and evaluate code using the same LLM, our
framework separates these roles into an independent Coder and Judge, enabling more special-
ized reasoning and more reliable iterative refinement. Unlike RL-based methods, CudaForge is
training-free, avoiding the substantial cost of policy training. It is also hardware-aware, allowing
it to tailor CUDA kernel optimizations to the underlying system, making the proposed framework
easily generalizable across different GPUs. Finally, in contrast to existing multi-agent frameworks
(Lange et al., 2025), CudaForge is lightweight and cost-efficient, running in just 25 minutes on a
single RTX6000 GPU and $0.3 per kernel in API costs, while still achieving better performance.

1published on arxiv Sept 16th, 2025
2Nsight Compute (NCU) is NVIDIA’s official kernel-level profiler for CUDA programs.
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We evaluate CudaForge on 250 KernelBench tasks from Level 1 to Level 3. Though these tasks
are challenging, CudaForge attains a 97.6% correctness rate and delivers an average speedup of
1.68× over PyTorch baselines, which significantly outperforms advanced RL model like Kevin-32B
and advanced frontier model like OpenAI-o3 (OpenAI, 2025). Further, we have conducted com-
prehensive ablation studies of the features of CudaForge, such as its effectiveness across multiple
GPU architectures, its inference-time scalability by increasing the number of generation, and the ef-
fect of different base models. Overall, we observed that the proposed CudaForge achieves robust
performance in all these settings.

These findings highlight the key contribution of this work: The proposed LLM agent workflow
CudaForge is simple but effective: at very low cost, it develops performant CUDA kernels for
many practical tasks, for a variety of GPU architectures and base models. It also exhibits strong
test-time scaling capabilities where solution quality can improve substantially while increasing its
iteration rounds. These results demonstrate CudaForge’s strong practical applicability.

Coder Judge

Hardware Feedback

Runtime Error Info

Kernel 
Test

Candidate

In Correction/Optimization

Iterative Process

CudaForge Workflow

Human Engineer Workflow

Kernel 
TestPrototype

Examine Runtime Info
Fix & Improve

Implementation Task Fulfilled

CUDA Engineer

Figure 1: Comparison between human and CudaForge workflows. Top: Human experts itera-
tively refine kernels by writing a prototype, testing it, and analyzing runtime feedback. Bottom:
CudaForge mimics human workflow with two specialized agents (Coder and Judge). The Coder
generates candidate kernels, while the Judge analyzes runtime info and hardware feedback to pro-
vide correction or optimization feedback. The process iterates until it reaches maximum round N .

2 THE CUDAFORGE FRAMEWORK FOR CUDA KERNEL OPTIMIZATION

2.1 CUDAFORGE FRAMEWORK

Given a CUDA kernel generation task, the objective is to generate a kernel that is functionally
equivalent to its PyTorch reference while achieving the lowest possible execution latency.

Inspired by the iterative workflow of human experts (Wu et al., 2025; NVIDIA, 2025a; Hu et al.,
2025), we design CudaForge as an iterative multi-agent framework, illustrated in Figure 1. The
framework involves two independent agents: a Coder and a Judge. The Coder generates candidate
kernels based on the task description and feedback from the Judge, while the Judge evaluates each
candidate using the kernel itself, hardware feedback and runtime information.

More specifically, given a CUDA kernel generation task, the Coder first receives the task require-
ments and PyTorch reference implementation, then produces an initial candidate kernel. This can-
didate is compiled and executed on test cases to check correctness. If it fails, the Judge inspects
runtime information (e.g., compilation errors, mismatched outputs with the PyTorch reference) and
analyzes the faulty kernel. It then returns correction feedback (e.g., missing header file) to guide the
next iteration. Once a kernel candidate passes the correctness test, the Judge profiles it with the NCU
tool to obtain NCU metrics (e.g., memory throughput, occupancy, warp efficiency). Together with
GPU specifications, these metrics form the hardware feedback that allows the Judge to identify the
dominant bottleneck (e.g., compute-bound or memory-bound) and provide one specific optimization
feedback (e.g. using shared memory) to the Coder.
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Human  Coder

Testing Judge
NCU

Input: {Model Arch in Python}
Output: {ModelNew}
{CUDA Strategies}
{Requirements}

CUDA_KERNEL matmul_atb_kernel
INPUT:  A (K×M), B (K×N)
OUTPUT: C (M×N) = Aᵀ × B

GRID:  (ceil_div(N,16), ceil_div(M,16)) blocks 
BLOCK: 16×16 threads  
FOR each thread (global row i = blockIdx.y*16 +
ty,  global col j = blockIdx.x*16 + tx):                       
    

  Compile and evaluate this kernel

The performance for this kernel is:
{Speedup}.
Please analyze the provided kernel and
try to produce an improved CUDA kernel.

CUDA_KERNEL matmul_atb_optimized:
  INPUT:  A(K×M), B(K×N)
  OUTPUT: C(M×N) = A^T × B
  
  GRID: (M/32, N/32) blocks
  BLOCK: 32×32 threads
  SHARED_MEM: tile_A[32×33], tile_B[32×33]  // +1
padding
  
  FOR each thread(i,j):
    C[i,j] = Σ(k=0 to K-1) LDG(A[k,i]) × LDG(B[k,j])

Initialization Round 1 Round 2

  Compile and evaluate this kernel

GPU PROFILING RESULTS:
- SM Utilization: 91.94% warp occupancy
- Compute Load: 2.06M active cycles, 444.7M
instructions
- Occupancy Bottleneck: Register-limited (4 vs 16 blocks)

FIX MEMORY BOTTLENECK (24% stalls):
1. Add shared memory tiling: (K³×Ci×float) ≤ 64KB
2. Cooperative load + sync + unroll loops  
3. Reduce registers to ≤32 for 8×128 blocks/SM

Generating the improved kernel following
the instruction from Judge...

Let’s use NCU to see what happened while
the kernel was running.

CudaForge(ours)Kevin-32B V.S.

K
ev
in
-3
2B

C
ud

aF
or
ge
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ur
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Figure 2: The overview of conversation between agents in Kevin-32B and CudaForge.

In the next iteration, the Coder is prompted with the previous kernel, Judge feedback, and the original
task requirements, and generates a corrected or optimized kernel. This process repeats for up to N
iterations, after which we select the most efficient correct kernel as the final solution.

CudaForge achieves reliability and efficiency through three key design choices. First, it adopts
a two-agent system where the Coder focuses on generation and the Judge on evaluation, separating
the “cognitive” load (See Section 3.4). The Coder receives only feedback from the Judge, while
the Judge uses hardware and runtime information to guide generation and optimization. This divi-
sion of labor mirrors human workflows and mitigate the risk of overlooking errors or inefficiencies.
Second, the framework follows an iterative optimization process, progressively correcting errors
and improving efficiency across rounds. This enables stable refinement, especially on hard tasks.
Third, it explicitly incorporates hardware feedback, such as GPU specifications and NCU metrics,
so the Judge can pinpoint bottlenecks and provide actionable guidance to the Coder. This targeted
optimization avoids blind exploration and ensures directed performance gains.

2.2 HOW TO INTEGRATE HARDWARE FEEDBACK

In this subsection, we describe in detail a key design consideration, which enables CudaForge to
utilize hardware feedback for kernel performance optimization. The hardware feedback module in-
tegrates static GPU specifications (e.g. architecture, memory bandwidth, per-thread register lim-
its, per-SM shared-memory capacity) with performance metrics (e.g. memory throughput, oc-
cupancy, and warp efficiency) from Nsight Compute (NCU) collected during kernel execution.
By cross-referencing GPU specifications and NCU metrics, the Judge infers the kernel’s primary
performance-limiting cause and bottleneck mechanism. Figure 2 illustrates how Judge uses the
hardware feedback to optimize kernels.

Just as CUDA engineers focus on key indicators, we do not pass the entire set of NCU metrics to the
Judge. Feeding all metrics can overwhelm the decision process with excessive, partially redundant
signals and lead to unstable judgments (See Appendix E.1 for detail). Instead, we design a novel
protocol which profiles a subset of critical metrics provided by NCU and forward them to Judge so
that we can improve the quality of the judge outputs. More specifically, the key subset of metrics
are selected off-line (before the agent start to work), through the following steps:

(Step 1) Kernel sampling and Selection: We first profile key metrics on some preselected repre-
sentative tasks (e.g., Conv2D, MatMul) to prepare a reliable metric set. Specifically, for each task
we run 100 self-refine (repeating the cycle generating→ execute/profile→ evaluate→ repair/opti-
mize) with a single SOTA model (e.g., OpenAI-o3), collect the generated and correct kernels, and
select 10 with the largest speed disparity (fastest vs. slowest). See Algorithm 1.
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Algorithm 1 Step 1: Kernel Sampling and Selection
Input: Task set Task = {T1, T2, . . . , Tn}
Output: Selected subsets K∗

i for each task Ti

for i← 1 to n do
Ki ← ∅ for j ← 1 to 100 do

kj ← generate kernel(Ti) Ki ← Ki ∪ {kj}
end
Sort Ki in nondecreasing order according to kernel runtime m← |Ki| ; // Here m = 100
K∗

i ← {Ki[1],Ki[2],Ki[3],Ki[4],Ki[5],Ki[m−4],Ki[m−3],Ki[m−2],Ki[m−1],Ki[m]}
end

(Step 2) Top-20 metrics within each task: We then refine the metrics within each task to identify
the most relevant candidates. Specifically, for each task we consolidate the NCU metrics from the
10 kernels selected from Step 1 into a single dataset. Since Nsight Compute reports a consistent
full set of metrics across all kernels, the metric categories are aligned by default. We then remove
aliases and strongly collinear indicators, and compute Pearson correlations between each metric and
kernel runtime. We retain only the Top-20 metrics (by absolute correlation) as the candidate set for
that task (see Appendix E.2 for examples).

(Step 3) Metrics selection across-tasks: Finally, we consolidate metrics across tasks to build a
stable, task-agnostic set. We compare the Top-20 lists across tasks and keep metrics that consistently
appear, show the same correlation direction, and achieve high global scores. This yields 24 metrics
that are strongly correlated with kernel runtime across tasks. See Algorithm 2.

Algorithm 2 Step 2-3: Profiling and Metrics Selection
Input: K∗ = {K∗

1 ,K
∗
2 , . . . ,K

∗
n}, where each K∗

i = {k∗1 , k∗2 , . . . , k∗10}
Output: Final metrics set Final Metrics containing 24 unique metrics
M∗ ← ∅
for i← 1 to n do

M∗
i ← ∅ foreach k ∈ K∗

i do
M ← NCU Profile(k) ; // Run NCU profiling, M = {m1,m2, . . . ,mj}
foreach m ∈M do

Compute Pearson correlation coefficient r(m, runtime(k))
end
Top20(k)← the 20 metrics in M with highest |r(·, runtime(k))| M∗

i ←M∗
i ∪ Top20(k)

end
M∗ ←M∗ ∪M∗

i
end
// Final set contains 24 distinct metrics
Final Metrics←

⋂n
i=1 M

∗
i |Final Metrics| = 24

After the above steps are completed offline, during kernel optimization, the Judge profiles each gen-
erated kernel with NCU and uses only this 24 metrics as references (see Appendix E.3 for details).

Overall, at each iteration, the Judge collects hardware feedback, including static GPU specifications
and the key subset of NCU metrics. Based on this information, the Judge identifies the dominant
bottleneck by analyzing the 24 metrics and runtime log. To prevent AI agent searching without di-
rection and generating random results, the Judge only captures 3-4 most important metrics in each
round according to its own reasoning. For example, Judge can identify the current kernel is memory-
bound when memory throughput is high but computing resources utilization is low, and then it will
choose memory related metrics as critical metrics in this round. After this, Judge will generate sug-
gestions on how to modify the kernel to address current critical bottleneck. The Coder incorporates
this guidance in the next round generation accordingly. This mechanism enables our multi-agents
system focus on addressing only one critical program bottleneck in each round, eventually optimize
overall kernel performance step by step in iterative rounds, just like human expert’s real workflow.
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3 EXPERIMENTS

3.1 BENCHMARK AND EVALUATION

We evaluate our method on KernelBench (Ouyang et al., 2025), a popular benchmark designed to
assess the ability of LLMs to generate CUDA kernels. KernelBench consists of multiple difficulty
levels; we adopt all tasks from Level 1 to Level 3, resulting in a total of 250 tasks. Specifically, Level
1 contains relatively simple 100 tasks involving basic operators (e.g., matrix multiplication), Level
2 includes medium-difficulty 100 tasks composed of multi-step operator combinations, and Level 3
contains 50 challenging tasks involving full neural network architectures (e.g., AlexNet). Each task
is accompanied by a reference PyTorch implementation and predefined input/output specifications,
which enables fully automated and reliable evaluation of both correctness and performance.

We evaluate model performance on KernelBench using the following metrics:

(1) Correctness: the fraction of tasks for which the generated kernel compiles successfully and
produces outputs identical to the PyTorch reference on all test cases. (2) Performance: the ratio of
the execution speed (tested on a specific GPU), between a correct generated kernel and its PyTorch
reference. (3) fastp: the proportion of correct kernels whose execution speed exceeds p× that of
the PyTorch reference (e.g., fast1 indicates faster than PyTorch). (4) Median speedup: the median
of ‘Performance’ values across all tasks, reflecting typical rather than average behavior. (5) 75th
percentile speedup: the 75th percentile of Performance values, capturing upper-quartile efficiency.

For methods that perform iterative refinement or generate multiple candidates (including
CudaForge), we report the best-performing correct kernel among all candidates for each task. De-
tails of test cases, correctness evaluation and performance evaluation could be found in Appendix B.

3.2 SETTINGS & BASELINES

In our main results, we instantiate CudaForge with OpenAI-o3 as both the Coder and the Judge
as our default setting. We set the maximum number of iteration rounds to N=10 to balance perfor-
mance improvements and inference cost. Unless otherwise stated, all methods are evaluated under
the same compilation/runtime environment in Quadro RTX 6000 and task-specific test suites.

To contextualize the performance of CudaForge and assess the effect of advanced foundation mod-
els, we include the following baselines for main results and ablation studies: (1) O3-S: OpenAI-o3
(single-shot), one-pass generation without iteration; (2) O3-10: OpenAI-o3-10-round (self-refine),
ten rounds of self-refinement without a Judge, where the model relies solely on itself to correct
and optimize kernels given hardware feedback; (3) O3-10-C: OpenAI-o3-10-round (correction-
only), a variant of CudaForge where the Judge provides only correctness feedback but no per-
formance optimization feedback; (4) O3-10-O: OpenAI-o3-10-round (optimization-only), a variant
of CudaForge where the Judge provides only optimization feedback but no correction feedback;
(5) Kevin-10: Kevin-32B-10-round(self-refine), the RL-based model run for ten iterative rounds
under the same protocol; (6) AgentBaseline: the agentic workflow from (Lange et al., 2025), a
strong multi-agent baseline. Due to the high computational cost of running Kevin-32B on the full
benchmark, we additionally construct a stratified random subset D∗ for fair comparison. Details of
KernelBench and D∗ are provided in Appendix G.

This suite enables a comprehensive comparison across (i) base model vs. corresponding agent-based
method, (ii) the presence/absence of Judge feedback, (iii) RL-based vs. training-free agent-based
approaches, and (iv) different agentic methods.

3.3 MAIN RESULTS

Table 1 reports the main results on KernelBench. CudaForge consistently outperforms all base-
lines across all metrics, both on the full benchmark D and on the stratified subset D∗ .

On D, CudaForge attains 97.6% correctness with an average performance of 1.677×, and 70.8%
Fast1, while achieving a median speedup of 1.107× with a 75th percentile speedup of 1.592×. This
is a clear improvement over its base model O3-S. On D∗, which allows fair comparison with the
advanced RL model Kevin, CudaForge achieves 100% correctness, a median speedup of 1.322×,

6
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Table 1: Main results on KernelBench (Level 1-3, 250 tasks). Results of AgentBaseline is on Level
1 and 2. All experiments here are run in RTX 6000. Methods evaluated on D∗ are marked with ∗.

Method Correct↑ Median ↑ 75% ↑ Perf ↑ Fast1↑
O3-S 57.6% 0.390 1.014 0.680 31.60%
O3-10 90.8% 1.012 1.209 1.107 55.20%
O3-10-C 97.6% 1.031 1.238 1.222 59.60%
O3-10-O 88.4% 1.061 1.483 1.509 64.00%
AgentBaseline 95.0% — — 1.490 —
Kevin-10∗ 64.0% 0.472 1.047 0.608 36.00%

CudaForge 97.6% 1.107 1.592 1.677 70.80%
CudaForge∗ 100% 1.322 1.736 1.767 84.00%

Table 2: Main results on KernelBench (Level 1-3, 250 tasks) of CudaForge.

Task Correct↑ Median ↑ 75% ↑ Perf ↑ Fast1↑
Level 1 96% 1.044 1.751 1.448 54.0%
Level 2 100% 1.124 1.427 2.104 89.0%
Level 3 96% 1.081 1.510 1.283 68.0%

a 75th percentile speedup of 1.736×, an average performance of 1.767×, and 84.0% Fast1. This
substantially surpasses Kevin-10, which reaches only 64.0% correctness, 0.472× median, 1.047×
at the 75th percentile, 0.608× performance, and 36.0% Fast1. This represents a +63.6% absolute
gain in correctness and a +1.159× speedup, despite CudaForge being a training-free method while
Kevin is a RL-trained model.

We also compare CudaForge with AgenticBaseline in KernelBench Level 1 and Level 23. As
shown in Table 2, CudaForge achieves 98% correctness and an average speedup of 1.776×, which
outperforms AgenticBaseline (95.0%, 1.490×), especially in speedup. This result shows our advan-
tage compared to existing agentic work.

Notably, on Level 3—the most challenging tier of KernelBench—CudaForge achieves 96%
correctness and an average 1.283× speedup. Given the complexity of Level 3 tasks, which in-
volve full neural network architectures and multi-stage operations, these results demonstrate that
CudaForge is capable of reliably generating and optimizing highly complex CUDA kernels, where
prior approaches (Baronio et al., 2025; Lange et al., 2025) have not explored it.

We evaluate both API and time cost on KernelBench. On average, CudaForge requires only 25
minutes on a single RTX6000 GPU and incurs $0.3 API cost per kernel. This is highly cost-efficient
compared with another agentic work (Lange et al., 2025), which reports about 6 GPU hours on
H100 and $5 per kernel in their Appendix E. These results demonstrate that, by leveraging hardware
feedback, our workflow can rapidly converge to high-quality solutions at low cost. Details of where
the 25 minutes is spent could be found in Appendix C.

3.4 ABLATION STUDIES

Comparison with O3-10 (self-refinement). A key motivation behind CudaForge is to decou-
ple the roles of generation and evaluation. In O3-10, the same model performs ten rounds of
self-refinement, implicitly taking on both roles: it must both propose new kernels and evaluate
its own outputs based on hardware feedback and runtime signals. While this strategy raises correct-
ness 57.6% to 92.8%, performance remains limited (1.107× speedup, 55.2% Fast1). In contrast,
CudaForge explicitly separates responsibilities: the Coder focuses on code generation, while the
Judge specializes in providing structured feedback. This division of labor proves critical—allowing
each agent to concentrate on a distinct reasoning process—and results in significantly higher effi-
ciency (1.677× speedup, 70.8% Fast1) without sacrificing correctness.

3Note that these works only report results in Level 1 and 2, and we directly take the results from their paper
since the paper has not opened sourced the code.
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Method Correct↑ Performance↑ Fast1↑

CudaForge-Top 24 metrics(ours) 100% 1.767 84%
CudaForge-Full metrics 100% 1.414 80%
CudaForge-Random 24 metrics 100% 1.655 76%
CudaForge-Top 5 metrics(ours) 100% 1.641 76%
CudaForge-Top 10 metrics(ours) 100% 1.644 80%
CudaForge-Top 20 metrics(ours) 100% 1.827 88%

Table 3: Ablation study on NCU metric selection. Comparing full, random, and top-k subsets shows
that concise and carefully chosen metrics (Top-24) provide strong overall performance, while Top-
20 offers slightly higher speedup with similar behavior.

Comparison with O3-10-C (correction-only Judge). In O3-10-C, the Judge only provides cor-
rection feedback based on runtime signals, without optimization feedback. This setting achieves the
same 97.6% correctness as CudaForge, confirming that iterative error correction is sufficient to
ensure reliable kernel generation. However, efficiency remains much lower, with only 1.222× per-
formance and 58.8% Fast1. The contrast with CudaForge(1.677×, 70.8%) highlights that while
correctness feedback stabilizes generation, performance feedback—grounded in hardware profil-
ing—is essential for driving substantial efficiency gains.

Comparison with O3-10-O (optimization-only Judge). We also evaluate the variant O3-10-O,
where the Judge provides only optimization feedback, without correction feedback. In this setting,
the Coder frequently generates kernels that fail to compile or run, since functional errors remain
uncorrected. As a result, this setting achieves 88.4% correctness and a 1.509× speedup, which
are substantially lower than CudaForge(1.677×, 70.8%). The result demonstrates that correction
feedback plays a significant role in CudaForge’s performance. The absence of it will lead to
lower correctness. And without first ensuring functional validity, optimization feedback alone is
ineffective and often wasted.

Ablation study on NCU metrics. A key design choice in CudaForge is to filter the full set of
NCU metrics and retain a subset of 24 critical metrics for the Judge. This selective design enables
the Judge to focus on the most informative performance indicators while avoiding redundancy and
inconsistent feedback. To evaluate this choice, we conduct an ablation study comparing our top-24
metric subset against several variants, including using all NCU metrics, using a random subset of 24
metrics, and using smaller subsets of the top-5, top-10, and top-20 metrics.

As shown in Table 3, two conclusions emerge. First, using the complete set of NCU metrics de-
grades both correctness and speedup, as the Judge becomes overwhelmed by excessive and partially
redundant profiler signals. Second, selecting too few metrics or selecting them randomly restricts the
Judge’s ability to provide meaningful optimization feedback, resulting in inferior performance. Our
24-metric design consistently achieves the best overall results across all variants, while the top-20
subset yields slightly higher performance but remains very close in practice.

Furthermore, profiling with all NCU metrics significantly increases computational and API cost:
each kernel requires approximately 40 minutes on an RTX 6000 GPU and incurs roughly $1 in API
usage. In contrast, our selective design reduces runtime to about 25 minutes and API cost to $0.3
while achieving superior performance. These findings demonstrate that concise, carefully curated
hardware feedback is both more effective and more efficient than exhaustive profiling. We further
provide a case study illustrating this phenomenon in Appendix E.1.

3.5 GENERALIZATION CAPABILITY OF CUDAFORGE

In this section, we analyze CudaForge’s capabilities across various maximum iteration num N ,
GPU architectures and base models. Considering the high cost of full experiment, we use the strati-
fied subset D∗ for this section.

Scaling up the maximum number of iteration rounds We investigate the effect of the maximum
iteration number N on CudaForge’s performance.
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Table 4: CudaForge’s performance on different GPUs. The system consistently achieves high
correctness and strong performance across architectures by incorporating GPU specifications and
Nsight Compute profiling signals during optimization.

GPU Correct↑ Median ↑ 75% ↑ Perf ↑ Fast1↑
RTX 6000(Ada Arch-Data center level) 100% 1.322 1.736 1.767 84.0%
RTX 4090(Ada Arch-Desktop level) 100% 1.188 1.589 1.327 80.0%
A100(Ampere Arch-Data center level) 100% 1.371 1.762 1.841 84.0%
RTX 3090(Ampere Arch-Desktop level) 100% 1.155 1.706 1.320 72.0%

Table 5: Performance of CudaForge with different base model combinations. We fix one agent
as OpenAI-o3 and replace the other with various models. All combinations achieve strong results,
showing that the framework is not tied to a specific base model.

Models (Coder/Judge) Correct↑ Median ↑ 75% ↑ Perf ↑ Fast1↑
O3 / O3 100% 1.322 1.736 1.767 84.0%

O3 / GPT-5 100% 1.131 1.561 2.114 96.0%
O3 / Claude 100% 1.265 1.456 1.829 84.0%
O3 / GPT-OSS-120B 100% 1.226 1.490 1.364 76.0%

GPT-5 / O3 100% 1.125 1.388 1.896 72.0%
Claude / O3 88% 1.052 1.207 1.398 56.0%
GPT-OSS-120B / O3 96% 1.080 1.477 1.653 68.0%
QwQ / O3 84% 0.965 1.153 0.790 44.0%

As shown in Figure 3, increasing N from 1 to 10 leads to substantial performance gains, indicat-
ing that CudaForgecan rapidly improve kernel efficiency through iterative refinement. Further
increasing N from 10 to 30 continues to improve performance, though with a slower growth rate,
suggesting that the system gradually approaches its performance ceiling. These results demonstrate
that CudaForge benefits from test-time scaling and has the potential to achieve even stronger per-
formance given larger N with additional inference cost.

Using CudaForge in different GPUs. We also evaluate CudaForge on various GPU archi-
tectures, including RTX 6000, RTX 4090, RTX 3090 and A100, to examine its effectiveness under
different hardware conditions. As shown in Table 4, CudaForge consistently achieves high cor-
rectness and strong performance on all tested GPUs. This is a direct consequence of its design:
during the optimization phase, the Judge explicitly incorporates hardware feedback, including NCU
metrics and GPU specifications when generating feedback to Coder. This allows the Coder to pro-
duce kernels that are tailored to the target GPU at inference time, without training.

Instantiate CudaForge with various LLM. To examine whether CudaForge depends on a spe-
cific base model, we conduct experiments by fixing one side (Coder or Judge) as OpenAI-o3 and
replacing the other with various advanced LLMs, including QwQ-32B, GPT-5, Claude, and GPT-
OSS-120B. As shown in Table 5, all combinations achieve high correctness and strong performance,

0 5 10 15 20 25 30
Round

0.5
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Figure 3: Scaling the number of iteration rounds to 30 on KernelBench (subset D∗).
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comparable to or even surpassing the original O3/O3 configuration. These results indicate that
CudaForge is not tied to a specific base model: its effectiveness stems from the workflow of
Coder and Judge, and it can readily benefit from stronger models as they emerge.

4 SUPPLEMENT EXPERIMENTS AND OBSERVATIONS

Case study. To comprehensively understand the details of CudaForge, we investigate to a specific
case to study its iterative workflow. As shown in Appendix A., it demonstrate a 10-round refine
process of KernelBench Level 1 task 95. Our workflow iteratively corrects and optimizes the kernel,
with the feedback of Judge model. More details could be found in A.

Observations in CUDA-L1 results. We carefully examined the kernel outputs reported by CUDA-
L1 (see Appendix F) and identified an interesting phenomenon that we term “fake kernels.” These
kernels, while reported as performant, often contain no actual CUDA code. Instead, they rely on
try-except constructs and fall back to PyTorch’s official implementations to solve the task. This
observation highlights a fundamental challenge in evaluating LLM-generated CUDA kernels. To
avoid this issue, we have manually checked all kernels in our experiments.

5 CONCLUSION

We presented CudaForge, a training-free multi-agent framework for CUDA kernel generation and
optimization. The framework mimics the iterative workflow of human experts, explicitly incor-
porating hardware feedback to guide targeted kernel refinement rather than blind exploration. On
the KernelBench benchmark, CudaForge achieves highest correctness rate and significant perfor-
mance gains compared with all existing method, while also demonstrating robustness across diverse
GPU architectures and base LLMs Moreover, its performance scales effectively with the number of
refinement rounds. Finally, thanks to its low API and time cost, CudaForge provides a practical
and efficient solution for automated CUDA kernel development.
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ETHICS STATEMENT

This paper proposes the CudaForge framework for automatically generating and optimizing
CUDA kernels, applied to diverse tasks in KernelBench. The design and experiments strictly adhere
to ethical guidelines, ensuring that no sensitive or personally identifiable information is involved.
All experiments rely solely on publicly available benchmarks and standard GPU hardware, and no
human data was collected or processed.

We acknowledge the potential environmental concerns related to large-scale model training. While
our framework reduces inference-time cost compared to RL-based methods, more efficient kernels
could indirectly accelerate resource-intensive workloads. We therefore encourage responsible and
sustainable use of this technology. Our framework is intended strictly for research and scientific
purposes, and does not introduce additional risks beyond those already associated with standard
compiler or optimization tools.

REPRODUCIBILITY STATEMENT

We have taken extensive measures to ensure the reproducibility of our work. All experiments are
conducted on the publicly available KernelBench benchmark, which provides standardized tasks,
PyTorch references, and input/output specifications. We report detailed results across all difficulty
levels, including averaged metrics and stratified subsets, to ensure statistical robustness.

To support replication, we provide a comprehensive description of our workflow in Section 2.1 and
include all prompts used for the Coder and Judge agents in Appendix D. Furthermore, we provide
full experimental details, including GPU hardware platforms, evaluation metrics, and iteration pro-
tocols. Since CudaForge is entirely training-free, no additional data collection or model training
is required, greatly simplifying reproducibility.

We will release code and experiment scripts upon publication, ensuring that all results reported in
this paper can be faithfully reproduced.
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A CASE STUDY

A.1 A GOOD CASE

Round

"bottleneck": "Frequent shared-memory reductions cause 23.7% barrier stalls"
"optimisation method": "Use warp-level shuffles for max/sum,

 then single cross-warp reduction, eliminating 14 of 16 __syncthreads() per block"

"critical_issue": "Thread-0 uses uninitialized target_logit"
"minimal_fix_hint"："broadcast target_logit via __shfl_sync to thread0"

"bottleneck": "65% long-scoreboard stalls from global-memory latency; 
only 48 warps/SM active because each thread uses 40 registers."

"optimisation method": "Limit per-thread registers to ≤32 to enable 64-warp 
occupancy, better hiding DRAM latency and cutting long-scoreboard stalls."
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ee
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KernelBench L1–95 • CrossEntropyLoss — Judge Outputs & Speedup

"bottleneck": "71% long-scoreboard stalls from second 
global-memory read of logits after max pass"

"optimisation method": "Buffer logits in per-warp shared memory during max 
pass and reuse for exp/sum, eliminating extra global access and latency"

Optimization Round

Correction Round

Figure 4: Illustration of the Judge’s outputs—bottleneck diagnoses and optimization sugges-
tions—on KernelBench Level-1 Task 95 (CrossEntropyLoss), as well as the correspondi speedup
across rounds (green = optimization, red = correction).

In this section, we present a case study on a single task to illustrate how the Judge diagnoses
issues and recommends optimizations. Figure 4 depicts the 10-round refinement process of
CudaForge on task 95 CrossEntropyLoss. We highlight four representative rounds—three
optimization rounds and one repair round—to demonstrate how the Judge leverages hardware feed-
back from NCU to provide targeted optimization or bug-fix suggestions.

In round 2, which is an optimization round, the Judge notices that 23.7% of active warps are stalled
due to barrier-type dependencies, which means roughly one quarter of potential issue opportunities
are blocked by synchronization. According to this, the Judge recommended replacing the origi-
nal shared-memory reduction that required multiple block-level synchronizations with a warp-level
shuffle reduction, giving below suggestion as prompt for coder: use warp-level shuffles in the max
and sum phases, then perform a single cross-warp combine, reducing syncthreads() per block
from 16 to 2 (a reduction of 14). After applying this change, performance improved from 1.66× to
2.42×, with barrier stalls reduced and instruction-issue efficiency increased.

In round 5, it is a correction round. The previous round fails a numerical check with the following
error: “Outputs are not close, indicating a result mismatch”. The Judge diagnosed the root cause
as an uninitialized target logit in thread 0 (“Thread-0 uses uninitialized target logit”), which means
the variable target logit is not updated to thread 0, leading wrong computing results. Accordingly,
the Judge gave the minimal fix suggestion, broadcast target logit via shfl sync to thread
0. After applying the fix, the numerical issue disappeared.

In Rounds 6 & 7 (both optimization rounds), the Judge continues to track
smsp warp issue stalled long scoreboard per warp active.pct. In Round 6, this metric is
about 65%, primarily reflecting long-scoreboard stalls caused by global-memory latency. Per-thread
register usage is high, resulting in limited occupancy (only ∼ 48 active warps/SM) and insufficient
latency hiding. The recommendation is to reduce per-thread registers to raise concurrency to ∼ 64
warps/SM and thereby lower the long-scoreboard share. In Round 7, the metric rises to about 71%,
rooted in a second global read of logits after the max pass. The Judge therefore advises buffering
logits in per-warp shared memory during the max pass and reusing them in the expsum phase,
eliminating the redundant global memory access. Together, these strategies reduce global memory
access, significantly cut long-scoreboard stalls, improve issue efficiency and throughput; after these
two rounds, the speedup increases from 3.436× to 3.762×.

This task demonstrates our CudaForge’s stability and expert-like workflow: first analyzing bottle-
necks from hardware feedback, then deriving the corresponding optimization strategy.
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A.2 A BAD CASE

We also explore some bad cases of our workflow. Take KernelBench Level 1 Task 5 as an example:

1 import torch
2 import torch.nn as nn
3

4 class Model(nn.Module):
5 ”””
6 Simple model that performs a matrix−scalar multiplication (C = A * s)
7 ”””
8 def init (self):
9 super(Model, self). init ()

10

11 def forward(self, A: torch.Tensor, s: float) −> torch.Tensor:
12 ”””
13 Performs matrix−scalar multiplication.
14

15 Args:
16 A: Input matrix of shape (M, N)
17 s: Scalar value
18

19 Returns:
20 C: Resulting matrix of shape (M, N)
21 ”””
22 return A * s
23

24 M = 16384
25 N = 4096
26

27 def get inputs():
28 A = torch.randn(M, N)
29 s = 3.14
30 return [A, s]
31

32 def get init inputs():
33 return [] # No special initialization inputs needed

In the first round, CudaForgegenerated a wrong kernel:

1 ‘‘‘python
2 # <complete ModelNew code>
3 import torch
4 import torch.nn as nn
5 from torch.utils.cpp extension import load inline
6

7 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 # CUDA source for fused ReLU + per−channel bias addition
9 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 cuda src = r”””
11 #include <torch/extension.h>
12 #include <cuda.h>
13 #include <cuda runtime.h>
14

15 template <typename scalar t>
16 global void relu bias add kernel(const scalar t* restrict x,
17 const scalar t* restrict bias,
18 scalar t* restrict y,

14
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19 const int spatial,
20 const int channels,
21 const int total elems) {
22 int idx = blockIdx.x * blockDim.x + threadIdx.x;
23 if (idx >= total elems) return;
24

25 int c = (idx / spatial) % channels; // channel index
26 scalar t v = x[idx];
27 v = v > static cast<scalar t>(0) ? v : static cast<scalar t>(0);
28 v += bias[c];
29 y[idx] = v;
30 }
31

32 torch::Tensor relu bias add cuda(torch::Tensor x, torch::Tensor bias) {
33 TORCH CHECK(x.is cuda(), ”Input tensor x must reside on CUDA device”);
34 TORCH CHECK(bias.is cuda(), ”Bias tensor must reside on CUDA device”);
35 TORCH CHECK(x.scalar type() == torch::kFloat32,
36 ”Only float32 data type is supported”);
37

38 const int N = x.size(0);
39 const int C = x.size(1);
40 const int H = x.size(2);
41 const int W = x.size(3);
42 const int spatial = H * W;
43 const int total elems = N * C * spatial;
44

45 auto y = torch::empty like(x);
46

47 const int threads = 256;
48 const int blocks = (total elems + threads − 1) / threads;
49

50 relu bias add kernel<<<blocks, threads>>>(
51 x.data ptr<float>(),
52 bias.view({C}).data ptr<float>(),
53 y.data ptr<float>(),
54 spatial,
55 C,
56 total elems);
57

58 cudaError t err = cudaGetLastError();
59 if (err != cudaSuccess)
60 throw std::runtime error(cudaGetErrorString(err));
61

62 return y;
63 }
64 ”””
65

66 cpp decls = r”””
67 torch::Tensor relu bias add cuda(torch::Tensor x, torch::Tensor bias);
68 ”””
69

70 # Compile / load the CUDA extension
71 relu bias add = load inline(
72 name=”relu bias add”,
73 cpp sources=cpp decls,
74 cuda sources=cuda src,
75 functions=[”relu bias add cuda”],
76 verbose=False,
77 )
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78

79 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
80 # Optimised model using the fused CUDA kernel
81 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
82 class ModelNew(nn.Module):
83 ”””
84 Same computation as original Model but with a fused
85 ReLU + bias−add CUDA kernel for higher performance.
86 ”””
87 def init (self, in channels, out channels, kernel size, bias shape):
88 super(). init ()
89 self.conv = nn.Conv2d(in channels, out channels, kernel size)
90 # Bias after ReLU (per−channel, 11 spatial)
91 self.bias = nn.Parameter(torch.randn(bias shape))
92 self. relu bias add = relu bias add
93

94 def forward(self, x):
95 x = self.conv(x)
96 # Fused kernel: y = relu(x) + bias
97 x = self. relu bias add.relu bias add cuda(x, self.bias)
98 return x
99

100

101 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
102 # Helper functions (unchanged)
103 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
104 batch size = 32
105 in channels = 32
106 out channels = 64
107 height = width = 64
108 kernel size = 3
109 bias shape = (out channels, 1, 1)
110

111 def get inputs():
112 return [torch.rand(batch size, in channels, height, width, device=”cuda”)]
113

114 def get init inputs():
115 return [in channels, out channels, kernel size, bias shape]
116 ‘‘‘

Then the Judge got the runtime log and current kernel to analyze the error. However, the runtime log
tracked back to another file, which we used to compare results. Without any information about this
file, our workflow failed in the every turn of the 10-round iteration. This result reveals the challenge
in automatically developing kernels in multi-file situation.

B DETAILS OF EVALUATION

Collecting Test Cases. To obtain reliable and representative test cases, we do not directly use
the single default input shape provided by KernelBench. Instead, for each task, we query the
GPT-4o API to generate ten diverse input shapes, ranging from moderately sized tensors (e.g.,
4096*4096) to shapes that utilize a substantial portion of the RTX 6000 GPU’s memory capacity
(e.g., 16384*16384), as shown in the Table 6. This ensures that both correctness and performance
are evaluated across a broad spectrum of realistic workloads and prevents the evaluation from being
overly influenced by small-shape cases.

Correctness Evaluation. We then evaluate correctness through a two-stage procedure consisting of
compilation and execution. In the compilation stage, we verify that the generated kernel is syntacti-
cally valid and can be successfully compiled into executable CUDA code. In the execution stage, we
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Task Size in KernelBench Perf Max Size in Test Perf Change in Size

Level 1 Task 8
M = 8205
N = 2949
K = 5921

0.996×
M = 32820
N = 11796
K = 23684

0.993× 64×

Level 1 Task 15
M = 4096
N = 4096

3.063× M = 16384
N = 16384

3.385× 16×

Level 2 Task 21

batch size = 128
in channels = 8
out channels = 32
height = width = 256
kernel size = 3
num groups = 8

1.531×

batch size = 128
in channels = 8
out channels = 32
height = width = 512
kernel size = 3
num groups = 8

1.449× 4×

Level 2 Task 75

batch size = 1024
in features = 8192
out features = 8192
num groups = 512

1.030×

batch size = 1024
in features = 19384
out features = 19384
num groups = 1024

1.017× 8×

Level 3 Task 18

batch size = 64
input channels = 3
height = 512
width = 512
num classes = 1000

2.008×

batch size = 64
input channels = 3
height = 1024
width = 1024
num classes = 1000

2.040× 4×

Table 6: Performance under KernelBench input sizes and maximum test sizes.

run the kernel on all ten input shapes and compare its outputs with those produced by the PyTorch
reference implementation under the same inputs. A kernel is considered correct only if it success-
fully compiles and its numerical outputs are within a tolerance of 0.0001 for all test cases, which is
a commonly adopted criterion (Ouyang et al., 2025; Lange et al., 2025; Baronio et al., 2025).

Performance Evaluation. Finally, we assess optimization performance using only the largest input
shape in the generated test cases. The reason to select the largest is to aligns with the goal of CUDA
kernel optimization, which is primarily motivated by large-scale workloads such as those found in
LLM inference and training. For each task, we profile the candidate kernel on the largest shape.
Then the Judge agent makes refinement decisions based on hardware feedback. After N refinement
rounds, we select the most efficient correct kernel as the final result. When reporting speedup over
the PyTorch baseline, we also use the largest input shape to ensure that GPU computation dominates
runtime, instead of the PyTorch framework or OS overhead.

C ANALYSIS OF TIME COST IN CUDAFORGE

In this section, we provide an analysis of time cost in CudaForge. As shown in Table 7, for a typ-
ical KernelBench task with ten refinement rounds, the 25-minute end-to-end runtime is dominated
by Nsight Compute profiling, which takes approximately 10–12 minutes in total. Kernel compi-
lation accounts for 2–3 minutes, while LLM inference contributes about 9–11 minutes across all
rounds. This breakdown shows that the overall runtime is determined primarily by profiling rather
than model latency or compilation overhead. Since kernels are independent and can be processed
concurrently, CudaForge scales effectively to larger codebases, with throughput largely governed by
the degree of parallelism available for profiling rather than limitations of the framework itself.
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Category Time

Nsight Compute profiling 10–12 minutes
LLM inference 9–11 minutes
Kernel compilation 2–3 minutes

Table 7: Runtime breakdown of major components.

D PROMPT

D.1 SEED PROMPT FOR CODER(ONE-SHOT BASELINE PROMPT FROM KERNELBENCH)

We adopt the One-shot Baseline Prompt introduced in KERNELBENCH as our initial seed prompt
for first round generation of all the baselines and our method. The full prompt is shown below.

1 You write custom CUDA kernels to replace the pytorch operators in the given architecture to
2 get speedups.You have complete freedom to choose the set of operators you want to replace.
3 You may make the decision to replace some operators with custom CUDA kernels and leave
4 others unchanged. You may replace multiple operators with custom implementations,
5 consider operator fusion opportunities (combining multiple operators into a single kernel, for
6 example, combining matmul+relu), or algorithmic changes (such as online softmax). You are
7 only limited by your imagination.
8

9 Here an example to show you the syntax of inline embedding custom CUDA operators in
torch:

10 The example given architecture is:
11 ‘‘‘
12 {few base}
13 ‘‘‘
14 The example new arch with custom CUDA kernels looks like this:
15 ‘‘‘
16 {few new}
17 ‘‘‘
18

19 You are given the following architecture:
20

21 ‘‘‘python
22 {arch src}
23 ‘‘‘
24 Optimize the architecture named Model with custom CUDA operators! Name your optimized
25 output architecture ModelNew. Output the new code in codeblocks. Please generate real
26 code, NOT pseudocode, make sure the code compiles and is fully functional. Just output
27 the new model code, no other text, and NO testing code!

D.2 PROMPT FOR JUDGE

In our prompt design for the Judge agent, we place the role specification and output schema in
the system prompt. The input prompt only supplies per-round context(runtime information, NCU
metrics, error log). The system prompt is fixed; only the input prompt content changes each round.

The system prompt for cuda kernel optimization:

1 You are a senior CUDA performance engineer. Read the target GPU spec, the PyTorch
2 reference code, the current CUDA candidate, and the Nsight Compute metrics. Then identify

**exactly one** highest−impact speed bottleneck by 3−4 most important metrics, propose **
exactly one** optimization method and propose a modification plan. Be surgical and metrics−
driven.
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3

4 Rules:
5 − Return **one and only one** optimization method the largest expected speedup.
6 − Prefer changes that directly address measured bottlenecks (occupancy limits,
7 memory coalescing, smem bank conflicts, register pressure, long/short scoreboard
8 stalls, tensor−core underutilisation, etc.).
9 − Keep fields brief; avoid lists of alternatives, disclaimers, or generic advice.

10

11 Output format (JSON):
12 ‘‘‘json
13 {
14 ”bottleneck”: ”<max 30 words>”,
15 ”optimization method”: ”<max 35 words>”,
16 ”modification plan”: ”<max 35 words>”
17 }
18 ”””

The input prompt for optimization:

1 # Target GPU
2 GPU Name: {gpu name}
3 Architecture: {gpu arch}
4 Details:
5 {gpu items}
6

7

8 # Pytorch Reference
9 {python code}

10

11

12 # CUDA candidate
13 ‘‘‘python
14 {CUDA CODE}
15 ‘‘‘
16

17 # Nsight Compute metrics (verbatim)
18 {NCU METRICS}
19

20 Read everything and follow the Rules exactly. Return the JSON in the specified format.

The system prompt for kernel correction:

1 You are a senior CUDA + PyTorch correctness auditor. Your job is to read a PyTorch
reference and a CUDA candidate and report exactly one most critical correctness issue in the
CUDA code that would cause a behavioral mismatch vs. the PyTorch reference. Be terse and
precise.

2

3 Rules:
4

5 Return one and only one issue the single highest−impact problem.
6

7 Prefer semantic/correctness issues over micro−optimizations or style.
8

9 If multiple issues exist, pick the one that most changes outputs or gradients.
10

11 If nothing clearly wrong is found, say it explicitly.
12

13 Keep each field brief; avoid extra commentary, lists, or alternatives.
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14

15 Output format (JSON):
16 ‘‘‘json
17 {
18 ”critical issue”: ”<max 20 words>”,
19 ”why it matters”: ”<max 35 words>”,
20 ”minimal fix hint”: ”<max 20 words>”
21 }
22 ‘‘‘

The input prompt for kernel repair:

1 You are given:
2

3 ERROR LOG:
4 {ERROR LOG}
5

6 PyTorch reference (ground truth):
7

8 {PYTORCH CODE}
9

10 CUDA candidate (to audit):
11

12 {CUDA CODE}
13

14

15 Follow the Rules and produce the JSON exactly in the specified format.

D.3 PROMPT FOR CODER

For the Coder, we use the default system prompt and put all task details in the input prompt. This
keeps the agent simple and fully context-driven. .

The prompt for kernel optimization:

1 # Target GPU
2 GPU Name: {gpu name}
3 Architecture: {gpu arch}
4 Details:
5 {gpu items}
6

7 You are a CUDA−kernel optimization specialist.
8

9 Analyze the provided architecture and **strictly apply the following STRATEGY** to
produce an improved CUDA kernel.

10

11 ‘‘‘python
12 {CUDA CODE}
13 ‘‘‘
14

15 [optimization instructions]
16 {optimization suggestion}
17

18 GOAL
19

20 − Improve latency and throughput on the target GPU.
21 − Maintain correctness within atol=1e−4 or rtol=1e−4.
22 − Preserve the public Python API (same inputs/outputs, shapes, dtypes).
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23

24

25 OUTPUT RULES (STRICT)
26 1. Inside the block, follow **exactly** this order:
27 1. Imports ‘torch‘, ‘torch.nn‘, ‘load inline‘.
28 2. ‘source‘ triplequoted CUDA string(s) (kernel + host wrapper).
29 3. ‘cpp src‘ prototypes for *all* kernels you expose.
30 4. **One** ‘load inline‘ call per kernel group.
31 5. ‘class ModelNew(nn.Module)‘ mirrors original inputs/outputs but calls
32 your CUDA kernels.
33 2. **Do NOT include** testing code, ‘if name == ” main ”‘, or extra prose.
34

35 ‘‘‘python
36 # <your corrected code>
37 ‘‘‘

The prompt for kernel correction:

1 You are a senior CUDA−extension developer.
2 Your job is to **FIX** the compilation or runtime errors in the Python script
3 shown below.
4

5 OUTPUT RULES (STRICT)
6 1. Inside the block, follow **exactly** this order:
7 1. Imports ‘torch‘, ‘torch.nn‘, ‘load inline‘.
8 2. ‘source‘ triplequoted CUDA string(s) (kernel + host wrapper).
9 3. ‘cpp src‘ prototypes for *all* kernels you expose.

10 4. **One** ‘load inline‘ call per kernel group.
11 5. ‘class ModelNew(nn.Module)‘ mirrors original inputs/outputs but calls
12 your CUDA kernels.
13 2. **Do NOT include** testing code, ‘if name == ” main ”‘, or extra prose.
14

15

16 ERROR LOG
17

18 {ERROR LOG}
19

20

21 OLD CODE (read−only)
22

23 {CUDA CODE}
24

25

26 Main Critical Problem
27

28 {Problem}
29

30 ‘‘‘python
31 # <your corrected code>
32 ‘‘‘
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E DETAIL FOR THE NCU METRICS

E.1 WHY CHOOSE NCU SUBSET METRICS?

We find that exposing large models to the full NCU metric set overwhelms them, reducing the
accuracy and stability of their optimization suggestions and degrading Judge output quality. We
illustrate this with following specific case study.

2 4 6 8 10
round
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Figure 5: Generated kernel performance comparison between Full-metrics input(blue line) vs. Met-
rics subset input(orange line) for Judge agent on Level 2 task 51.

As shown in Figure 5, we compare two configurations on a representative task. (i) The Judge agent
receives all raw NCU metrics in each round and provides feedback to the Coder agent. (ii) The
Judge agent receives only the 24 key metrics selected by our method and captures only 3-4 critical
metrics in each round to generate optimization suggestion.

Within 10 iterative rounds, the Judge agent using full NCU metrics fails to guide the Coder agent
toward better kernels. The performance of the generated kernels remains almost unchanged, despite
repeated interactions. In contrast, when the Judge agent is restricted to use subset metrics, the per-
formance of generated kernels varies across rounds and is often improved. This process eventually
leads to a substantial speedup.

In addition, we carefully reviewed how the Judge identified bottlenecks and proposed optimizations
in both configurations, full set vs. 24-subset. We select one Judge’s response from the optimization
round to better illustrate the difference in judge output, with full NCU and with a subset of NCU as
judge input.

Response of using the full NCU metrics set:

1 {”bottleneck”: ”Long−scoreboard stalls from re−loading GEMM output out of DRAM (
gemm out round−trip dominates cycles).”,

2 ”optimization method”: ”Fuse the Linear GEMM and the current epilogue into one FP16
tensor−core CUTLASS kernel that performs subtract, row−mean, GELU and residual add in−
register, avoiding global−memory re−reads.”,

3 ”modification plan”: ”Write CUTLASS custom epilogue functor; use cublasLt or cutlass::
gemm universal to compute GEMM+A, keep accumulators in registers, warp−reduce to mean
, apply GELU, add x orig, directly store final output; expose via new PyTorch extension.”}

Response of using the 24 key NCU subset:

1 {”bottleneck”: ”Kernel is DRAM−bound (102.9 % peak); 57 % long−scoreboard stalls from
second pass reading original x.”,
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2 ”optimization method”: ”Fuse the second loop: cache each threads original x elements in
registers during diff accumulation, then add gelu val and store, eliminating the extra BF
global read.”,

3 ”modification plan”: ”Replace two for−loops with one: load linear out, subtract, and
original x together, keep original x[16] in per−thread array, finish reduction, add gelu val,
write to output; ˜−4 MB traffic per batch, >30 % speedup.”}

Based on these two responses,we find that judge with full set NCU mertics tends to misidentify the
true bottleneck.The judge with full set NCU metrics attributes the bottleneck to re-loading gemm out
and recommends a monolithic CUTLASS epilogue that performs row-mean/GELU/residual in reg-
isters. This diagnosis is misaligned with our kernel’s access pattern and is hard to realize for general
shapes due to cross-tile aggregation. In contrast, the judge with 24-key subset correctly identifies
a DRAM-bound kernel dominated by the second pass over x orig, and proposes a one-pass rewrite
that caches x orig in registers during the first traversal and writes back after GELU, eliminating
an entire B×F global memory read. This change is lightweight, architecture-agnostic, and yields
consistent speedups (e.g., about 4 MB less traffic per batch, more than 30% in our setting).

E.2 TOP-20 NCU METRICS EXAMPLE

This section reports, for several example tasks, the Top-20 Nsight Compute (NCU) metrics most
correlated with runtime, ranked by the absolute value of the Pearson correlation coefficient. Here,
runtime refers to the kernel’s execution time. When the correlation coefficient is positive, larger met-
ric values typically imply longer execution time; when it is negative, larger metric values typically
imply shorter execution time. All metric names follow their original name in NCU.

Table 8: Task-Conv2D: Pearson correlation with runtime (Top-20).

Metric Name Correlation Abs Correlation

sm cycles active.avg 1.000 000 1.000 000
gpc cycles elapsed.max 1.000 000 1.000 000
launch occupancy limit shared mem 0.945 507 0.945 507
dram bytes.sum.per second −0.924 251 0.924 251
gpu dram throughput.avg.pct of peak sustained elapsed −0.924 155 0.924 155
smsp inst executed.avg 0.916 287 0.916 287
smsp inst executed.sum 0.916 287 0.916 287
smsp inst issued.avg 0.916 262 0.916 262
smsp inst issued.sum 0.916 262 0.916 262
lts t sector hit rate.pct 0.839 237 0.839 237
smsp sass average branch targets threads uniform.pct 0.810 334 0.810 334
lts throughput.avg.pct of peak sustained elapsed −0.787 261 0.787 261
smsp inst executed op branch.sum 0.746 483 0.746 483
launch grid size 0.745 917 0.745 917
l1tex t sector hit rate.pct 0.728 356 0.728 356
gpc cycles elapsed.avg.per second 0.728 053 0.728 053
dram cycles elapsed.avg.per second 0.665 784 0.665 784
launch waves per multiprocessor 0.627 478 0.627 478
launch thread count 0.627 478 0.627 478
launch shared mem per block static −0.610 501 0.610 501

Table 9: Task-SpMM: Pearson correlation with runtime (Top-20).

Metric Name Correlation Abs Correlation

gpc cycles elapsed.max 0.999 993 0.999 993
sm cycles active.avg 0.998 432 0.998 432
gpu compute memory request throughput.avg.pct ... −0.967 284 0.967 284
gpu compute memory throughput.avg.pct of peak ... −0.964 455 0.964 455
lts t sector hit rate.pct 0.951 201 0.951 201
dram bytes.sum.per second −0.926 134 0.926 134
gpu dram throughput.avg.pct of peak sustained ... −0.925 856 0.925 856
l1tex throughput.avg.pct of peak sustained active 0.871 262 0.871 262
sm inst executed.avg.per cycle elapsed −0.837 675 0.837 675
smsp issue inst0.avg.pct of peak sustained active 0.837 284 0.837 284
smsp issue active.avg.pct of peak sustained ... −0.837 284 0.837 284

Continued on next page
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Metric Name Correlation Abs Correlation

smsp issue active.avg.per cycle active −0.837 283 0.837 283
sm inst issued.avg.per cycle active −0.836 185 0.836 185
sm inst issued.avg.pct of peak sustained active −0.836 185 0.836 185
sm inst executed.avg.per cycle active −0.836 160 0.836 160
sm instruction throughput.avg.pct of peak sust... −0.806 478 0.806 478
smsp average warp latency per inst issued.ratio 0.802 793 0.802 793
smsp average warps active per inst executed.ratio 0.802 777 0.802 777
derived smsp inst executed op branch pct −0.728 768 0.728 768
smsp warps eligible.avg.per cycle active −0.630 772 0.630 772

E.3 KEY SUBSET OF 24 NCU METRICS

The table below lists the exact 24 metrics in our task-agnostic key subset.

Table 10: The 24-metric key subset.

# Metric Name

1 sm cycles active.avg
2 sm warps active.avg.pct of peak sustained active
3 launch occupancy limit blocks
4 launch occupancy limit registers
5 launch occupancy limit shared mem
6 launch registers per thread
7 sm inst executed.sum
8 sm inst executed pipe fp32.avg.pct of peak sustained active
9 sm inst executed pipe tensor.avg.pct of peak sustained active

10 dram bytes read.sum
11 dram bytes write.sum
12 dram throughput.avg.pct of peak sustained elapsed
13 dram bytes.sum.per second
14 gpu dram throughput.avg.pct of peak sustained elapsed
15 l1tex t sector hit rate.pct
16 l1tex throughput.avg.pct of peak sustained active
17 lts t sector hit rate.pct
18 lts throughput.avg.pct of peak sustained active
19 smsp warp issue stalled memory dependency per warp active.pct
20 smsp warp issue stalled short scoreboard per warp active.pct
21 smsp warp issue stalled long scoreboard per warp active.pct
22 smsp warp issue stalled barrier per warp active.pct
23 smsp warp issue stalled branch resolving per warp active.pct
24 smsp sass average branch targets threads uniform.pct

F CUDA-L1

In our replication efforts, we found that the authors of CUDA-L1 released only the final, generated
kernels for each task. After carefully studying these cases, we identified several interesting findings.

First, We found that CUDA-L1 tends to emphasize PyTorch-level optimizations rather than gener-
ating and refining custom CUDA kernels. This pattern also emerged as the most frequent issue in
their provided case. Although CUDA-L1 reports the top-10 cases with the largest speedups, our
review shows that nine of these ten final solutions do not use custom CUDA kernels; instead, they
rely heavily on official PyTorch implementations.

This is the top-ranked entry in their KernelBench Tasks Ranked by RL-CUDA1 Acceleration (Top-
10): Level-2 Task 83, with a reported 120.3× speedup

1 import torch
2 import torch.nn as nn
3

4 class ModelNew(nn.Module):
5 ”””
6 Optimized implementation of a model that performs a 3D convolution,
7 applies Group Normalization, minimum, clamp, and dropout.
8

9 Args:
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10 in channels (int): Number of input channels
11 out channels (int): Number of output channels
12 kernel size (int or tuple): Size of the convolving kernel
13 groups (int): Number of groups for GroupNorm
14 min value (float): Minimum value for clamp operation
15 max value (float): Maximum value for clamp operation
16 dropout p (float): Dropout probability
17 ”””
18 def init (self, in channels, out channels, kernel size, groups, min value, max value,

dropout p):
19 super(ModelNew, self). init ()
20 # Store the original layers for parameter compatibility
21 self.conv = nn.Conv3d(in channels, out channels, kernel size)
22 self.norm = nn.GroupNorm(groups, out channels)
23 self.dropout = nn.Dropout(dropout p)
24 self.min value = min value
25 self.max value = max value
26 self.dropout p = dropout p
27

28 # Pre−compute convolution parameters for output shape calculation
29 if isinstance(kernel size, int):
30 self.kernel size = (kernel size, kernel size, kernel size)
31 else:
32 self.kernel size = kernel size
33

34 self.stride = self.conv.stride
35 self.padding = self.conv.padding
36 self.dilation = self.conv.dilation
37

38 def forward(self, x):
39 x = self.conv(x)
40 x = self.norm(x)
41 x = torch.minimum(x, torch.tensor(self.min value, device=x.device))
42 x = torch.clamp(x, min=self.min value, max=self.max value)
43 x = self.dropout(x)
44 return x
45

46 # Keep ALL hyperparameters EXACTLY as shown in the reference implementation
47 batch size = 128
48 in channels = 3
49 out channels = 16
50 depth, height, width = 16, 32, 32
51 kernel size = 3
52 groups = 8
53 min value = 0.0
54 max value = 1.0
55 dropout p = 0.2
56

57 def get inputs():
58 return [torch.randn(batch size, in channels, depth, height, width)]
59

60 def get init inputs():
61 return [in channels, out channels, kernel size, groups, min value, max value, dropout p]

The second-ranked case is Level-1 Task 12 (Matmul with diagonal matrices), with a reported 64.4×
speedup

1 # diag mm compare.py
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2 import time
3 import math
4 import torch
5 import torch.nn as nn
6 import torch.nn.functional as F
7

8 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 # Reference implementation

10 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 class Model(nn.Module):
12 ”””
13 Simple model that performs a matrix multiplication of a diagonal matrix with another

matrix.
14 C = diag(A) * B
15 ”””
16 def init (self):
17 super(Model, self). init ()
18

19 def forward(self, A, B):
20 ”””
21 Args:
22 A (torch.Tensor): 1D tensor, diagonal entries. Shape: (N,)
23 B (torch.Tensor): 2D tensor. Shape: (N, M)
24 Returns:
25 torch.Tensor: (N, M)
26 ”””
27 return torch.diag(A) @ B
28

29

30 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
31 # Optimized implementation
32 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
33 class ModelNew(nn.Module):
34 ”””
35 Optimized model that performs a matrix multiplication of a diagonal matrix with another

matrix.
36 C = diag(A) * B
37 ”””
38 def init (self):
39 super(ModelNew, self). init ()
40

41 def forward(self, A, B):
42 ”””
43 Args:
44 A (torch.Tensor): 1D tensor, diagonal entries. Shape: (N,)
45 B (torch.Tensor): 2D tensor. Shape: (N, M)
46 Returns:
47 torch.Tensor: (N, M)
48 ”””
49 # Equivalent to torch.diag(A) @ B, but avoids forming the full diagonal matrix
50 return B * A.unsqueeze(1)
51

52

53 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
54 # Hyperparameters & inputs
55 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
56 M = 4096
57 N = 4096
58
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59 def get inputs(device=None, dtype=torch.float32):
60 A = torch.randn(N, device=device, dtype=dtype)
61 B = torch.randn(N, M, device=device, dtype=dtype)
62 return [A, B]
63

64 def get init inputs():
65 return [] # No special initialization inputs needed

In addition, we observed many reported speedups that are effectively equal to one (clustered around
1.00, typically within ±5%). A closer inspection shows that, in these cases, the system falls back
to the original PyTorch operator when the custom kernel fails to compile, which naturally yields no
measurable speedup.

For example, below is the forward method from the final solution for KernelBench Level-1 Task
3 generated by CUDA-L1. This code get from the CUDA-L1’s official Github. We observe that
the method first attempts to call a custom CUDA kernel; however, upon any compilation failure
or exception, it immediately falls back to torch.bmm(A, B). Crucially, torch.bmm(A, B)
is exactly the operator that this task asks to be replaced by a custom kernel, meaning the fallback
undermines the task’s objective. This explains why the reported speedup is only 1.006×.

1 def forward(self, A: torch.Tensor, B: torch.Tensor) −> torch.Tensor:
2 ”””
3 Performs batched matrix multiplication.
4

5 Args:
6 A: Input tensor of shape (batch size, m, k).
7 B: Input tensor of shape (batch size, k, n).
8

9 Returns:
10 C: Output tensor of shape (batch size, m, n).
11 ”””
12 # Fall back to torch.bmm if CUDA module failed to load
13 if ModelNew. cuda module is None:
14 return torch.bmm(A, B)
15

16 # Check if inputs are on CUDA
17 if not A.is cuda or not B.is cuda:
18 A = A.cuda() if not A.is cuda else A
19 B = B.cuda() if not B.is cuda else B
20

21 # Ensure inputs are contiguous and float32
22 A = A.contiguous().float()
23 B = B.contiguous().float()
24

25 # Use custom CUDA kernel
26 try:
27 result = ModelNew. cuda module.batched matmul(A, B)
28 if not A.is cuda:
29 result = result.cpu()
30 return result
31 except Exception as e:
32 print(f”Error in custom kernel: {e}, falling back to torch.bmm”)
33 return torch.bmm(A, B)
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G DETAILS OF BENCHMARK

G.1 KERNELBENCH

KernelBench is a standardized benchmark designed to evaluate the capability of large language
models (LLMs) in CUDA kernel generation and optimization. It consists of 270 tasks across four
levels of increasing difficulty, of which Levels 1–3 (250 tasks in total) are commonly adopted for
evaluation. Each task provides a PyTorch reference implementation fTi

together with fixed in-
put–output specifications, enabling automated correctness and performance validation.

• Level 1 (Basic Operators): Contains simple, low-level operators such as matrix multipli-
cation, element-wise operations, and reductions. These tasks primarily test the ability to
generate functionally correct CUDA kernels.

• Level 2 (Composite Operations): Involves multi-step operator combinations, requiring
the model to compose multiple CUDA primitives and manage intermediate memory effi-
ciently. These tasks test the capacity for more complex code synthesis.

• Level 3 (End-to-End Models): Includes challenging kernels derived from full neural net-
work architectures such as AlexNet, VGG, and ResNet components. These tasks assess the
ability to produce efficient, large-scale kernels under realistic deep learning workloads.

• Level 4 (Optional): The full benchmark also defines an advanced level with additional
research-oriented tasks, but this is less frequently adopted due to its complexity and lack of
standardized evaluation setups.

KernelBench has become a widely used benchmark in recent work on LLM-based code generation
(Team, 2025; Baronio et al., 2025; Lange et al., 2025), as it provides a controlled and reproducible
environment to measure both correctness (functional equivalence to PyTorch) and efficiency (execu-
tion speed relative to PyTorch). In our study, we adopt all Level 1–3 tasks, following prior work, to
ensure fair comparison across baselines.

G.2 OUR STRATIFIED RANDOM SUBSET D∗

While our main evaluation is conducted on the full KernelBench Level 1–3 benchmark (250 tasks in
total), we additionally construct a stratified subsetD∗ to enable detailed analysis and fair comparison
with prior work such as Kevin.

The construction ofD∗ follows two principles: (1) Coverage across difficulty levels. Since Kernel-
Bench is stratified by increasing task complexity (Level 1: single-operator tasks, Level 2: multi-step
fused operators, Level 3: full network components), we ensure that the sampled subset preserves the
relative distribution of difficulty. (2) Diversity of task types. Within each level, we sample tasks uni-
formly across different operator categories (e.g., elementwise ops, reductions, convolutions, fused
blocks) so that the subset remains representative of the overall benchmark.

Concretely, we perform stratified random sampling with a fixed 10% ratio for each level, resulting
in a subset of 10 tasks from Level 1, 10 tasks from Level 2, and 5 tasks from Level 3, for a total of
25 tasks. For reproducibility, the exact task IDs included in D∗ are:

• Level 1 (10 tasks): 13, 10, 16, 29, 35, 72, 7, 89, 93, 34
• Level 2 (10 tasks): 17, 19, 40, 3, 13, 21, 38, 28, 26, 34
• Level 3 (5 tasks): 5, 18, 32, 41, 21

USAGE OF LLM

During the preparation of this paper, we employed large language models (LLMs) solely for textual
assistance, including grammar correction, stylistic refinement, and clarity improvements. All core
research contributions—including the design of CudaForge, implementation of experiments, and
analysis of results—were conducted entirely by the authors. The LLM was not used to generate
research ideas, experimental results, or any substantive content of the paper.
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