
Under review as a conference paper at ICLR 2024

NEUMANIFOLD: NEURAL WATERTIGHT MANIFOLD
RECONSTRUCTION WITH EFFICIENT AND HIGH-
QUALITY RENDERING SUPPORT

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a method for generating high-quality watertight manifold meshes from
multi-view input images. Existing volumetric rendering methods are robust in op-
timization but tend to generate noisy meshes with poor topology. Differentiable
rasterization-based methods can generate high-quality meshes but are sensitive to
initialization. Our method combines the benefits of both worlds; we take the ge-
ometry initialization obtained from neural volumetric fields, and further optimize
the geometry as well as a compact neural texture representation with differentiable
rasterizers. Through extensive experiments, we demonstrate that our method can
generate accurate mesh reconstructions with faithful appearance that are compa-
rable to previous volume rendering methods while being an order of magnitude
faster in rendering. We also show that our generated mesh and neural texture
reconstruction is compatible with existing graphics pipelines and enables down-
stream 3D applications such as simulation.

Fig. 1. NeuManifold takes 2D images as input and generates watertight manifold meshes with neural textures.
NeuManifold enables many downstream applications including high-quality novel-view synthesis and soft-
body simulation.

1 INTRODUCTION

Recent advancements in neural field representations (Mildenhall et al., 2021; Müller et al., 2022;
Chen et al., 2023b) have enabled scene reconstructions with photorealistic rendering quality. How-
ever, they use volumetric representations, resulting in slow rendering and limited support for stan-
dard 3D pipelines like appearance editing, physical simulation, and geometry processing.

For many such applications, meshes—especially those that are manifold and watertight—are the
preferred option. Meshes can be rendered efficiently with standard 3D rendering engines and the
watertight manifold property is often favorable in many geometry processing algorithms, such as
mesh boolean operations, approximate convex decomposition (Wei et al., 2022), tetrahedraliza-
tion (Hang, 2015) for simulation, and volumetric point sampling to initialize particle simulation.

Although mesh reconstruction has been extensively studied in prior arts Schönberger et al. (2016);
Snavely et al. (2006); Furukawa & Ponce (2010), reconstructing a high-quality mesh with realistic
rendering remains a highly challenging task. To address this, recent advancements in inverse graph-
ics through differentiable surface rendering have shown great promise, such as nvdiffrec (Munkberg
et al., 2021) and nerf2mesh (Tang et al., 2022). Nevertheless, the rendering quality of these methods

1

Under review as a conference paper at ICLR 2024

still lags behind that of neural field-based methods, and their meshes are only optimized for ren-
dering applications, resulting in non-manifold models with self-intersections that are unsuitable for
simulation and other geometry processing applications.

Our objective is to bridge this gap by reconstructing high-quality meshes, that facilitate fast render-
ing and are broadly supported for 3D applications beyond rendering, while preserving the superior
visual quality of volumetric approaches. To accomplish this, we introduce NeuManifold, a novel
neural approach that can produce a high-quality, watertight manifold mesh of a 3D scene with neu-
ral textures. As depicted in Fig. 1, our technique achieves photo-realistic rendering quality. More
significantly, our mesh-based model can be employed directly in physical simulation engines that
frequently require watertight and even manifold meshes.

We achieve this by integrating advanced neural field rendering with differentiable rasterization-based
mesh reconstruction techniques. We observe that volumetric neural field rendering and differentiable
rasterization have mutually complementary benefits. While neural field-based approaches like Ten-
soRF (Chen et al., 2022a) can produce high visual quality and generate density fields as scene
geometry, the exported meshes, when rendered using surface rendering (rasterization), cannot retain
the original high visual quality achieved with volume rendering. In contrast, differentiable mesh
rasterization techniques such as nvdiffrec (Munkberg et al., 2021) directly optimize the final mesh
output using rendering supervision. Yet, they are sensitive to geometry initialization and can get
stuck in local minima, especially when reconstructing high-resolution meshes. (see Fig. 5). There-
fore, we propose leveraging neural field reconstruction techniques to create high-quality initializa-
tions for differentiable rasterization, significantly enhancing the final mesh reconstruction quality.
Additionally, we have observed that the non-linearity of the density field can lead to undesirable
artifacts when using previously prevalent differentiable marching algorithms (Shen et al., 2021), as
illustrated in Fig. 3. To address this issue, we introduce Differentiable Marching Cubes (DiffMC),
which effectively eliminates these artifacts and results in significantly smoother surfaces.

Furthermore, we enhance the visual quality of our model by modeling appearance using neural tex-
tures instead of the traditional BRDF textures utilized in most inverse rendering methods (Munkberg
et al., 2021; Luan et al., 2021). Specifically, we use TensoRF(Chen et al., 2022a) to compactly fac-
torize a 3D neural field into axis-aligned orthogonal 2D and 1D neural textures. While TensoRF uses
volume rendering, we extract features from these neural textures at surface points on a mesh and de-
code view-dependent colors for surface rendering in differentiable rasterization. We demonstrate
that our factorized neural textures produce superior rendering quality compared to other texture
representations, including iNGP-base hash grid and MLPs (see Table 4).

Our work offers the following key contributions:

• We propose NeuManifold, which excels at producing high-quality watertight manifold meshes.
These meshes support not only realistic rendering but also applications in a diverse array of phys-
ical simulations and geometry processing tasks.

• We introduce the first complete Differentiable Marching Cubes (DiffMC) implementation utilizing
CUDA, delivering smooth surfaces from density fields. It runs around 10× faster than the previous
prevalent mesh extraction algorithm (DMTet) at similar triangle counts.

• Furthermore, our mesh-based representation can be seamlessly integrated with GLSL shaders,
enabling real-time rendering applications.

2 RELATED WORK

Neural field representations. Neural rendering methods have demonstrated photo-realistic scene
reconstruction and rendering quality. In particular, NeRF (Mildenhall et al., 2021) introduced the
neural radiance field representation and achieved remarkable visual quality with volume rendering
techniques. Various neural field representations have been proposed for better efficiency and qual-
ity, including MipNeRF (Barron et al., 2021) and RefNeRF (Verbin et al., 2022) that are based
on coordinate-based MLPs, TensoRF (Chen et al., 2022a) and DiF(Chen et al., 2023a) that lever-
age tensor factorization, iNGP (Müller et al., 2022) that introduces multi-scale hashing, Plenox-
els(Fridovich-Keil et al., 2022) and DVGO(Sun et al., 2022) that are voxel-based, and Point-NeRF
(Xu et al., 2022) that is based on neural point clouds.

2

Under review as a conference paper at ICLR 2024

Geo. & App. NetworksRay Marching Density Grid Mesh Rendering

Stage 1: Volumetric Rendering Init Stage 2: Manifold Generation & Optimization

DiffMC nvdiffrast

𝜕𝐿!/𝜕𝜃 𝜕𝑔/𝜕𝜃 𝜕𝑣/𝜕𝑔 𝜕𝐿"/𝜕𝑣

Fig. 2. Overall training pipeline for Stage 1 and 2 of NeuManifold. In Stage 1, volumetric rendering pipelines
are used to initialize geometry and appearance networks. In Stage 2, the initialized geometry and appearance
networks are further trained in differentiable rasterization with the help of DiffMC. The generated watertight
manifold mesh and optimized appearance network are used in deployment.

However, most neural field representations represent 3D geometry as a volume density field, which
is hard to edit for 3D applications other than rendering. While several methods have enabled ap-
pearance editing or shape deformation for such neural fields (Xiang et al., 2021; Zhang et al., 2022a;
Yuan et al., 2022; Wu et al., 2022; Kuang et al., 2022; Chong Bao and Bangbang Yang et al., 2022),
it is still highly challenging to apply them directly in modern 3D engines. Recent methods have
proposed replacing density fields with volume SDFs to achieve better surface reconstruction with
volume rendering (Wang et al., 2021; 2022; Yariv et al., 2021; Oechsle et al., 2021). However, nei-
ther density- or SDF-based models can be easily exported as meshes without significantly losing
their rendering quality. Another recent work MobileNeRF (Chen et al., 2022b) converts the neural
field into a triangle soup for real-time rendering. However, their mesh does not model accurate scene
geometry and thus cannot be used for downstream applications. Our work offers a general solution
to convert volumetric neural field representations to high-quality manifold meshes, enabling both
high-quality rendering and broad additional 3D applications like physical simulation.

Mesh reconstruction and rendering. Polygonal meshes are a staple in modern 3D engines,
widely employed for modeling, simulation, and rendering. Previous research has extensively
explored mesh reconstruction from multi-view captured images through photogrammetry sys-
tems(Pollefeys & Gool, 2002; Snavely et al., 2006; Schönberger et al., 2016) like structure from
motion(Schönberger & Frahm, 2016; Tang & Tan, 2019; Vijayanarasimhan et al., 2017), multi-view
stereo(Furukawa & Ponce, 2010; Kutulakos & Seitz, 2000; Schönberger et al., 2016; Yao et al.,
2018; Cheng et al., 2020), and surface extraction techniques(Lorensen & Cline, 1987; Kazhdan
et al., 2006). However, achieving photorealistic rendering with classical photogrammetry pipelines
remains a formidable challenge.

On the other hand, inverse rendering aims to fully disentangle intrinsic scene properties from cap-
tured images (Goldman et al., 2009; Hernandez et al., 2008; Zhang et al., 2021b; Bi et al., 2020b;c;a;
Zhang et al., 2021a; Li et al., 2018; Zhang et al., 2022b;c). Recent methods, such as nvdiffrec
(Munkberg et al., 2021), nerf2mesh(Tang et al., 2022), BakedSDF (Yariv et al., 2023), achieve high-
quality reconstruction and fast rendering speed. Nevertheless, these methods often introduce self-
intersections or an excessive number of triangles in the mesh reconstruction, which are undesired
for simulation and geometry processing tasks.

Moreover, in recent years, several studies (Liao et al., 2018; Remelli et al., 2020; Shen et al., 2021;
Mehta et al., 2022; Shen et al., 2023) have delved into differentiable mesh extraction algorithms due
to their crucial role in mesh optimization workflows, connecting implicit field and explicit mesh rep-
resentations. While they still have limitations, such as surface artifacts (Shen et al., 2021) and a lack
of manifold guarantees (Liao et al., 2018; Shen et al., 2023). Our DiffMC generates significantly
smoother surfaces on density fields and maintains watertight manifold properties. In summary, our
approach leverages neural field reconstruction to provide a high-quality initialization for differen-
tiable rendering, and we integrate it with differentiable marching cubes to ensure that our final
output is manifold and watertight. This enables our model to be directly applied to a wide range of
3D applications.

3 METHOD

We present a 3D reconstruction pipeline that reconstructs scene geometry and appearance from cap-
tured multi-view images. Our method consists of two main stages: initialization with differentiable

3

Under review as a conference paper at ICLR 2024

volume rendering and manifold generation with differentiable rasterization, as illustrated in Fig. 2,
plus an optional fine-tuning stage. In particular, we leverage neural field representations with vol-
ume rendering-based reconstruction to offer the initialization for the subsequent mesh optimization,
where we further optimize the topology, geometry and appearance with differentiable marching
cubes and rasterization. Optionally, when the manifold property is not required, we fine-tune the
geometry and appearance by directly moving mesh vertices. Finally, we deploy the pipeline with
GLSL shaders for cross-platform real-time rendering and demonstrate the important role of anti-
aliasing on visual quality.

3.1 NEURAL FIELD REPRESENTATION.

We represent a 3D scene with a geometry network G and an appearance network A. In particular,
given an arbitrary 3D location x, the geometry network outputs its corresponding volume density
σ, and the appearance network regresses a view-dependent color c at the location. This can be
expressed by:

σx, cx = G(x), A(x, d) (1)
where d is the viewing direction. Our approach supports any common neural field representations
for the geometry and appearance networks. In this work, we choose the state-of-the-art neural field
representation TensoRF (Chen et al., 2022a) as the network architecture.

In order to balance rendering quality and inference speed, we propose two kinds of appearance
networks. For the high-quality version, we adopt Vector-Matrix (VM) decomposition plus an MLP.
For the fast version, we utilize VM decomposition plus Spherical Harmonics (SH). This can greatly
accelerate inference speed on deployment; we discuss this in detail in Sec. 3.5.

3.2 INITIALIZATION BY VOLUME RENDERING (STAGE 1)

In the first stage, we train the networks through differentiable volume rendering to establish a strong
initialization for the subsequent differentiable rasterization-based optimization phase. As in NeRF,
we render pixel colors C using the volume density and view-dependent colors from our geometry
and appearance models as:

C =

N∑
i=1

Ti(1− exp(−σiδi))ci, Ti = exp(−
i−1∑
j=1

σjδj). (2)

where T is the volume transmittance and δ is the ray marching step size. This differentiable render-
ing process allows us to optimize our networks with a rendering loss.

3.3 MANIFOLD GENERATION & OPTIMIZATION (STAGE 2)

Fig. 3. DiffMC vs DMTet on non-linear
fields. f(·) represents the SDF function and
exp() is a non-linear transformation.

In the second stage of our process, we leverage a similar
pipeline as nvdiffrec (Munkberg et al., 2021) to optimize
the object topology, geometry and appearance simultane-
ously. Unlike nvdiffrec that directly optimizes the SDF
function from scratch, we utilize the pre-trained TensoRF
models from the previous stage as initialization. Addi-
tionally, we replace the marching algorithm from Differ-
entiable Marching Tetrahedra (DMTet) (Shen et al., 2021)
with our Differentiable Marching Cubes (DiffMC), which
seamlessly integrates pre-trained density networks into
the differentiable rasterization pipeline and significantly
reduces artifacts on mesh surfaces.

Different from nvdiffrec, which optimizes SDF values
stored on the grid, our methods need to convert the out-
put of the density network to these values, since SDF-
based methods tend to exhibit lower visual fidelity and
can lose high-frequency details in the geometry. With the
pre-trained TensoRF density network, we convert their density into opacity as: α = 1−exp(−σ ·δ),
where σ denotes density, α denotes opacity, δ is the ray step size used in volume rendering. We

4

Under review as a conference paper at ICLR 2024

consider a threshold t that controls the position of the surface with respect to opacity and send the
value α− t to DiffMC to obtain our manifold mesh.

During the conversion of the density field into a mesh, we encountered notable artifacts with DMTet.
These issues arose primarily from the non-linear nature of the density field. As illustrated in Fig. 3,
when we apply a non-linear transformation like exp() to a standard SDF field, the mesh extracted
by DMTet develops deformations with peaks and valleys. This happens because the conventional
linear interpolation method is no longer adequate for dealing with the non-linear field, and the way
it divides space into tetrahedra results in artifacts on surfaces that don’t align well with these tetrahe-
dral divisions. Given that most real-world objects tend to be axis-aligned, adopting an axis-aligned
space division can significantly reduce these artifacts. More explanations are in Appendix Sec. B.

Therefore, we introduce Differentiable Marching Cubes (DiffMC), which operates on an axis-
aligned grid. DiffMC not only extracts the mesh using the conventional marching cubes algo-
rithm (Lorensen & Cline, 1998) but also provides vertex gradients with respect to the grid, denoted
as ∂v

∂g . This enables the mesh extraction process to be seamlessly combined with the mesh optimiza-

tion pipeline using the chain rule: ∂L
∂θ =

∑
v∈V

∂L
∂v

∂v
∂g

∂g
∂θ , where L is the rendering loss, θ is the

parameters in the density network, V is the set of mesh vertices and g is the grid. In a manner akin
to the approach outlined in Shen et al. (2021), we incorporate deformable vectors into the grid that
can be optimized. This allows the extracted mesh to adjust more effectively to the desired shape by
making subtle adjustments within half of the cube. As shown in Fig. 3, DiffMC is less influenced
by the non-linearity and is capable of producing significantly smoother surfaces, even on geometries
that are not aligned with the axis. To our best knowledge, we are the first to implement the complete
differentiable marching cubes, achieving exceptionally fast speeds that are 10× faster than DMTet.

We put the resulting mesh into nvdiffrast (Laine et al., 2020) to render 2D images and use the
rendering loss to update the geometry and appearance networks. Precisely, the points on the mesh
surface are passed through the appearance network to generate the output color for each pixel.

With a strong initialization from networks pre-trained in volume rendering and the marching cubes
algorithm, we are able to get watertight manifold meshes that are more accurate than both volumetric
rendering and mesh rendering alone, with better visual quality.

3.4 GEOMETRY AND APPEARANCE FINETUNE (STAGE 3)

The mesh generated in the previous stage is guaranteed to be a watertight manifold, which satisfies
the rigorous requirements of common geometry processing algorithms. However, maintaining man-
ifoldness may come at the cost of rendering quality, particularly for areas with intricate structures
where preserving both structural details and optimal triangular connections can be challenging.

We address this issue with an optional fine-tuning stage to further enhance rendering quality for
applications where manifold properties are not necessary. Here, we solely fine-tune the mesh vertex
positions and appearance network to improve the rendering loss. While this operation may introduce
self-intersections, it preserves the original good edge connections, thus retaining watertightness.

3.5 DEPLOYMENT

GLSL shaders. Our pipeline produces a triangle mesh with an appearance network consisting of
TensoRF and MLPs. This can be directly mapped to a traditional rasterization pipeline as GLSL
shaders. We upload TensoRF weights as three 3D textures and three 1D textures with linear filter-
ing, and MLP weights as 2D textures. After rasterizing triangles in the vertex shader, we evaluate
TensoRF and MLPs in the fragment shader with model-space coordinates and viewing directions.

We further accelerate the deployed rendering pipeline using different MLP size models as well as a
spherical harmonics version. We summarize these quality/speed trade-offs in Table 5.

Anti-Aliasing. Aliasing is a common issue in rasterization pipelines due to the undersampling
of high-frequency features, such as mesh edges and detailed textures. In contrast to volumetric
rendering, where semi-transparent volumes can mitigate aliasing, mesh-based rendering pipelines
are significantly affected by this problem.

5

Under review as a conference paper at ICLR 2024

Fig. 4. Rendering quality comparison between our and existing mesh rendering methods. Our methods are
able to well preserve thin structures as well as achieve high rendering quality. (DT: direct transfer; F: fast; HQ:
high-quality; m: manifold).

Supersample anti-aliasing (SSAA) is the most straightforward method to mitigate aliasing; it ren-
ders high-resolution images and down-samples them to the target resolution. While SSAA provides
the best visual quality, it is computationally expensive due to the increased resolution. An alterna-
tive approach is multisample anti-aliasing (MSAA), which is enabled by modern GPU hardware.
MSAA reduces the cost of anti-aliasing by increased shader evaluation only on pixels covered by
multiple triangles, and it shades each triangle once. It improves visual fidelity at a relatively small
performance hit, as shown in Appendix Fig. 16.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

For the first stage, we directly build on off-the-shelf volume rendering models. Specifically, for
TensoRF, we use the official implementation. We compare two of our models for our main results: a
high-quality one, labeled with Ours (HQ), which uses the TensoRF (VM) with 48-dim input features
and 12-dim output features, plus a three-layer MLP decoder; a fast one, labeled with Ours (F) that
uses the TensoRF (VM) with 48-dim input features and output 27-dim SH coefficients. More details
about the network architecture are in supplementary.

We train all the stage 2 and 3 models with batch size of 2 for 10k iterations. We use DiffMC
with a grid resolution of 256 for all results. Except when comparing with nvdiffrec, we use the
default resolution of 128 as nvdiffrec’s performance drops on higher resolutions, possibly due to the
decreased batch size and harder optimization.

4.2 COMPARISON ON NOVEL-VIEW SYNTHESIS

In Table 1, we show a quantitative comparison on novel view synthesis between our method and
other neural rendering and differentiable rasterization methods. We perform the experiments on the
widely-used NeRF-Synthetic dataset (Mildenhall et al., 2021). We observe that even though NeuS
and TensoRF have very high quality using their original volume rendering, when directly transferred
to mesh rendering without any fine-tuning—shown as NeuS (DT) and TensoRF (DT) in the table—
they have sharp performance drops. Specifically, we essentially extract meshes from their density or
SDF fields and then use them for surface rendering. This involves fetching color information from
their appearance networks using surface points. Nvdiffrec can generate watertight and manifold
meshes but its rendering quality has a large gap with other neural rendering methods. In contrast,
our models (both high-quality and fast) can achieve high quality on both mesh reconstruction and
rendering. It is worth noting that our method attains the highest rendering quality compared to all

6

Under review as a conference paper at ICLR 2024

Method Geometry Mesh Watertight Manifold PSNR↑ SSIM↑ LPIPS↓
NeRF Volume ✗ - - 31.00 0.947 0.081
TensoRF Volume ✗ - - 33.20 0.963 0.050
NeuS∗ Volume ✗ - - 30.74 0.951 0.064
MobileNeRF Mesh ✓ ✗ ✗ 30.90 0.947 0.062
nvdiffrec Mesh ✓ ✓ ✗ 28.90 0.938 0.073
nerf2mesh Mesh ✓ ✓ ✗ 29.76 0.940 0.072
TensoRF (DT) Mesh ✓ ✓ ✓ 25.28 0.886 0.115
NeuS∗ (DT) Mesh ✓ ✓ ✓ 27.85 0.935 0.074
nvdiffrec (m) Mesh ✓ ✓ ✓ 27.65 0.933 0.084
Ours (F) Mesh ✓ ✓ ✗ 30.94 0.952 0.061
Ours (HQ) Mesh ✓ ✓ ✗ 31.65 0.956 0.056
Ours (F-m) Mesh ✓ ✓ ✓ 30.47 0.949 0.065
Ours (HQ-m) Mesh ✓ ✓ ✓ 31.19 0.954 0.059

Table 1. Average results on NeRF-Synthetic dataset. The results of NeRF, MobileNeRF and nerf2mesh are
taken from their papers, and the other results for mesh rendering are tested on our machine using Pytorch
implementation. (DT: direct transfer) ∗ instant-nsr-pl Guo (2022) implementation. The geometry property is
grouped by color.

Fig. 5. Visual comparison of mesh quality of different methods. MobileNeRF generates a triangle soup that
can only preserve the rough shape. Nvdiffrec gives coarse mesh and fails on some regions. TensoRF is over-
detailed and NeuS is over-smoothed. Our method combines the merits of these methods, which is comparable
and even better than non-manifold meshes of nerf2mesh. (Non-manifold methods are denoted by *)

other surface rendering techniques, surpassing even those that generate non-manifold meshes. In
addition, when the manifold property is not required, our visual fidelity can be further boosted with
the third stage fine-tuning, leading to an average PSNR 0.65 dB higher than vanilla NeRF.

Method Geo. Outdoor Indoor
NeRF Vol 21.46 26.84

NeRF++ Vol 22.76 28.05
mip-NeRF Vol 24.47 31.72

Mobile-NeRF Mesh 21.95 -
BakedSDF Mesh 22.47 27.06

Ours (HQ-m) Mesh 21.07 25.80
Ours (HQ) Mesh 22.05 27.63

Table 2. PSNR of Unbounded scenes. More
metrics are in the Appendix.

We also show visual comparisons on mesh-based ren-
dering in Fig. 4. We can clearly see that the mesh ren-
dering with meshes directly extracted from NeuS and
TensoRF fails to recover the high-frequency details and
thin structures in the scene. Moreover, since they ap-
ply volume rendering and integrate the colors of mul-
tiple points along the ray to match the training images
during the optimization, simply extracting the color of
a single point at the isosurface cannot faithfully recover
the appearance of the scene. Nvdiffrec directly applies
mesh rendering during the training, but the recovered
meshes can miss complex structures, thus resulting in a degradation in visual quality. In contrast,
our method benefits from the initialization from the neural volume rendering and can better recover
the fine-grained details of the scene.

We also verify the effectiveness of our method on two real datasets, MipNeRF-360 dataset (Barron
et al., 2022) and LLFF dataset (Mildenhall et al., 2019). The quantitative results on MipNeRF-360 is
shown in Table 2, where our method significantly outperforms other mesh-based methods on indoor
scenes. More results are in the Appendix.

7

Under review as a conference paper at ICLR 2024

Fig. 6. Average VSA-tolerance plot for test views from four NeRF-Synthetic scenes. Depth map of the mesh
produced by Ours (HQ-m) achieves high matching scores consistently for different tolerance values. (Non-
manifold methods are denoted by dotted line)

G. Init A. Init PSNR↑ SSIM↑ LPIPS↓
✗ ✗ 20.56 0.826 0.204
✗ ✓ 24.43 0.882 0.149
✓ ✗ 29.74 0.945 0.067
✓ ✓ 31.19 0.954 0.059

Table 3. Ablation study for Stage 1. Using ini-
tializations from volume rendering enables more
accurate mesh reconstruction and rendering, lead-
ing to more accurate novel view synthesis.

Geo. + App. PSNR↑ SSIM↑ LPIPS↓
GT + TF 31.78 0.958 0.053
TFmesh + MLP 26.28 0.915 0.203
TFmesh + Hash 26.62 0.921 0.090
TFmesh + SH 26.48 0.909 0.103
TFmesh + TF 27.00 0.929 0.081
TFmesh (opt) + TF 29.74 0.945 0.067

Table 4. Ablation study for Stage 2. Our full method
(last row) jointly optimizes geometry and appearance
and achieves the best performance. (TF: TensoRF)

4.3 COMPARISON ON MESH RECONSTRUCTION

We observe that traditional mesh-distance metrics such as Chamfer distance are not suitable for
mesh quality comparison, as they are often dominated by the performance of regions unseen during
training. To this end, we propose to use the visible surface agreement (VSA) metric, modified from
the visible surface discrepancy proposed by Hodaň et al. (2020):

eVSA =
avg

p∈V ∪V̂

{
1 if p ∈ V ∩ V̂ ∧ |D(p)− D̂(p)| < τ

0 otherwise

where given a view, D and D̂ denote the depth map of the ground-truth and reconstructed meshes, V
and V̂ denote the pixel visibility masks, and τ is the misalignment tolerance. Higher VSA indicates
a better match between depth maps.

We compare the average VSA metric over 200 testing views of the NeRF-Synthetic dataset with
different misalignment tolerances in Fig. 6 (others in Appendix Fig. 18). We additionally provide
a visual comparison of the reconstructed meshes in Fig. 5. From the comparisons, we can clearly
see that our method achieves consistently better VSA performance than the manifold mesh baseline
methods. Our generated meshes better capture the detailed structures of the scene such as the lego
wheels, even better than nerf2mesh (Tang et al., 2022) that generates non-manifold ones.

4.4 ABLATION FOR STAGE 1 & 2

To show the importance and effectiveness of using initialization from volume rendering, we design
an ablation study using different initialization methods for Stage 1. As we can see from Table 3,
directly optimizing the mesh without initialization from volume rendering, leads to the worst novel
view synthesis performance. Both geometry initialization and appearance initialization can boost
the accuracy, with geometry initialization playing a more critical role in the performance improve-
ment. Additional visual results in the Appendix Fig. 17 highlight that when high-resolution grids
are employed without appropriate geometry initialization, the mesh optimization process can easily
become trapped in a local minimum.

We validate the necessity of optimizing the meshes in Table 4. To achieve this, we compare against
baselines that keep the meshes from Stage 1 fixed and only optimize the appearance.We also provide
the results using the GT mesh in combination with the TensorF appearance network as a reference,
representing the upper limit of texture optimization methods. As we can see from the results, us-
ing the meshes without further optimization achieves much lower accuracy than our full method,

8

Under review as a conference paper at ICLR 2024

(a) (b) (c) (d)

Fig. 7. Applications of NeuManifold. (a) Geometry editing with Laplacian surface editing. (b) Appearance
editing with vertex painting. (c) Collision shape for cloth simulation. (d) Collision-aware convex decomposi-
tion.

which demonstrates the essential of jointly optimizing the geometry and appearance in Stage 2. All
appearance networks were trained from scratch for fair comparison.

4.5 SPEED AND QUALITY TRADE-OFF Params AA PSNR↑ SSIM↑ LPIPS↓ FPS
#feat=48 8× MS 30.34 0.949 0.062 93
mlp=3×64 16× SS 31.16 0.954 0.057 26
#feat=48 8× MS 29.73 0.942 0.071 322
mlp=3×16 16× SS 30.49 0.947 0.064 86
#feat=12 8× MS 30.11 0.946 0.066 98
mlp=3×64 16× SS 30.90 0.951 0.060 27
#feat=12 8× MS 29.55 0.941 0.073 585
mlp=3×16 16× SS 30.28 0.946 0.066 163
#feat=48 8× MS 29.73 0.943 0.068 312
SH 16× SS 30.44 0.949 0.063 82

Table 5. Trade-off between rendering speed and quality
with different appearance network capacity. 8× MS: 8×
sample per-pixel MSAA, 16× SS: 16× sample per-pixel
SSAA.

We show the model performance and speed
after being deployed into GLSL in Table 5
and show the trade-off between model ca-
pacity and inference speed. FPS is com-
puted with the average time to render the
first frame in the test set of NeRF-Synthetic
dataset on an NVIDIA RTX 4090.

5 APPLICATIONS

With a manifold mesh-based geometry rep-
resentation, NeuManifold can be easily
plugged into a wide variety of 3D content creation tools. This is a significant advantage over previ-
ous neural reconstruction methods and we demonstrate three such applications below.

Geometry editing. Geometry editing algorithms often rely on good input mesh connectivity. In
Fig. 7a, we demonstrate Laplacian surface editing Sorkine et al. (2004) for non-rigid deformation of
the reconstructed microphone.

Appearance editing. Our meshes integrate directly into modeling software and can be edited by
artists. In Fig. 7b, we load the generated mesh into Blender and paint its vertices. The painted color
is multiplied with the original color in the GLSL shader.

Physical Simulation. Our reconstructed meshes can be used as static collision meshes for soft-
body simulation (e.g., cloth simulation as shown in Fig. 7c) similar to previous works. Moreover,
the watertight and manifold properties enable a wider range of applications. For example, they can
be used as direct input to the collision-aware convex decomposition algorithm (Wei et al., 2022)
for rigid-body collision shape generation (Fig. 7d). They can be directly converted to finite-element
meshes by Delaunay tetrahedralizations (Hang, 2015) and used in a finite-element simulation with
incremental potential contact (IPC) (Li et al., 2020) (Fig. 1 and Appendix Fig. 12).

6 CONCLUSION

We have introduced a novel method for reconstructing high-quality, watertight manifold meshes
with accurate rendering support from multi-view images. However, our method currently faces lim-
itations when dealing with specular areas, like the “materials” in NeRF-Synthetic and the “room”
in the LLFF dataset. In these cases, the reconstructed meshes may exhibit discontinuities to capture
the effect of different colors for the same point seen from different views. We believe that address-
ing this issue will require the incorporation of inverse rendering techniques and the inclusion of
additional priors to ensure a more accurate geometry.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and
Pratul P Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5855–5864,
2021.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 5470–5479, 2022.

Sai Bi, Zexiang Xu, Pratul Srinivasan, Ben Mildenhall, Kalyan Sunkavalli, Miloš Hašan, Yannick
Hold-Geoffroy, David Kriegman, and Ravi Ramamoorthi. Neural reflectance fields for appearance
acquisition. arXiv preprint arXiv:2008.03824, 2020a.

Sai Bi, Zexiang Xu, Kalyan Sunkavalli, Miloš Hašan, Yannick Hold-Geoffroy, David Kriegman,
and Ravi Ramamoorthi. Deep reflectance volumes: Relightable reconstructions from multi-view
photometric images. In European Conference on Computer Vision, pp. 294–311. Springer, 2020b.

Sai Bi, Zexiang Xu, Kalyan Sunkavalli, David Kriegman, and Ravi Ramamoorthi. Deep 3d cap-
ture: Geometry and reflectance from sparse multi-view images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5960–5969, 2020c.

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance
fields. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part XXXII, pp. 333–350. Springer, 2022a.

Anpei Chen, Zexiang Xu, Xinyue Wei, Siyu Tang, Hao Su, and Andreas Geiger. Dictionary fields:
Learning a neural basis decomposition. ACM Transactions on Graphics (TOG), 42(4):1–12,
2023a.

Anpei Chen, Zexiang Xu, Xinyue Wei, Siyu Tang, Hao Su, and Andreas Geiger. Factor fields: A
unified framework for neural fields and beyond. arXiv preprint arXiv:2302.01226, 2023b.

Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and Andrea Tagliasacchi. Mobilenerf: Exploit-
ing the polygon rasterization pipeline for efficient neural field rendering on mobile architectures.
arXiv preprint arXiv:2208.00277, 2022b.

Shuo Cheng, Zexiang Xu, Shilin Zhu, Zhuwen Li, Li Erran Li, Ravi Ramamoorthi, and Hao Su.
Deep stereo using adaptive thin volume representation with uncertainty awareness. In Proceedings
of the CVPR, pp. 2524–2534, 2020.

Chong Bao and Bangbang Yang, Zeng Junyi, Bao Hujun, Zhang Yinda, Cui Zhaopeng, and Zhang
Guofeng. Neumesh: Learning disentangled neural mesh-based implicit field for geometry and
texture editing. In European Conference on Computer Vision (ECCV), 2022.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5501–5510, 2022.

Yasutaka Furukawa and Jean Ponce. Accurate, dense, and robust multiview stereopsis. IEEE trans-
actions on pattern analysis and machine intelligence, 32(8):1362–1376, 2010.

Dan B Goldman, Brian Curless, Aaron Hertzmann, and Steven M Seitz. Shape and spatially-varying
brdfs from photometric stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence,
32(6):1060–1071, 2009.

Yuanchen Guo. Instant neural surface reconstruction, 2022. https://github.com/bennyguo/instant-
nsr-pl/tree/main.

Si Hang. Tetgen, a delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw, 41
(2):11, 2015.

10

Under review as a conference paper at ICLR 2024

Carlos Hernandez, George Vogiatzis, and Roberto Cipolla. Multiview photometric stereo. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 30(3):548–554, 2008.

Tomáš Hodaň, Martin Sundermeyer, Bertram Drost, Yann Labbé, Eric Brachmann, Frank Michel,
Carsten Rother, and Jiřı́ Matas. Bop challenge 2020 on 6d object localization. In Computer
Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16, pp.
577–594. Springer, 2020.

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface reconstruction. In Pro-
ceedings of the fourth Eurographics symposium on Geometry processing, volume 7, pp. 0, 2006.

Zhengfei Kuang, Fujun Luan, Sai Bi, Zhixin Shu, Gordon Wetzstein, and Kalyan Sunkavalli.
Palettenerf: Palette-based appearance editing of neural radiance fields. arXiv preprint
arXiv:2212.10699, 2022.

Kiriakos N Kutulakos and Steven M Seitz. A theory of shape by space carving. International
Journal of Computer Vision, 38(3):199–218, 2000.

Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila. Modular
primitives for high-performance differentiable rendering. ACM Transactions on Graphics, 39(6),
2020.

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo,
Chenfanfu Jiang, and Danny M. Kaufman. Incremental potential contact: Intersection- and
inversion-free large deformation dynamics. ACM Trans. Graph. (SIGGRAPH), 39(4), 2020.

Zhengqin Li, Zexiang Xu, Ravi Ramamoorthi, Kalyan Sunkavalli, and Manmohan Chandraker.
Learning to reconstruct shape and spatially-varying reflectance from a single image. In SIG-
GRAPH Asia 2018, pp. 269. ACM, 2018.

Yiyi Liao, Simon Donne, and Andreas Geiger. Deep marching cubes: Learning explicit surface
representations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 2916–2925, 2018.

William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface construction
algorithm. ACM siggraph computer graphics, 21(4):163–169, 1987.

William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface construction
algorithm. In Seminal graphics: pioneering efforts that shaped the field, pp. 347–353. 1998.

Fujun Luan, Shuang Zhao, Kavita Bala, and Zhao Dong. Unified shape and svbrdf recovery using
differentiable monte carlo rendering. In Computer Graphics Forum, volume 40, pp. 101–113.
Wiley Online Library, 2021.

Ishit Mehta, Manmohan Chandraker, and Ravi Ramamoorthi. A level set theory for neural im-
plicit evolution under explicit flows. In European Conference on Computer Vision, pp. 711–729.
Springer, 2022.

Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari, Ravi Ra-
mamoorthi, Ren Ng, and Abhishek Kar. Local light field fusion: Practical view synthesis with
prescriptive sampling guidelines. ACM Transactions on Graphics (TOG), 38(4):1–14, 2019.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics prim-
itives with a multiresolution hash encoding. arXiv preprint arXiv:2201.05989, 2022.

Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao, Wenzheng Chen, Alex Evans, Thomas
Mueller, and Sanja Fidler. Extracting Triangular 3D Models, Materials, and Lighting From Im-
ages. arXiv:2111.12503, 2021.

11

Under review as a conference paper at ICLR 2024

Michael Oechsle, Songyou Peng, and Andreas Geiger. Unisurf: Unifying neural implicit surfaces
and radiance fields for multi-view reconstruction. In International Conference on Computer Vi-
sion (ICCV), 2021.

Marc Pollefeys and Luc Van Gool. From images to 3d models. Communications of the ACM, 45(7):
50–55, 2002.

Edoardo Remelli, Artem Lukoianov, Stephan Richter, Benoit Guillard, Timur Bagautdinov, Pierre
Baque, and Pascal Fua. Meshsdf: Differentiable iso-surface extraction. Advances in Neural
Information Processing Systems, 33:22468–22478, 2020.

Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-motion revisited. In
Proc. CVPR, 2016.

Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm. Pixelwise
view selection for unstructured multi-view stereo. In European Conference on Computer Vision
(ECCV), 2016.

Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and Sanja Fidler. Deep marching tetrahedra:
a hybrid representation for high-resolution 3d shape synthesis. Advances in Neural Information
Processing Systems, 34:6087–6101, 2021.

Tianchang Shen, Jacob Munkberg, Jon Hasselgren, Kangxue Yin, Zian Wang, Wenzheng Chen, Zan
Gojcic, Sanja Fidler, Nicholas Sharp, and Jun Gao. Flexible isosurface extraction for gradient-
based mesh optimization. ACM Transactions on Graphics (TOG), 42(4):1–16, 2023.

Noah Snavely, Steven M Seitz, and Richard Szeliski. Photo tourism: exploring photo collections in
3d. In ACM siggraph 2006 papers, pp. 835–846. 2006.

Olga Sorkine, Daniel Cohen-Or, Yaron Lipman, Marc Alexa, Christian Rössl, and H-P Seidel.
Laplacian surface editing. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH sympo-
sium on Geometry processing, pp. 175–184, 2004.

Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast conver-
gence for radiance fields reconstruction. In CVPR, 2022.

Chengzhou Tang and Ping Tan. BA-net: Dense bundle adjustment network. In Proc. ICLR, 2019.

Jiaxiang Tang, Hang Zhou, Xiaokang Chen, Tianshu Hu, Errui Ding, Jingdong Wang, and Gang
Zeng. Delicate textured mesh recovery from nerf via adaptive surface refinement. arXiv preprint
arXiv:2303.02091, 2022.

Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler, Jonathan T Barron, and Pratul P Srini-
vasan. Ref-nerf: Structured view-dependent appearance for neural radiance fields. In 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5481–5490.
IEEE, 2022.

Sudheendra Vijayanarasimhan, Susanna Ricco, Cordelia Schmid, Rahul Sukthankar, and Kate-
rina Fragkiadaki. Sfm-net: Learning of structure and motion from video. arXiv preprint
arXiv:1704.07804, 2017.

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang. Neus:
Learning neural implicit surfaces by volume rendering for multi-view reconstruction. NeurIPS,
2021.

Yiming Wang, Qin Han, Marc Habermann, Kostas Daniilidis, Christian Theobalt, and Lingjie Liu.
Neus2: Fast learning of neural implicit surfaces for multi-view reconstruction. arXiv preprint
arXiv:2212.05231, 2022.

Xinyue Wei, Minghua Liu, Zhan Ling, and Hao Su. Approximate convex decomposition for 3d
meshes with collision-aware concavity and tree search. ACM Transactions on Graphics (TOG),
41(4):1–18, 2022.

12

Under review as a conference paper at ICLR 2024

Qiling Wu, Jianchao Tan, and Kun Xu. Palettenerf: Palette-based color editing for nerfs. arXiv
preprint arXiv:2212.12871, 2022.

Fanbo Xiang, Zexiang Xu, Milos Hasan, Yannick Hold-Geoffroy, Kalyan Sunkavalli, and Hao Su.
Neutex: Neural texture mapping for volumetric neural rendering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 7119–7128, 2021.

Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu, Kalyan Sunkavalli, and Ulrich Neu-
mann. Point-nerf: Point-based neural radiance fields. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 5438–5448, 2022.

Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan. MVSnet: Depth inference for unstruc-
tured multi-view stereo. In Proc. ECCV, pp. 767–783, 2018.

Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Volume rendering of neural implicit surfaces.
Advances in Neural Information Processing Systems, 34:4805–4815, 2021.

Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin, Pratul P Srinivasan, Richard Szeliski,
Jonathan T Barron, and Ben Mildenhall. Bakedsdf: Meshing neural sdfs for real-time view syn-
thesis. arXiv preprint arXiv:2302.14859, 2023.

Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, Yuewen Ma, Rongfei Jia, and Lin Gao. Nerf-editing:
geometry editing of neural radiance fields. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 18353–18364, 2022.

Kai Zhang, Fujun Luan, Qianqian Wang, Kavita Bala, and Noah Snavely. Physg: Inverse rendering
with spherical gaussians for physics-based material editing and relighting. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5453–5462, 2021a.

Kai Zhang, Nick Kolkin, Sai Bi, Fujun Luan, Zexiang Xu, Eli Shechtman, and Noah Snavely. Arf:
Artistic radiance fields. In European Conference on Computer Vision, pp. 717–733. Springer,
2022a.

Kai Zhang, Fujun Luan, Zhengqi Li, and Noah Snavely. Iron: Inverse rendering by optimizing
neural sdfs and materials from photometric images. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 5565–5574, 2022b.

Xiuming Zhang, Pratul P Srinivasan, Boyang Deng, Paul Debevec, William T Freeman, and
Jonathan T Barron. Nerfactor: Neural factorization of shape and reflectance under an unknown
illumination. ACM Transactions on Graphics (TOG), 40(6):1–18, 2021b.

Yuanqing Zhang, Jiaming Sun, Xingyi He, Huan Fu, Rongfei Jia, and Xiaowei Zhou. Modeling indi-
rect illumination for inverse rendering. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 18643–18652, 2022c.

A PRELIMIARIES

A.1 WATERTIGHT AND MANIFOLD MESHES

Watertight. If all edges are shared by exactly two faces, then the mesh is watertight.

Manifold. A manifold mesh must meet the following properties: (1) all edges must connect at most
two faces; (2) each edge is incident to one or two faces and faces incident to a vertex must form a
closed or open fan; (3) the faces must not self-intersect with each other.

A.2 VOLUMETRIC NEURAL FIELDS.

Recent neural field representations utilize differentiable volume rendering for their reconstruction
and leads to high visual quality. While our approach can generally support any neural field models,
we apply two specific ones, TensoRF and NeuS, in our paper. We now briefly cover the preliminaries
of these methods.

13

Under review as a conference paper at ICLR 2024

−2

−2

1

1

−2

−2

1

1

−0.5

𝑓(−2)

𝑓(−2)

𝑓(1)

𝑓(1)

𝑓(−0.5)

𝑓(−2)

𝑓(−2)

𝑓(1)

𝑓(1)

𝑡

DiffMC on SDF DMTet on SDF DMTet on density fieldDiffMC on density field

Fig. 8. 2D example illustrating why DMTet tends to introduce more artifacts when extracting meshes from
density fields while DiffMC can generate much smoother surfaces.

TensoRF. The original NeRF uses pure MLPs, which make it slow to train and incapable of model-
ing details accurately. TensoRF (Chen et al., 2022a) decodes the radiance field from a volume of fea-
tures, and this feature volume is further factorized into factors leveraging CANDECOMP/PARAFAC
decomposition or vector-matrix decomposition. In this work, we are interested in the vector-matrix
decomposition, which factorizes the 4D feature volume as the sum of three outer products between
a matrix and a vector.

A.3 DIFFERENTIABLE RASTERIZATION

Differentiable rasterization refers to methods that optimize inputs of rasterization-based rendering
pipelines. In this work, we are interested in nvdiffrast (Laine et al., 2020), which consists of 4 stages,
rasterization, interpolation, texture lookup, and anti-aliasing. We mainly use the rasterization stage,
which maps triangles from 3D space onto pixel space, and the interpolation stage, which provides
3D coordinates of pixels to query the appearance network.

To ensure the mesh optimized by differentiable rasterization is a watertight manifold, we need to
apply a meshing algorithm that generates such meshes. In this work we propose DiffMC, which
divides the 3D space into a deformable grid and takes a scalar field (often SDF) defined on its
vertices as input. The algorithm turns the scalar field into an explicit mesh by a differentiable
marching cubes algorithm.

B DIFFERENTIABLE MARCHING CUBES (DIFFMC)

In this section, we present additional results for DiffMC. These include a 2D example showing
why DMTet tends to introduce more artifacts on density fields than DiffMC, an ablation study that
demonstrates how grid resolution influences visual fidelity and a comparison highlighting the effec-
tiveness of our method in mesh reconstruction when compared to DMTet (Shen et al., 2021).

First, we illustrate how DMTet and DiffMC generate surfaces with a 2D schematic diagram in Fig. 8.
In 2D, Marching Cubes is analogous to “Marching Squares” and Marching Tetrahedra is analogous
to “Marching Triangles”. Given a surface (shown as a green vertical line) passing through the
square/triangle grids (shown as black lines), suppose we have recorded the perfect signed distance
function (SDF) values of the surface on the grid nodes, as shown in the two leftmost figures, regard-
less of how the algorithm divides the space, both methods exactly recover the ground truth surface
through linear interpolation.

However, in practice, perfect SDF values are not easily obtainable, especially when the input comes
from a volumetric density representation. Here, we simulate an imperfect SDF by applying a non-
linear transformation f(s) = exp(s) − 1 − t to the SDF values. Under this scenario, DiffMC can
still generate a flat surface (red line in the second figure from right), albeit with a slight offset t
which can be rectified by introducing an adjustable threshold to the grid values. In contrast, DMTet
produces zigzag lines (red line in the rightmost figure) due to varying space divisions and cannot be
easily fixed.

14

Under review as a conference paper at ICLR 2024

DiffMC reso 32 64 100 128 200 256 300 384 400
PSNR 23.12 26.83 28.64 29.46 30.8 31.19 31.34 31.53 31.54
SSIM 0.894 0.925 0.94 0.946 0.952 0.954 0.955 0.956 0.956
LPIPS 0.121 0.089 0.075 0.069 0.061 0.059 0.057 0.056 0.056

Table 6. The influence of DiffMC resolution to rendering quality. The visual fidelity consistently improves as
the resolution increases, eventually reaching a plateau when it reaches 400.

32 64 100 128 200 256 300 384 400

Fig. 9. The influence of DiffMC resolution to rendeirng quality. We have noticed that lower resolutions can
capture most of the coarse structures but tend to lose finer details, such as the drum legs and the ropes on the
ship. These finer details become more discernible as the resolution increases.

As we transition from lower to higher resolutions, we observe a consistent improvement in rendering
quality, ultimately converging as the resolution reaches 400, as demonstrated in Table 6. Moreover,
as depicted in Fig. 9, a higher-resolution DiffMC is notably more adept at recovering intricate struc-
tures, such as the ropes on the ship.

Next, we highlight the advantages of our method in extracting meshes from density fields by apply-
ing both our approach and DMTet (Shen et al., 2021) to a set of pre-trained density networks, includ-
ing TensoRF (Chen et al., 2022a), instant-NGP (Müller et al., 2022) and vanilla NeRF (Mildenhall
et al., 2021). By comparing the visible surface agreemen (VSA) of the reconstructed meshes, as
illustrated in Fig. 10, we observe a consistent enhancement brought about by DiffMC across all
methods. We also conduct a comparison between our DiffMC and DMTet in our pipeline, noting a
significant improvement in surface smoothness with our method, which effectively mitigates most
of the artifacts resulting from the non-linearity of the density field.

We compare the speed of DiffMC and DMTet by running both forward and backward processes for
1000× and then compute the average speed.

C MIP-NERF 360 DATASET

We evaluate our method on unbounded real scenes in the Mip-NeRF 360 dataset (Barron et al.,
2022). To deal with the unbounded background, we follow the contraction function proposed in
Barron et al. (2022) to warp the far objects from their original space, t-space, into the contracted
space s-space (a sphere with a radius of 1.2 in our setup). When generating the mesh, we apply
DiffMC on the geometry network within t-space so that the mesh can be watertight manifold, oth-
erwise the contraction may break the property. After getting the points on the mesh surface, we
contract the points back to s-space to compute the color. Within the t-space, we utilize multiple res-
olutions for the entire scene, with a higher resolution (340) for the foreground and a lower resolution
(56) for the background. To represent the distant background that falls outside the [-4, 4] box range,
we employ a skybox. We use the anti-aliasing of nvdiffrast (Laine et al., 2020) for this dataset.

Our method generates watertight manifold foreground meshes. Therefore, we can apply simulation
algorithms on the foreground objects, as shown in Fig. 12, where we apply soft-body simulation on
the flower and use a solid ball to hit it.

In Table 7, we compared our method with others. Some mesh rendering methods, such as Mo-
bileNeRF (Chen et al., 2022b) and nerf2mesh (Tang et al., 2022), provided results for selected
scenes, while our method worked effectively on all unbounded scenes, particularly excelling in in-
door scenes. Visual results of our method are depicted in Fig. 13.

15

Under review as a conference paper at ICLR 2024

Fig. 10. DMTet vs DiffMC on extracting meshes from pre-trained density fields. Across all three methods,
DiffMC consistently outperforms DMTet in terms of mesh quality.

O
ur

s w
/ D

M
Te

t
O

ur
s w

/ D
iff

M
C

Fig. 11. A mesh surface comparison of Ours (HQ-m) between using DiffMC and DMTet reveals that DiffMC
can create significantly smoother surfaces. This improvement is not limited to axis-aligned surfaces; it consis-
tently outperforms DMTet on various rounded surfaces as well.

PSNR Bicycle Garden Stump Flowers Treehill Bonsai Counter Kitchen Room Mean
MobileNeRF 21.70 23.54 23.95 18.86 21.72 - - - - -
nerf2mesh 22.16 22.39 22.53 - - - - - - -
BakedSDF - - - - - - - - - 24.51
Ours (HQ-m) 20.16 23.36 22.27 18.49 21.07 26.64 24.83 24.97 26.75 23.17
Ours (HQ) 21.38 24.90 23.51 18.82 21.64 28.61 26.31 26.63 28.95 24.53
SSIM
MobileNeRF 0.426 0.599 0.556 0.321 0.450 - - - - -
nerf2mesh 0.470 0.500 0.508 - - - - - - -
BakedSDF - - - - - - - - - 0.697
Ours (HQ-m) 0.382 0.616 0.492 0.334 0.447 0.835 0.746 0.644 0.815 0.590
Ours (HQ) 0.469 0.746 0.589 0.366 0.494 0.888 0.808 0.764 0.872 0.666
LPIPS
MobileNeRF 0.513 0.358 0.430 0.526 0.522 - - - - -
nerf2mesh 0.510 0.434 0.490 - - - - - - -
BakedSDF - - - - - - - - - 0.309
Ours (HQ-m) 0.561 0.372 0.475 0.553 0.560 0.268 0.346 0.380 0.348 0.429
Ours (HQ) 0.488 0.252 0.413 0.520 0.506 0.201 0.270 0.275 0.274 0.355

Table 7. Quantitative results on each scene in the Mip-NeRF 360 dataset.

D LLFF DATASET

We evaluate our method on forward-facing scenes on LLFF dataset (Mildenhall et al., 2019). Fol-
lowing Chen et al. (2022a), we contract the whole scene into NDC space to do the reconstruction

16

Under review as a conference paper at ICLR 2024

Fig. 12. Soft-body simulation on the foreground watertight manifold mesh. The solid ball hits the flower and
makes it deform. See the project page for the full animation.

O
ur

s (
H

Q
-m

)
O

ur
s (

H
Q

)
G

T
O

ur
s (

H
Q

-m
)

O
ur

s (
H

Q
)

G
T

Fig. 13. Mip-NeRF 360 renderings.

and mesh extraction. On this dataset, we use DiffMC with resolution of 375. We use 9× sample
per-pixel SSAA for this dataset. Table 8 and Fig. 14 shows the quantitative and qualitative results.
Fig. 15 shows the reconstructed mesh of the scenes.

We put our method to the test with forward-facing scenes from the LLFF dataset (Mildenhall et al.,
2019). In line with Chen et al. (2022a), we condensed the entire scene into NDC space for recon-
struction and mesh extraction. For this dataset, we employed DiffMC with a resolution of 375. You
can find both the quantitative results in Table 8 and the qualitative results in Fig. 14. Additionally,
Fig. 15 showcases the reconstructed mesh for these scenes.

17

Under review as a conference paper at ICLR 2024

O
ur

s (
H

Q
-m

)
O

ur
s (

H
Q

)
G

T
O

ur
s (

H
Q

-m
)

O
ur

s (
H

Q
)

G
T

Fig. 14. LLFF renderings.

E NERF-SYNTHETIC DATASET

We show the complete quantitative comparison between our method and the previous works on the
NeRF-Synthetic dataset in Table 9 and the complete visual comparison in Fig. 19.

F MESH QUALITY

We show the mesh quality comparison in Fig.20, where except for Mobile-NeRF (Chen et al., 2022b)
and nerf2mesh (Tang et al., 2022), all the meshes are watertight manifold. And we show the VSA-
tolerance curves for the rest scenes in NeRF-Synthetic in Fig. 18.

G NETWORK ARCHITECTURE

In this section, we describe the network architecture used in the experiments. Our proposed method
has two versions, a high-quality one and a fast one, and they share the same geometry network

18

Under review as a conference paper at ICLR 2024

Fig. 15. LLFF mesh.

PSNR Fern Flower Fortress Horns Leaves Orchids Room Trex Mean
MobileNeRF 24.59 27.05 30.82 27.09 20.54 19.66 31.28 26.26 25.91
nerf2mesh 23.94 26.48 28.02 26.25 19.22 19.08 29.24 25.80 24.75
Ours (F-m) 23.72 27.05 30.88 27.01 19.68 18.43 30.33 25.03 25.27
Ours (F) 24.05 27.22 30.98 27.09 19.92 18.91 30.63 25.58 25.55
Ours (HQ-m) 24.19 26.99 31.18 27.35 20.49 19.68 30.79 26.61 25.91
Ours (HQ) 24.54 27.08 31.32 27.49 20.59 19.73 31.11 27.16 26.13
SSIM
MobileNeRF 0.808 0.839 0.891 0.864 0.711 0.647 0.943 0.900 0.825
nerf2mesh 0.751 0.879 0.765 0.819 0.644 0.602 0.914 0.868 0.780
Ours (F-m) 0.757 0.842 0.895 0.864 0.681 0.601 0.923 0.865 0.803
Ours (F) 0.772 0.848 0.898 0.866 0.693 0.622 0.926 0.872 0.812
Ours (HQ-m) 0.789 0.852 0.902 0.877 0.739 0.677 0.930 0.896 0.833
Ours (HQ) 0.801 0.856 0.902 0.881 0.745 0.681 0.933 0.904 0.838
LPIPS
MobileNeRF 0.202 0.163 0.115 0.169 0.245 0.277 0.143 0.147 0.183
nerf2mesh 0.303 0.204 0.270 0.260 0.321 0.314 0.246 0.215 0.267
Ours (F-m) 0.274 0.181 0.158 0.196 0.254 0.278 0.208 0.256 0.226
Ours (F) 0.258 0.175 0.152 0.191 0.244 0.260 0.203 0.247 0.216
Ours (HQ-m) 0.245 0.164 0.137 0.171 0.202 0.234 0.188 0.216 0.195
Ours (HQ) 0.228 0.160 0.136 0.165 0.198 0.226 0.181 0.205 0.187

Table 8. Quantitative results on each scene in the LLFF dataset.

architecture but with different appearance networks. The geometry network is the same as Ten-
soRF (Chen et al., 2022a) VM-192 in its paper. The appearance network is from TensoRF and we
show the two versions below respectively.

Fig. 16. Comparison between 8x MSAA and no AA. (a) Our deployed high-quality model without AA (FPS:
146, PSNR: 31.26). (c) the same model with 8× MSAA (FPS: 93, PSNR: 33.01). (b) and (d) show the
error maps of (a) and (c) respectively. The visual quality at edges is significantly improved by MSAA with a
relatively small performance hit.

19

Under review as a conference paper at ICLR 2024

PSNR Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean
MobileNeRF 34.09 25.02 30.20 35.46 34.18 26.72 32.48 29.06 30.90
nvdiffrec 31.00 24.39 29.86 33.27 29.61 26.64 30.37 26.05 28.90
TensoRF (DT) 27.72 22.20 25.66 28.85 25.86 22.12 26.13 23.67 25.28
NeuS (DT) 31.80 22.52 23.44 33.86 28.07 26.68 31.42 25.02 27.85
nerf2mesh 31.93 24.80 29.81 34.11 32.07 25.45 31.25 28.69 29.76
nvdiffrec (m) 31.24 23.17 25.11 32.67 28.44 26.33 29.39 24.82 27.65
Ours (F) 33.82 25.25 31.28 35.43 34.40 26.83 32.37 28.13 30.94
Ours (HQ) 34.46 25.42 31.83 36.45 35.40 27.38 33.46 28.77 31.65
Ours (F-m) 33.68 24.98 30.23 35.10 33.39 26.61 32.21 27.54 30.47
Ours (HQ-m) 34.37 25.17 30.64 36.35 34.28 27.22 33.35 28.12 31.19
SSIM
MobileNeRF 0.978 0.927 0.965 0.973 0.975 0.913 0.979 0.867 0.947
nvdiffrec 0.965 0.921 0.969 0.973 0.952 0.924 0.975 0.827 0.938
TensoRF (DT) 0.922 0.872 0.933 0.916 0.893 0.835 0.936 0.780 0.886
NeuS (DT) 0.975 0.907 0.934 0.975 0.949 0.921 0.981 0.840 0.935
nerf2mesh 0.964 0.927 0.967 0.970 0.957 0.896 0.974 0.865 0.940
nvdiffrec (m) 0.970 0.915 0.937 0.973 0.943 0.927 0.975 0.820 0.932
Ours (F) 0.977 0.935 0.974 0.978 0.978 0.925 0.981 0.865 0.952
Ours (HQ) 0.981 0.939 0.977 0.981 0.982 0.930 0.986 0.877 0.956
Ours (F-m) 0.976 0.932 0.970 0.978 0.976 0.923 0.980 0.859 0.949
Ours (HQ-m) 0.981 0.935 0.973 0.981 0.979 0.928 0.985 0.871 0.954
LPIPS
MobileNeRF 0.025 0.077 0.048 0.050 0.025 0.092 0.032 0.145 0.062
nvdiffrec 0.023 0.086 0.032 0.064 0.047 0.111 0.031 0.188 0.073
TensoRF (DT) 0.076 0.130 0.070 0.113 0.090 0.146 0.070 0.230 0.115
NeuS (DT) 0.033 0.101 0.065 0.041 0.056 0.084 0.021 0.191 0.074
nerf2mesh 0.046 0.084 0.045 0.060 0.047 0.107 0.042 0.145 0.072
nvdiffrec (m) 0.020 0.104 0.057 0.068 0.059 0.116 0.028 0.220 0.084
Ours (F) 0.036 0.073 0.035 0.041 0.027 0.089 0.024 0.167 0.061
Ours (HQ) 0.026 0.068 0.033 0.035 0.023 0.085 0.017 0.159 0.056
Ours (F-m) 0.037 0.079 0.040 0.043 0.031 0.091 0.024 0.174 0.065
Ours (HQ-m) 0.027 0.074 0.038 0.036 0.027 0.086 0.017 0.164 0.059

Table 9. Quantitative results on each scene in the NeRF-Synthetic dataset.

Name High-Quality Fast
app matrix xy Param (48 x 300 x 300) Param (48 x 300 x 300)
app matrix yz Param (48 x 300 x 300) Param (48 x 300 x 300)
app matrix zx Param (48 x 300 x 300) Param (48 x 300 x 300)
app vector x Param (48 x 300 x 1) Param (48 x 300 x 1)
app vector y Param (48 x 300 x 1) Param (48 x 300 x 1)
app vector z Param (48 x 300 x 1) Param (48 x 300 x 1)
basis mat Linear (144, 12, bias=False) Linear (144, 27, bias=False)
last layer Linear (99, 64, bias=True)

ReLU (inlace=True)
Linear (64, 64, bias=True) Spherical Harmonics

ReLU (inlace=True)
Linear (64, 3, bias=True)

Table 10. Appearance network architecture of Ours (HQ) and Ours (F) for NeRF-Synthetic.

High-quality. We use the Vector-Matrix (VM) decomposition in TensoRF, which factorizes a ten-
sor into multiple vectors and matrices along the axes as in Equation 3 of the TensoRF paper. The
feature Gc(x) generated by VM decomposition is concatenated with the viewing direction d and put
into the MLP decoder S for the output color c:

20

Under review as a conference paper at ICLR 2024

w/o geo w/o tex w/o geo w/ tex w/ geo w/o tex w/ geo w/ tex

Fig. 17. Visual comparison of Ours (HQ-m) w/ or w/o geometry and texture initialization. when both initial-
izations are omitted, the mesh optimization process can easily become trapped in local minima, as illustrated
in the first left image. Although texture initialization can provide some assistance to the optimization process,
it still falls short of achieving satisfactory geometric quality.

Fig. 18. Other VSA plots.

c = S(Gc(x), d), (3)
We also apply frequency encodings (with Sin and Cos functions) on both the features Gc(x) and
the viewing direction d. We use a 3003 dense grid to represent the scenes in NeRF-Synthetic and
use 2 frequencies for features and 6 frequencies for the viewing direction. The detailed network
architecture is shown in Table 10. As for Mip-NeRF 360 and LLFF datasets we use a 5123 dense
grid to represent the unbounded indoor scenes and do not use frequency encodings.

Fast. The fast version shares similar architecture and positional encoding setups with the high-
quality version before the MLP decoder but uses the spherical harmonics (SH) function as Gc instead,
as shown in Table 10.

21

Under review as a conference paper at ICLR 2024

TensoRF (DT) NeuS (DT) nvdiffrec (m) Ours (F-m) Ours (HQ-m) GT

Fig. 19. NeRF-Synthetic renderings.

22

Under review as a conference paper at ICLR 2024

MobileNeRF* TensoRF NeuS nvdiffrec nerf2mesh* Ours (HQ-m) GT

Fig. 20. NeRF-Synthetic mesh.

23

	Introduction
	Related Work
	Method
	Neural Field Representation.
	Initialization by Volume Rendering (Stage 1)
	Manifold Generation & Optimization (Stage 2)
	Geometry and Appearance Finetune (Stage 3)
	Deployment

	Experiments
	Implementation Details
	Comparison on Novel-View Synthesis
	Comparison on Mesh Reconstruction
	Ablation for Stage 1 & 2
	Speed and Quality Trade-Off

	Applications
	Conclusion
	Prelimiaries
	Watertight and Manifold Meshes
	Volumetric Neural Fields.
	Differentiable Rasterization

	Differentiable Marching Cubes (DiffMC)
	Mip-NeRF 360 Dataset
	LLFF dataset
	NeRF-Synthetic Dataset
	Mesh Quality
	Network Architecture

