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Abstract
Medical natural language understanding (NLU)
tasks seek to extract clinically relevant informa-
tion—such as diagnostic intent, symptomatic
manifestations, laboratory findings, and ther-
apeutic regimens—from medical dialogues or
textual data. Regrettably, the paucity of anno-
tated medical datasets often impedes the devel-
opment of robustly trained models across di-
verse tasks. A promising approach involves de-
composing neural networks into modular skill
components, thereby facilitating the transfer
of acquired knowledge from trained tasks to
novel ones. Nevertheless, in multi-task learn-
ing frameworks, the indiscriminate aggregation
of skill modules into a unified architecture may
result in suboptimal skill refinement. To ad-
dress this limitation, we introduce a progres-
sive learning paradigm wherein each task is
constrained to leverage only the network struc-
tures of tasks preceding it in a predefined dif-
ficulty hierarchy, thereby maximizing knowl-
edge assimilation from less complex subtasks.
For empirical validation, we select four pivotal
medical NLP tasks: Single Sentence Intention
Classification (SSIC), Sentence Pair Relation-
ship Judgment (SPRJ), Named Entity Recogni-
tion (NER), and Classifying Positive and Nega-
tive Clinical Findings (CPNCF). Experimental
results demonstrate that our proposed strategy
yields consistent performance enhancements
on the CPNCF task across multiple datasets.

1 Introduction

In recent years, remarkable advancements have
been achieved in the exploration of language
models employing multi-task learning (MTL)
paradigms. This innovative approach focuses on
either pre-training or fine-tuning shared knowl-
edge representations across diverse learning tasks,
thereby significantly enhancing both the efficacy
of training data utilization and overall task perfor-
mance(Pilault et al., 2021; Zhang et al., 2023). In
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the framework of MTL, each distinct task com-
pels the model to acquire specific facets of knowl-
edge that exhibit partial intersection yet maintain
unique characteristics. The approach not only opti-
mizes computational resources but also facilitates
accelerated knowledge transfer through synergistic
learning mechanisms. For traditional MTL meth-
ods, which generally learn multiple tasks by shar-
ing representations (e.g., Multi-Task Deep Neural
Networks (MT-DNN) (Liu et al., 2019)) or allocat-
ing representations according to learning parame-
ters (e.g., Multi-gate Mixture-of-Experts (MMoE)
(Ma et al., 2018)), acquiring optimal task-specific
parameters proves challenging when confronted
with imbalanced data distribution, particularly sce-
narios where vast datasets are available for rudi-
mentary tasks while only limited data exists for
intricate ones. Consequently, it exhibits negligible
transferability when applied to novel tasks. Skill-
net (Zhang et al., 2022a), as an advanced MTL
method, designs a model structure of task disas-
sembly based on skills. By splitting the task to be
trained into multiple skills, the model can quickly
reuse the previous skills and capabilities in the pro-
cess of participating in the new task training, so as
to improve the training efficiency.

Nevertheless, annotated data in medical domain
is usually limited and scattered across tasks (Wu
et al., 2020; Fries et al., 2021). This is particularly
critical in the case of CPNCF, which involves the
extraction of medical entities—specifically, symp-
tom recognition—and the subsequent determina-
tion of their presence or absence in patients. As a
foundational component of numerous clinical appli-
cations, i.e., patient report generation, CPNCF’s in-
herent complexity raises concerns regarding model
convergence and comprehensive learning. Further-
more, existing methodologies fail to account for the
disparate learning difficulties across tasks, resulting
in lackluster progress for simpler tasks and subopti-
mal convergence rates for more complex ones. This



discrepancy stems from the necessity for holistic
decision-making, integrating multiple knowledge
domains, which ultimately impedes both model ef-
ficiency and performance (Guo et al., 2018; Liang
and Zhang, 2020).

Consequently, we propose a progressive MTL
framework that establishes hierarchical linkages
between primary tasks and their subordinate chal-
lenging variants, facilitating unidirectional knowl-
edge transfer. This architecture enables founda-
tional knowledge acquired from simpler tasks to
systematically scaffold the learning of more com-
plex counterparts. Specifically, we select elemen-
tary tasks - SSIC, SPRJ, and NER - as foundational
building blocks to support the advanced CPNCF
task. The training sequence is meticulously or-
ganized according to task complexity, which we
quantitatively assess through the requisite informa-
tion volume for task execution. Architecturally, we
implement these task interdependencies through a
residual network framework, which enforces a
strict information flow paradigm from elementary
to advanced task modules.

Our contributions can be summed up in the fol-
lowing three points:
• We introduce two novel complexity-driven

methodologies that systematically evaluate and
rank task difficulty based on the requisite informa-
tion during the learning process. This framework
serves as the foundational paradigm and critical
initial phase for our progressive MTL architecture.

• We propose a progressive MTL framework that
systematically transfers knowledge from elemen-
tary tasks to facilitate the learning of more complex
counterparts via the residual network.
• We conduct extensive experiments on multiple

benchmark medical datasets, empirically validating
the efficacy of the proposed methodology.

2 Related Work

Many existing works focus on designing multi-task
fusion methods (Yu et al., 2024; Chen et al., 2024),
including cross fusion of text representations, fu-
sion design of classification layers, etc. These fu-
sion architectures can be divided into two types:
parallel design and hierarchical design.

In parallel design, e.g., MT-DNN, most of the
model structure is shared among tasks, and only the
task-related output part, i.e., the top classification
layer, is unique to each other. To more remotely dis-
tinguish the differences among tasks, some works

have designed unique representation layer sharing
mechanisms, i.e., with delicate task-shared and
task-specific parts(Sun et al., 2020; Liu et al., 2021;
Chai et al., 2022). Skill-net is a typical model
for this type of parallel design. It decomposes
the essential competencies for NLU into discrete
cognitive skills, including lexical semantic com-
prehension and textual sentiment analysis. These
foundational skills exhibit cross-task transferabil-
ity while maintaining task-specific specialization.
To more precisely model the intricate interplay be-
tween shared linguistic features and individual task
requirements, contemporary approaches have de-
veloped dedicated memory architectures with adap-
tive gating mechanisms (Ma et al., 2018; Dankers
et al., 2019). For instance, MMoE shares experts
structure among tasks and establish distinguished
gate networks to activate them. In order to make
trade-off between knowledge availability and spar-
sity for MoE, Zhao et al. transfer partial knowledge
from unselected experts to the selected based on
hypernetworks.

Dissimilarly, the hierarchical structure fuses fea-
tures at different depths. For example, some works
integrate word features of token granularity tasks
(e.g., simile extraction) as additional information
into that of sentence granularity tasks (e.g., sim-
ile classification) to assist the improvement of the
latter (Liu et al., 2018). Additionally, some works
employ the output of upstream tasks as additional
input for the downstream to build a pipeline hierar-
chical structure (Huang et al., 2022; Nguyen et al.,
2022). Zhou et al. solve the problem of entity
reference by constructing a three-level structure.

Despite the aforementioned structural designs,
existing models invariably overlook the critical role
of task difficulty in MTL. Intuitively, human cog-
nition tends to deconstruct intricate tasks into sim-
pler sub-tasks, progressively mastering the over-
arching skill through incremental learning. In
this paradigm, acquiring proficiency in elementary
tasks inherently furnishes auxiliary knowledge that
facilitates the comprehension of more complex ob-
jectives. This phenomenon is particularly salient in
the medical domain, where rudimentary tasks often
constitute integral components of higher-order chal-
lenges. For instance, CPNCF can be operational-
ized through the synergistic integration of NER
and contextual relationship analysis. Consequently,
explicitly modeling the hierarchical interdependen-
cies among tasks can significantly augment MTL
efficacy and enhance overall performance.
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Figure 1: The overall framework of our model. We firstly rank the four tasks to the order of ’SSIC->SPRJ->NER-
>CPNCF’ according to their ease of understanding, and a feature extractor, e.g., BERT (Devlin et al., 2019) is
employed for instances of the tasks. A progressive learning architecture is established for multi-task learning where
routes of the easier tasks are added to harder ones for feature augmentation. During training or inferring, only routes
of the current task are activated.

3 Proposed Method

This section specifies the proposed model for MTL,
as is shown in Figure 1. We initially curate a set
of elementary NLU tasks in the medical domain
to serve as auxiliary learning components for the
CPNCF task. These selected tasks possess either
well-established annotation protocols or substan-
tial labeled datasets, facilitating robust model train-
ing. Then we implement a residual connectivity
paradigm that systematically links each task’s net-
work pathway to its more complex counterparts.
During training, we employ selective activation,
whereby only the network modules corresponding
to the current target task and its subordinate tasks
are engaged.

3.1 Multi-tasks Arrangement
We choose several typical medical NLU tasks,
namely, SSIC, SPRJ and NER for CPNCF accom-
plishment. For any tasks Trd = {ti|i ≤ len(Trd)},
We rank them as:

Torder = {tj |tj ∈ Trd ∧ d(tj) < d(tj+1)}, (1)

where d(tj) is a gauge to estimate the difficulty
of the task tj . The measurement works with the
information the task requires. In general, we con-
sider task A is more difficult than task B when A

requires extra information to implement. In fact,
ν-usable information (Ethayarajh et al., 2022) is
a possible solution to this quantification but with
complex implementations, hence we propose two
strategies to solve this ranking problem intuitively.
• Coarse-grained tasks are simpler than fine-

grained tasks: Coarse-grained tasks, exempli-
fied by sentence-level comprehension, typically
operate through aggregation mechanisms that pool
finer-grained features (Hashimoto et al., 2017; Kru-
engkrai et al., 2020), e.g., token-level representa-
tions, without requiring exhaustive analysis of indi-
vidual token units. Notably, these higher-level tasks
simultaneously provide valuable contextual infor-
mation that enhances performance on their fine-
grained counterparts. This granularity dichotomy is
clearly manifested in our task selection: SSIC and
SPRJ operate at sentence-level granularity, whereas
NER and CPNCF require precise token-level anal-
ysis. Hence:

d(ts) < d(tt), (2)

where ts ∈ {tssic, tsprj} and tt ∈ {tner, tcpncf}.
• Up-stream tasks are simpler than down-

stream tasks: To illustrate, relation extraction
task inherently depends on entity pairs identified
through NER, establishing a clear hierarchical de-



pendency. Similarly, task-oriented dialogue system
exhibits greater complexity than basic intent detec-
tion, as response generation necessitates intention-
aware filtering mechanisms (Qin et al., 2019; Weld
et al., 2022). Conventional approaches typically
employ pipeline architectures to sequentially ad-
dress these interdependent tasks. When explicit
task dependencies are ambiguous, the relationship
can be inferred through analysis of implicit in-
formational prerequisites. With respect to SSIC
and SPRJ, the latter necessitates comprehensive
sentence-level semantic comprehension to accu-
rately infer inter-sentential relationships. As for
NER and CPNCF, considering the clinical presen-
tation “cough, expectoration with chest and back
pain, without hot flashes, night sweats, fatigue,
and weight loss”, NER simply extracts discrete
symptom entities (e.g., “cough”, “back pain”, “hot
flashes”), while CPNCF performs advanced clin-
ical phenotyping by determining assertion status
and incorporating contextual analysis from both
the host sentence and adjacent discourse (e.g., “hot
flashes-negated findings”). This demonstrates CP-
NCF’s sophisticated requirement for contextual in-
terpretation and clinical reasoning beyond NER.

Ultimately, we will get a task rank as:

d(tssic) < d(tsprj) < d(tner) < d(tcpncf ) (3)

3.2 Tasks Connection
We employ BERT as the backbone for our model
architecture. BERT is composed of multiple multi-
head attention layers, being connected by feed-
forward neural networks (FFNN). Similar to many
other works, we keep the attention layer unchanged
and only modify the linking FFNN for task specific.

Concretely, we architecturally extend each
FFNN module into a task-specific FFNN cluster
architecture, wherein each pathway in the cluster
is dedicated to a particular task. As illustrated in
Figure 2, we denote the aforementioned tasks of
ordered in Equation 1 as t1, t2, t3, t4 respectively,
and develop the single FFNN into a four-pathway
cluster. Information flow in the cluster of kth layer
can be expressed as:

hk(t1) = Fk1(t1),

hk(t2) = W21 ∗ hk(t1) + Fk2(t2), (4)

...,

hk(tn) =
∑

1≤i≤n−1

Wni ∗ hk(ti) + Fkn(tn),

Add &
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Task-related 
FFNN Layer

Self-Attention

Add &
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Figure 2: Similar to Switch-Transformers (Fedus et al.,
2022), we implement task-specific modifications to
FFNN architecture. As illustrated in the right panel
of the figure, the chromatic progression from red to blue
represents four distinct tasks of ascending complexity,
with each color-coded bar corresponding to a dedicated
FFNN pathway.

where Fki(ti) means the corresponding FFNN
pathway of task ti in layer k, Wij is a trainable
weight to measure the contribution from tj to ti.
We can also set each Wij as constant 1 for simplic-
ity. From the formula, each task will derive its final
representation iteratively for further processing.

During the training or inferring process, we will
only activate the output of the current task, e.g., tm,
and other outputs will be frozen.

hk =
∑

1≤i≤n

I(i = m) ∗ hk(ti), (5)

where I is an indicator function to measure if cur-
rent path belongs to the processing task.

Following the BERT-based feature extraction,
we implement dedicated classifier heads for each
downstream task to produce task-specific predic-
tions. Specifically, for SSIC task, which involves
categorical assignment of clinical utterances (e.g.,
classifying sentences into domains such as med-
ical advice), we employ a softmax-activated out-
put layer operating on the contextualized “[CLS]”
token representation to perform multi-label clas-
sification. We consume sigmoid function for task
SPRJ to judge the relationship between a couple
of medical texts:

o(t)=

{
softmax(h([CLS]) SSIC
sigmoid(h([CLS]) SPRJ

(6)



where h(.) is the last hidden states as the represen-
tation.

NER constitutes a sequence labeling task that
requires assigning a categorical tag to each token
in the input sequence. Specifically, we employ the
BIO annotation scheme, where: B-T denotes the
beginning token of an entity of type T, I-T repre-
sents an internal token within an entity of type T,
and O indicates tokens outside any entity bound-
aries. The CPNCF task involves identifying po-
tential clinical findings (e.g., symptoms or signs)
within clinical text and determining their assertion
status (positive or negative). Following the NER
paradigm, we employ the BIO labeling scheme
for token-level annotation. Crucially, accurate as-
sertion classification necessitates comprehensive
contextual understanding. To facilitate this, our
model architecture incorporates enriched contex-
tual information by surrounding the target text with
special context markers (“[C]”). However, these
contextual markers are excluded from loss compu-
tation during model training to maintain focus on
the primary clinical findings.

o(t)=

{
{softmax(h(x))}(x ∈ X ) NER
{softmax(h(x))}(x∈X−C)CPNCF

(7)
where X denotes tokens of the medical sentence.
C represents the context tokens in CPNCF.

4 Experiments

In this section, we present a comprehensive exper-
imental evaluation of our proposed model across
two distinct series of medical NLU datasets. Ini-
tially, we delineate the experimental configuration,
encompassing the benchmark datasets, compara-
tive baseline methodologies, and performance eval-
uation metrics. Subsequently, we demonstrate the
empirical results for each task and conduct rigor-
ous comparative analyses with baseline methods.
Finally, we perform systematic ablation studies to
critically assess the impact of both the intermediate
task formulation and the sequencing of task orders
within our framework.

4.1 Experimental Setup
4.1.1 Datasets
MTL on mixture source datasets: We curate
publicly available datasets sourced from CBLUE
(Zhang et al., 2022b), meticulously selected to
align with their respective task objectives, namely:

• KUAKE-QIC dataset for task SSIC, com-
prises curated selections extracted from an exten-
sive corpus of medical conversations. Its primary
objective is to assess the medical-related intent of
the inquirer based on their queries.
• CHIP-STS dataset is systematically structured

to generate question pairs, which serve as samples
for task SPRJ. A positive sample is defined as
a question pair that conveys the same underlying
medical concept.
• CMeEE dataset extracts biomedical entities

from authoritative sources. These NER classifica-
tions encompass medical equipment, clinical pro-
cedures, diagnostic examinations, among other rel-
evant biomedical concepts.
• CHIP-MDCFNPC dataset processes pipeline

involves two key stages: initial alignment and
SOAP (Subjective, Objective, Assessment, Plan)
classification, followed by NER and assertion la-
beling (positive/negative) on the Subjective and
Assessment component. We employ its NER and
assertion labels to conduct task CPNCF.

MTL on the same source dataset: The public
IMCS21 dataset (Chen et al., 2022) comprises au-
thentic online doctor-patient dialogues that have
undergone rigorous multi-level manual annotation,
encompassing named entities, dialogue intentions,
symptom labels, and medical reports. Aligned with
the model tasks outlined in Section 3.1, we specif-
ically utilize dialogue intentions, named entities,
and symptom labels for tasks SPRJ, NER, and CP-
NCF respectively. Additionally, we formulate task
SPRJ based on dialogue content analysis. Positive
samples for the SPRJ task consist of semantically
coherent adjacent question-answer pairs, while neg-
ative samples are generated through random substi-
tution of either questions or answers within these
pairs.

4.1.2 Baselines for comparison

We compare the proposed model with the vanilla
fine-tuning and several typical MTL methods:

s1 s2 s3 s4 s5 s6 s7
SSIC ✓ ✓ ✓
SPRJ ✓ ✓ ✓ ✓
NER ✓ ✓

CPNCF ✓ ✓ ✓ ✓

Table 1: Activated skills in skill-net baseline.



Model SSIC SPRJ NER CPNCF Average Result
Mixture Dataset

Vanilla fine-tuning 81.3 87.8 53.7 50.7 68.4
MT-DNN (Liu et al., 2019) 79.9 86.6 53.6 60.0 70.0

MMoE (Ma et al., 2018) 79.1 87.2 68.8 83.7 79.7
Skill-net (Zhang et al., 2022a) 79.4 87.4 66.4 68.3 75.4

Our Model 80.5 86.3 54.5 84.7 76.5
IMCS21 Dataset

Vanilla fine-tuning 85.6 89.4 65.0 41.1 70.3
MT-DNN (Liu et al., 2019) 85.3 89.5 86.0 45.1 76.5

MMoE (Ma et al., 2018) 84.5 87.7 92.4 73.7 84.6
Skill-net (Zhang et al., 2022a) 85.0 89.4 81.5 59.4 76.8

Our Model 85.1 89.3 82.4 89.2 86.5

Table 2: Evaluation results (%) on two types of datasets. The purpose is to improve the performance of the complex
task of CPNCF via multi-task learning.

Vanilla: Each task undergoes specialized fine-
tuning utilizing its own dedicated BERT architec-
ture, with complete parameter isolation maintained
across all tasks.

MT-DNN (Liu et al., 2019): We employ a shared
BERT architecture as a universal feature extractor
across all tasks, while exclusively adapting the clas-
sifier layers (consistent with the approach described
in Section 3.2) to create task-specific output mod-
ules.

MMoE (Ma et al., 2018): constitutes a MTL
architecture employing the mixture of experts
paradigm (Shazeer et al., 2017). While the con-
ventional MMoE model incorporates a shared bot-
tom representation layer across tasks, our compara-
tive experiment introduces a structural modification
wherein we replace the FFNN in each BERT layer
with MMoE components. This architectural adap-
tation ensures a comparable degree of structural
parity with our proposed method, thereby main-
taining experimental fairness in the comparative
analysis.

Skill-net (Zhang et al., 2022a): We introduce tar-
geted modifications to the Skill-net architecture to
accommodate our specific task requirements, par-
ticularly since the CPNCF task is not included in
the original framework. Accordingly, as demon-
strated in Table 1, we implement seven special-
ized skills: s1 (sequence-level semantic compre-
hension), s2 (token-level semantic interpretation),
s3 (cross-segment interaction analysis), s4 (senti-
ment analysis), s5 (natural language question pro-
cessing), s6 (medical domain text understanding),
and s7 (generic linguistic processing).

4.1.3 Evaluation Metrics
Given that all tasks fundamentally constitute classi-
fication problems, we employ the Micro-F1 score
as our primary evaluation metric to ensure consis-
tent and comprehensive performance assessment.
Furthermore, all experimental procedures are exe-
cuted utilizing a single Tesla V100S-PCIE-32GB
GPU to maintain computational consistency across
trials.

4.2 Evaluation Results

It can be seen from Table 2 that our model is supe-
rior to existing algorithms in many aspects:

First, on tasks like SSIC and SPRJ, our model
has comparable effects to Vanilla fine-tuning
method which demonstrates that our progressive
framework effectively maintains performance on
simpler tasks without incurring performance degra-
dation, despite the incorporation of more complex
task objectives. Meantime, compared with the
MMoE and Skill-net architecture, our model has a
slight improvement on simple tasks.

However, for more complex task such as CP-
NCF - which requires contextual assessment of
entity polarities (positive/negative effects) within
center sentences - the Vanilla model demonstrates
significantly diminished performance efficacy, with
F1 score being only 50.7/41.1% for two types of
datasets. Our proposed model leverages residual
architecture to effectively integrate knowledge ac-
quired from simpler tasks, demonstrating signif-
icant performance gains of 84.7% and 89.2% re-
spectively. While Skill-net does incorporate cer-
tain competencies derived from elementary task



training, the interdependencies among these skills
remain markedly less defined than those enabled
by our residual architecture and progressive learn-
ing paradigm. It follows logically, that our frame-
work demonstrates superior performance in han-
dling complex tasks. When contrasted with the
conventional MT-DNN architecture, several inher-
ent limitations become apparent. While this design
offers simplicity, it suffers from two critical short-
comings: First, the complete overlap of multi-task
representation layers introduces instability during
optimization, manifesting as erratic training dynam-
ics. Second, the absence of explicit task relation-
ship modeling results in largely isolated learning
processes, thereby impeding cross-task knowledge
transfer and synergistic learning. Consequently, the
experimental results demonstrate that our model
achieves a performance advantage exceeding 20%
on task CPNCF and 10% on average over MT-DNN.
As for MMoE method, our model has a rivaling
score on average results and a higher result on CP-
NCF task.

We also conduct experiments on low resource
settings, where we sample k (=8/16) training items
for each label of all the tasks (we also make a sub-
set of 1000+ samples of each task for evaluation).
Results are displayed in Table 3.

Our method surpasses other models for CPNCF
task with average 7.95% and 3% on Mixture and
IMCS21 datasets.

Experimental results on the IMCS21 dataset (8-
shot setting) indicate that our approach exhibits
a modest performance gap compared to MMoE,
while preserving comparable precision levels on
auxiliary tasks.

4.3 Ablation Study

We implement two distinct ablation studies to sys-
tematically evaluate our framework: 1. elimination
of intermediately complex tasks to assess their im-
pact on model performance, and 2. randomized
task sequence permutation to examine the task or-
dering impact.

4.3.1 Intermediate Tasks
We analyze the impact of intermediate tasks on the
proposed model, specifically including three sets
of trials: deleting task of SPRJ, deleting task of
NER, and deleting both of them.

It can be seen from Table 4 that the complete
multi-task model beats models with missing inter-
mediate tasks. Concretely, on the IMCS21 dataset,

k Model SSIC SPRJ NER CPNCF
Mixture Dataset

8

Vanilla 68.2 57.4 56.7 28.1
MT-DNN 67.3 62.1 59.6 49.2

MMoE 55.0 54.6 46.9 56.4
Skill 68.7 64.0 59.6 49.4
ours 66.1 63.1 56.6 56.9

16

Single 72.5 56.2 57.4 54.2
MT-DNN 72.1 52.6 60.1 53.1

MMoE 54.8 53.3 56.1 47.6
Skill 71.8 62.2 62.2 54.8
ours 70.9 61.1 58.6 57.2

IMCS21 Dataset

8

Vanilla 68.6 60.1 65.9 54.9
MT-DNN 63.4 75.6 59.9 55.6

MMoE 52.0 54.6 51.9 66.7
Skill 68.4 68.7 66.7 61.0
ours 63.6 53.1 60.5 61.6

16

Single 78.3 75.0 70.1 55.2
MT-DNN 76.8 73.2 60.6 58.2

MMoE 59.7 55.4 59.6 61.3
Skill 76.8 73.5 69.7 61.9
ours 73.9 71.8 69.8 63.1

Table 3: Evaluation result (%) in low resource setting. k
means number of training items for each label.

the model is 0.5% better than the intermediate task
missing models by average, and the result attains
7.1% for mixture source datasets. Moreover, when
both the intermediate tasks are removed, the perfor-
mance reaches the worst among all the task-delete
settings. Intuitively, both NER and SPRJ constitute
essential competencies for successfully executing
the CPNCF task. Consequently, these two capabili-
ties are expected to significantly influence the final
performance on CPNCF.

In general, model performance tends to scale pos-
itively with parameter capacity. Our architecture
demonstrably exceeds the parameter count of the
original BERT model. To validate our progressive
learning paradigm, we implement a quad-FFNN
cluster architecture per BERT layer - analogous to
the configuration detailed in Section 3.2 - exclu-
sively dedicated to CPNCF task acquisition.

As illustrated in Figure 3, we observe that in-
creasing the parameter size consistently enhances
model performance, as evidenced by the progres-
sion from the “single-ffnn” baseline to the “4-ffnn”
configuration. More notably, our proposed learning
strategy yields further performance gains beyond
mere parameter scaling. This substantiates that



Model Mixture Dataset IMCS21 Dataset
SSIC SPRJ NER CPNCF SSIC SPRJ NER CPNCF

Our Model 80.5 86.3 54.5 84.7 85.1 89.3 82.4 89.2
w/o. SPRJ TASK 79.5 _ 48.9 77.2 85.5 _ 81.1 90.2
w/o. NER TASK 78.8 84.6 _ 78.6 85.0 89.8 _ 88.2

w/o. SPRJ & NER TASK 78.6 _ _ 77.0 85.7 _ _ 87.8

Table 4: Intermediate tasks effect (%) on two types of datasets.

Model Mixture Dataset IMCS21 Dataset
SSIC SPRJ NER CPNCF Aver. SSIC SPRJ NER CPNCF Aver.

Our Model 80.5 86.3 54.5 84.7 76.5 85.1 89.3 82.4 89.2 86.5
1→3→2→4 80.0 85.2 63.4 79.8 77.1 84.6 73.8 88.6 89.1 84.0
3→4→1→2 34.6 50.3 70.5 88.8 61.1 84.2 49.8 80.9 85 75.0
2→1→4→3 78.4 86.2 47.3 82.1 73.5 84.3 89.3 73.5 86.1 83.3
4→3→2→1 74.7 82.2 40.9 30.1 57.0 84.0 88.2 81.7 41.3 73.8

Table 5: Order of tasks effect (%) on two types of datasets.

the performance improvement in the CPNCF task
is not solely attributable to the expanded parame-
ter space. Instead, the progressive MTL paradigm
plays a pivotal role in driving these advancements,
underscoring its efficacy in optimizing model per-
formance.

4.3.2 Orders of Tasks

We randomly change the order of tasks to evalu-
ate the effect of our progressive learning strategy.
To be detailed, we design four out-of-order modes
comprehensively: swapping the order of intermedi-
ate tasks (1 → 3 → 2 → 4), exchanging the order
of simple and complex tasks (3 → 4 → 1 → 2), in-
ternal swapping for both simple and complex tasks
(2 → 1 → 4 → 3), and arranging tasks in reverse
order (4 → 3 → 2 → 1).

As evidenced by the experimental results pre-
sented in Table 5, we demonstrate that the progres-
sive learning strategy constitutes a critical factor in
enhancing MTL performance. For mixture source
datasets, the model with tasks in order outperforms
those out of order for 9.3% by average. The data
is 7.5% on IMCS21 dataset. Notably, when the
multi-task sequence is inverted, thereby disrupting
the knowledge transfer, we observe a significant
degradation in CPNCF performance. In fact, this
configuration demonstrates inferior efficacy com-
pared to the vanilla method, as the interference
from conflicting task objectives outweighs any po-
tential benefits of MTL.

Figure 3: Ablation study on parameters size testing.

5 Conclusion

In the medical domain, CPNCF serves as a funda-
mental component for numerous downstream tasks,
yet the paucity of annotated data consistently hin-
ders optimal performance when employing conven-
tional training paradigms. To address this critical
limitation, we introduce an innovative yet compu-
tationally efficient learning framework that strate-
gically leverages auxiliary simple tasks to generate
rich supervisory signals for the target objective.
Our methodology incorporates residual architec-
tures to adaptively modify the feedforward neural
networks within the basic Transformer structure,
thereby facilitating hierarchical knowledge trans-
fer from elementary to complex tasks. Extensive
empirical evaluations conducted on comprehensive
medical datasets demonstrate the superior efficacy
of our progressive learning approach.



Limitations

We propose a novel multi-task learning strategy
that facilitates efficient learning of complex tasks
by incorporating knowledge learned from simple
tasks. Throughout the framework, ranking tasks
according to complexity is critical, and the two
ranking principles we introduced are adapted to
medical text understanding tasks. However, in dif-
ferent scenarios, ranking strategies may be various,
and more principle support is required. Therefore,
we will explore more general ranking rules in the
future in order to extend our progressive learning
strategy to a wider range of natural language under-
standing tasks.
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