Plug-and-Play Knowledge Injection for Pre-trained Language Models

Anonymous ACL submission

Abstract

Injecting external knowledge can improve the
performance of pre-trained language models
(PLMs) in various downstream NLP tasks.
However, current knowledge injection methods
usually require knowledge-aware pre-training
or fine-tuning, which makes the knowledge-
enhanced models strongly coupled to some spe-
cific knowledge bases. Toward flexible knowl-
edge injection, we explore a new paradigm,
plug-and-play knowledge injection, which de-
couples models from knowledge bases. Cor-
respondingly, we propose a plug-and-play in-
jection method, map-tuning, which trains a
mapping of knowledge embeddings to enrich
model inputs with mapped embeddings while
keeping PLMs frozen. Experimental results on
two typical knowledge-driven NLP tasks show
that map-tuning effectively improves the per-
formance of PLMs with little computational
cost. Specifically, one mapping network can be
plugged on various downstream tasks without
any additional training. And, one downstream
model can work with multiple mapping net-
works of different knowledge bases in order to
adapt to different domains. We will release all
the code and models of this paper.

1 Introduction

Recent years have witnessed rapid development
in enhancing pre-trained language models (PLMs)
with various external knowledge, including lin-
guistic knowledge (Levine et al., 2020; Zhou
et al., 2020), factual knowledge (Zhang et al.,
2019; Peters et al.,, 2019), and commonsense
knowledge (Bosselut et al., 2019; Guan et al.,
2020). Knowledge can improve PLMs on a wide
range of tasks, including language modeling (Chen
et al., 2020), information extraction (Liu et al.,
2020a; Wang et al., 2021b), and question answer-
ing (Xiong et al., 2020; Wang et al., 2021a).
Existing knowledge injection methods usually
introduce knowledge through pre-training, such as

Question Answering

Linguistic
Knowledge

AN

E

Sentiment Analysis

Er

N2

AW

Aristotle Ancient Greece

3 =
~n bor
5? orn in @

Factual
Knowledge

e

Figure 1: Illustration of plug-and-play knowledge injec-
tion, where models are decoupled from knowledge.

KnowBERT (Peters et al., 2019) and LUKE (Ya-
mada et al., 2020), or fine-tuning, such as K-
BERT (Liu et al., 2020a) and K-Adapter (Wang
et al.,, 2021a), which makes the knowledge-
enhanced models strongly coupled to some spe-
cific knowledge bases and requires retraining the
whole model for a new knowledge base. However,
knowledge bases are continuously updated and the
numbers of pre-trained and fine-tuned models are
growing rapidly, leading to the need for flexible
knowledge injection methods.

Toward flexible injection, we explore a new
paradigm, named plug-and-play knowledge injec-
tion. As shown in Figure 1, we treat knowledge
from multiple sources as a series of flash disks
and treat existing models as computers. In this
paradigm, knowledge and models are decoupled.
With model parameters being fixed, one knowledge
base can be plugged into multiple models and one
model can utilize multiple knowledge bases.

In this work, we target downstream models
that have already adapted to downstream tasks.
There are two advantages. First, it avoids addi-
tional knowledge-aware pre-training or fine-tuning,
which reduces corresponding computational costs,
especially for large-scale PLMs. Second, there are
amounts of open-sourced downstream models on
the Internet, such as Hugging Face Models!, which
could be used in this paradigm. These two ad-
vantages make plug-and-play knowledge injection

'https://huggingface.co/models

https://huggingface.co/models

meaningful in real-world scenarios.

Toward plug-and-play knowledge injection, we
propose a parameter-efficient injection method,
named map-tuning. Specifically, we freeze original
model parameters and train a light-weight mapping
network to transform knowledge representations
into the representation space of token embeddings.
Then, we append mapped knowledge representa-
tions to the sequences of token embeddings to con-
struct new input sequences.

There are two ways for map-tuning, general
map-tuning and task-specific map-tuning respec-
tively. For general map-tuning, we train a mapping
network based on a PLM with the language model-
ing objective. Then, we use this mapping network
to map knowledge representations for all down-
stream models trained from this PLM. In this way,
one mapping network is plugged into all down-
stream models, which significantly reduces the
computational cost of knowledge-aware training.
For task-specific map-tuning, we train a mapping
network based on a downstream model with the
task objective. Although we need to train a map-
ping network for each model, the memory cost of
map-tuning is much lower than fine-tuning. Be-
sides, one downstream model can utilize multiple
mapping networks, enabling the model to adapt to
different domains with different knowledge bases.

Experimental results on two kinds of knowledge-
driven NLP tasks, relation classification and en-
tity typing, show that map-tuning performs well
in both general and task-specific settings. (1) In
almost all cases, general map-tuning improves the
performance of downstream models with differ-
ent adaptation methods, including full-model fine-
tuning (Devlin et al., 2019), LoRA (Hu et al., 2021),
Adapter (Houlsby et al., 2019), and BitFit (Zaken
et al., 2021). Moreover, the training time of gen-
eral map-tuning is extremely faster (100x) than
knowledge-aware pre-training. (2) Task-specific
map-tuning enables a frozen relation classification
model to adapt to both Wikipedia and PubMed do-
mains with different knowledge bases. Besides, in
the traditional setting of knowledge injection dur-
ing fine-tuning, map-tuning is still better than pre-
vious methods, including E-BERT (Poerner et al.,
2020) and PELT (Ye et al., 2022).

2 Related Work

Paradigms of Knowledge Injection. To enhance
PLMs with external knowledge, there are two main-

stream paradigms: injection before fine-tuning and
injection during fine-tuning (Yin et al., 2022).

For injection before fine-tuning, researchers usu-
ally construct new knowledge-aware objectives,
such as entity prediction (Zhang et al., 2019; Xu
et al., 2021), entity discrimination (Xiong et al.,
2020), entity and relation discrimination (Qin et al.,
2021), and link prediction (Wang et al., 2021b). In
this way, knowledge will be implicitly stored in
model parameters. However, the training cost of
these methods is expensive, e.g., LUKE and KE-
PLER take more than 3,000 GPU hours (Yamada
et al., 2020; Wang et al., 2021b; Ye et al., 2022).

For injection during fine-tuning, researchers usu-
ally augment original text inputs with external
knowledge (Zhou et al., 2019; Lin et al., 2019; Liu
et al., 2020b; Cheng et al., 2021). When using un-
structured knowledge, such as texts, current meth-
ods usually extract informative spans from knowl-
edge bases and augment the original text with these
textual spans (Karpukhin et al., 2020; Liu et al.,
2020a). When using structured knowledge, such as
knowledge graphs, current methods usually apply
knowledge representation methods to these graphs
to obtain knowledge embeddings (Bordes et al.,
2013; Lin et al., 2015), and then fuse them with
token embedding using knowledge networks (Sun
et al., 2020; Su et al., 2021; Yasunaga et al., 2021).

In this work, we study a new paradigm, plug-and-
play knowledge injection, where we inject knowl-
edge after fine-tuning?. Compared to the previous
two paradigms, injection after fine-tuning is much
more inexpensive and flexible. First, due to the
original parameters being fixed, the memory foot-
print of injection is significantly reduced. Second,
we could inject knowledge into downstream mod-
els without any training.

Implementation of Knowledge Networks.
When explicitly injecting knowledge, we need
knowledge networks to handle the heterogeneous
representation space of token embeddings and
knowledge embeddings. ERNIE (Zhang et al.,
2019) and KnowBERT (Peters et al., 2019) add
intermediate layers in Transformers to fuse token
and knowledge embeddings. However, these meth-
ods are not suitable for injection after fine-tuning
because they will significantly change the forward
process and hence require additional fine-tuning.
K-Adapter (Wang et al., 2021a) freezes the orig-

Note that fine-tuning includes full-model fine-tuning and
parameter-efficient fine-tuning.

Previous Knowledge Injection

Additional Input
—_—

General Map-tuning

Additional Input

Frozen | ___[MLM
PLM Loss

—_—

g

Knowledge (B8]

1

1

1

i

P . !
— Pre-training/Fine-tuning T —— E
Model (RS H

1

1

1

1

1

1

1

1

1

Plug-and-play Knowledge Injection

PLM (1) Fine-tuning Downstream
Model

:

Additional Input
—_—

[[CLS] / |[MASK]| love / peanut butter . [SEP]J

~~ hamster (BB

peanut_butter (BB

Task-specific Map-tuning

Additional Input

(2) Injection T

peanut_butter | / peanut butter - [SEP]}

Knowledge (B

1

1

1

1

1

i

i !

| ;

' ;

! [[CLS] / Hamsters love
i \ ‘
1

i "" hamster 88 | Map f----- peanut_butter (1)
1

1

Figure 2: Left: Comparisons between previous paradigms and our proposed plug-and-play paradigm. Right: Two
ways for map-tuning. The input text is “Hamsters love peanut butter.”. “DM” refers to “downstream model”.

inal models and computes knowledge representa-
tions based on the outputs of the original models
with adapters. To use these knowledge represen-
tations, K-Adapter requires fine-tuning, which is
also not suitable for injection after fine-tuning. E-
BERT (Poerner et al., 2020) and PELT (Ye et al.,
2022) directly build an entity embedding lookup
table in the representation space of token embed-
dings and combine entity embedding with token
embeddings to construct input embeddings. These
methods are suitable for injection after fine-tuning
because they can reuse downstream models seam-
lessly. However, it is unclear whether they work
well in this paradigm.

3 Method

In this section, we will first introduce the paradigm
of plug-and-play knowledge injection, including
general plug-and-play injection and task-specific
plug-and-play injection. Then, we will present the
overall framework of map-tuning. Finally, we will
show how to learn a mapping network for general
injection and task-specific injection, respectively.

3.1 Plug-and-Play Knowledge Injection

Given a downstream model D trained from a PLM
‘P on a downstream task, we intend to improve its
performance on this task by incorporating an extra
knowledge base with D’s parameters being fixed.
The knowledge base consists of a set of entities
and structured or unstructured knowledge about
these entities. To utilize the knowledge base, we
first train a knowledge representation model K,
which assigns each entity e an entity embedding
e € RIXE where dkp, is the dimension of entity

embeddings. Note that the knowledge representa-
tion model could be a knowledge graph embedding
model, e.g., TransE (Bordes et al., 2013), for struc-
tured knowledge containing amounts of triples, or a
sentence embedding model, e.g., KEPLER (Wang
et al., 2021b), for unstructured knowledge contain-
ing entity descriptions.

As shown in Figure 2, plug-and-play knowl-
edge injection decouples models from knowledge
bases by separately conducting fine-tuning and in-
jection, which is different from previous methods.
Concretely, plug-and-play knowledge injection in-
cludes general plug-and-play injection and task-
specific plug-and-play injection. For general plug-
and-play injection, we first train a general knowl-
edge network based on P and directly plug the
general knowledge network into different down-
stream models, D1, Dy, . . ., without any additional
training. For task-specific plug-and-play injection,
we train a task-specific knowledge module for each
D, and then plug the knowledge network.

3.2 Overall Framework

To fill the gap brought by plug-and-play injection,
we map knowledge representations into the space
of token embeddings and use the mapped represen-
tations as additional inputs, which is also adopted
by Poerner et al. (2020); Ye et al. (2022).
Specifically, given an input text, we first match
the entity mentions in the text with the entities in
the knowledge base. The input text is denoted by
{wi,wa,...,w,}, where w; is the i-th token and
n is the number of tokens in the input text. We
use a triple (e,l,r) to represent a mention span,
where e is the matched entity, [and r are the left

and right token indices of the mention span. The

corresponding mention span is {wy, wi41, . .., Wy }.
Assume there are m entities in the text,
(e1,l1,71), (€2,l2,72), ..., (€m,lm,Tm), Where

1<h<rm<b<rg<:--<ly<rym<n
The original sequence of input embeddings are
{w1,Wa,..., Wy}, where w; € RV s the i-th
token embedding and dpr) is the dimension of to-
ken embeddings. Then, we map each entity embed-
ding e; to M(e;) € R%LM by a mapping network
M. Finally, we replace {wy;,,wj,41,..., Wy, }
with {M(e;), /, wy,, ..., wy, } forevery (e;,l;, ;)
to construct a new input sequence. Note that / is
the token embedding of “/”.

In the following subsections, we will introduce
how to learn the mapping network M in two differ-
ent settings, general map-tuning and task-specific
map-tuning respectively.

3.3 General Map-tuning

Given a PLM P, general map-tuning aims to learn
a mapping network M based on P and plug M
into all downstream models trained from P. It
requires M to be general enough to handle dif-
ferent downstream tasks. Hence, it is intuitive to
learn the mapping network with language model-
ing, which has been shown to contain various task
abilities (Radford et al., 2019). To reduce the gap
between the general mapping network and down-
stream models, we freeze the parameters of P and
only train the mapping network.

To adapt the mapping network for P, we de-
sign a new variant of Masked Language Model
(MLM) (Devlin et al., 2019), named Mention-
Masked Language Modeling (MMLM). Specifi-
cally, instead of randomly masking tokens, we only
randomly mask entity mentions in the input text as
shown in Figure 2. According to our observation
in the experiments, random masking usually leads
to insufficient training for the mapping network
because most token prediction does not require ex-
ternal knowledge, such as some stop words. On the
contrary, predicting entity mentions usually relies
on external knowledge, which ensures the mapping
network is trained sufficiently. Note that, when
masking an entity mention, we will mask all of its
tokens. And, the MMLM loss is the same as the
original MLM loss (Devlin et al., 2019).

After general map-tuning, M we get can be used
in general plug-and-play injection. Although the
mapping network M did not train with any D be-

fore, we directly plug M into each D.

3.4 Task-specific Map-tuning

Task-specific map-tuning aims to learn a mapping
network M for a given downstream model D. We
freeze the parameters of D and train the mapping
network M on the downstream task, of which the
procedure is shown in Figure 2. The training objec-
tive is identical to the original objective of this task.
If the knowledge representations provide essential
information for this task, the mapping network will
learn to extract this kind of information by gradi-
ent descent. Note that the mapping network can
be trained from scratch, or be initialized with a
mapping network from general map-tuning, which
could provide a good starting point.

4 Experiments

4.1 Experimental Setups

Training Methods of Downstream Models. We
use BERTp,se (Devlin et al., 2019) as the backbone
PLM in the experiments. And, we consider four
training methods for the adaptation on downstream
tasks. (1) Fine-tuning optimizes all the parame-
ters of a PLM with the task objective following
the original BERT. (2) LoRA (Hu et al., 2021)
freezes the PLM parameters and injects trainable
rank-decomposition matrices as additional param-
eters. (3) Adapter (Houlsby et al., 2019) injects
additional adapter networks with the PLM param-
eters frozen. (4) BitFit (Zaken et al., 2021) only
optimizes the parameters of bias vectors and freeze
the rest parameters. All of the last three methods
are parameter-efficient tuning methods. The hyper-
parameters are reported in the Appendix.
Downstream Tasks. We evaluate our proposed
map-tuning on two kinds of knowledge-driven NLP
tasks including relation classification and entity
typing. For relation classification, which requires
models to classify the relation between two entities
given a context, we experiment on both few-shot
and full-data settings. In the few-shot setting, we
aim to evaluate model performance on long-tail
relations whose training instances are not sufficient.
Specifically, we use FewRel 1.0 (Han et al., 2018)
and FewRel 2.0 (Gao et al., 2019). Note that we
randomly select 5000 instances of each setting of
FewRel 1.0 for fast evaluation, and we experiment
with full test data on the official leaderboard in
Section 4.4. In the full-data setting, we evaluate
models on Wiki80, which contains 80 relation types

from Wikidata, and follow the data split of Zhang
et al. (2019). For entity typing, which requires
models to classify the type of an entity given a
context, we evaluate models on Wiki-ET (Xin et al.,
2018) containing 74 entity types from Freebase.
All of these datasets provide the annotation of entity
linking, which can be used to introduce knowledge
through entities. We report accuracy on relation
classification and F1 score on entity typing.
Knowledge Bases. We use WikidataSM (Wang
et al., 2021b) and UMLS? as our external knowl-
edge bases for the Wikipedia domain and PubMed*
domain, respectively. To avoid information leak-
age in relation classification tasks, we remove the
triples appearing in the datasets from these knowl-
edge bases. We adopt TransE (Bordes et al., 2013)
as our knowledge representation model and the
dimension of knowledge embeddings is set to 128.
Baselines. We mainly compare map-tuning
with the following baselines: (1) E-BERT (Po-
erner et al.,, 2020) also learns a mapping net-
work to transform knowledge embeddings into the
space of token embeddings. Different from map-
tuning, E-BERT builds the relationship between
the PLM vocabulary and entities by string match-
ing. Since most entities consist of multiple tokens,
the matched entities are a small part. Based on the
matching results, E-BERT optimizes the mapping
network to make the mapped knowledge embed-
dings similar to their corresponding token embed-
dings. In this work, E-BERT and map-tuning use
the same TransE embeddings. (2) PELT (Ye et al.,
2022) aggregates the output representations of a
specific entity in multiple contexts to build the en-
tity representation. Then, the entity representation
can be appended to the model input without any
mapping because the input space and output space
are the same for most PLMs. The entity-related
context can be treated as an external textual knowl-
edge base. (3) Retrieval Augmentation (RA) is
to augment input texts with additional retrieved un-
structured knowledge, such as RAG (Lewis et al.,
2020) and REALM (Guu et al., 2020). In this
work, we retrieve the entity descriptions from Wiki-
data5M and append them to the input texts. (4)
K-Adapter (Wang et al., 2021a) implicitly stores
knowledge in the parameters of adapter networks.
For general injection, we follow the original pro-
cedure of K-Adapter while keeping the parameters
SUMLS represents the Unified Medical Language System,

which is the trademark of U.S. National Library of Medicine.
*nttps://pubmed.ncbi.nlm.nih.gov/

of PLMs and adapters frozen. Note that this pro-
cedure still requires the training of the final fully
connected layer, which does not strictly meet the
setting of general plug-and-play Injection.

Details of Map-tuning. The architecture of the
mapping network is simply an affine transformation
We + b, where W € RIPLMXAKE gpnd b € RPLM,
In this work, the parameter amount of the mapping
network is 768 x 128 + 768 < 0.1M. For Mention-
Masked Language Modeling, we sample part of
the Wikipedia corpus, where we obtain the anno-
tations of entity linking through hyperlinks. The
total size is around 300MB, much smaller than con-
ventional pre-training corpora. Since map-tuning
only aims to learn how to adapt the map for a PLM,
it does not require much training data. We train
the mapping network for 5 epochs, which costs
only 12 hours on an NVIDIA Tesla V100. Other
hyper-parameters used in the training of mapping
networks are reported in the Appendix.

4.2 General Plug-and-Play Injection

In this subsection, we evaluate general map-tuning
in the setting of general plug-and-play injection,
where we directly combine downstream models
and knowledge networks without any training. The
results are reported in Table 1.

From this table, we have four observations: (1)
All of the four baselines cannot consistently im-
prove the performance of downstream models. In
many cases, injecting these knowledge models even
degrades the performance. It indicates that the set-
ting of general plug-and-play injection is chal-
lenging and these four methods are not suitable
in this setting. The knowledge provided by these
methods cannot be directly used by downstream
models in some cases and thus require further
training. (2) Our proposed general map-tuning
achieves consistent improvement on almost all
downstream models, suggesting that the mapping
network effectively transforms knowledge embed-
dings into the space of token embeddings and the
mapped embeddings can be directly used by down-
stream models. We highlight the importance of
Mention-Masked Language Modeling, which pro-
vides sufficient training instances for general map-
tuning, while the matched entity-token pairs for
E-BERT are insufficient for training the mapping
network. (3) Intuitively, parameter-efficient tun-
ing methods, such as Adapter, may work better
with the general map-tuning than full-model fine-

https://pubmed.ncbi.nlm.nih.gov/

Method Injection s 5.5 FewRel 1'01 o1 105 Wiki80 Wiki-ET
- 91.0 95.1 85.4 90.8 86.1 775
E-BERT | 91.0(+0.0) 950(=0.1) 86.5(+1.1) 90.5(-0.3) | 85.4(—0.7) | 77.0(~0.5)
Fine-tuning PELT 90.5(~0.5) 94.8(—03) 853(-0.1) 89.8(—1.0) | 85.0(~11) | 76.8 (—0.7)
RA 915 (+0.5) 955(+04) 858 (+0.4) 917 (+0.9) | 85.9(-0.2) | 76.7 (—0.8)
K-Adapter | 88.6(—2.4) 94.5(~0.6) 82.3(-3.1) 89.9(—09) | 86.0(~0.1) | 77.8 (+0.3)
Map-tuning | 92.6 (+1.6) 95.6 (+0.5) 88.1(+2.7) 91.2(+04) | 867 (+0.6) | 76.6 (—0.9)
— 90.7 95.1 84.9 91.2 85.3 77.5
E-BERT | 90.7 (+0.0) 952 (+0.1) 854 (+0.5) 90.4(~0.8) | 83.7 (—1.6) | 77.6 (+0.1)
LoRA PELT 89.9 (~0.8) 94.8(—03) 84.6(-0.3) 89.8(—1.4) | 83.1(-2.2) | 77.5 (+0.0)
RA 913 (+0.6) 95.8(+0.7) 850 (+0.1) 92.5(+13) | 83.8(~1.5) | 76.8(—0.7)
K-Adapter | 90.0(=0.7) 94.8(~0.3) 83.4(—15) 89.1(~2.1) | 85.0(=03) | 77.3(~0.2)
Map-tuning | 923 (+1.6) 96.0 (+0.9) 87.4(+2.5) 91.9(+0.7) | 85.8 (+0.5) | 78.3 (+0.8)
— 91.2 95.2 86.2 91.1 85.7 775
E-BERT | 913 (+0.1) 954(+0.2) 869 (+0.7) 91.6(+0.5) | 84.4(—13) | 78.4(+0.9)
Adapter PELT 91.0(~0.2) 954(+02) 863 (+0.1) 91.3(+02) | 843 (~1.4) | 77.9 (+0.4)
RA 917 (+0.5) 95.5(+03) 858(—04) 92.3(+12) | 85.0(-0.7) | 76.8 (—0.7)
K-Adapter | 89.9 (~13) 94.7(~0.5) 83.6(~2.6) 90.0(—L.1) | 859 (+02) | 77.7 (+0.2)
Map-tuning | 92.6 (+1.4) 958 (+0.6) 88.2(+2.0) 91.8(+0.7) | 859 (+0.2) | 79.2 (+1.7)
— 89.2 94.8 83.0 90.0 82.7 77.1
E-BERT | 88.7(—05) 945(-03) 83.5(+0.5 89.6(~04) | 813 (—1.4) | 77.2 (+0.1)
BitFit PELT 882 (—1.0) 943(-05) 80.9(-2.1) 883 (—17) | 803 (~2.4) | 77.6 (+0.5)
RA 89.5(+0.3) 952(+0.4) 82.7(-0.3) 9L1(+1L1) | 81.8(-0.9) | 74.0 (—3.1)
K-Adapter | 86.4(~2.8) 93.7(~1.1) 78.8(-4.2) 87.5(-25) | 81.5(~1.2) | 77.2(+0.1)
Map-tuning | 90.4 (+1.2) 955 (+0.7) 85.2(+2.2) 90.8(+0.8) | 837 (+1.0) | 78.0 (+0.9)

Table 1: Results of general plug-and-play injection. We adapt BERT}, to these datasets with four different training
methods. There are five different injection methods. E-BERT, PELT, and Map-tuning utilize entity representations.
RA utilizes entity descriptions as additional text input. K-Adapter utilizes the knowledge implicitly stored in the
adapter network. Note that downstream models and injection models are trained separately. N-K indicates the
N-way K-shot configuration. We boldface the best result for each training method.

tuning does because they change fewer parameters
from the PLM and general map-tuning is based
on the PLM. In fact, the injection performance
of full-model fine-tuning is comparable to that of
these parameter-efficient tuning methods. It demon-
strates that map-tuning is a promising method for
all training methods. (4) Map-tuning significantly
improves the model performance on the one-shot
setting of FewRel 1.0, showing that knowledge is
important when the training instances are extremely
insufficient.

4.3 Task-specific Plug-and-Play Injection

In this subsection, we evaluate task-specific map-
tuning in the setting of task-specific plug-and-play
injection, where we train mapping networks based
on downstream models with task objectives.

We first evaluate task-specific map-tuning on
Wiki80 and Wiki-ET. If we have already conducted
general map-tuning on a PLM, we can initialize the
network with the general mapping network. Oth-
erwise, we have to train the network from scratch.
The results are reported in Table 3.

From the table, we have two observations: (1)

Task-specific map-tuning achieves better perfor-
mance on these two datasets than general map-
tuning. It indicates that the mapping network ex-
tracts more informative knowledge for the spe-
cific task by task-specific training than the general
one does. (2) If the general mapping network is
available, it is recommended to use it to initialize
the mapping network, which further improves the
model performance.

Then, we evaluate task-specific map-tuning on
a more challenging setting, domain adaptation. In
this setting, we conduct task-specific map-tuning
based on a downstream model, in order to adapt
the model to a new domain. Here, we use the
relation classification datasets on Wikipedia do-
main (FewRel 1.0) and PubMed domain (FewRel
2.0). FewRel 1.0 is the source domain. FewRel
2.0 is the target domain. Since the original FewRel
2.0 does not provide training instances, we rear-
range FewRel 2.0 and have the following data split.
FewRel 2.0 has 25 relations. We separate 15 re-
lations for training and development and the rest
10 relations are used for testing. The results are
reported in Table 2.

Source Domain

Target Domain

Training Data Map-tuning ‘ 5155 10-1 105 ‘ 5155 10-1 105
Target Domain — | 654 808 569 738|786 886 714 797
Multiple Domains — | 903 946 849 904 | 848 920 790 8638
Source Domain - 91.0 951 854 908|767 882 69.1 815

v 929 956 882 911|812 898 726 833

Table 2: Results of domain adaptation. The source domain is Wikipedia from FewRel 1.0. The target domain is
PubMed from FewRel 2.0. The training data of multiple domains consists of both source and target domains.

Method | Wiki80 | Wiki-ET

Map-tuning PELT ERNIE KEPLER LUKE

Fine-tuning 86.1 77.5
+ General Map-tuning 86.7 76.6

+ Task-specific Map-tuning

Train from Scratch 87.2 78.8
Train from the General Map 87.8 78.9

Table 3: Results of task-specific map-tuning. We train
the mapping network from scratch or initialize the map-
ping network with the general mapping network.

88 ° 7y
> 86 ® PELT
S Map-tuning 4
§ 841 A ERNIE
51 & KEPLER
< 82 v LUKE
---- BERT
10' 10° 10°

GPU Hours for Knowledge Injection

Figure 3: Time cost of different knowledge injection
methods on an NVIDIA Tesla V100 GPU.

From this table, we have two observations: (1)
For the domain adaptation from Wikipedia domain
to PubMed domain, map-tuning significantly im-
proves the model performance (e.g., from 76.7
to 81.2 in 5-1) and achieves better performance
than the model fine-tuned on PubMed domain
(e.g., from 78.6 to 81.2 in 5-1). It suggests that
it is promising to use map-tuning to introduce
external knowledge for domain adaptation. (2)
Multi-domain training degrades the performance
on Wikipedia domain and maintains the perfor-
mance on PubMed domain while map-tuning does
not degrade the performance on each domain. It in-
dicates that map-tuning supports the adaptation of
multiple target domains without any performance
degradation on the source domains.

4.4 Computational Efficiency

In this subsection, we compare our proposed map-
tuning with previous knowledge injection methods,

0.1M 123M 114M 123M 274M

Table 4: Number of parameters optimized in knowledge
injection. These methods are based on backbone PLMs
with around 100 million parameters.

including injection during pre-training and injec-
tion during fine-tuning.

First, we compare the time cost for knowledge
injection. We evaluate the training time on an
NVIDIA Tesla V100 and compare the model per-
formance on the 10-way 1-shot setting of FewRel
1.0. ERNIE (Zhang et al., 2019), KEPLER (Wang
et al., 2021b), and LUKE (Yamada et al., 2020)
inject knowledge during pre-training. PELT (Ye
et al., 2022) injects knowledge during fine-tuning.
The results of ERNIE, KEPLER, LUKE, PELT are
taken from Ye et al. (2022). Map-tuning refers
to general map-tuning, which is the most chal-
lenging setting. The results are shown in Fig-
ure 3. From this figure, we observe that the train-
ing time of map-tuning is much shorter than those
injection-during-pre-training methods and compa-
rable to PELT. Besides, general map-tuning does
not require additional training while PELT requires
knowledge-aware fine-tuning. Moreover, the per-
formance of map-tuning is also competitive with
previous knowledge injection methods.

Second, compared to previous knowledge injec-
tion methods, map-tuning is a parameter-efficient
method. The numbers of optimized parameters for
different knowledge injection methods are shown
in Table 4. In order to introduce external knowl-
edge, previous methods usually optimize all pa-
rameters during pre-training and fine-tuning while
map-tuning only optimizes additional 0.1% of pa-
rameters and freezes the original model, which
makes it flexible to use mapping networks for dif-
ferent inputs with the same models.

FewRel 1.0

Method Map-tuning Corpus 5.1 55 10-1 105 Wiki80 | Wiki-ET
Fine-tuning — ‘ 91.0 951 854 9038 86.1 ‘ 71.5
+ E-BERT — 923 956 87.6 914 87.8 79.0
+ PELT — 912 958 86.1 91.6 88.2 79.6
+ General Ma Wikipedia Corpus | 93.7 96.2 89.6 924 88.8 79.9

P Downstream Data | 932 962 882 92.0 89.1 81.0

Table 5: Results of knowledge injection during fine-tuning. For general map-tuning, we can use the Wikipedia
corpus mentioned in previous section or use the data of downstream tasks.

., />§
by
£91 —— Fine-tuning —e— Adapter
3 —— LoRA —— BitFit
<
90 /\
0.00 0.15 0.25 0.35 0.45

Dropout Ratio

Figure 4: Effect of dropout ratios on the performance of
general map-tuning.

5 Analysis

5.1 How Do We Ensure the Generality of
Map-tuning?

In the setting of general plug-and-play injection,
we train a general mapping network based on a
PLM and directly plug it into various downstream
models during inference. There exists a gap be-
tween the general map-tuning procedure and the
inference on downstream tasks, i.e., the PLM used
for map-tuning is different from downstream mod-
els. To reduce this gap, we use dropout (Hinton
et al., 2012) in the attention probabilities and all
fully connected layers of the PLM during general
map-tuning. Intuitively, dropout simulates differ-
ent variants of the PLM and makes the mapping
network have better generality for different down-
stream models trained from the PLM. We explore
five different dropout ratios. The results on the
5-way 1-shot of FewRel 1.0 are chosen as the rep-
resentative and shown in Figure 4.

From this figure, we have two observations: (1)
Training without dropout leads to the worst perfor-
mance, which indicates that the generality of the
mapping network is not good enough and down-
stream models cannot utilize the knowledge. (2)
Large dropout ratios are also not optimal. Empiri-
cally, the dropout ratio of 0.25 is a good choice.

5.2 Is Map-tuning also Competitive in the
Traditional Paradigm?

It is natural to use the general mapping net-
work in the traditional injection during fine-tuning
paradigm, as the general network essentially builds
an entity embedding lookup table. We freeze the
parameters of the mapping network and fine-tune
the PLM on downstream tasks, during which we
augment model inputs with mapped knowledge
representations. Intuitively, the models learn to ef-
fectively extract information from mapped knowl-
edge representations during fine-tuning. Inspired
by ULMFiT (Howard and Ruder, 2018), we also
experiment on the setting where we use the task’s
training data as the corpus for general map-tuning.
Our results are shown in Table 5.

From this table, we have two observations: (1)
map-tuning consistently outperforms E-BERT and
PELT in the traditional paradigm. Considering that
E-BERT and map-tuning use the same knowledge
embedding, we suggest that map-tuning provides
more useful knowledge representations for BERT
than E-BERT. (2) General map-tuning on down-
stream data achieves comparable performance to
that on large-scale unsupervised corpus. It indi-
cates that general map-tuning does not necessitate
a large amount of training data for a specific task.

6 Conclusion

In this work, we propose the paradigm of plug-and-
play knowledge injection toward flexible knowl-
edge injection. Correspondingly, we propose map-
tuning to train a mapping of knowledge embed-
dings. In the experiments, we show that a gen-
eral mapping network can be plugged into different
downstream models without any additional training
and one downstream model can work with multiple
knowledge bases by different mapping networks.
Besides, the computation efficiency of map-tuning
is also better than previous methods that require
knowledge-aware pre-training and fine-tuning.

References

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Proceedings of NeurlPS, pages
2787-2795.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. COMET: commonsense transformers for auto-
matic knowledge graph construction. In Proceedings
of ACL, pages 4762—4779.

Wenhu Chen, Yu Su, Xifeng Yan, and William Yang
Wang. 2020. KGPT: knowledge-grounded pre-
training for data-to-text generation. In Proceedings
of EMNLP, pages 8635—-8648.

Hao Cheng, Yelong Shen, Xiaodong Liu, Pengcheng He,
Weizhu Chen, and Jianfeng Gao. 2021. Unitedqa: A
hybrid approach for open domain question answering.
In Proceedings of ACL, pages 3080-3090.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL-HLT, pages
4171-4186.

Tianyu Gao, Xu Han, Hao Zhu, Zhiyuan Liu, Peng
Li, Maosong Sun, and Jie Zhou. 2019. Fewrel 2.0:
Towards more challenging few-shot relation classifi-
cation. In Proceedings of EMNLP, pages 6249-6254.

Jian Guan, Fei Huang, Minlie Huang, Zhihao Zhao,
and Xiaoyan Zhu. 2020. A knowledge-enhanced
pretraining model for commonsense story generation.
TACL, 8:93-108.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. REALM: retrieval-
augmented language model pre-training. arXiv
preprint 2002.08909.

Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao,
Zhiyuan Liu, and Maosong Sun. 2018. Fewrel: A
large-scale supervised few-shot relation classification
dataset with state-of-the-art evaluation. In Proceed-
ings of EMNLP, pages 4803—-4809.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In Pro-
ceedings of ICML, pages 2790-2799.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of ACL, pages 328-339.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. 2021. Lora: Low-rank adaptation of large
language models. arXiv preprint 2106.09685.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
S. H. Lewis, Ledell Wu, Sergey Edunov, Danqi Chen,
and Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings of
EMNLP, pages 6769-6781.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of ICLR.

Yoav Levine, Barak Lenz, Or Dagan, Ori Ram, Dan
Padnos, Or Sharir, Shai Shalev-Shwartz, Amnon
Shashua, and Yoav Shoham. 2020. Sensebert: Driv-
ing some sense into BERT. In Proceedings of ACL,
pages 4656—4667.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih,
Tim Rocktischel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In Proceedings of
NeurlPS.

Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and Xiang
Ren. 2019. Kagnet: Knowledge-aware graph net-
works for commonsense reasoning. In Proceedings
of EMNLP, pages 2829-2839.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015. Learning entity and relation embed-
dings for knowledge graph completion. In Proceed-
ings of AAAI, pages 2181-2187.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju,
Haotang Deng, and Ping Wang. 2020a. K-BERT:
enabling language representation with knowledge
graph. In Proceedings of AAAI, pages 2901-2908.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Zhenghao Liu, Chenyan Xiong, Maosong Sun, and
Zhiyuan Liu. 2020b. Fine-grained fact verification
with kernel graph attention network. In Proceedings
of ACL, pages 7342-7351.

Matthew E. Peters, Mark Neumann, Robert L. Logan
IV, Roy Schwartz, Vidur Joshi, Sameer Singh, and
Noah A. Smith. 2019. Knowledge enhanced contex-
tual word representations. In Proceedings of EMNLP-
IJCNLP, pages 43-54.

Nina Poerner, Ulli Waltinger, and Hinrich Schiitze. 2020.
E-BERT: Efficient-yet-effective entity embeddings
for BERT. In Findings of EMNLP, pages 803—818.

https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://doi.org/10.18653/v1/p19-1470
https://doi.org/10.18653/v1/p19-1470
https://doi.org/10.18653/v1/p19-1470
https://doi.org/10.18653/v1/2020.emnlp-main.697
https://doi.org/10.18653/v1/2020.emnlp-main.697
https://doi.org/10.18653/v1/2020.emnlp-main.697
https://doi.org/10.18653/v1/2021.acl-long.240
https://doi.org/10.18653/v1/2021.acl-long.240
https://doi.org/10.18653/v1/2021.acl-long.240
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://doi.org/10.18653/v1/D19-1649
https://doi.org/10.18653/v1/D19-1649
https://doi.org/10.18653/v1/D19-1649
https://doi.org/10.18653/v1/D19-1649
https://doi.org/10.18653/v1/D19-1649
https://transacl.org/ojs/index.php/tacl/article/view/1886
https://transacl.org/ojs/index.php/tacl/article/view/1886
https://transacl.org/ojs/index.php/tacl/article/view/1886
https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2002.08909
https://doi.org/10.18653/v1/d18-1514
https://doi.org/10.18653/v1/d18-1514
https://doi.org/10.18653/v1/d18-1514
https://doi.org/10.18653/v1/d18-1514
https://doi.org/10.18653/v1/d18-1514
https://arxiv.org/abs/1207.0580
https://arxiv.org/abs/1207.0580
https://arxiv.org/abs/1207.0580
http://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2020.acl-main.423
https://doi.org/10.18653/v1/2020.acl-main.423
https://doi.org/10.18653/v1/2020.acl-main.423
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://doi.org/10.18653/v1/D19-1282
https://doi.org/10.18653/v1/D19-1282
https://doi.org/10.18653/v1/D19-1282
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571
https://aaai.org/ojs/index.php/AAAI/article/view/5681
https://aaai.org/ojs/index.php/AAAI/article/view/5681
https://aaai.org/ojs/index.php/AAAI/article/view/5681
https://aaai.org/ojs/index.php/AAAI/article/view/5681
https://aaai.org/ojs/index.php/AAAI/article/view/5681
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2020.acl-main.655
https://doi.org/10.18653/v1/2020.acl-main.655
https://doi.org/10.18653/v1/2020.acl-main.655
https://doi.org/10.18653/v1/D19-1005
https://doi.org/10.18653/v1/D19-1005
https://doi.org/10.18653/v1/D19-1005
https://aclanthology.org/2020.findings-emnlp.71
https://aclanthology.org/2020.findings-emnlp.71
https://aclanthology.org/2020.findings-emnlp.71

Yujia Qin, Yankai Lin, Ryuichi Takanobu, Zhiyuan Liu,
Peng Li, Heng Ji, Minlie Huang, Maosong Sun, and
Jie Zhou. 2021. ERICA: Improving entity and rela-
tion understanding for pre-trained language models
via contrastive learning. In Proceedings of ACL.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog.

Yusheng Su, Xu Han, Zhengyan Zhang, Yankai Lin,
Peng Li, Zhiyuan Liu, Jie Zhou, and Maosong Sun.
2021. CokeBERT: Contextual knowledge selection
and embedding towards enhanced pre-trained lan-
guage models. Al Open, 2:127-134.

Tianxiang Sun, Yunfan Shao, Xipeng Qiu, Qipeng Guo,
Yaru Hu, Xuanjing Huang, and Zheng Zhang. 2020.
CoLAKE: Contextualized language and knowledge
embedding. In Proceedings of COLING, pages 3660—
3670.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei,
Xuanjing Huang, Jianshu Ji, Guihong Cao, Daxin
Jiang, and Ming Zhou. 2021a. K-adapter: Infusing
knowledge into pre-trained models with adapters. In
Findings of ACL/IJCNLP, pages 1405-1418.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan
Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang. 2021b.
KEPLER: A unified model for knowledge embed-
ding and pre-trained language representation. TACL,
9:176-194.

Ji Xin, Yankai Lin, Zhiyuan Liu, and Maosong Sun.
2018. Improving neural fine-grained entity typing
with knowledge attention. In Proceedings of AAAI,
pages 5997-6004.

Wenhan Xiong, Jingfei Du, William Yang Wang, and
Veselin Stoyanov. 2020. Pretrained encyclopedia:
Weakly supervised knowledge-pretrained language
model. In Proceedings of ICLR.

Song Xu, Haoran Li, Peng Yuan, Yujia Wang, Youzheng
Wu, Xiaodong He, Ying Liu, and Bowen Zhou. 2021.
K-PLUG: knowledge-injected pre-trained language
model for natural language understanding and gener-
ation in e-commerce. In Findings of EMNLP, pages
1-17.

Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki
Takeda, and Yuji Matsumoto. 2020. LUKE: deep con-
textualized entity representations with entity-aware
self-attention. In Proceedings of EMNLP, pages
6442-6454.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut,
Percy Liang, and Jure Leskovec. 2021. QA-GNN:
reasoning with language models and knowledge
graphs for question answering. In Proceedings of
NAACL-HLT, pages 535-546.

10

Deming Ye, Yankai Lin, Peng Li, Maosong Sun, and
Zhiyuan Liu. 2022. A simple but effective pluggable
entity lookup table for pre-trained language models.
In Proceedings of ACL.

Da Yin, Li Dong, Hao Cheng, Xiaodong Liu, Kai-Wei
Chang, Furu Wei, and Jianfeng Gao. 2022. A survey
of knowledge-intensive nlp with pre-trained language
models. arXiv preprint arXiv:2202.08772.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. arXiv preprint 2106.10199.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. ERNIE: enhanced
language representation with informative entities. In
Proceedings of ACL, pages 1441-1451.

Jie Zhou, Xu Han, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. 2019.
GEAR: graph-based evidence aggregating and rea-
soning for fact verification. In Proceedings of ACL,
pages 892-901.

Junru Zhou, Zhuosheng Zhang, Hai Zhao, and Shuail-
iang Zhang. 2020. LIMIT-BERT : Linguistics in-
formed multi-task BERT. In Findings EMNLP, pages
4450-4461.

https://arxiv.org/pdf/2009.13964
https://arxiv.org/pdf/2009.13964
https://arxiv.org/pdf/2009.13964
https://arxiv.org/pdf/2009.13964
https://arxiv.org/pdf/2009.13964
https://doi.org/10.18653/v1/2020.coling-main.327
https://doi.org/10.18653/v1/2020.coling-main.327
https://doi.org/10.18653/v1/2020.coling-main.327
https://doi.org/10.18653/v1/2021.findings-acl.121
https://doi.org/10.18653/v1/2021.findings-acl.121
https://doi.org/10.18653/v1/2021.findings-acl.121
https://transacl.org/ojs/index.php/tacl/article/view/2447
https://transacl.org/ojs/index.php/tacl/article/view/2447
https://transacl.org/ojs/index.php/tacl/article/view/2447
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16321
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16321
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16321
https://openreview.net/forum?id=BJlzm64tDH
https://openreview.net/forum?id=BJlzm64tDH
https://openreview.net/forum?id=BJlzm64tDH
https://openreview.net/forum?id=BJlzm64tDH
https://openreview.net/forum?id=BJlzm64tDH
https://doi.org/10.18653/v1/2021.findings-emnlp.1
https://doi.org/10.18653/v1/2021.findings-emnlp.1
https://doi.org/10.18653/v1/2021.findings-emnlp.1
https://doi.org/10.18653/v1/2021.findings-emnlp.1
https://doi.org/10.18653/v1/2021.findings-emnlp.1
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://arxiv.org/pdf/2202.13392.pdf
https://arxiv.org/pdf/2202.13392.pdf
https://arxiv.org/pdf/2202.13392.pdf
https://arxiv.org/pdf/2202.08772.pdf
https://arxiv.org/pdf/2202.08772.pdf
https://arxiv.org/pdf/2202.08772.pdf
https://arxiv.org/pdf/2202.08772.pdf
https://arxiv.org/pdf/2202.08772.pdf
https://arxiv.org/abs/2106.10199
https://arxiv.org/abs/2106.10199
https://arxiv.org/abs/2106.10199
https://arxiv.org/abs/2106.10199
https://arxiv.org/abs/2106.10199
https://doi.org/10.18653/v1/p19-1139
https://doi.org/10.18653/v1/p19-1139
https://doi.org/10.18653/v1/p19-1139
https://doi.org/10.18653/v1/p19-1085
https://doi.org/10.18653/v1/p19-1085
https://doi.org/10.18653/v1/p19-1085
https://doi.org/10.18653/v1/2020.findings-emnlp.399
https://doi.org/10.18653/v1/2020.findings-emnlp.399
https://doi.org/10.18653/v1/2020.findings-emnlp.399

Method | Hyper-parameters | FewRel | Wiki80 | Wiki-ET

- | Sequence Length | 512 | 128 | 64
Learning Rate 2E-5 SE-5 1E-5

Fine-tuning | Batch Size 4 32 64
Training Step/Epoch 3000 15 2

Learning Rate 8E-4 2E-3 1E-3

LoRA Batch Size 4 64 64
Training Step/Epoch 3000 60 2

Rank 32 32 4

Learning Rate SE-4 2E-3 1E-3

Adater Batch Size 4 64 64
P Training Step/Epoch 3000 60 2
Hidden Size 32 32 32

Learning Rate 8E-4 2E-3 1E-3

BitFit Batch Size 4 64 64
Training Step/Epoch 3000 60 2

Table 6: Hyper-parameters for four training methods.
We report the training steps of FewRel and the training
epochs of Wiki80 and Wiki-ET.

Method | | FewRel | Wiki80 | Wiki-ET
Fi . Dropout 0.25 0.25 0.25
ine-tuning Epoch 3 5 3

Dropout 0.35 0.25 0.35

LoRA Epoch 5 5 4
Dropout 0.35 0.35 0.15

Adapter | ooy 5 5 5
- Dropout 0.25 0.35 0.35

BitFit Epoch 5 4 4

Table 7: Hyper-parameters for general map-tuning.

A Hyper-parameters

A.1 Fine-tuning

We experiment with four training methods for the
adaptation of PLMs on downstream tasks, which
are Full-model fine-tuning, LoRA, Adapter, and
BitFit. We train all the models using AdamW
with 10% warming-up steps. We list our hyper-
parameters in Table 6.

A.2 General Map-tuning

For general map-tuning, we search the dropout ra-
tio in {0.15, 0.25, 0.35, 0.45}. We train all the map-
ping networks using Adam (Kingma and Ba, 2015).
The learning rate is 3E-5 and the batch size is 64.
We train the mapping network on the Wikipedia
corpus for 5 epochs. The hyper-parameters of the
best mapping network in all cases are listed in Ta-
ble 7.

A.3 Task-specifc Map-tuning

We report hyper-parameters for task-specific map-
tuning in Table 8. We train all mapping networks
using Adam with 10% warming-up steps

11

Hyper-parameters | FewRel | Wiki80 | Wiki-ET

Learning Rate 2E-5 4E-4 SE-5
Batch Size 4 64 128
Training Step/Epoch 3000 30 2

Table 8: Hyper-parameters for task-specific map-tuning.

| FewRel | Wiki80 | Wiki-ET
5 2 | 2

Training Epoch |

Table 9: Hyper-parameters for map-tuning on the
Wikipedia corpus, after which we fine-tune BERT on
downstream tasks with the mapping network plugged.

Regarding the results reported in Table 3, during
task-specific map-tuning, we use dropout in the at-
tention probabilities and all fully connected layers
of the PLM. The dropout ratio is 0.30 and 0.20 for
Wiki80 and Wiki-ET, respectively. Regarding the
results reported in Table 2, when using training data
from source domain for task-specific map-tuning,
the dropout ratio is 0.35. In these cases, the training
data for task-specific map-tuning are identical to
those for fine-tuning the downstream models. We
search the dropout ratio in {0.00, 0.15, 0.20, 0.25,
0.30, 0.35}. When using training data from target
domain for task-specific map-tuning, we do not use
dropout.

The hyper-parameters for experiments with
RoBERTa are identical to those with BERT.

A.4 Fine-tuning with the Mapping Network

Regarding the results reported in Table 5, the hyper-
parameters for fine-tuning BERT are identical to
those in Table 6. We train all mapping networks us-
ing Adam without dropout, and the batch size is 64.
For map-tuning on the Wikipedia corpus, the learn-
ing rate is 1E-5. We report other hyper-parameters
for map-tuning on the Wikipedia corpus in Table 9,
and those for map-tuning on downstream data in
Table 10.

| FewRel | Wiki80 | Wiki-ET
3 12 2
2E-4 | 2E-4 1E-5

Training Epoch
Learning Rate

Table 10: Hyper-parameters for map-tuning on down-
stream data, after which we fine-tune BERT on down-
stream tasks with the mapping network plugged.

| FewRel | Wiki80 | Wiki-ET

Learning Rate 2E-5 5E-5 5E-5
Bacth Size 4 32 64
Training Step/Epoch 3000 15 2

Table 11: Hyper-parameters for tuning the final fully
connected layer, during which we plug K-Adapter into
frozen downstream models.

Training Data Map | 5-1 55 10-1 105
Target Domain - ‘ 819 910 742 84.0
Multiple Domains — \ 809 922 754 878
Source Domain — 725 892 652 833

v 91.6 96.6 88.1 945

Table 12: Results of domain adaptation using RoOBERTa.
We report the performance on the target domain.

A.5 The Details of K-Adapter

We use the open-source implementation of K-
Adapter’, and we only consider facAdapter (Fac-
tual Adapter). The BERT},,. layers where adapter
layers plug in are {5, 10}. The hyper-parameters
for pre-training facAdapter are identical to those
reported in Wang et al. (2021a).

In order to plug K-Adapter into frozen down-
stream models in the setting of general plug-and-
play injection, we tune the final fully connected
layer on downstream data. We use Adam with 10%
warming-up steps, and other hyper-parameters are
listed in Table 11.

B Dose Map-tuning Work with Other
PLMs?

In this section, we experiment map-tuning with
RoBERTa (Liu et al., 2019), another representative
PLM, on the domain transfer setting using task-
specific map-tuning. The setting is identical to that
in Section 4.3. The results are shown in Table 12.
From this table, we observe that task-specific map-
tuning significantly improves the performance of
the model trained on the source domain by intro-
ducing the knowledge of the target domain. More-
over, the model plugged with map-tuning is even
much better than the model trained on multiple do-
mains. It indicates that map-tuning is a universal
knowledge injection method for different PLMs.

12

C Case Study

We present a qualitative analysis of map-tuning in
Table 13. In the first case, the original downstream
model does not understand that “flying officer” is a
military rank and wrongly predicts the relation as
“occupation”. With the general mapping network,
which enriches the meaning of “flying officer”, the
model correctly predicts the relation.

The general mapping network, however, may be
misleading in some cases. In the second case, it is
easy for the original downstream model to recog-
nize “Wasp” as a member of “Avengers” without
any external knowledge since this fact could be
inferred by the word “other”. Compared to the
external knowledge provided by the task-specific
mapping network, coarse-grained is that provided
by the general mapping network, because there is
no additional training before the inference. As a
result, the model wrongly recognizes “Avengers”
as comic books instead of the fictional superhero
team, and thus changes the correct model predic-
tion. Task-specific map-tuning, which is further
adapted to the task, corrects the prediction.

Shttps://github.com/microsoft/
k—adapter

https://github. com/microsoft/k-adapter
https://github. com/microsoft/k-adapter

Input True label Injection Predicted label Logits

Ernest Russell Lyon was a) occupation, military_rank, 8.0.47.33

flying officer ir} 234 Squadron military_rank ﬁqlq_of_work T

of the Royal Air Force General . m111tary._rank, field_of_work, 63.6.2.3.9

during the Second World War. Map-tuning ~ occupation o
) member_of, parts, 8.8.5.0.4.4

He later enslaved Thor, then G I cﬁarac:ers 5 T

captured the Wasp and the other ~ member_of Meargjining ;a';ltr:c ers, member_of, 6.9.6.6.4.7

Avengers. Task-specifc ~ member_of, parts, 84.57 4.6

Map-tuning characters

Table 13: A case study for map-tuning on Wiki80. Underlines and wave lines highlight head entities and tail entities
respectively. We report the top 3 ranked predictions of different methods.

13

