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ABSTRACT

Text watermarking has emerged as an important technique for detecting machine-
generated text. However, existing methods generally use arbitrary vocabulary
partitioning during decoding, which results in the absence of appropriate words
during the response generation process and disrupts the language model’s ex-
pressiveness, thus severely degrading the quality of text response. To address
these issues, we introduce a novel approach, Watermarking with Mutual Exclusion
(WatME). Specifically, by leveraging linguistic prior knowledge of inherent lexical
redundancy, WatME can dynamically optimize the usage of available vocabulary
during the decoding process of language models. It employs a mutually exclu-
sive rule to manage this redundancy, avoiding situations where appropriate words
are unavailable and maintaining the expressive power of large language models
(LLMs). We present theoretical analysis and empirical evidence demonstrating that
WatME substantially preserves the text generation ability of LLMs while maintain-
ing watermark detectability. Specifically, we investigate watermarking’s impact on
the emergent abilities of LLMs, including knowledge recall and logical reasoning.
Our comprehensive experiments confirm that WatME consistently outperforms
existing methods in retaining these crucial capabilities of LLMs.

1 INTRODUCTION

The advent of LLMs (Ouyang et al., 2022; OpenAI, 2023) with human-level generative capabilities
presents vast opportunities across diverse NLP tasks (Deng et al., 2023; Li et al., 2024; Lyu et al.,
2024). However, these advancements also bring to light concerns over potential misuse, such
as misinformation dissemination (Chen et al., 2023a), information redundancy (Li & Li, 2024)
and facilitation of academic dishonesty (Stokel-Walker, 2022), highlighting the need for reliable
techniques to attribute AI-generated text to its origins.

Figure 1: WatME’s lossless watermarking benefit.

Current text watermarking algorithms, advocat-
ing direct intervention in the generative process
to embed identifiable fingerprints in machine-
generated text, provide provenance verification
(Kirchenbauer et al., 2023; Christ et al., 2023;
Zhao et al., 2023). While this approach proves
more effective in detecting LLM-generated con-
tent (Sadasivan et al., 2023), it often compro-
mises text quality, posing a significant challenge
for developers - how to effectively watermark
while preserving text quality.

Recent efforts to enhance text quality in wa-
termarking have focused on maintaining unbi-
ased output distributions through pseudorandom
perturbations or reweighting (Kuditipudi et al.,
2023; Hu et al., 2024). These strategies, how-
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ever, don’t consistently assure superior text quality and may compromise the efficacy of watermark
detection (Kuditipudi et al., 2023), especially in aligned models, thus reducing their applicability.

In this paper, we introduce a novel approach to text watermarking by leveraging engineered lexical
redundancy during the decoding phase of language generation. Our method utilizes the comprehensive
set of tokens available to a language model, clustering them based on overlapping semantic or syntactic
functionalities to create sets of interchangeable tokens. This process simulates redundancy within
the lexical space, akin to the surplus pixels in images that facilitate watermarking in multimodal
data (Nikolaidis & Pitas, 1999; Samuel & Penzhorn, 2004). The motivation for this strategy arises
from the challenge of applying traditional watermarking techniques to textual data. In contrast to
the inherent redundancy found in images, the discrete and succinct nature of textual data offers little
to no native redundancy, making it challenging to exploit redundancy in the textual space (Zhou
et al., 2021; He et al., 2022). By engineering lexical redundancy, our method not only surmounts the
limitations imposed by the inherent properties of natural language but also paves the way for secure
and efficient text watermarking.

After exploring these redundancies, we exploit them via our novel algorithm, WatME, which enhances
text quality by integrating a mutual exclusivity rule within the context of lexical redundancy during
the watermarking process. Specifically, WatME refines the decoding process by explicitly assigning
words within each redundant cluster to distinct ’green’ or ’red’ teams, ensuring that no single cluster
is wholly allocated to one team. Our approach confers two main advantages: (1) it enables the ’green’
team to capture a broader array of semantics, thereby boosting the model’s expressive power; and
(2) it increases the probability that the LLM selects the most appropriate word at each decoding
step, e.g., in Figure 1, vanilla watermarking might assign all suitable words to the ’red’ list, thus
severely impairing performance. In contrast, our approach guarantees the presence of at least one
appropriate word, thus preserving the model’s expressiveness. Building on these methodological
advances, extensive theoretical analysis(§ C) and empirical (§ 5) evidence supports their effectiveness
without compromising detection capabilities. These improvements significantly bolster the emergent
abilities of large models under watermarks, surpassing the performance of established baselines.

Our main contributions are as follows:

• Motivated by multimedia data’s inherent redundancy and the precise conciseness of text, we
propose two distinct approaches for mining lexical redundancy.

• We develop the WatME algorithm, which embeds mutual exclusion rules within the lexical
space for text watermarking. Theoretical analysis is presented to validate its effectiveness in
preserving the quality of text responses.

• Experimental results show that WatME effectively outperforms existing methods in retaining
the emergent capabilities of LLMs, notably knowledge recall and logical reasoning, within
the conceptual framework of Cattell’s cognitive theory, without compromising detectability.

2 RELATED WORK

Early works on AI-generated text detection develop post-hoc detection methods to analyze machine-
generated text by treating the problem as a binary classification task (OpenAI, 2019; Jawahar et al.,
2020; Mitchell et al., 2023). For instance, OpenAI has fine-tuned RoBERTa (Liu et al., 2019) to
distinguish between human and GPT-2 generated texts (OpenAI, 2019). Nevertheless, existing
detectors are susceptible to sophisticated adversarial strategies and tend to exhibit bias against
individuals whose first language is not English (Wolff, 2020; Liang et al., 2023). Moreover, as LLMs
continue to advance, their generated outputs more closely resemble human-written text, rendering
these methods progressively less effective.

On the other side, watermarking, traditionally a copyright marking method Adi et al. (2018); Rouhani
et al. (2018), involves developers, users, and regulatory entities. Developers choose an algorithm
to subtly embed hidden modifications into data, which can be altered during user transmission.
Regulatory bodies can later extract this information to trace and regulate AI-generated content
(Atallah et al., 2001; Wilson et al., 2014; Hacker et al., 2023). In the context of natural languages,
watermarking typically involves modifying content or structure. For example, rule-based methods
(Stefan et al., 2000) or carefully designed neural encoders (Yang et al., 2022; Ueoka et al., 2021)
encrypt messages into text, which are then extracted using the corresponding rules and neural decoder.
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The discrete nature of natural language, however, presents a considerable challenge to this approach,
as modifications can unintentionally degrade text quality or alter its intended meaning.

For the detection of LLM-generated texts, a pioneering watermarking technique (Kirchenbauer et al.,
2023) partitions tokens into ’green’ and ’red’ lists, biases output distribution towards ’green’ tokens,
and creates patterns that are detectable yet imperceptible to humans. Nevertheless, while yielding
promising detection results, these methods may still degrade textual quality and be vulnerable to the
paraphrase attack. Current efforts Christ et al. (2023); Fernandez et al. (2023); Zhao et al. (2023)
in this field aim to develop more robust watermarking methods capable of defending various user
attacks.

Apart from improving robustness, a few studies have recognized the importance of enhancing the
quality of text produced by watermarked LLMs. Kuditipudi et al. (2023) utilizes Gumbel softmax to
incorporate pseudorandomness-based randomness into the output distribution of language models.
While this technique alters the probability distribution, the Gumbel softmax ensures that the expected
distribution remains approximately unchanged, thus rendering the watermarking process unbiased.
Recent work Hu et al. (2024) also shares a similar philosophy of employing reweighting technology for
unbiased output distribution transformations, preserving the expected distribution unbiased. However,
unbiased distribution can not guarantee unaffected text quality. Furthermore, these methodologies
have shown a marked decrease in detection performance, particularly for aligned LLMs Kuditipudi
et al. (2023). Addressing these shortcomings, our research introduces a novel paradigm that exploits
the intrinsic redundancy in the text generation process of LLMs to create more lossless watermarks,
with a special emphasis on LLMs’ emergent capabilities, thereby offering a watermarking solution
that is both lossless and consistently detectable.

3 METHOD

This section investigates lexical redundancy and its potential for improving watermark algorithms in
language models. Preliminary and mathematical analyses are detailed in the Appendix A and C.

3.1 CONCEPT OF LEXICAL REDUNDANCY

Inspired by the success of image watermarking, we hypothesize that identifying redundancy within
data can enable watermarking that doesn’t compromise text quality. We thus explore the same
opportunities within textual data, a challenging task given the discrete nature of natural language.

To address this challenge, we introduce a related concept in NLP: lexical redundancy. This phe-
nomenon arises during text generation when the most appropriate word is selected from a large,
pre-constructed vocabulary. Often, this vast vocabulary includes numerous words with similar seman-
tic and syntactic functions — a feature that makes these words interchangeable, thereby resulting in
the inherent redundancy in the lexical space.

Our interest in exploring lexical redundancy is grounded in the understanding that interchangeable
synonyms, even when used in varied contexts, can deliver similar or identical semantic or syntactic
functions. This insight assists in preserving the quality of text generation through an optimized
watermark encoding method. For instance, if a suitable word is allocated to the red list, while its
synonym is placed in the green list, then the language model can still express the intended semantics
or accomplish the necessary syntactic functions. This understanding forms the primary motivation
for investigating lexical redundancy.

3.2 EXPLORE THE REDUNDANCY IN LEXICAL SPACE

Confronted with the unique challenge that text data’s discrete and limited nature presents, unlike
image data with its redundant pixels, we pivot to the concept of lexical redundancy. This involves
tapping into the extensive vocabulary at a language model’s disposal during the decoding process.

To utilize lexical redundancy for watermarking, we construct clusters of synonyms from the model’s
vocabulary through two primary methods: the dictionary-based approach, which draws upon authori-
tative lexicons such as WordNet, and the prompting-based approach, wherein advanced models like
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LLaMA2 are prompted to provide context-aware synonyms. The complexities involved in forming
these high-quality clusters are further explicated in Appendix B.1.

3.3 WATME: EXPLOIT THE LEXICAL REDUNDANCY

Within the lexical space of a language model M with vocabulary V , we define a subset S ⊆ V
consisting of tokens that are synonymous. We denote a set of redundant lexical clusters as C = {Ci |
i = 1..n}, where

⋃n
i=1 Ci = S and each Ci = {sij | j = 1..mi, sij ∈ S}. Tokens sij , sik ∈ Ci are

considered interchangeable.

Using this redundancy, we introduce a mutual exclusion rule for watermarking: when tokens from
cluster A are assigned to the red list, their synonyms B are assigned to the green list, and vice versa.

The WatME encoding algorithm, outlined in Alg. 1, uses a two-step process to generate green
(G′

t, Gt) and red (R′
t) lists. Initial partitioning within clusters C assigns tokens to G′

t by γ. The next
step divides the remaining vocabulary V \ S into Gt and Rt following γ. The ensuing steps mirror
the standard watermarking as in original algorithm in appendix B. The WatME detection algorithm
remains as detailed in B, with the green list now calculated per Alg. 1.

Algorithm 1 WatME Encoding

1: Input: prompt x1 · · ·xm, green list size γ ∈ (0, 1), watermark strength δ > 0.
2: for t = 0, 1, · · · , T − 1 do
3: Get the logit ℓt ∈ R|V| from M.
4: Use seed from the last token, split each cluster Ci in parallel into a green list G′

it (of size |Ci|γ) and a
red list R′

it (of size (1− γ)|Ci|).
5: Let G′

t = ∪iG
′
it and R′

t = ∪iR
′
it.

6: Partition the remaining part V \ S into a green list Gt of size γ|V | − |G′
t| and a red list Rt of size

(1− γ)|V | − |R′
t|.

7: Merge lists from the previous two steps: Gt = Gt ∪G′
t and Rt = Rt ∪R′

t.
8: Add δ to the elements of logit ℓt corresponding to the green list, then softmax.
9: p̂t = softmax(ℓt[i] + δ), i ∈ Gt

10: Sample the next token yt+1 from p̂t.
11: end for
12: Output: watermarked text y1 · · · yT .

4 IMPACT ON EMERGENT ABILITIES

Research on text watermarking has primarily focused on fluency using datasets like C4 (Dodge et al.,
2021), yet the impact on LLMs’ emergent abilities—crucial to user engagement—has been largely
ignored. Our study extends beyond C4, assessing how watermarking affects key cognitive functions
as outlined by Cattell’s theory (Cattell, 1963): crystallized intelligence, which pertains to knowledge
application, and fluid intelligence, related to problem-solving and logic. We use TruthfulQA (Lin
et al., 2022) to evaluate the model’s ability to recall and provide accurate information. In parallel, the
GSM8K (Cobbe et al., 2021) dataset serves to test the model’s logical reasoning and problem-solving
skills in few-shot learning scenarios.

5 EXPERIMENTS

We validate our WatME’s superiority across three scenarios and two distinct model types. Experi-
mental setup details are in Appendix H, with further analysis in Appendix D.

Greater Impact on Emergent Abilities than Fluency The experimental evidence suggests that
watermarking notably hinders the emergent abilities of LLMs much more than fluency (see Table 1).
Specifically, the non-aligned Llama2 model experienced a decline in performance exceeding 50% on
both the GSM8K and TruthfulQA benchmarks. In contrast, the aligned model, Vicuna, demonstrated
relative resilience but still incurred performance reductions greater than 20% on these benchmarks.
This demonstrates the adverse impact of Vanilla Watermarking on the knowledge and reasoning
capabilities of LLMs, with reasoning showing a marginally greater susceptibility.
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Table 1: Performance comparison of Llama2 and Vicuna v1.5 with various watermarking algorithms.

Model GSM8K TruthfulQA C4

Acc. AUROC True. Info. True.*Info. AUROC PPL AUROC

LLAMA2-7B 11.22 - 95.10 92.78 88.23 - 4.77 -

+ KGW-MARK 5.61−50.0% 0.889 57.16−39.9% 84.33−9.1% 48.20−45.4% 0.842 7.00 0.972
+ GUMBEL-MARK 7.28−35.1% 0.912 45.90−51.7% 92.78−0.0% 42.59−51.7% 0.493 39.93 0.942
+ UNBIASED-MARK 10.24−8.7% 0.548 44.06−53.7% 93.76+1.1% 41.43−53.0% 0.505 15.62 0.545
+ PROVABLE-MARK 5.16−54.01% 0.905 64.14−32.6% 91.68−1.2% 58.80−33.4% 0.956 10.21 0.962

+ WATMEdictionary 9.17−18.3% 0.900 69.28−27.2% 88.25−4.9% 61.14−30.7% 0.885 5.32 0.980
+ WATMEprompting 5.84−48.0% 0.913 55.83−41.3% 95.10+2.5% 50.39−42.9% 0.866 6.89 0.972

VICUNA-V1.5-7B 17.51 - 93.88 87.27 81.92 - 10.77 -

+ KGW-MARK 13.87−20.8% 0.787 74.05−21.1% 87.52+0.3% 64.81−20.1% 0.7417 11.62 0.968
+ GUMBEL-MARK 9.02−48.5% 0.708 68.30−27.2% 87.27−0.0% 59.61−27.2% 0.4647 48.93 0.862
+ UNBIASED-MARK 17.89+2.2% 0.551 70.38−25.0% 88.86+1.8% 62.54−23.7% 0.4855 19.93 0.500
+ PROVABLE-MARK 12.21−30.27% 0.802 74.42−20.7% 96.70+10.8% 71.96−12.2% 0.8796 10.21 0.958

+ WATMEdictionary 14.78−15.6% 0.804 78.95−15.9% 97.43+11.6% 76.92−6.1% 0.7897 10.96 0.958
+ WATMEprompting 16.22−7.4% 0.784 69.65−25.8% 97.45−11.5% 67.87−17.2% 0.7396 11.54 0.952

Superiority of WatME over baselines in Preserving Emergent Abilities Across all models
and benchmarks, the WatME consistently outperformed baseline watermarking methods. For the
Llama2 model, WatME mitigated performance degradation by 16.8% on GSM8K and by 14.7% on
TruthfulQA compared to the strongest baseline. Similarly, for the Vicuna model, the reductions were
13.4% and 14.0%, respectively. These outcomes underscore WatME’s significant effectiveness in
preserving the emergent capabilities of LLMs without compromising performance as significantly as
other methods.

Comparable Detection Performance of WatME Despite the trade-off between text quality and
detection performance, WatME’s detection efficacy matched that of the Vanilla Watermark while also
enhancing model capabilities, as evidenced by similar AUROC scores—suggesting our algorithm
attained a better equilibrium than the baseline. In contrast, the Gumbel-Mark method noticeably
compromised detection performance, particularly in aligned models and when generating short
responses (TruthfulQA). Additionally, more performance results under different watermark strength
are presented in Appendix D.3.

Distinct Advantages of WatME Variations It is evident that different WatME variations exhibit
unique strengths; The ’dictionary’ variant outperformed in the Accuracy and Truthfulness scores,
while the ’prompting’ variant excelled in the Informativeness. The integration of these variants may
offer a fruitful avenue for future research. For a comprehensive understanding, a manual analysis of
lexical clusters derived from these methods is presented in the Appendix D.1.

Alignment Diminishes Watermark Effectiveness Surprisingly, aligned models showed signif-
icantly greater resistance to watermarking effects than non-aligned models. Specifically, Vicuna
1.5’s performance dipped 30% less than Llama2’s across all benchmarks, coupled with a 10% lower
watermark detection performance. To understand the underlying reasons for these differences, we
analyzed the output distribution discrepancies between aligned and unaligned models in the Appendix
D.4.

6 CONCLUSION

This study explores the impact of watermarking on the emergent abilities of LLMs—an aspect often
neglected in the field. Our findings highlight the considerable adverse effects of traditional water-
marking methods on LLMs’ emergent abilities, including knowledge recall and logical reasoning.

In response, we introduced WatME—a novel watermarking approach that leverages lexical re-
dundancy. Theoretical analysis and comprehensive empirical results indicate WatME consistently
preserves the expressive power of LLMs without compromising detection performance, enabling
developers to encode watermarks with less disruption to user experience.
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LIMITATIONS

In this section, we discuss the limitations of this work from two perspectives.

Firstly, although WatME represents a step toward lossless watermarking, it is not entirely loss-free.
The introduction of a controlled bias, inherent to watermarking methods, subtly alters the generated
data. This compromise is a critical consequence as it diverges from the ideal of a completely lossless
system. This deviation poses a dilemma for developers weighing the benefits of watermarking against
potential user experience and regulatory trade-offs. Future work aims to bridge this gap, enhancing
the WatME method to maintain output integrity and broaden its appeal for practical implementation.

Secondly, while our method is designed to be language-agnostic, the empirical validation presented in
this work is limited to models processing the English language. We acknowledge that the applicability
of watermarking across various linguistic contexts is critically important. Future investigations
will endeavour to broaden the scope to include more languages, ensuring the generalizability and
effectiveness of our approach in a multilingual context.

Thirdly, the challenge of watermarking in low-entropy scenarios remains an open problem. Our
dataset encompasses a range of scenarios, including low-entropy situations where outcomes are more
predictable and our methodology remains effective. However, embedding watermarks in text with
universally recognized, low-entropy answers poses significant challenges, highlighting the need for
further investigation into constructing and testing methodologies for low-entropy corpora.

Lastly, our LLMs-based cluster generation approach is influenced by the robustness of the prompting
methods. Different prompt constructions can lead to varying outcomes (Zhao et al., 2021; Chen et al.,
2023b), represents a limitation that warrants further discussion and exploration in future work.

Despite these limitations, we believe our work serves as a significant catalyst for the field, contributing
positively to the advancement of more lossless and detectable text watermarking techniques.
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Jesse Dodge, Maarten Sap, Ana Marasović, William Agnew, Gabriel Ilharco, Dirk Groeneveld,
Margaret Mitchell, and Matt Gardner. Documenting large webtext corpora: A case study on the
colossal clean crawled corpus, 2021.

Pierre Fernandez, Antoine Chaffin, Karim Tit, Vivien Chappelier, and Teddy Furon. Three bricks to
consolidate watermarks for large language models, 2023.

Yao Fu, Litu Ou, Mingyu Chen, Yuhao Wan, Hao Peng, and Tushar Khot. Chain-of-thought
hub: A continuous effort to measure large language models’ reasoning performance. CoRR,
abs/2305.17306, 2023. doi: 10.48550/arXiv.2305.17306. URL https://doi.org/10.48550/
arXiv.2305.17306.

Philipp Hacker, Andreas Engel, and Marco Mauer. Regulating chatgpt and other large generative
AI models. In Proceedings of the 2023 ACM Conference on Fairness, Accountability, and
Transparency, FAccT 2023, Chicago, IL, USA, June 12-15, 2023, pp. 1112–1123. ACM, 2023.
URL https://doi.org/10.1145/3593013.3594067.

Xuanli He, Qiongkai Xu, Lingjuan Lyu, Fangzhao Wu, and Chenguang Wang. Protecting intellectual
property of language generation apis with lexical watermark. Proceedings of the AAAI Conference
on Artificial Intelligence, 36(10):10758–10766, Jun. 2022. doi: 10.1609/aaai.v36i10.21321. URL
https://ojs.aaai.org/index.php/AAAI/article/view/21321.

Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu, Hongyang Zhang, and Heng Huang. Unbiased
watermark for large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=uWVC5FVidc.

Ganesh Jawahar, Muhammad Abdul-Mageed, and Laks V. S. Lakshmanan. Automatic detection
of machine generated text: A critical survey. In International Conference on Computational
Linguistics, 2020.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. International Conference on Machine Learning, 2023.

Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free
watermarks for language models, 2023.

Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing, 2018.

7

https://aclanthology.org/2023.findings-acl.462
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://aclanthology.org/2023.findings-emnlp.711
https://doi.org/10.48550/arXiv.2305.17306
https://doi.org/10.48550/arXiv.2305.17306
https://doi.org/10.1145/3593013.3594067
https://ojs.aaai.org/index.php/AAAI/article/view/21321
https://openreview.net/forum?id=uWVC5FVidc


Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

Shuaiyi Li, Yang Deng, Deng Cai, Hongyuan Lu, Liang Chen, and Wai Lam. Consecutive model
editing with batch alongside hook layers, 2024.

Xianming Li and Jing Li. Generative deduplication for socia media data selection, 2024.

Weixin Liang, Mert Yuksekgonul, Yining Mao, Eric Wu, and James Y. Zou. Gpt detectors are biased
against non-native english writers. ArXiv, abs/2304.02819, 2023.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods, 2022.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Yougang Lyu, Lingyong Yan, Shuaiqiang Wang, Haibo Shi, Dawei Yin, Pengjie Ren, Zhumin Chen,
Maarten de Rijke, and Zhaochun Ren. Knowtuning: Knowledge-aware fine-tuning for large
language models, 2024.

George A. Miller. WordNet: A lexical database for English. In Speech and Natural Language:
Proceedings of a Workshop Held at Harriman, New York, February 23-26, 1992, 1992. URL
https://aclanthology.org/H92-1116.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D. Manning, and Chelsea Finn.
Detectgpt: Zero-shot machine-generated text detection using probability curvature. ArXiv,
abs/2301.11305, 2023.

N. Nikolaidis and I. Pitas. Digital image watermarking: an overview. In Proceedings IEEE Inter-
national Conference on Multimedia Computing and Systems, volume 1, pp. 1–6 vol.1, 1999. doi:
10.1109/MMCS.1999.779111.

OpenAI. Gpt-2: 1.5b release. November 2019. URL https://openai.com/research/
gpt-2-1-5b-release.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke E. Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Francis Christiano, Jan
Leike, and Ryan J. Lowe. Training language models to follow instructions with human feedback.
ArXiv, abs/2203.02155, 2022.

Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. Deepsigns: A generic watermarking
framework for ip protection of deep learning models, 2018.

Vinu Sankar Sadasivan, Aounon Kumar, S. Balasubramanian, Wenxiao Wang, and Soheil Feizi. Can
ai-generated text be reliably detected? ArXiv, abs/2303.11156, 2023.

S. Samuel and W.T. Penzhorn. Digital watermarking for copyright protection. In 2004 IEEE Africon.
7th Africon Conference in Africa (IEEE Cat. No.04CH37590), volume 2, pp. 953–957 Vol.2, 2004.
doi: 10.1109/AFRICON.2004.1406827.

Mike Schuster and Kaisuke Nakajima. Japanese and korean voice search. 2012 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5149–5152, 2012. URL
https://api.semanticscholar.org/CorpusID:22320655.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units, 2016.

Katzenbeisser Stefan, AP Fabien, et al. Information hiding techniques for steganography and digital
watermarking, 2000.

Chris Stokel-Walker. Ai bot chatgpt writes smart essays - should professors worry? Nature, 2022.

8

https://aclanthology.org/H92-1116
https://openai.com/research/gpt-2-1-5b-release
https://openai.com/research/gpt-2-1-5b-release
https://api.semanticscholar.org/CorpusID:22320655


Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023.

Honai Ueoka, Yugo Murawaki, and Sadao Kurohashi. Frustratingly easy edit-based linguistic
steganography with a masked language model. In Kristina Toutanova, Anna Rumshisky, Luke
Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty,
and Yichao Zhou (eds.), Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 5486–5492,
Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.
433. URL https://aclanthology.org/2021.naacl-main.433.

Alex Wilson, Phil Blunsom, and Andrew D Ker. Linguistic steganography on twitter: hierarchical
language modeling with manual interaction. In Media Watermarking, Security, and Forensics 2014,
volume 9028, pp. 9–25, 2014.

Max Wolff. Attacking neural text detectors. ArXiv, abs/2002.11768, 2020.

Xi Yang, Jie Zhang, Kejiang Chen, Weiming Zhang, Zehua Ma, Feng Wang, and Nenghai Yu. Tracing
text provenance via context-aware lexical substitution. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pp. 11613–11621, 2022.

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking for
ai-generated text, 2023.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. In Marina Meila and Tong Zhang (eds.), Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 12697–12706. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.
press/v139/zhao21c.html.

Yi Zhou, Xiaoqing Zheng, Cho-Jui Hsieh, Kai-Wei Chang, and Xuanjing Huang. Defense against
synonym substitution-based adversarial attacks via Dirichlet neighborhood ensemble. In Chengqing
Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), pp. 5482–5492, Online, August
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.426. URL
https://aclanthology.org/2021.acl-long.426.

APPENDIX

A PRELIMINARY

The watermarking process is composed of two fundamental procedures: watermark encoding and
watermark detection. The encoding procedure is carried out by developers to insert a watermark
into an output natural language sequence y, generated by a LLM M for a given prompt x. While
the detection procedure, performed by regulators, involves the extraction and identification of the
watermark from the sequence y for the purpose of monitoring the output from model M. The
algorithms that detail these procedures are described in the Appendix B.
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The watermark encoding process is guided by two parameters: γ and δ. At each decoding step t, it
uses a hash key, which could be the index of the previous token, to partition the vocabulary V into
two subsets: a green list Gt which encourages usage, and a red list Rt which discourages usage. The
parameter γ determines the size of the green list, while δ specifies the degree of encouragement for
the green list, the increase in current logits ℓt before performing softmax, as Eq.1. As δ rises, the
watermark becomes more detectable in the subsequent detection process, but it may also compromise
the quality of the generation. In real-world regulatory scenarios, where high detectability is required,
a large δ value is generally preferred.

ℓ̂t[i] := ℓt[i] + δ, i ∈ Gt

p̂t = softmax(ℓ̂t)
(1)

The watermark detection process counts the number of green list tokens within y, denoted by |y|G,
using Eq.2. This process begins with the null hypothesis H0: The text sequence is generated without
adherence to the green list rule. A z-statistic is then computed by Eq.3. If the z-score surpasses a
pre-specified threshold, the null hypothesis is rejected, and the watermark is identified.

|y|G =
∑n

t=1
1(yt ∈ Gt), (2)

zy = (|y|G − γ|V|) /
√
|V|γ(1− γ). (3)

B ALGORITHMS OF WATERMARK

This section presents detailed algorithms for the watermark encoding and detection processes as
outlined in Kirchenbauer et al. (2023). Algorithm 2 delineates the procedure for encoding a watermark
into the output sequence generated by a language model. Conversely, Algorithm 3 explicates the
method for detecting and confirming the watermark’s presence within generated sequences.

Algorithm 2 Vanilla Watermark Encoding

Input: prompt x1 · · ·xm,
green list size γ ∈ (0, 1),

watermark strength δ > 0.
for t = 0, 1, · · · , T − 1 do

1. Get the logit ℓt ∈ R|V| from M.
2. Use the hash of the previous token as the random seed to partition the vocabulary of M into a

“green list” Gt of size γ|V|, and a “red list” Rt of size (1− γ)|V|.
3. Add δ to each green list logit and then apply softmax to the modified logits.

ℓ̂t[i] := ℓt[i] + δ, i ∈ Gt
p̂t = softmax(ℓ̂t)4. Sample a next token yt+1 from p̂t.

end for
Output: watermarked text y1 · · · yT .

Algorithm 3 Vanilla Watermark Detection

Input: text y, detection threshold τ .

1. Use the previous token to find the “green list” Gt at the step t as in Alg. 2.
2. Calculate the number of green tokens in y as |y|G =

∑n
t=1 1(yt ∈ G).

3. Compute the z-statistic:
zy = (|y|G − γ|V|) /

√
|V|γ(1− γ).

4. if zy > τ then return 1 (watermarked).
5. else return 0 (unwatermarked).
Output: 0 or 1

B.1 EXPLORE THE REDUNDANCY IN LEXICAL SPACE
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Constructing Redundant Lexical Clusters To this end, we now focus on the construction of
lexical redundancy. This process involves automatically grouping tokens—each with similar semantic
or syntactic functions—from the language model’s vocabulary into clusters. Each cluster, made up of
interchangeable tokens, is designed to express a specific semantic or syntactic unit.

To obtain high-quality redundant lexical clusters, we propose the following two different methods:
the dictionary-based method, and the prompting-based method:

• Dictionary-Based Method: Utilize external dictionaries, such as WordNet (Miller, 1992)
and Youdao Dictionary, to discover synonyms within the vocabulary. These synonyms
often can be substituted for each other, although there are inevitably some cases where they
cannot be interchanged due to polysemy. This method is beneficial for exploiting established
synonym relationships but is limited to complete words due to its dependency on external
resources.

• Prompting-based Method: We prompt large language models, such as LLaMA2 (Touvron
et al., 2023), to infer synonyms for a given token by utilizing in-context learning techniques
(Brown et al., 2020), with the demonstrations being annotated manually by us. Detailed
prompts are deferred to Appendix E.

To acquire higher-quality clusters with fully interchangeable tokens, we employed two strategies
during the mining process:

Handling Subword Tokenization Subword tokenization blends word and character-based ap-
proaches (Sennrich et al., 2016; Schuster & Nakajima, 2012; Kudo & Richardson, 2018), challenges
the mining of redundant lexical clusters in neural text processing. This technique typically retains
common words as full units and decomposes rare words into subunits. Our research mitigates
these challenges by concentrating on intact, frequently used words during preprocessing, thereby
diminishing noise and simplifying the algorithm.

Incorporating Grammatical Factors In the context of English, the identification of interchange-
able words demands consideration of grammatical factors—tense, voice, and number—alongside
semantic similarity. For instance, ’car’ and ’vehicles’ differ in number, affecting interchangeabil-
ity. Our method addresses these issues by implementing a rule set that screens for grammatical
inconsistencies, ensuring the generation of coherent and high-quality lexical clusters for subsequent
use.

These strategies yield lexical clusters, with each row in Figure 1’s bottom right panel representing a
cluster of interchangeable tokens. Cluster quality is manually evaluated in Section D.1.

C THEORETICAL ANALYSIS

We provide a mathematical analysis demonstrating how WatME outperforms the conventional method,
focusing on the ’green’ team’s expressiveness and the probability of high-quality sampling.

Definition C.1 (Semantic Entropy) Let V represent the vocabulary of a language model. We define
the semantic entropy of V , denoted by Hsem(V), as the entropy of the semantic distribution across
V . This entropy quantifies the diversity and richness of meanings expressible by V . Consequently, a
higher value of Hsem(V) signifies a vocabulary with greater semantic richness.

Definition C.2 (Intrinsic Expressiveness) It is assumed that a language model M, with a vocab-
ulary V characterized by high semantic entropy as indicated by Hsem(V), possesses an enhanced
intrinsic expressive capacity. This capacity is unaffected by the output distribution of M and is due
to the extensive semantic capabilities of V , which endow M with the potential for stronger expressive
abilities.

Assumption C.3 We consider practical scenarios that require high detectability, and thus a large
value of δ. In such a strong watermarking scenario, tokens from the green list are more probable to
be used than those from the red list.
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Figure 2: (a) Human evaluation for the quality of clusters mined by varied methods and (b) testing
detection robustness against substitution attacks.

Note: Assumption C.3 establishes the foundational premise of text watermarking’s effectiveness.

Building upon the Definitions and Assumption, we derive the following theorem.

Theorem C.4 Consider that pt ∈ R|V| represents the predicted distribution of the model M at
decoding time t. Let wi denote the token with the ith highest probability in pt. The higher the rank
of a token (i.e., the smaller i is), the more suitable it is to be selected. Under the conditions of
Assumption C.3, the WatME watermarking method is more likely to select a suitable token compared
to the vanilla watermarking method.

Theorem C.5 Given a fixed proportion γ of the green team, the expressive power of a language
model M employing the WatME exceeds that of one utilizing a vanilla watermarking approach.

These theorems highlight two advantages of WatME; their proofs are in the Appendix F.

D DISCUSSION

D.1 ANALYSIS OF CLUSTERING METHODS

To analyse redundant clusters from diverse methods, we set evaluation criteria to ensure analytical
rigour. These criteria spanned semantic consistency, contextual appropriateness, and grammatical
consistency, which are essential aspects of cluster quality. Two annotators used a rating scale of 0, 1,
2 to annotate the clusters. A score of ’2’ indicated high or ideal consistency, ’1’ denoted moderate or
usable consistency, and ’0’ identified low or unusable consistency within a cluster. The kappa value
for the annotations is 0.657. Figure 2(a) shows both methods met usability, but fell short of ideal
effectiveness. The dictionary approach was superior in semantic coherence due to its utilization of
lexical databases. Conversely, the prompting method outperformed in contextual and grammatical
consistency, reflecting the varied linguistic corpus training of LLMs. This suggests the potential
benefits of a combined approach, a topic reserved for future research.

D.2 ROBUSTNESS AGAINST ATTACKS

Within the scope of watermark robustness against common rewriting attacks, our study evaluated the
resilience of the proposed WatME method compared to baseline watermarking techniques. In a simu-
lated black-box attack scenario, where attackers were blind to the watermark encryption algorithm,
we assessed the integrity of watermarks after random substitutions of text tokens. Utilizing a sample
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Figure 3: Performance trade-offs comparison between WatME and Vanilla Watermark on TruthfulQA
and GSM8K at different Delta (∆) values.

of 200 examples from the GSM8k dataset, the analysis, illustrated in Figure 2(b), demonstrated that
WatME consistently outperformed the vanilla method in detection robustness across a spectrum of
replacement ratios.

D.3 PERFORMANCE TRADE-OFFS AT DIFFERENT DELTA

The efficacy of the Watermark is influenced by the hyperparameter, Delta, which controls the
watermark strength. An increase in Delta facilitates easier watermark detection but at the cost of
severe impact on the LLMs. We analyse the TruthfulQA and GSM8K datasets. Figure 3 shows
WatME consistently achieved a more favourable balance between watermark robustness and LLM
performance across various Delta settings, surpassing Vanilla Watermark. Notably, the performance
curves of WatME are strictly better than that of Vanilla, indicating that at equivalent watermark
strengths, WatME always maintains superior performance compared to Vanilla Watermark.

D.4 ALIGNED VS UNALIGNED MODELS

Our examination of the response sensitivity to watermarking in aligned and unaligned models involved
analyzing their output distributions on the TruthfulQA and GSM8K datasets. We computed the
average entropy for token in the generated answers and found that aligned models exhibit markedly
lower entropy, suggesting more deterministic response patterns, as illustrated in Figure 4. This
pronounced certainty in aligned models’ outputs presents a challenge for watermarking because of
the limited variability that is essential for effective watermark encoding.

E PROMPT FOR CLUSTER MINING

To facilitate the generation of synonym clusters, we employed Llama2-13B-chat. The approach
involved crafting a prompt (Figure 5) that combines a clear task description with a set of demonstra-
tions designed to illustrate the desired task. By presenting the model with a few-shot example, we
primed Llama2-13B-chat to understand and perform the specific task of synonym generation. The
few-shot prompt was crucial for the model to recognize the pattern and replicate it for new target
words, thus enabling the mining of synonym clusters effectively.
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Figure 4: Token-level entropy distributions for aligned (green) and unaligned (blue) models on
GSM8K and TruthfulQA benchmarks.

Figure 5: Few-Shot Demonstration of Synonym Generation using LLMs.

F PROOFS OF THEOREMS

In this section, we present the detailed proofs of the theorems introduced before. Each theorem is
treated in its respective subsection.

F.1 PROOF OF THEOREM C.4

Proof We begin the proof by considering i = 1, 2.

Case I: where w1 is in the green list (Gt):

If w1 ∈ Gt, then both watermarking methods are lossless because they can select the most suitable
token w1.
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Case II: where w1 is in the red list (Rt):

We consider w2, which may or may not be a synonym of w1:

Sub-case i: w2 is not a synonym of w1.

If w1 /∈ Gt and ̸ ∃ Ci ∈ C s.t. w1, w2 ∈ Ci, then according to Algo. 1 we have:
PWatME(w2 ∈ Gt) = Pwatermark(w2 ∈ Gt).

In this case, the two methods are the same.

Sub-case ii: w2 is a synonym of w1.

If w1 /∈ Gt and ∃Ci ∈ C s.t. w1, w2 ∈ Ci, then according to Algo. 1 we have:
PWatME(w2 ∈ Gt) > Pwatermark(w2 ∈ Gt).

Based on Assumption C.3, WatME is more likely to select the suitable token. Combining these cases,
the theorem is proven. It should be noted that while this proof explicitly considers the cases for
i = 1, 2, the logic extends to any arbitrary value of i.

F.2 PROOF OF THEOREM C.5

Proof Let us define the vocabulary V with synonym clusters S = {C1, . . . , Cn}, where C̄ represents
the set of non-synonymous, unique words. According to Algs 2 and 1, WatME maintains a constant
number of distinct semantic representations, quantified as n+ γ · |C̄|. In contrast, the semantic token
count of standard watermarking algorithms is lower than this figure. According to Definition C.1 the
disparity in semantic entropy between the two methodologies is thus evident. Given Definition C.2,
the increased semantic entropy inherent to WatME confirms the theorem.

G TIME COMPLEXITY ANALYSIS

The conventional algorithm necessitates a partition of the vocabulary per decoding operation, which
results in a time complexity of O(|V |). Our method incorporates two partitioning stages: initially
targeting the redundant cluster, followed by the remaining vocabulary. During the first stage, we pad
the cluster into a 2D matrix and conduct parallel sampling. The subsequent stage aligns with the
procedures of the Vanilla algorithm. Consequently, the time complexity of our method remains at
O(|V |).

H SETUP DETAILS

Evaluation Metrics To evaluate detection performance, following previous work, we use the Area
Under the Receiver Operating Characteristic curve (AUROC), a well-established metric for binary
classifiers. For mathematical reasoning tasks, we use Accuracy to assess the correctness of the
model’s solutions. In our evaluation of the TruthfulQA dataset, following Lin et al. (2022), we use
the trained GPT-Truth and GPT-Info scorers, assessing the model’s capacity to generate both truthful
and informative responses. Given the potential trade-off between these two perspectives, the product
of Truth and Information (Truth.*Info.) is commonly used as an overall measure of performance. On
the C4 dataset, we report Perplexity (PPL).

Baselines We compared our model with four established baselines. First, KGW-Mark Kirchen-
bauer et al. (2023), which categorizes teams into ’red’ and ’green’ to facilitate detection. Second,
Gumbel-Mark Kuditipudi et al. (2023), which employs a Gumbel-Softmax distribution to intro-
duce stochasticity into the watermarking process. Third, Unbiased-Mark Hu et al. (2024), which
implements reweighting techniques to maintain the expected output distribution of the LLM dur-
ing watermarking. Lastly, Provable-Mark Zhao et al. (2023), which uses a fixed hash key during
watermarking to achieve provably better performance.

Models We utilized two distinct types of LLMs for experimentation: the non-aligned Llama2 model
Touvron et al. (2023), and the aligned Vicuna v1.5 model Chiang et al. (2023). The majority of the
results reported in this paper were obtained using the 7B version of the models.
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Figure 6: Examples of Redundant Clusters.

In our experiments, we used prompts from the CoT hub Fu et al. (2023) for the GSM8K dataset and
the original prompts from TruthfulQA Lin et al. (2022). The Llama2 model was evaluated using its
original prompt format to maintain consistency. Greedy decoding was employed as the strategy for all
tasks, with maximum decoding lengths set at 128 tokens for GSM8K and 50 tokens for TruthfulQA,
which allowed for the complete generation of answers within the datasets.

To account for the differing answer lengths in the GSM8K and TruthfulQA datasets, we fine-tuned the
watermark hyperparameters. For GSM8K, with its longer answers aiding detection, we used a milder
watermark intensity, setting gamma at 0.3 and delta at 3.0. Conversely, the brevity of answers in
TruthfulQA complicates detection, necessitating a stronger watermark intensity—again with gamma
at 0.3, but with delta increased to 4.0 to achieve satisfactory detection performance (AUROC ¿ 0.7).

Evaluation metrics were carefully chosen: AUROC was calculated using the ‘sklearn‘ library, and
for the assessment of GPT-Truth and GPT-Info, we utilized a fine-tuned Llama2-13B-chat model
that demonstrated an accuracy above 93% on the validation set. All model implementations were
executed using the ‘transformers‘ library.

The hardware employed for these experiments consisted of a 40GB A100 GPU and a 32GB V100
GPU, ensuring sufficient computational power for model training and evaluation.

I EXAMPLES OF REDUNDANT CLUSTERS

We present some examples of mined clusters at 6.
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