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Abstract

Seeing hidden structures and objects around corners is critical for robots operating
in complex, cluttered environments. Existing methods, however, are limited to
detecting and tracking hidden objects rather than reconstructing the occluded full
scene. We present HoloRadar, a practical system that reconstructs both line-of-
sight (LOS) and non-line-of-sight (NLOS) 3D scenes using a single mmWave radar.
HoloRadar uses a two-stage pipeline: the first stage generates high-resolution
multi-return range images that capture both LOS and NLOS reflections, and the
second stage reconstructs the physical scene by mapping mirrored observations to
their true locations using a physics-guided architecture that models ray interactions.
We deploy HoloRadar on a mobile robot and evaluate it across diverse real-world
environments. Our evaluation results demonstrate accurate and robust reconstruc-
tion in both LOS and NLOS regions. Code, dataset and demo videos are available
on the project website.

1 Introduction
The ability to perceive beyond direct line of sight (LOS) is essential for robots operating in com-
plex environments. Consider an autonomous vehicle approaching an intersection as children step
unexpectedly into the street. If the vehicle can perceive the hidden scene and individuals before
they become visible, it can reason about their positions and motion, gaining precious time to react
and prevent accidents. Similarly, indoor robots navigating tight spaces can operate more safely and
efficiently by reconstructing hidden structures and obstacles around corners, thereby allowing them
to plan precise, collision-free paths in advance.

Despite the importance of Non-Line-of-Sight (NLOS) perception, visual sensors such as cameras and
LiDARs face fundamental limitations. These sensors operate at wavelengths on the order of hundreds
of nanometers, which are much smaller than the surface roughness of common materials (e.g., drywall,
concrete). As a result, light scatters in many directions, losing the directional coherence needed for
imaging. In contrast, radio frequency (RF) signals have wavelengths orders of magnitude longer
(i.e., millimeter or centimeter), causing most walls and structures to behave as specular reflectors like
mirrors. This property enables RF signals to bounce predictably off surfaces and preserve geometric
information even around corners. As illustrated in Fig. 1(a), the returning RF echoes encode rich
spatial cues about hidden objects and spaces, making RF uniquely suited for NLOS perception.

Existing NLOS imaging systems face significant limitations. Radar-based approaches often require
prior knowledge of the scene geometry [28, 35, 38], or rely on bulky hardware and long signal
acquisition times [8, 34]. Single-photon LiDAR systems [2, 17, 24] involve expensive setups and
suffer from spatial ambiguity due to diffuse reflections. Camera-based methods [3, 5, 30] analyze
shadows for hidden object detection, but are highly sensitive to ambient lighting and cannot produce
detailed images. More importantly, most systems [8, 28, 31, 34, 35, 38] are limited to localizing or
imaging hidden objects, rather than reconstructing the full 3D geometry of the occluded scene.

In this paper, we introduce HoloRadar, a novel system that accurately reconstructs both LOS and
NLOS 3D scenes with a mmWave radar. Achieving this capability requires overcoming several
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Figure 1: HoloRadar pipeline. It leverages (a) the multi-bounce RF reflections to reconstruct the scene. We
propose a two-stage pipeline for this task. (b) The first stage predicts the range (travel distance) of each bounce
from the noisy and low-resolution signals. This emulates a "multi-return LiDAR" and extracts key points in the
mirrored locations. (c) The second stage maps those mirrored points to their actual locations and reconstructs
the scene, (d) revealing hidden structures and humans.

technical challenges. First, radar sensors inherently suffer from low spatial resolution. Environmental
reflections often appear as blurred blobs rather than distinct peaks. This is further exacerbated by
measurement noise, signal artifacts, and the natural attenuation of signal strength. Second, multi-
return reflections cause objects to appear at mirrored locations in the radar’s measurement space,
where signals from multiple bounces are superimposed in complex ways. Mapping these mirrored
observations back to their true physical locations requires accurate geometry and reasoning.

Our approach addresses these challenges using a two-stage pipeline. The first stage generates high-
resolution multi-return range images by predicting multiple depth values per viewing direction. For
each radar beam (i.e., azimuth-elevation pair), the model estimates a set of bounce distances, each
corresponding to a reflection along a multi-return path, as shown in Fig. 1(b). This is analogous to
what a multi-return LiDAR system would produce if all surfaces are specular. We train this model on
noisy, low-resolution radar heatmaps using supervision from ray tracing over SLAM-based scene
meshes. While these multi-return range images capture geometric information from both LOS and
NLOS regions, the recovered points reside in the radar’s measurement space, where NLOS surfaces
appear at mirrored locations due to multi-return propagation. The second stage resolves this ambiguity
by reconstructing the physical 3D scene. We adopt a physics-inspired architecture that explicitly
models the ray tracing process. Specifically, we combine the predicted multi-return geometry with
surface normal estimation at each bounce to iteratively reverse the mirroring effect to put the mirrored
points back to the world coordinates (Fig. 1(c)). This structured approach improves accuracy and
accelerates convergence compared to end-to-end learning. Finally, we use a scene refinement module
to correct residual geometric errors and fuse information across bounces, producing a coherent final
reconstruction of the scene and hidden humans (Fig. 1(d)).

To evaluate our approach, we build a mobile robot prototype and collect data at 32 corners across
5 buildings, with 28k radar measurements in total. We train our models on 24 corners except 8 for
testing. For evaluation, we measure the Chamfer distance, Hausdorff distance, and F-score between
our predicted scenes and the ground truth. Our method achieves overall LOS and NLOS F-score of
85.7% and 54.6%, with 18% and 35% better over baseline methods [9, 29].

In summary, the main contributions of our paper include:
• We present the first practical system for NLOS 3D scene reconstruction around corners.
• We propose a novel two-stage pipeline that decouples signal interpretation from spatial reasoning.
• We conduct extensive experiments across diverse real-world environments and demonstrated

accurate reconstruction in both LOS and NLOS regions.

2 Related Work
Radar Sensing and Imaging. Radar-based sensing and imaging have gained increasing attention in
recent years due to their robustness in challenging environments [27, 39, 41]. Synthetic aperture radar
(SAR) [10, 25, 26] is a technique that enhances resolution by coherently combining measurements
over time or space. Several systems leverage this technique with mechanical motion. Some move the
radar along horizontal and vertical axes with sliders [11, 36], while others employ rotational movement
for panoramic sensing [20, 21]. For specific targets like humans [18, 22] or vehicles [11, 12, 23],
machine learning models have been applied to further improve resolution. Recently, [20, 21] combine
advanced signal processing with learning-based methods to support general purpose indoor imaging,
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recognition, and mapping. Nevertheless, nearly all these methods work with LOS reflections, with no
applicability in occluded or cluttered environments perception.

Radar-based NLOS Perception. Extending radar sensing to NLOS scenarios has been explored
in several directions. Existing work [28, 38] localizes hidden humans by leveraging multi-bounce
reflections, but it requires knowledge of the surrounding geometry. Similarly, [31] uses a LiDAR to
determine the relay wall for outdoor 2D human detection and tracking. Mosaic [35], on the other
hand, bypasses geometric modeling by installing retro-reflectors, yet the manual setup limits its gener-
alizability. More recently, RFlect [8] produces coarse heatmaps of hidden objects using multi-bounce
radar returns. However, it demands time-consuming mechanical scanning to simulate a large synthetic
aperture. There are also through-wall sensing efforts [42, 43] using low-frequency radar, though
such approaches are ineffective for around-corner scenarios where signals must traverse multiple
barriers. In short, current radar-based NLOS methods are held back by deployment constraints and
performance limitations. Moreover, none of these work aims to reconstruct the full 3D scene.

NLOS Sensing with Other Modalities. While cameras and LiDARs are widely used for LOS
perception and reconstruction [19, 33, 37], recent studies have explored their potential for NLOS
sensing. Several methods [3, 5, 30] use RGB cameras to analyze indirect illumination and shadows
cast on visible surfaces, enabling low-resolution reconstructions of hidden human activity. However,
these methods require carefully controlled lighting and wall locations, limiting their robustness
in real-world conditions. Others [14–17, 24, 32] leverage single-photon avalanche diode (SPAD)
LiDARs to capture two-bounce time-of-flight histograms of hidden objects through transient imaging.
While these systems can provide accurate measurements, they are typically bulky and expensive for
mobile or daily deployment.

3 Radar Imaging Background

Radar transmits electromagnetic waves and receive reflections from objects and surfaces in the
environment. To achieve sufficient angular resolution, radar systems typically use antenna arrays
to synthesize a large aperture. In our setup, we follow the design of PanoRadar [20], where a
single-board radar is mechanically rotated to emulate a cylindrical array. As illustrated in Fig. 2(a),
by compensating for signals received across antennas during a full rotation, we digitally form beams
over Nθ elevation angles (θ) and Nϕ azimuth angles (ϕ), where ϕ spans the full 360◦ field of view. To
estimate depth along each beam, we use a frequency-modulated continuous wave (FMCW) waveform
and apply a Fourier transform, resulting in NR discrete range bins. This process yields a 3D heatmap
H ∈ RNθ×Nϕ×NR , which serves as a coarse volumetric representation of the environment. Higher
values indicate stronger reflections and a greater likelihood of object presence.

Compared to camera images, radar heatmaps have significantly lower spatial resolution, and signal
energy often spreads across neighboring bins [11, 23, 42]. However, radar offers a distinct sensing
modality that interacts with the environment in fundamentally different ways. Due to its long
wavelength, most surfaces behave as specular reflectors. As a result, signals often undergo multiple
bounces before returning to the sensor, producing indirect reflections that appear at mirrored locations
in the measurement space [8, 20]. While such multipath reflections are typically considered artifacts
in conventional radar imaging, they carry valuable geometric information. In this paper, we build a
framework that models and exploits these indirect reflections to enable accurate NLOS reconstruction.
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Figure 2: System setup and multi-bounce reflection. (a) Our rotating radar forms a cylindrical array with
a 360◦ FOV. For signals collected in each cycle, beamforming is applied to obtain a 3D heatmap. (b) A 2D
illustration of the multi-bounce reflection and notations.
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Figure 3: Network architecture of HoloRadar. We propose a two-stage pipeline for radar-based NLOS 3D
reconstruction. The first stage aims to enhance the radar imaging resolution and emulate a "multi-return LiDAR",
resulting in range images for each bounce. These images are equivalent to mirrored points. The second stage
focuses on spatial reasoning, mapping mirrored points to their actual locations with a hybrid ray-tracing module,
as well as refining the reconstructed scene.

4 Method

In this section, we first define our task and introduce notations (§ 4.1), and then show HoloRadar’s two-
stage decomposition network architecture (§ 4.2). This is followed by explanation of our multi-return
RF imaging model (§ 4.3) and reflection-aware scene reconstruction model (§ 4.4).

4.1 Problem Definition and Notations

Multi-return Reflections. The process of how a beam reflects is illustrated in Fig. 2(b). Each beam
may be reflected multiple times before returning to the radar along the same path. We use subscript
i ≥ 1 to denote the number of bounces of a beam, and the prime symbol (′) to indicate variables in
mirror coordinate. Moreover, the beam direction for each bounce is defined as di, where d1 is the
initial beamforming direction which is known and fixed. The reflection is assumed to be perfectly
specular with respect to the surface normal ni. We do not consider more than three bounces due to
the decay of signal strength. To acquire ground truth, we use LiDAR SLAM to build a mesh map M
for the environment.

NLOS Imaging Task. Our goal is to reconstruct the environment M from the 3D heatmap H.
Similar to an image in the mirror, the actual points pi in world coordinate will appear as p′

i in mirror
coordinate in the measurement, as shown in Fig. 2(b). While mirrored points p′

i lie in the same beam
direction d1, the actual points pi can be anywhere depending on the environmental structures, radar’s
location, and the number of bounces. This task is further complicated by the low-resolution noisy
radar heatmaps as inputs.

4.2 HoloRadar Architecture

To tackle this problem, HoloRadar decomposes it into two sub-tasks, and adopts a two-stage structure
to handle each one accordingly, as shown in Fig. 3. The first stage is multi-return RF imaging, which
is responsible for identifying the mirrored points p′

i from the heatmap that is low-resolution with
plenty of noise and artifacts. This can be formulated as a range estimation task, as p′

i = Rid1, where
Ri is the accumulated range (or travel distance) of a beam up to the i-th bounce. If we estimate
the accumulated ranges for every initial direction (d1)θ,ϕ, it will form three dense range images
Yi = (Ri)θ,ϕ ∈ RNθ×Nϕ . Each pixel in Yi is essentially a mirrored point p′

i. Fig. 3 visualizes an
input heatmap and the predicted range images that correspond to mirrored point clouds.

The second stage is reflection-aware scene reconstruction, which is designed to reason about the
spatial relationship between the real world and the mirror world and to put mirrored points p′

i back
to their actual locations pi. To achieve this, we take inspiration from the physical reflection rules
and introduce the ray tracing blocks with physical inductive bias. These modules work in a cascaded
manner, where the current ray tracing block takes the predicted reflected directions and surface
normals from the previous block and outputs them for the next one. Hence, with the travel distance
(accumulated range Ri) of each beam from the first stage, the actual locations pi can be determined
sequentially for every bounce. After this stage, points are placed back to the world coordinate.
However, there are still some noisy and misaligned points due to the sequential prediction and error
accumulations. We further apply a scene refinement module to denoise the results and fuse points
from all bounces for final scene reconstruction.
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Figure 4: Network Details. Left: HoloRadar adopts a two-stage pipeline, taking an RF heatmap as input and
predicting the scene around corners. Right: Details of the i-th ray tracing block and its inputs and outputs.

4.3 Multi-return RF Imaging
The multi-return RF imaging model focuses on dense range estimation, aiming to predict the range
images Yi ∈ RNθ×Nϕ .i = 1, 2, 3 from the 3D radar heatmap H ∈ RNθ×Nϕ×NR . To process the
heatmap, we adopt the strategy of treating the range dimension as channels and apply 2D CNNs
across elevation and azimuth dimension, an approach shown to be effective for enhancing imaging
resolution in prior work [20]. This design is well-suited to address the spatial energy spreading
caused by the limited sensing resolution while remaining computationally efficient.

Building on this, we develop a UNet-based architecture with a shared encoder, separate decoders,
and skip connections, as illustrated in Fig. 4. The encoder processes the full heatmap H and extracts
shared RF features, which are then passed through three specialized decoders to reconstruct the
respective range images Yi for each bounce. Our insight is that while LOS and NLOS regions often
share signal patterns caused by similar environmental structure, they still differ in several aspects such
as strength, noise characteristics, and energy spreading. Thus, instead of regressing a multi-channel
image directly, we design separate decoders to better capture the distinct signal characteristics of
different bounces. With the predicted range images Ŷi, we compute the loss as a combination of
per-pixel range estimation error and perceptual error:

Limg = λrange

∑
i

∥∥∥Ŷi −Yi

∥∥∥
1
+ λlpips

∑
i

LPIPS(Ŷi,Yi), (1)

where λrange, λlpips are weighting factors, and LPIPS(·, ·) computes the perceptual loss using LPIPS
metrics [40]. The three branches are jointly optimized, and the perceptual loss is used for capturing
details objects such as humans. We obtain the ground truth Yi by performing ray tracing on the
environment mesh map M, with initial directions the same as the beamforming directions d1.

4.4 Reflection-aware Scene Reconstruction
After obtaining the range images Yi = (Ri)θ,ϕ, the reflection-aware scene reconstruction model first
maps every mirrored points p′

i = Rid1 back to their actual location pi using our ray tracing modules.
These modules work in a cascaded manner and sequentially predict the actual points. Then, it refines
all pi to reconstruct the final scene in volumetric representation, and converts it to point cloud for
visualization. Fig. 4 shows the detailed structure of the model.

Ray Tracing. This module simulates how a ray bounces off a surface and change its direction,
assuming perfect specular reflection. Given the previous incoming ray direction di−1 and the surface
normal ni−1 at point pi−1, the current outgoing reflection direction di can be determined by:

di = di−1 − 2(di−1 · ni−1)ni−1. (2)

The reflected ray then travels along the current direction di for distance Ri − Ri−1 until it hits a
surface, giving the current hit point pi as:

pi = pi−1 + (Ri −Ri−1)di. (3)
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Equations (2) and (3) show that the mirrored points p′
i = Rid1 from multiple bounces can be

iteratively mapped to their actual location. Therefore, we duplicate the ray tracing module three times
and cascade them for the prediction of all the points pi in world coordinate.

During ray tracing, the surface normal ni is unknown and needs estimation. For a range image
Yi = (Ri)θ,ϕ, the surface normal at direction (θ, ϕ) has a close-form solution [1] as:

n′
i = Rθ,ϕbi, bi =

[
1, 1

Ri cos θ
∂Ri

∂ϕ , 1
Ri

∂Ri

∂θ

]T
, (4)

where Rθ,ϕ is a pre-computed rotation matrix for every direction (θ, ϕ) and bi is a geometry vector
depending on the local surface structure. Note that the normal vector n′

i in Eqn. (4) is a mirrored
version of the true surface normal ni, because Yi represents an image of the mirrored world. To
recover the actual normal ni in the world coordinate, we apply a reflection operation using the
previously computed normal ni−1:

ni = n′
i − 2(n′

i · ni−1)ni−1. (5)
For implementation purposes, we manually initialize Y0 = n0 = p0 = 0, and set d0 = d1, which is
the known and fixed beamforming directions.

Hybrid Estimation Blocks. Since surface normal calculation in Eqn. (4) involves derivative, it is
sensitive to noise and errors in the range images. However, accurate surface normal is critical for
determining the next bounce point. That is because an error in surface normal will result in incorrect
reflection directions, and this error will be further magnified for longer distance. To address this
issue, we add a residual neural network branch for Eqn. (2)(4)(5), extracting features directly from
the input. These input are similar to images but with different channel dimensions, representing the
surface normal directions (ni−1) and range (Yi). The extracted features and analytical results are
concatenated and fused together with fusion blocks. Both the residual branch and the fusion branch
are made of standard residual blocks [13]. Structure details can be found in Appendix § C.2. Ablation
study in § 5.4 demonstrate the effectiveness of our hybrid learning design.

Refinement and Scene Reconstruction. After ray tracing, the predicted points pi are now in world
coordinates. However, some of them may not align precisely with the geometry. To address this,
we incorporate a voxel-based 3D UNet that fuses predictions from different bounces and refine the
reconstruction with volumetric representation. Given that most voxels are empty (∼90%), we adopt
sparse 3D convolutions from Minkowski Engine [7] to reduce computation cost and memory usage.

We formulate scene reconstruction as a hybrid multi-class classification and regression task. Each in-
put point is associated with a vector (x,y,z,∆x,∆y,∆z,i,n), where (x,y,z) are the point coordinates,
(∆x,∆y,∆z) are offsets to the voxel center, i is the bounce index, and n is the number of points
falling into the voxel. A voxel encoder projects this value into feature vector, which is then averaged
to obtain the voxel feature when multiple points fall into the same voxel. Bounce index i is included
to help the model assess the reliability of each point, since different bounce point has various noise
distribution. The model predicts a classification volume Vcls and a regression volume Vreg. We
distinguish three semantic classes: empty space, humans, and structures. The final 3D positions of all
non-empty voxels are obtained by adding the regressed offset to their corresponding voxel centers.

Model Training. We supervise both the ray tracing and the refinement module to improve perfor-
mance and accelerate convergence. In the ray tracing module, instead of directly supervising the
predicted surface normal n̂i, we compute a loss on the corresponding geometry vector b̂i against the
ground truth bi. We also use a per-point L1 loss between the predicted points p̂i and the ground truth
points pi. The total loss for ray tracing is defined as:

LRT = λsn

∑
i

∥b̂i − bi∥1 + λpoint

∑
i

∥p̂i − pi∥1. (6)

For scene refinement module, we apply a cross-entropy loss to the classification prediction V̂cls and
an L1 loss to the offset regression prediction V̂reg. To encourage the predicted non-empty voxels to
align closely with surfaces, we introduce a distance loss. Specifically, we apply a Euclidean Distance
Transform (EDT) [4] to the ground truth volume Vcls, which assigns each empty voxel with distance
to the nearest non-empty voxel. The total loss for refinement becomes:

Lrefine = λclsCE(V̂cls,Vcls) + λreg∥V̂reg −Vreg∥1 + λdist∥V̂cls ∗ EDT(Vcls)∥1, (7)
where Vcls and Vreg denote the ground truth classification and regression volumes, respectively, and
the symbol ∗ denotes element-wise (per-voxel) multiplication.
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Figure 6: Multi-return RF imaging results. Our model successfully reveals NLOS structures and human
(highlighted and zoomed in by white boxes) in both the 2nd and 3rd bounce images.

5 Experiments
5.1 Experimental Setup
Dataset. We collect a dataset from 32 distinct corners across 5 buildings, which are constructed
between 1906 and 1996 and renovated between 1973 and 2017. We use 24 corners for model training
and the remaining 8 for evaluation. As illustrated in Fig. 5(a), our dataset includes diverse corner
layouts, including 21 T-shaped, 5 L-shaped, 5 cross-shaped, and 1 oblique corner at 45°. Corner
width ranges from 1.33 m to 4.63 m, with a mean of 2.16 m and a standard deviation of 0.89 m. In
each corner, we positioned a human subject behind the corner, out of the direct LOS, to simulate
realistic NLOS imaging conditions. Fig. 5(b) shows our radar system, and examples of dataset
collection scenarios are depicted in Fig. 5(c) and (d). Both the human and the robot are free to move,
leading to a total of 28k distinct RF heatmap scans. To capture humans located in regions invisible to
LiDAR, we recorded videos using a stereo depth camera, and then aligned the camera point cloud
with the environmental mesh using point cloud registration [6].

Evaluation Metrics and Baselines. We employ comprehensive depth error metrics, including mean
(cm), median (cm), 90-percentile error (cm), and PSNR (dB), to evaluate the performance of the first
stage, multi-return RF imaging. In the second stage of scene reconstruction, we assess the results
using Chamfer Distance (CD, cm), Modified Hausdorff Distance (MHD, cm), and F-score (F-S., %),
which quantifies geometric agreement between predicted and ground truth point clouds. We note
that existing radar-based see-around-corner methods neither predict dense multi-return images nor
reconstruct the full scene, therefore unsuitable for direct comparison. To provide fair baselines, we
implemented two vision transformer models, ViT [9] and DPT [29]. Details on the evaluation metrics
(§ B.4) and the baseline implementation (§ C.3) can be found in the appendix.

Implementation Details. We individually train the models in the two stages. For multi-return
RF imaging, both encoder and decoder architectures consist of 7 layers, with each encoder layer
containing 4 residual blocks and each decoder layer containing 2 residual blocks. We trained this
model using a batch size of 8 for 90k iterations. In reflection-aware scene reconstruction, our hybrid
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Figure 7: Scene reconstruction results. Top two rows: full scene reconstruction. Bottom two rows: detailed
views of each corner. Green and purple points represent LOS and NLOS geometries, respectively, while
dark-purple points indicate the hidden person.

estimation blocks incorporate 4 residual blocks each in both the residual and fusion branches. Our
refinement model adopts a 5-layer 3D UNet structure, with each layer composed of 2 residual
blocks using sparse convolution in both encoder and decoder stages. The scene space is set as
20 m× 20 m× 3.5 m and partitioned into 256× 256× 32 voxels. We train this model with a batch
size of 4 for 60k iterations while freezing the first stage. All experiments use the AdamW optimizer,
incorporating a warm-up period of 1k steps and an initial learning rate of 10−4 following a cosine
annealing schedule. All models are trained on an NVIDIA L40 GPU.

5.2 Results
Multi-return RF Imaging. We present the results of multi-return RF imaging in Tab. 1, comparing
range estimation errors for each bounce individually. The results indicate that our UNet-based
multi-return RF imaging model achieves superior range estimation accuracy across all three bounces.
As shown in Fig. 6, the predicted range images align closely with the ground truth. Notably, in both
the second- and third-bounce cases, our model accurately reconstructs depth maps, capturing the
hidden human silhouettes (in white boxes) that closely match the ground truth.

Method 1st Bounce 2nd Bounce 3rd Bounce
Mean↓ Median↓ 90th↓ PSNR↑ Mean↓ Median↓ 90th↓ PSNR ↑ Mean↓ Median ↓ 90th ↓ PSNR ↑

ViT 9.81 2.69 19.83 31.37 24.30 9.44 57.15 25.03 40.61 17.68 98.08 22.11
DPT 8.87 2.37 16.68 31.44 23.00 8.45 51.48 24.88 39.27 15.94 87.09 21.64
Ours 7.03 2.02 12.33 32.83 19.03 7.17 40.05 25.98 31.36 13.72 73.95 22.58

Table 1: Performance of the multi-return RF imaging model.

3D Scene Reconstruction. After training the first stage, we ]train the reflection-aware scene
reconstruction module and evaluate its performance. As shown in Tab. 2, our two-stage pipeline
consistently outperforms end-to-end transformer baselines across all metrics, in both LOS and NLOS
regions. These results validate that: (i) decomposing the task into distinct imaging and spatial
reasoning stages and (ii) incorporating a physics-guided ray-tracing bias significantly enhance model
generalization. Even prior to the scene refinement stage, our hybrid ray-tracing module already
surpasses the best baseline. The subsequent scene refinement further aligns the reconstructed point
cloud with the ground truth, improving the LOS and NLOS F-scores by approximately 18% and
35% over competing methods, respectively. Fig. 7 presents qualitative results of reconstructed
scene geometries from various test corners. The predicted reconstructions align closely with the
ground truth, accurately capturing both hidden humans and surrounding NLOS structures. This
demonstrates that our method effectively extends perception from direct LOS to occluded NLOS
regions. Comparisons with baseline methods are shown in Fig. 8, where our approach produces
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End-to-end ViT End-to-end DPT

Ground TruthOurs

Figure 8: Visual comparison with baselines.

Method LOS NLOS
CD↓ MHD↓ F-S.↑ CD↓ MHD↓ F-S.↑

End2end ViT 19.8 13.1 72.4 45.4 28.5 40.4
End2end DPT 21.5 14.6 69.8 50.3 31.1 37.0

w/o Refine. 13.8 7.3 83.8 43.5 29.3 50.3
w/ Refine. 12.2 7.1 85.7 40.0 28.3 54.6

Table 2: Results for the final 3D scene reconstruction.

clearer and more complete reconstructions in both LOS and NLOS areas, while the baselines exhibit
noisy or incorrect structures (e.g., missing humans or closed corridors).

Human Detection and Localization. Our system predicts human labels on the reconstructed point
cloud, enabling hidden human detection and localization. Detection performance is evaluated using a
50 cm matching threshold, where detected human points are aggregated into centroids and compared
to ground-truth positions using Euclidean distance. Our method achieves a detection precision of
89.96%, recall of 97.29%, and F-score of 93.48%, with a mean localization error of 13.77 cm and a
median of 12.55 cm. The high detection rate and low position error demonstrate strong performance
in NLOS human detection and localization, allowing robots to navigate safely around corners.

5.3 Analysis on Corner Diversity and Signal Attenuation

Variation CD↓ MHD↓ F-S.↑

Shape
T-shaped 34.1 23.9 61.9

Cross-shaped 37.8 24.9 47.8
L-shaped 45.3 32.7 52.5

Size
Narrow 39.1 27.5 57.6
Medium 33.0 21.7 57.5

Wide 42.5 32.8 59.2

Signal
Atten.

High 39.4 27.1 53.1
Medium 37.2 26.4 55.9

Low 35.1 25.5 66.1

Table 3: NLOS reconstruction performance
by different corner shapes, sizes, and signal
attenuation levels.

To evaluate the robustness and generalization of our sys-
tem, we test NLOS reconstruction performance across
corners with varying shapes, sizes, and signal attenuation
levels. The results are summarized in Tab. 3.

Corner Shapes and Sizes. Corners are categorized by
shape (T-shaped, cross-shaped, and L-shaped) and by size
(narrow: <1.5 m, medium: 1.5–3 m, wide: >3 m). We
observe that T-shaped corners yield the best performance,
likely due to their larger reflective surfaces, which facil-
itate stronger multi-bounce signal propagation. Cross-
shaped and L-shaped corners, with more irregular geome-
tries, show slightly reduced accuracy. Among the size
categories, medium-width corners achieve the lowest re-
construction errors. This is because narrow corners may
introduce stronger multipath interference, while wide corners can weaken reflections due to longer
propagation paths and greater beam dispersion. Nevertheless, the observed variation remains modest,
approximately 10 cm in Chamfer and Hausdorff distances, and around 10% in F-score, indicating
that our system maintains accurate even under structural irregularities.

Signal Attenuation Levels. Different materials exhibit varying levels of RF signal attenuation. To
quantify attenuation, we sample the radar heatmap in the LOS region and compare it with the energy
observed in the hidden target region, measuring the power drop between LOS and corresponding
NLOS reflections. Based on this measure, the test data are divided into three bands: low attenuation
(<10 dB), medium attenuation (10–20 dB), and high attenuation (>20 dB). As expected, the system
performs best in low-attenuation conditions. However, even under substantial signal loss, it maintains
low Chamfer and Hausdorff distances and a high F-score. These results demonstrate the resilience of
our method to challenging reflective conditions, and the robustness in diverse environments.

5.4 Ablation Study
Model Architecture for Multi-return RF Imaging. We study the impact of different encoder and
decoder layers on multi-return RF imaging performance, as summarized in Tab. 4. Each configuration
is defined by the number of shared encoder layers, separate decoder layers, and shared decoder layers.
The total number of decoder layers (separate plus shared) is kept equal to the number of encoder
layers for consistency. Deviating from our chosen configuration, by either reducing or increasing the
layer count, leads to diminished or saturated performance. The last three rows of the table further
analyze the effect of increasing bounce-specific decoder layers while keeping the encoder depth fixed.
Results show that adding separate decoder layers for each bounce consistently improves accuracy
across all bounces, supporting our design choice discussed in § 4.3.
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Settings 1st Bounce 2nd Bounce 3rd Bounce
Mean↓ Median↓ 90th↓ PSNR↑ Mean↓ Median↓ 90th↓ PSNR ↑ Mean↓ Median ↓ 90th ↓ PSNR ↑

(4,4,0) 8.15 2.17 14.74 31.58 22.02 7.68 47.37 24.76 35.95 14.76 86.61 21.47
(7,7,0) 7.03 2.02 12.33 32.83 19.03 7.17 40.05 25.98 31.36 13.72 73.95 22.58

(10,10,0) 7.14 2.06 12.67 32.72 19.11 7.05 40.30 25.86 31.28 13.51 74.18 22.62
(7,0,7) 7.61 2.23 13.51 32.33 19.41 7.27 41.34 25.92 31.64 13.84 76.10 22.54
(7,3,4) 7.25 2.09 12.88 32.67 19.07 7.09 40.24 25.86 31.40 13.78 74.34 22.55
(7,7,0) 7.03 2.02 12.33 32.83 19.03 7.17 40.05 25.98 31.36 13.72 73.95 22.58

Table 4: Ablations for multi-return RF imaging. We evaluate different configurations of (#encoder layers,
#separate decoder layers, #shared decoder layers). Colored lines are our default configuration.

Study objectives Variation NLOS F-S.↑

Ray tracing SP only 16.2
ML only 40.4

Scene refinement w/o distance loss 29.3
w/o offsets 50.7

Our implementation 54.6

Table 5: Ablations for the reflection-aware scene
reconstruction model.

Module Design for Ray Tracing. As shown in
Tab. 5, we evaluate various designs for our hybrid
ray-tracing module, including pure signal processing
(SP only), pure neural networks (ML only), and our
proposed hybrid approach. Our hybrid method signif-
icantly outperforms either the pure signal processing
or pure neural network approaches, validating the
discussion presented in § 4.4.

Design of Scene Refinement Module. We further
analyze the scene refinement module by varying the loss function and network output targets, as
detailed in Tab. 5. Introducing a distance-based loss significantly improves the F-score, demonstrating
that this loss encourages predicted voxel locations to more accurately align with ground truth.
Additionally, predicting continuous voxel coordinates rather than discrete quantized locations helps
mitigate errors due to spatial quantization.

3D Convolution Efficiency. To assess our choice of sparse 3D convolution, we evaluate the trade-off
between reconstruction accuracy and computational efficiency across different convolution designs.
We compare dense 3D convolutions at multiple feature resolutions with our sparse convolution
model. All inferences are performed on an NVIDIA RTX 4070 GPU, and results are summarized
in Tab. 6. The sparse 3D convolution achieves substantially faster inference than full-resolution dense
convolution while maintaining comparable accuracy. Although it requires an additional rulebook, the
inherent sparsity of the scene significantly reduces computation time, validating this design choice.
The end-to-end inference time is 298 ms (38.4 ms for multi-return imaging and 80 ms for ray tracing),
which is within the radar’s 0.5 s rotation period and supports real-time operation.

Design choices Infer. time (ms) GFLOPS #Parameters NLOS CD↓ NLOS F-S.↑
Full-resolution dense 3D conv 274 622.24 54.7 M 37.5 53.7

2x downsampled 3D conv 121 322.33 54.7 M 37.6 47.1
4x downsampled 3D conv 40 247.61 54.7 M 42.7 29.9

Sparse 3D conv (ours) 180 225.05 53.1 M 40.0 54.6

Table 6: Runtime and NLOS reconstruction performance for 3D convolution design choices.

6 Discussions
Conclusion. We introduced HoloRadar, a radar-based system capable of reconstructing both LOS
and NLOS 3D scenes around corners. Leveraging a two-stage learning and physics-guided framework
that decouples signal interpretation from spatial reasoning, HoloRadar accurately reconstructs hidden
geometry and human subjects with high fidelity. Extensive evaluations on a real-world dataset
covering diverse corner scenarios validate the effectiveness and robustness of the proposed approach.
By enabling full-scene reconstruction beyond direct visibility, HoloRadar advances radar sensing
toward broader spatial perception. This capability supports safer autonomous navigation, improved
situational awareness in search and rescue, and more effective human-robot interaction in complex or
visually occluded environments.

Limitations. As an initial step toward NLOS 3D scene reconstruction, this work focuses primarily
on indoor around-corner scenarios. Extending the system outdoors would introduce challenges such
as longer signal propagation distances and interference from fast dynamic objects. However, the
proposed two-stage pipeline can be readily adapted to radar systems designed for outdoor operation.
In addition, the current scene refinement module lacks an explicit human-shape prior. Integrating
parametric human body models could further enhance the fidelity of reconstructed human geometry.
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A Additional Experimental Results

We provide further experimental comparisons between baseline methods and our approach. Fig. 10
illustrates the multi-return RF imaging results for each bounce. Our predictions align closely with the
ground truth, whereas baseline methods exhibit several noticeable artifacts, marked by gray boxes.
Specifically, examples 1 and 4 highlight incorrect geometric predictions, example 2 demonstrates
a missed detection of a human subject, and example 3 indicates an additional, incorrect detection.
These inaccuracies can negatively impact subsequent scene reconstruction tasks. The comparison
clearly shows the robustness and effectiveness of our design.

Additional scene reconstruction results are showcased in Fig. 11. Baseline methods achieve rough
geometry reconstructions but generate significant noise, particularly at greater distances. Additionally,
these methods consistently fail to detect humans located around corners, limiting their real-world
applicability for robotic tasks. In contrast, our method produces clean and accurate reconstructions of
both LOS and NLOS scenes, and reliably detects humans in NLOS regions. This outcome underscores
the effectiveness of our proposed two-stage approach compared to end-to-end methods.

B System Implementation Details

B.1 Radar Configuration

Our system employs a millimeter-wave (mmWave) cascaded radar, specifically the TI MMWCAS-
RF-EVM combined with a TI MMWCAS-DSP-EVM data capture board, to transmit radio signals
and receive environmental reflections. The radar frequency sweeps from 77 to 81 GHz, resulting in a
4 GHz bandwidth and a range resolution of 3.75 cm. Each chirp consists of 256 samples, allowing a
maximum sensing range of 9.6 m.

The radar is mechanically rotated by a stepper motor at a frequency of 2 Hz with a rotation radius of
10.5 cm. For the raw radar measurements collected over a full cycle, they will be processed into an RF
heatmap, which serves as the input to the neural network. During signal processing, beamforming is
conducted over 64 elevation angles spanning [-45◦, 45◦] and 1024 azimuth angles covering 360◦. The
data is further downsampled by 2x along the azimuth dimension, resulting in a final 3D heatmap H
of dimensions 64×512×256 (elevation, azimuth, and range respectively). The heatmap retains only
amplitude data and omits phase information, since amplitude directly indicates reflection strength. An
example heatmap is shown in Fig. 9(a), where we select a 2D range-azimuth slice at zero elevation.

B.2 Data Collection

To establish ground truth, our setup includes an Ouster 64-beam LiDAR sensor alongside the mmWave
radar. Both sensors are mounted on a Lynxmotion Wheeled Rover mobile robot platform, which is
manually operated using a joystick.

During data collection, a human subject stands on one side of a corner while the robot positions itself
on the opposite side, with both entities free to move. As the human is obscured by the corner in
NLOS, we use a ZED 2i stereo depth camera to record visual data of the subject. The stereo videos
are further processed to give camera point clouds. Radar, LiDAR, and camera data are collected
simultaneously and synchronized using timestamps. Our dataset comprises data from 32 different
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(a) An example heatmap (2D slice) (b) Difference between consecutive heatmap frames

Figure 9: Visualization of RF heatmaps. (a) A 2D range-azimuth slice at zero elevation of an example RF
heatmap. (b) The absolute amplitude difference between consecutive heatmap frames.
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corners, each containing roughly 875 synchronized data collection cycles, totaling approximately 28k
samples. To simulate real-world variability, some data are collected without human presence.

To capture variation across scans of the same corner, data are collected with both a moving robot and
moving human, causing sensor and target positions to vary across acquisitions. At millimeter-wave
frequencies, even millimeter-scale position changes can shift the signal phase, leading to noticeable
differences in the beamformed RF heatmaps between scans. Fig. 9(b) illustrates these effects, showing
the absolute amplitude difference between consecutive frames.

B.3 Ground Truth Acquisition

Ground truth data for LOS and NLOS scene reconstruction are generated using a customized
ray tracing pipeline. Initially, we leverage a 3D LiDAR SLAM algorithm to generate a detailed
geometric mesh map of each corner without human presence. Then, we register point clouds from
the depth camera to the pre-built mesh map to determine the initial camera pose. This is a one-time
calibration since the camera is stationary. LiDAR point clouds are similarly registered, but it is
performed dynamically for each rotation cycle due to robot movements. This ensures consistent
spatial alignment of both robot and human subjects within the shared map coordinate system.

We then simulate beamforming directions through ray tracing. For each ray cast, we record travel
distances at every bounce, generating accurate ground truth multi-return range images. Additionally,
surface normals, semantic labels (LOS, NLOS, human, non-human), and spatial coordinates (x, y, z)
of each intersection point are computed and stored.

B.4 Evaluation Metric

For reconstruction results, we evaluate the similarity between a predicted point cloud P and its
ground-truth counterpart G using three metrics: the Chamfer Distance (CD), the Modified Hausdorff
Distance (MHD), and the F-score at a distance threshold τ .

Chamfer Distance. The Chamfer Distance measures the average closest-point distance between two
point sets. Given P = {pi}Ni=1 and G = {gj}Mj=1, it is defined as:

CD(P,G) =
1

N

∑
p∈P

min
g∈G

∥p− g∥2 +
1

M

∑
g∈G

min
p∈P

∥g − p∥2. (8)

This symmetric form accounts for both point sets equally.

Modified Hausdorff Distance. The Modified Hausdorff Distance captures the worst-case average
deviation between two point clouds. It is defined as:

MHD(P,G) = max

 1

N

∑
p∈P

min
g∈G

∥p− g∥2,
1

M

∑
g∈G

min
p∈P

∥g − p∥2

 . (9)

Unlike the classical Hausdorff distance, which takes the maximum of all pairwise minima, the
modified form uses the mean distance in each direction, making it more robust to outliers.

F-score. The F-score measures the harmonic mean of precision and recall based on a distance
threshold τ . The precision and recall between two point clouds P and G are defined as:

precision =
|{p ∈ P | ming∈G ∥p− g∥2 < τ}|

|P|
, (10)

recall =
|{g ∈ G | minp∈P ∥g − p∥2 < τ}|

|G|
. (11)

Then the F-score is computed as:

F-score =
2 · precision · recall
precision + recall

. (12)

This metric reflects the balance between completeness and accuracy of reconstruction, where a
higher F-score indicates better geometric alignment at the specified tolerance. In our evaluation, the
threshold τ is set to be 10 cm, aligning with the voxel size.
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Figure 10: Multi-return RF imaging results. We compare our method with baseline approaches for each
bounce. Gray boxes highlight artifacts in the baseline predictions.

Together, these three metrics provide a comprehensive evaluation of geometric fidelity between pre-
dicted and ground truth point clouds, balancing average distance, structural deviation, and threshold-
based overlap.

16



E
x
a

m
p

le
 1

End-to-end ViT End-to-end DPT Ours Ground Truth

E
x
a

m
p

le
 2

E
x
a

m
p

le
 3

E
x
a

m
p

le
 4

LOS

NLOS

Human

Figure 11: Scene reconstruction around corners. We compare our method against two end-to-end transformer-
based baselines. Green, light purple, and dark purple points represent LOS geometry, NLOS geometry, and
NLOS human, respectively. For all examples, the ceiling and floor are omitted for clearer visualization.

C Network Implementation Details

C.1 Multi-return RF Imaging Model

Our multi-return RF imaging model employs a UNet-based architecture featuring a shared encoder,
three separate decoders, and skip connections. Both encoder and decoder modules contain 7 layers
built from standard residual blocks [13]. Each encoder layer comprises 4 residual blocks, whereas
each decoder layer includes 2 residual blocks. At the end of each encoder layer, feature maps are
downsampled by a factor of 2, and correspondingly upsampled at each decoder layer. To maintain
sufficient resolution along the elevation dimension, downsampling in this direction is stopped after
the fourth layer. Skip connections bridge corresponding layers between the encoder and decoders.
Additionally, an initial stem layer using a 7×7 convolution reduces input channels by a factor of 4.
This initial convolution effectively captures the energy leakage pattern along elevation and azimuth
from the low-resolution RF heatmap while compressing sparse signals along the range dimension.

The model is trained with a batch size of 8 over 90k iterations using the AdamW optimizer. The
optimizer uses parameters β1 = 0.9 and β2 = 0.999. The learning rate is initiated at 10−4, with a 1k
step warm-up and a cosine annealing schedule. Data augmentation involves random rotations and
flips along the azimuth dimension, and per-element Gaussian noise addition to the input heatmap.
The heatmaps are log-scaled and normalized to [-1, 1] to mitigate extreme value ranges.

C.2 Reflection-aware Scene Reconstruction Model

Ray Tracing. Our ray-tracing sub-module utilizes hybrid estimation blocks to accurately predict
surface normals and reflection directions. There are three types of hybrid estimation blocks: hy-
brid surface normal estimation block, hybrid surface normal reflection block, and hybrid direction
reflection block, as illustracted in Fig. 12. Each hybrid estimation block includes two branches: a
physics-guided signal processing branch indicated by the corresponding equation, and a residual fea-
ture extraction branch with 4 residual convolution blocks. While Eqn. (2)–(5) describe operations at
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Figure 12: Structure of the hybrid estimation blocks. Each of these block contains a physics-guided process
indicated by the equation, and a learnable residual feature extraction branch. These feature maps will be
concatenated and fused together for the final output (e.g., surface normal or reflection direction).

the level of a single pixel or point, these operations can be applied to the entire image, enabling batch
processing that produces surface normals, reflection directions, and point locations as image-like
tensors with (x, y, z) as channels. These image-like representations are then processed by the residual
feature extraction branch through convolutional layers. The resulting feature maps are concatenated
with outputs from the signal processing branch (i.e., Eqn. (2)–(5)) along the channel dimension
before being passed to the fusion branch, which consists of 2 residual convolution blocks.

Training is conducted with a batch size of 4 over 60k iterations, using the same optimization strategy
as the multi-return RF imaging model. Data augmentation includes random rotations and flips along
the azimuth dimension. This sub-module is trained independently and its parameters will be frozen
for the subsequent refinement sub-module training.

Refinement and Reconstruction. The refinement sub-module features a voxel-based 3D UNet
architecture utilizing sparse convolutions, comprising 5 layers each with 2 residual blocks in both
encoder and decoder. Spatial dimensions of 20 m×20 m×3.5 m are discretized into 256×256×32
voxels. To ensure sufficient resolution, downsampling along the z (height) dimension stops after
reaching 8 voxels at the third layer. Classification and regression heads contain one residual block
followed by a 1×1 convolution to adjust output channels. Given the voxel-based nature of this
sub-module, the F-score threshold is set to the voxel size (10 cm). Training parameters are identical
to those of the ray-tracing sub-module.

C.3 Baselines

We implement two transformer-based baselines: end-to-end ViT and end-to-end DPT. Both of them
use identical training parameters, optimizer settings, and augmentation methods as our multi-return
RF imaging model.

End-to-end ViT. Our Vision Transformer (ViT [9]) based baseline partitions the RF heatmap into
non-overlapping patches of size 4×8 along elevation and azimuth, while retaining all range channels.
This operation is similar to the standard technique applied to RGB images. Each patch is flattened and
linearly projected into fixed-size tokens. We adopt the ViT-Base architecture in [9] (i.e., 12 layers, 768
hidden size, 3072 MLP size, 12 heads). An output head decodes each token into a 288-dimensional
vector reshaped to 9×4×8, representing xyz coordinates across 3 bounces and 4×8 beam directions
per patch. For training, it employs per-point L1 loss against ground truth.

End-to-end DPT. The Dense Prediction Transformer (DPT [29]) based baseline follows a similar
patch embedding and transformer configuration as the ViT baseline. Different from [29], it integrates
6 Reassemble blocks at layers [2, 4, 6, 8, 10, 12]. These blocks adjust feature maps to dimensions
Nθ

s1
× Nϕ

s2
, with [s1, s2] sequentially set to [[2,2], [2,4], [4,8], [4,16], [8,32], [8,64]]. Similar to

our multi-return RF imaging model, three separate decoders predict point location images for each
bounce. For fusion blocks in the decoder, we use feature concatenation instead of direct addition.
Per-point L1 loss is used during training.

D Social Impacts

The proposed system has significant positive social impacts, primarily enhancing safety and reliability
in robotics and autonomous systems. By enabling machines to perceive hidden humans and structures
around corners, our approach can substantially reduce accidents involving autonomous vehicles.
Additionally, indoor robots, including service robots and emergency-response systems, can operate
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more safely and effectively in complex environments around unseen obstacles. However, the increased
sensing capability also raises privacy considerations, as the technology could potentially detect
individuals without their knowledge or consent. Thus, responsible deployment of our system must
include transparency about its usage and careful consideration of privacy protections to balance safety
benefits with ethical obligations.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state our contributions in the abstract and introduction and conduct
extensive experiments on our dataset.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in the Discussion session.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This work does not include theoretical proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We clearly detailed our methods and parameters for the training of the network.
The code, and the dataset will be open-sourced once the paper is accepted.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: Our code and dataset will be open-sourced after the review process.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have all the training and testing details, including data splits, hyperparame-
ters, ablation studies on hyperparameters and the description of the used optimizer.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We exclude error bars because it would be too computationally expensive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have all details in the experiment setup in the main text and the supplemen-
tary results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We adhere to the NeurIPS Code of Ethics and preserve anonymity.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We mention both potential societal impacts in the discussion.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our model and data do not pose such risks

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the corresponding paper when needed.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes] ,

Justification: We discuss the model architecture details, training details, dataset collection
process in the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This work does not use LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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